vdpa/mlx5: add task ring for multi-thread management
[dpdk.git] / examples / eventdev_pipeline / pipeline_worker_tx.c
1 /*
2  * SPDX-License-Identifier: BSD-3-Clause
3  * Copyright(c) 2010-2014 Intel Corporation
4  * Copyright 2017 Cavium, Inc.
5  */
6
7 #include "pipeline_common.h"
8
9 static __rte_always_inline void
10 worker_fwd_event(struct rte_event *ev, uint8_t sched)
11 {
12         ev->event_type = RTE_EVENT_TYPE_CPU;
13         ev->op = RTE_EVENT_OP_FORWARD;
14         ev->sched_type = sched;
15 }
16
17 static __rte_always_inline void
18 worker_event_enqueue(const uint8_t dev, const uint8_t port,
19                 struct rte_event *ev)
20 {
21         while (!rte_event_enqueue_burst(dev, port, ev, 1) && !fdata->done)
22                 rte_pause();
23 }
24
25 static __rte_always_inline uint16_t
26 worker_event_enqueue_burst(const uint8_t dev, const uint8_t port,
27                            struct rte_event *ev, const uint16_t nb_rx)
28 {
29         uint16_t enq;
30
31         enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
32         while (enq < nb_rx && !fdata->done)
33                 enq += rte_event_enqueue_burst(dev, port,
34                                                 ev + enq, nb_rx - enq);
35
36         return enq;
37 }
38
39 static __rte_always_inline void
40 worker_tx_pkt(const uint8_t dev, const uint8_t port, struct rte_event *ev)
41 {
42         exchange_mac(ev->mbuf);
43         rte_event_eth_tx_adapter_txq_set(ev->mbuf, 0);
44         while (!rte_event_eth_tx_adapter_enqueue(dev, port, ev, 1, 0) &&
45                !fdata->done)
46                 rte_pause();
47 }
48
49 /* Single stage pipeline workers */
50
51 static int
52 worker_do_tx_single(void *arg)
53 {
54         struct worker_data *data = (struct worker_data *)arg;
55         const uint8_t dev = data->dev_id;
56         const uint8_t port = data->port_id;
57         size_t fwd = 0, received = 0, tx = 0;
58         struct rte_event ev;
59
60         while (!fdata->done) {
61
62                 if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
63                         rte_pause();
64                         continue;
65                 }
66
67                 received++;
68
69                 if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
70                         worker_tx_pkt(dev, port, &ev);
71                         tx++;
72                 } else {
73                         work();
74                         ev.queue_id++;
75                         worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
76                         worker_event_enqueue(dev, port, &ev);
77                         fwd++;
78                 }
79         }
80
81         if (ev.u64) {
82                 ev.op = RTE_EVENT_OP_RELEASE;
83                 rte_event_enqueue_burst(dev, port, &ev, 1);
84         }
85
86         if (!cdata.quiet)
87                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
88                                 rte_lcore_id(), received, fwd, tx);
89         return 0;
90 }
91
92 static int
93 worker_do_tx_single_atq(void *arg)
94 {
95         struct worker_data *data = (struct worker_data *)arg;
96         const uint8_t dev = data->dev_id;
97         const uint8_t port = data->port_id;
98         size_t fwd = 0, received = 0, tx = 0;
99         struct rte_event ev;
100
101         while (!fdata->done) {
102
103                 if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
104                         rte_pause();
105                         continue;
106                 }
107
108                 received++;
109
110                 if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
111                         worker_tx_pkt(dev, port, &ev);
112                         tx++;
113                 } else {
114                         work();
115                         worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
116                         worker_event_enqueue(dev, port, &ev);
117                         fwd++;
118                 }
119         }
120
121         if (ev.u64) {
122                 ev.op = RTE_EVENT_OP_RELEASE;
123                 rte_event_enqueue_burst(dev, port, &ev, 1);
124         }
125
126         if (!cdata.quiet)
127                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
128                                 rte_lcore_id(), received, fwd, tx);
129         return 0;
130 }
131
132 static int
133 worker_do_tx_single_burst(void *arg)
134 {
135         struct rte_event ev[BATCH_SIZE + 1];
136
137         struct worker_data *data = (struct worker_data *)arg;
138         const uint8_t dev = data->dev_id;
139         const uint8_t port = data->port_id;
140         size_t fwd = 0, received = 0, tx = 0;
141         uint16_t nb_tx = 0, nb_rx = 0, i;
142
143         while (!fdata->done) {
144                 nb_rx = rte_event_dequeue_burst(dev, port, ev, BATCH_SIZE, 0);
145
146                 if (!nb_rx) {
147                         rte_pause();
148                         continue;
149                 }
150                 received += nb_rx;
151
152                 for (i = 0; i < nb_rx; i++) {
153                         rte_prefetch0(ev[i + 1].mbuf);
154                         if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
155
156                                 worker_tx_pkt(dev, port, &ev[i]);
157                                 ev[i].op = RTE_EVENT_OP_RELEASE;
158                                 tx++;
159
