raw/ioat: add fill operation
[dpdk.git] / drivers / raw / ioat / rte_ioat_rawdev_fns.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019-2020 Intel Corporation
3  */
4 #ifndef _RTE_IOAT_RAWDEV_FNS_H_
5 #define _RTE_IOAT_RAWDEV_FNS_H_
6
7 #include <x86intrin.h>
8 #include <rte_rawdev.h>
9 #include <rte_memzone.h>
10 #include <rte_prefetch.h>
11
12 /**
13  * @internal
14  * Structure representing a device descriptor
15  */
16 struct rte_ioat_generic_hw_desc {
17         uint32_t size;
18         union {
19                 uint32_t control_raw;
20                 struct {
21                         uint32_t int_enable: 1;
22                         uint32_t src_snoop_disable: 1;
23                         uint32_t dest_snoop_disable: 1;
24                         uint32_t completion_update: 1;
25                         uint32_t fence: 1;
26                         uint32_t reserved2: 1;
27                         uint32_t src_page_break: 1;
28                         uint32_t dest_page_break: 1;
29                         uint32_t bundle: 1;
30                         uint32_t dest_dca: 1;
31                         uint32_t hint: 1;
32                         uint32_t reserved: 13;
33                         uint32_t op: 8;
34                 } control;
35         } u;
36         uint64_t src_addr;
37         uint64_t dest_addr;
38         uint64_t next;
39         uint64_t op_specific[4];
40 };
41
42 /**
43  * @internal
44  * Identify the data path to use.
45  * Must be first field of rte_ioat_rawdev and rte_idxd_rawdev structs
46  */
47 enum rte_ioat_dev_type {
48         RTE_IOAT_DEV,
49         RTE_IDXD_DEV,
50 };
51
52 /**
53  * @internal
54  * some statistics for tracking, if added/changed update xstats fns
55  */
56 struct rte_ioat_xstats {
57         uint64_t enqueue_failed;
58         uint64_t enqueued;
59         uint64_t started;
60         uint64_t completed;
61 };
62
63 /**
64  * @internal
65  * Structure representing an IOAT device instance
66  */
67 struct rte_ioat_rawdev {
68         /* common fields at the top - match those in rte_idxd_rawdev */
69         enum rte_ioat_dev_type type;
70         struct rte_ioat_xstats xstats;
71
72         struct rte_rawdev *rawdev;
73         const struct rte_memzone *mz;
74         const struct rte_memzone *desc_mz;
75
76         volatile uint16_t *doorbell __rte_cache_aligned;
77         phys_addr_t status_addr;
78         phys_addr_t ring_addr;
79
80         unsigned short ring_size;
81         bool hdls_disable;
82         struct rte_ioat_generic_hw_desc *desc_ring;
83         __m128i *hdls; /* completion handles for returning to user */
84
85
86         unsigned short next_read;
87         unsigned short next_write;
88
89         /* to report completions, the device will write status back here */
90         volatile uint64_t status __rte_cache_aligned;
91
92         /* pointer to the register bar */
93         volatile struct rte_ioat_registers *regs;
94 };
95
96 #define RTE_IOAT_CHANSTS_IDLE                   0x1
97 #define RTE_IOAT_CHANSTS_SUSPENDED              0x2
98 #define RTE_IOAT_CHANSTS_HALTED                 0x3
99 #define RTE_IOAT_CHANSTS_ARMED                  0x4
100
101 /*
102  * Defines used in the data path for interacting with hardware.
103  */
104 #define IDXD_CMD_OP_SHIFT 24
105 enum rte_idxd_ops {
106         idxd_op_nop = 0,
107         idxd_op_batch,
108         idxd_op_drain,
109         idxd_op_memmove,
110         idxd_op_fill
111 };
112
113 #define IDXD_FLAG_FENCE                 (1 << 0)
114 #define IDXD_FLAG_COMPLETION_ADDR_VALID (1 << 2)
115 #define IDXD_FLAG_REQUEST_COMPLETION    (1 << 3)
116 #define IDXD_FLAG_CACHE_CONTROL         (1 << 8)
117
118 #define IOAT_COMP_UPDATE_SHIFT  3
119 #define IOAT_CMD_OP_SHIFT       24
120 enum rte_ioat_ops {
121         ioat_op_copy = 0,       /* Standard DMA Operation */
122         ioat_op_fill            /* Block Fill */
123 };
124
125 /**
126  * Hardware descriptor used by DSA hardware, for both bursts and
127  * for individual operations.
128  */
129 struct rte_idxd_hw_desc {
130         uint32_t pasid;
131         uint32_t op_flags;
132         rte_iova_t completion;
133
134         RTE_STD_C11
135         union {
136                 rte_iova_t src;      /* source address for copy ops etc. */
137                 rte_iova_t desc_addr; /* descriptor pointer for batch */
138         };
139         rte_iova_t dst;
140
141         uint32_t size;    /* length of data for op, or batch size */
142
143         /* 28 bytes of padding here */
144 } __rte_aligned(64);
145
146 /**
147  * Completion record structure written back by DSA
148  */
149 struct rte_idxd_completion {
150         uint8_t status;
151         uint8_t result;
152         /* 16-bits pad here */
153         uint32_t completed_size; /* data length, or descriptors for batch */
154
155         rte_iova_t fault_address;
156         uint32_t invalid_flags;
157 } __rte_aligned(32);
158
159 #define BATCH_SIZE 64
160
161 /**
162  * Structure used inside the driver for building up and submitting
163  * a batch of operations to the DSA hardware.
164  */
165 struct rte_idxd_desc_batch {
166         struct rte_idxd_completion comp; /* the completion record for batch */
167
168         uint16_t submitted;
169         uint16_t op_count;
170         uint16_t hdl_end;
171
172         struct rte_idxd_hw_desc batch_desc;
173
174         /* batches must always have 2 descriptors, so put a null at the start */
175         struct rte_idxd_hw_desc null_desc;
176         struct rte_idxd_hw_desc ops[BATCH_SIZE];
177 };
178
179 /**
180  * structure used to save the "handles" provided by the user to be
181  * returned to the user on job completion.
182  */
183 struct rte_idxd_user_hdl {
184         uint64_t src;
185         uint64_t dst;
186 };
187
188 /**
189  * @internal
190  * Structure representing an IDXD device instance
191  */
192 struct rte_idxd_rawdev {
193         enum rte_ioat_dev_type type;
194         struct rte_ioat_xstats xstats;
195
196         void *portal; /* address to write the batch descriptor */
197
198         /* counters to track the batches and the individual op handles */
199         uint16_t batch_ring_sz;  /* size of batch ring */
200         uint16_t hdl_ring_sz;    /* size of the user hdl ring */
201
202         uint16_t next_batch;     /* where we write descriptor ops */
203         uint16_t next_completed; /* batch where we read completions */
204         uint16_t next_ret_hdl;   /* the next user hdl to return */
205         uint16_t last_completed_hdl; /* the last user hdl that has completed */
206         uint16_t next_free_hdl;  /* where the handle for next op will go */
207         uint16_t hdls_disable;   /* disable tracking completion handles */
208
209         struct rte_idxd_user_hdl *hdl_ring;
210         struct rte_idxd_desc_batch *batch_ring;
211 };
212
213 static __rte_always_inline int
214 __ioat_write_desc(int dev_id, uint32_t op, uint64_t src, phys_addr_t dst,
215                 unsigned int length, uintptr_t src_hdl, uintptr_t dst_hdl)
216 {
217         struct rte_ioat_rawdev *ioat =
218                         (struct rte_ioat_rawdev *)rte_rawdevs[dev_id].dev_private;
219         unsigned short read = ioat->next_read;
220         unsigned short write = ioat->next_write;
221         unsigned short mask = ioat->ring_size - 1;
222         unsigned short space = mask + read - write;
223         struct rte_ioat_generic_hw_desc *desc;
224
225         if (space == 0) {
226                 ioat->xstats.enqueue_failed++;
227                 return 0;
228         }
229
230         ioat->next_write = write + 1;
231         write &= mask;
232
233         desc = &ioat->desc_ring[write];
234         desc->size = length;
235         /* set descriptor write-back every 16th descriptor */
236         desc->u.control_raw = (uint32_t)((op << IOAT_CMD_OP_SHIFT) |
237                         (!(write & 0xF) << IOAT_COMP_UPDATE_SHIFT));
238         desc->src_addr = src;
239         desc->dest_addr = dst;
240
241         if (!ioat->hdls_disable)
242                 ioat->hdls[write] = _mm_set_epi64x((int64_t)dst_hdl,
243                                         (int64_t)src_hdl);
244         rte_prefetch0(&ioat->desc_ring[ioat->next_write & mask]);
245
246         ioat->xstats.enqueued++;
247         return 1;
248 }
249