160                         } else {
161                                 ev[i].queue_id++;
162                                 worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
163                         }
164                         work();
165                 }
166
167                 nb_tx = worker_event_enqueue_burst(dev, port, ev, nb_rx);
168                 fwd += nb_tx;
169         }
170
171         worker_cleanup(dev, port, ev, nb_tx, nb_rx);
172
173         if (!cdata.quiet)
174                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
175                                 rte_lcore_id(), received, fwd, tx);
176         return 0;
177 }
178
179 static int
180 worker_do_tx_single_burst_atq(void *arg)
181 {
182         struct rte_event ev[BATCH_SIZE + 1];
183
184         struct worker_data *data = (struct worker_data *)arg;
185         const uint8_t dev = data->dev_id;
186         const uint8_t port = data->port_id;
187         size_t fwd = 0, received = 0, tx = 0;
188         uint16_t i, nb_rx = 0, nb_tx = 0;
189
190         while (!fdata->done) {
191                 nb_rx = rte_event_dequeue_burst(dev, port, ev, BATCH_SIZE, 0);
192
193                 if (!nb_rx) {
194                         rte_pause();
195                         continue;
196                 }
197
198                 received += nb_rx;
199
200                 for (i = 0; i < nb_rx; i++) {
201                         rte_prefetch0(ev[i + 1].mbuf);
202                         if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
203
204                                 worker_tx_pkt(dev, port, &ev[i]);
205                                 ev[i].op = RTE_EVENT_OP_RELEASE;
206                                 tx++;
207                         } else
208                                 worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
209                         work();
210                 }
211
212                 nb_tx = worker_event_enqueue_burst(dev, port, ev, nb_rx);
213                 fwd += nb_tx;
214         }
215
216         worker_cleanup(dev, port, ev, nb_tx, nb_rx);
217
218         if (!cdata.quiet)
219                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
220                                 rte_lcore_id(), received, fwd, tx);
221         return 0;
222 }
223
224 /* Multi stage Pipeline Workers */
225
226 static int
227 worker_do_tx(void *arg)
228 {
229         struct rte_event ev;
230
231         struct worker_data *data = (struct worker_data *)arg;
232         const uint8_t dev = data->dev_id;
233         const uint8_t port = data->port_id;
234         const uint8_t lst_qid = cdata.num_stages - 1;
235         size_t fwd = 0, received = 0, tx = 0;
236
237
238         while (!fdata->done) {
239
240                 if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
241                         rte_pause();
242                         continue;
243                 }
244
245                 received++;
246                 const uint8_t cq_id = ev.queue_id % cdata.num_stages;
247
248                 if (cq_id >= lst_qid) {
249                         if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
250                                 worker_tx_pkt(dev, port, &ev);
251                                 tx++;
252                                 continue;
253                         }
254
255                         worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
256                         ev.queue_id = (cq_id == lst_qid) ?
257                                 cdata.next_qid[ev.queue_id] : ev.queue_id;
258                 } else {
259                         ev.queue_id = cdata.next_qid[ev.queue_id];
260                         worker_fwd_event(&ev, cdata.queue_type);
261                 }
262                 work();
263
264                 worker_event_enqueue(dev, port, &ev);
265                 fwd++;
266         }
267
268         if (ev.u64) {
269                 ev.op = RTE_EVENT_OP_RELEASE;
270                 rte_event_enqueue_burst(dev, port, &ev, 1);
271         }
272
273         if (!cdata.quiet)
274                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
275                                 rte_lcore_id(), received, fwd, tx);
276
277         return 0;
278 }
279
280 static int
281 worker_do_tx_atq(void *arg)
282 {
283         struct rte_event ev;
284
285         struct worker_data *data = (struct worker_data *)arg;
286         const uint8_t dev = data->dev_id;
287         const uint8_t port = data->port_id;
288         const uint8_t lst_qid = cdata.num_stages - 1;
289         size_t fwd = 0, received = 0, tx = 0;
290
291         while (!fdata->done) {
292
293                 if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
294                         rte_pause();
295                         continue;
296                 }
297
298                 received++;
299                 const uint8_t cq_id = ev.sub_event_type % cdata.num_stages;
300
301                 if (cq_id == lst_qid) {
302                         if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
303                                 worker_tx_pkt(dev, port, &ev);
304                                 tx++;
305                                 continue;
306                         }
307
308                         worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
309                 } else {
310                         ev.sub_event_type++;
311                         worker_fwd_event(&ev, cdata.queue_type);