250 static __rte_always_inline int
251 __ioat_enqueue_fill(int dev_id, uint64_t pattern, phys_addr_t dst,
252                 unsigned int length, uintptr_t dst_hdl)
253 {
254         static const uintptr_t null_hdl;
255
256         return __ioat_write_desc(dev_id, ioat_op_fill, pattern, dst, length,
257                         null_hdl, dst_hdl);
258 }
259
260 /*
261  * Enqueue a copy operation onto the ioat device
262  */
263 static __rte_always_inline int
264 __ioat_enqueue_copy(int dev_id, phys_addr_t src, phys_addr_t dst,
265                 unsigned int length, uintptr_t src_hdl, uintptr_t dst_hdl)
266 {
267         return __ioat_write_desc(dev_id, ioat_op_copy, src, dst, length,
268                         src_hdl, dst_hdl);
269 }
270
271 /* add fence to last written descriptor */
272 static __rte_always_inline int
273 __ioat_fence(int dev_id)
274 {
275         struct rte_ioat_rawdev *ioat =
276                         (struct rte_ioat_rawdev *)rte_rawdevs[dev_id].dev_private;
277         unsigned short write = ioat->next_write;
278         unsigned short mask = ioat->ring_size - 1;
279         struct rte_ioat_generic_hw_desc *desc;
280
281         write = (write - 1) & mask;
282         desc = &ioat->desc_ring[write];
283
284         desc->u.control.fence = 1;
285         return 0;
286 }
287
288 /*
289  * Trigger hardware to begin performing enqueued operations
290  */
291 static __rte_always_inline void
292 __ioat_perform_ops(int dev_id)
293 {
294         struct rte_ioat_rawdev *ioat =
295                         (struct rte_ioat_rawdev *)rte_rawdevs[dev_id].dev_private;
296         ioat->desc_ring[(ioat->next_write - 1) & (ioat->ring_size - 1)].u
297                         .control.completion_update = 1;
298         rte_compiler_barrier();
299         *ioat->doorbell = ioat->next_write;
300         ioat->xstats.started = ioat->xstats.enqueued;
301 }
302
303 /**
304  * @internal
305  * Returns the index of the last completed operation.
306  */
307 static __rte_always_inline int
308 __ioat_get_last_completed(struct rte_ioat_rawdev *ioat, int *error)
309 {
310         uint64_t status = ioat->status;
311
312         /* lower 3 bits indicate "transfer status" : active, idle, halted.
313          * We can ignore bit 0.
314          */
315         *error = status & (RTE_IOAT_CHANSTS_SUSPENDED | RTE_IOAT_CHANSTS_ARMED);
316         return (status - ioat->ring_addr) >> 6;
317 }
318
319 /*
320  * Returns details of operations that have been completed
321  */
322 static __rte_always_inline int
323 __ioat_completed_ops(int dev_id, uint8_t max_copies,
324                 uintptr_t *src_hdls, uintptr_t *dst_hdls)
325 {
326         struct rte_ioat_rawdev *ioat =
327                         (struct rte_ioat_rawdev *)rte_rawdevs[dev_id].dev_private;
328         unsigned short mask = (ioat->ring_size - 1);
329         unsigned short read = ioat->next_read;
330         unsigned short end_read, count;
331         int error;
332         int i = 0;
333
334         end_read = (__ioat_get_last_completed(ioat, &error) + 1) & mask;
335         count = (end_read - (read & mask)) & mask;
336
337         if (error) {
338                 rte_errno = EIO;
339                 return -1;
340         }
341
342         if (ioat->hdls_disable) {
343                 read += count;
344                 goto end;
345         }
346
347         if (count > max_copies)
348                 count = max_copies;
349
350         for (; i < count - 1; i += 2, read += 2) {
351                 __m128i hdls0 = _mm_load_si128(&ioat->hdls[read & mask]);
352                 __m128i hdls1 = _mm_load_si128(&ioat->hdls[(read + 1) & mask]);
353
354                 _mm_storeu_si128((__m128i *)&src_hdls[i],
355                                 _mm_unpacklo_epi64(hdls0, hdls1));
356                 _mm_storeu_si128((__m128i *)&dst_hdls[i],
357                                 _mm_unpackhi_epi64(hdls0, hdls1));
358         }
359         for (; i < count; i++, read++) {
360                 uintptr_t *hdls = (uintptr_t *)&ioat->hdls[read & mask];
361                 src_hdls[i] = hdls[0];
362                 dst_hdls[i] = hdls[1];
363         }
364
365 end:
366         ioat->next_read = read;
367         ioat->xstats.completed += count;
368         return count;
369 }
370
371 static __rte_always_inline int