312                 }
313                 work();
314
315                 worker_event_enqueue(dev, port, &ev);
316                 fwd++;
317         }
318
319         if (ev.u64) {
320                 ev.op = RTE_EVENT_OP_RELEASE;
321                 rte_event_enqueue_burst(dev, port, &ev, 1);
322         }
323
324         if (!cdata.quiet)
325                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
326                                 rte_lcore_id(), received, fwd, tx);
327
328         return 0;
329 }
330
331 static int
332 worker_do_tx_burst(void *arg)
333 {
334         struct rte_event ev[BATCH_SIZE];
335
336         struct worker_data *data = (struct worker_data *)arg;
337         uint8_t dev = data->dev_id;
338         uint8_t port = data->port_id;
339         uint8_t lst_qid = cdata.num_stages - 1;
340         size_t fwd = 0, received = 0, tx = 0;
341         uint16_t i, nb_rx = 0, nb_tx = 0;
342
343         while (!fdata->done) {
344                 nb_rx = rte_event_dequeue_burst(dev, port, ev, BATCH_SIZE, 0);
345
346                 if (nb_rx == 0) {
347                         rte_pause();
348                         continue;
349                 }
350                 received += nb_rx;
351
352                 for (i = 0; i < nb_rx; i++) {
353                         const uint8_t cq_id = ev[i].queue_id % cdata.num_stages;
354
355                         if (cq_id >= lst_qid) {
356                                 if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
357                                         worker_tx_pkt(dev, port, &ev[i]);
358                                         tx++;
359                                         ev[i].op = RTE_EVENT_OP_RELEASE;
360                                         continue;
361                                 }
362                                 ev[i].queue_id = (cq_id == lst_qid) ?
363                                         cdata.next_qid[ev[i].queue_id] :
364                                         ev[i].queue_id;
365
366                                 worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
367                         } else {
368                                 ev[i].queue_id = cdata.next_qid[ev[i].queue_id];
369                                 worker_fwd_event(&ev[i], cdata.queue_type);
370                         }
371                         work();
372                 }
373
374                 nb_tx = worker_event_enqueue_burst(dev, port, ev, nb_rx);
375                 fwd += nb_tx;
376         }
377
378         worker_cleanup(dev, port, ev, nb_tx, nb_rx);
379
380         if (!cdata.quiet)
381                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
382                                 rte_lcore_id(), received, fwd, tx);
383
384         return 0;
385 }
386
387 static int
388 worker_do_tx_burst_atq(void *arg)
389 {
390         struct rte_event ev[BATCH_SIZE];
391
392         struct worker_data *data = (struct worker_data *)arg;
393         uint8_t dev = data->dev_id;
394         uint8_t port = data->port_id;
395         uint8_t lst_qid = cdata.num_stages - 1;
396         size_t fwd = 0, received = 0, tx = 0;
397         uint16_t i, nb_rx = 0, nb_tx = 0;
398
399         while (!fdata->done) {
400                 nb_rx = rte_event_dequeue_burst(dev, port, ev, BATCH_SIZE, 0);
401
402                 if (nb_rx == 0) {
403                         rte_pause();
404                         continue;
405                 }
406                 received += nb_rx;
407
408                 for (i = 0; i < nb_rx; i++) {
409                         const uint8_t cq_id = ev[i].sub_event_type %
410                                 cdata.num_stages;
411
412                         if (cq_id == lst_qid) {
413                                 if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
414                                         worker_tx_pkt(dev, port, &ev[i]);
415                                         tx++;
416                                         ev[i].op = RTE_EVENT_OP_RELEASE;
417                                         continue;
418                                 }
419
420                                 worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
421                         } else {
422                                 ev[i].sub_event_type++;
423                                 worker_fwd_event(&ev[i], cdata.queue_type);
424                         }
425                         work();
426                 }
427
428                 nb_tx = worker_event_enqueue_burst(dev, port, ev, nb_rx);
429                 fwd += nb_tx;
430         }
431
432         worker_cleanup(dev, port, ev, nb_tx, nb_rx);
433
434         if (!cdata.quiet)
435                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
436                                 rte_lcore_id(), received, fwd, tx);
437
438         return 0;
439 }
440
441 static int
442 setup_eventdev_worker_tx_enq(struct worker_data *worker_data)
443 {
444         uint8_t i;
445         const uint8_t atq = cdata.all_type_queues ? 1 : 0;
446         const uint8_t dev_id = 0;
447         const uint8_t nb_ports = cdata.num_workers;
448         uint8_t nb_slots = 0;
449         uint8_t nb_queues = rte_eth_dev_count_avail();
450
451         /*
452          * In case where all type queues are not enabled, use queues equal to
453          * number of stages * eth_dev_count and one extra queue per pipeline
454          * for Tx.