372 __idxd_write_desc(int dev_id, const struct rte_idxd_hw_desc *desc,
373                 const struct rte_idxd_user_hdl *hdl)
374 {
375         struct rte_idxd_rawdev *idxd =
376                         (struct rte_idxd_rawdev *)rte_rawdevs[dev_id].dev_private;
377         struct rte_idxd_desc_batch *b = &idxd->batch_ring[idxd->next_batch];
378
379         /* check for room in the handle ring */
380         if (((idxd->next_free_hdl + 1) & (idxd->hdl_ring_sz - 1)) == idxd->next_ret_hdl)
381                 goto failed;
382
383         /* check for space in current batch */
384         if (b->op_count >= BATCH_SIZE)
385                 goto failed;
386
387         /* check that we can actually use the current batch */
388         if (b->submitted)
389                 goto failed;
390
391         /* write the descriptor */
392         b->ops[b->op_count++] = *desc;
393
394         /* store the completion details */
395         if (!idxd->hdls_disable)
396                 idxd->hdl_ring[idxd->next_free_hdl] = *hdl;
397         if (++idxd->next_free_hdl == idxd->hdl_ring_sz)
398                 idxd->next_free_hdl = 0;
399
400         idxd->xstats.enqueued++;
401         return 1;
402
403 failed:
404         idxd->xstats.enqueue_failed++;
405         rte_errno = ENOSPC;
406         return 0;
407 }
408
409 static __rte_always_inline int
410 __idxd_enqueue_fill(int dev_id, uint64_t pattern, rte_iova_t dst,
411                 unsigned int length, uintptr_t dst_hdl)
412 {
413         const struct rte_idxd_hw_desc desc = {
414                         .op_flags =  (idxd_op_fill << IDXD_CMD_OP_SHIFT) |
415                                 IDXD_FLAG_CACHE_CONTROL,
416                         .src = pattern,
417                         .dst = dst,
418                         .size = length
419         };
420         const struct rte_idxd_user_hdl hdl = {
421                         .dst = dst_hdl
422         };
423         return __idxd_write_desc(dev_id, &desc, &hdl);
424 }
425
426 static __rte_always_inline int
427 __idxd_enqueue_copy(int dev_id, rte_iova_t src, rte_iova_t dst,
428                 unsigned int length, uintptr_t src_hdl, uintptr_t dst_hdl)
429 {
430         const struct rte_idxd_hw_desc desc = {
431                         .op_flags =  (idxd_op_memmove << IDXD_CMD_OP_SHIFT) |
432                                 IDXD_FLAG_CACHE_CONTROL,
433                         .src = src,
434                         .dst = dst,
435                         .size = length
436         };
437         const struct rte_idxd_user_hdl hdl = {
438                         .src = src_hdl,
439                         .dst = dst_hdl
440         };
441         return __idxd_write_desc(dev_id, &desc, &hdl);
442 }
443
444 static __rte_always_inline int
445 __idxd_fence(int dev_id)
446 {
447         static const struct rte_idxd_hw_desc fence = {
448                         .op_flags = IDXD_FLAG_FENCE
449         };
450         static const struct rte_idxd_user_hdl null_hdl;
451         return __idxd_write_desc(dev_id, &fence, &null_hdl);
452 }
453
454 static __rte_always_inline void
455 __idxd_movdir64b(volatile void *dst, const void *src)
456 {
457         asm volatile (".byte 0x66, 0x0f, 0x38, 0xf8, 0x02"
458                         :
459                         : "a" (dst), "d" (src));
460 }
461
462 static __rte_always_inline void
463 __idxd_perform_ops(int dev_id)
464 {
465         struct rte_idxd_rawdev *idxd =
466                         (struct rte_idxd_rawdev *)rte_rawdevs[dev_id].dev_private;
467         struct rte_idxd_desc_batch *b = &idxd->batch_ring[idxd->next_batch];
468
469         if (b->submitted || b->op_count == 0)
470                 return;
471         b->hdl_end = idxd->next_free_hdl;
472         b->comp.status = 0;
473         b->submitted = 1;
474         b->batch_desc.size = b->op_count + 1;
475         __idxd_movdir64b(idxd->portal, &b->batch_desc);
476
477         if (++idxd->next_batch == idxd->batch_ring_sz)
478                 idxd->next_batch = 0;
479         idxd->xstats.started = idxd->xstats.enqueued;
480 }
481
482 static __rte_always_inline int
483 __idxd_completed_ops(int dev_id, uint8_t max_ops,
484                 uintptr_t *src_hdls, uintptr_t *dst_hdls)
485 {
486         struct rte_idxd_rawdev *idxd =
487                         (struct rte_idxd_rawdev *)rte_rawdevs[dev_id].dev_private;
488         struct rte_idxd_desc_batch *b = &idxd->batch_ring[idxd->next_completed];
489         uint16_t h_idx = idxd->next_ret_hdl;
490         int n = 0;
491
492         while (b->submitted && b->comp.status != 0) {
493                 idxd->last_completed_hdl = b->hdl_end;
494                 b->submitted = 0;
495                 b->op_count = 0;
496                 if (++idxd->next_completed == idxd->batch_ring_sz)
497                         idxd->next_completed = 0;
498                 b = &idxd->batch_ring[idxd->next_completed];
499         }
500
501         if (!idxd->hdls_disable)
502                 for (n = 0; n < max_ops && h_idx != idxd->last_completed_hdl; n++) {
503                         src_hdls[n] = idxd->hdl_ring[h_idx].src;
504                         dst_hdls[n] = idxd->hdl_ring[h_idx].dst;
505                         if (++h_idx == idxd->hdl_ring_sz)
506                                 h_idx = 0;
507                 }
508         else
509                 while (h_idx != idxd->last_completed_hdl) {
510                         n++;
511                         if (++h_idx == idxd->hdl_ring_sz)
512                                 h_idx = 0;
513                 }
514
515         idxd->next_ret_hdl = h_idx;
516
517         idxd->xstats.completed += n;
518         return n;
519 }
520
521 static inline int
522 rte_ioat_enqueue_fill(int dev_id, uint64_t pattern, phys_addr_t dst,
523                 unsigned int len, uintptr_t dst_hdl)
524 {
525         enum rte_ioat_dev_type *type =
526                         (enum rte_ioat_dev_type *)rte_rawdevs[dev_id].dev_private;
527         if (*type == RTE_IDXD_DEV)
528                 return __idxd_enqueue_fill(dev_id, pattern, dst, len, dst_hdl);
529         else
530                 return __ioat_enqueue_fill(dev_id, pattern, dst, len, dst_hdl);
531 }
532
533 static inline int
534 rte_ioat_enqueue_copy(int dev_id, phys_addr_t src, phys_addr_t dst,
535                 unsigned int length, uintptr_t src_hdl, uintptr_t dst_hdl)
536 {
537         enum rte_ioat_dev_type *type =
538                         (enum rte_ioat_dev_type *)rte_rawdevs[dev_id].dev_private;
539         if (*type == RTE_IDXD_DEV)
540                 return __idxd_enqueue_copy(dev_id, src, dst, length,
541                                 src_hdl, dst_hdl);
542         else
543                 return __ioat_enqueue_copy(dev_id, src, dst, length,
544                                 src_hdl, dst_hdl);
545 }
546
547 static inline int
548 rte_ioat_fence(int dev_id)
549 {
550         enum rte_ioat_dev_type *type =
551                         (enum rte_ioat_dev_type *)rte_rawdevs[dev_id].dev_private;
552         if (*type == RTE_IDXD_DEV)
553                 return __idxd_fence(dev_id);
554         else
555                 return __ioat_fence(dev_id);
556 }
557
558 static inline void
559 rte_ioat_perform_ops(int dev_id)
560 {
561         enum rte_ioat_dev_type *type =
562                         (enum rte_ioat_dev_type *)rte_rawdevs[dev_id].dev_private;
563         if (*type == RTE_IDXD_DEV)
564                 return __idxd_perform_ops(dev_id);
565         else
566                 return __ioat_perform_ops(dev_id);
567 }
568
569 static inline int
570 rte_ioat_completed_ops(int dev_id, uint8_t max_copies,
571                 uintptr_t *src_hdls, uintptr_t *dst_hdls)
572 {
573         enum rte_ioat_dev_type *type =
574                         (enum rte_ioat_dev_type *)rte_rawdevs[dev_id].dev_private;
575         if (*type == RTE_IDXD_DEV)
576                 return __idxd_completed_ops(dev_id, max_copies,
577                                 src_hdls, dst_hdls);
578         else
579                 return __ioat_completed_ops(dev_id,  max_copies,
580                                 src_hdls, dst_hdls);
581 }
582
583 static inline void
584 __rte_deprecated_msg("use rte_ioat_perform_ops() instead")
585 rte_ioat_do_copies(int dev_id) { rte_ioat_perform_ops(dev_id); }
586
587 static inline int
588 __rte_deprecated_msg("use rte_ioat_completed_ops() instead")
589 rte_ioat_completed_copies(int dev_id, uint8_t max_copies,
590                 uintptr_t *src_hdls, uintptr_t *dst_hdls)
591 {
592         return rte_ioat_completed_ops(dev_id, max_copies, src_hdls, dst_hdls);
593 }
594
595 #endif /* _RTE_IOAT_RAWDEV_FNS_H_ */