455          */
456         if (!atq) {
457                 nb_queues *= cdata.num_stages;
458                 nb_queues += rte_eth_dev_count_avail();
459         }
460
461         struct rte_event_dev_config config = {
462                         .nb_event_queues = nb_queues,
463                         .nb_event_ports = nb_ports,
464                         .nb_single_link_event_port_queues = 0,
465                         .nb_events_limit  = 4096,
466                         .nb_event_queue_flows = 1024,
467                         .nb_event_port_dequeue_depth = 128,
468                         .nb_event_port_enqueue_depth = 128,
469         };
470         struct rte_event_port_conf wkr_p_conf = {
471                         .dequeue_depth = cdata.worker_cq_depth,
472                         .enqueue_depth = 64,
473                         .new_event_threshold = 4096,
474                         .event_port_cfg = RTE_EVENT_PORT_CFG_HINT_WORKER,
475         };
476         struct rte_event_queue_conf wkr_q_conf = {
477                         .schedule_type = cdata.queue_type,
478                         .priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
479                         .nb_atomic_flows = 1024,
480                         .nb_atomic_order_sequences = 1024,
481         };
482
483         int ret, ndev = rte_event_dev_count();
484
485         if (ndev < 1) {
486                 printf("%d: No Eventdev Devices Found\n", __LINE__);
487                 return -1;
488         }
489
490
491         struct rte_event_dev_info dev_info;
492         ret = rte_event_dev_info_get(dev_id, &dev_info);
493         printf("\tEventdev %d: %s\n", dev_id, dev_info.driver_name);
494
495         if (dev_info.max_num_events < config.nb_events_limit)
496                 config.nb_events_limit = dev_info.max_num_events;
497         if (dev_info.max_event_port_dequeue_depth <
498                         config.nb_event_port_dequeue_depth)
499                 config.nb_event_port_dequeue_depth =
500                                 dev_info.max_event_port_dequeue_depth;
501         if (dev_info.max_event_port_enqueue_depth <
502                         config.nb_event_port_enqueue_depth)
503                 config.nb_event_port_enqueue_depth =
504                                 dev_info.max_event_port_enqueue_depth;
505
506         ret = rte_event_dev_configure(dev_id, &config);
507         if (ret < 0) {
508                 printf("%d: Error configuring device\n", __LINE__);
509                 return -1;
510         }
511
512         printf("  Stages:\n");
513         for (i = 0; i < nb_queues; i++) {
514
515                 if (atq) {
516
517                         nb_slots = cdata.num_stages;
518                         wkr_q_conf.event_queue_cfg =
519                                 RTE_EVENT_QUEUE_CFG_ALL_TYPES;
520                 } else {
521                         uint8_t slot;
522
523                         nb_slots = cdata.num_stages + 1;
524                         slot = i % nb_slots;
525                         wkr_q_conf.schedule_type = slot == cdata.num_stages ?
526                                 RTE_SCHED_TYPE_ATOMIC : cdata.queue_type;
527                 }
528
529                 if (rte_event_queue_setup(dev_id, i, &wkr_q_conf) < 0) {
530                         printf("%d: error creating qid %d\n", __LINE__, i);
531                         return -1;
532                 }
533                 cdata.qid[i] = i;
534                 cdata.next_qid[i] = i+1;
535                 if (cdata.enable_queue_priorities) {
536                         const uint32_t prio_delta =
537                                 (RTE_EVENT_DEV_PRIORITY_LOWEST) /
538                                 nb_slots;
539
540                         /* higher priority for queues closer to tx */
541                         wkr_q_conf.priority =
542                                 RTE_EVENT_DEV_PRIORITY_LOWEST - prio_delta *
543                                 (i % nb_slots);
544                 }
545
546                 const char *type_str = "Atomic";
547                 switch (wkr_q_conf.schedule_type) {
548                 case RTE_SCHED_TYPE_ORDERED:
549                         type_str = "Ordered";
550                         break;
551                 case RTE_SCHED_TYPE_PARALLEL:
552                         type_str = "Parallel";
553                         break;
554                 }
555                 printf("\tStage %d, Type %s\tPriority = %d\n", i, type_str,
556                                 wkr_q_conf.priority);
557         }
558
559         printf("\n");
560         if (wkr_p_conf.new_event_threshold > config.nb_events_limit)
561                 wkr_p_conf.new_event_threshold = config.nb_events_limit;
562         if (wkr_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth)
563                 wkr_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth;
564         if (wkr_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth)
565                 wkr_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth;
566
567         /* set up one port per worker, linking to all stage queues */
568         for (i = 0; i < cdata.num_workers; i++) {
569                 struct worker_data *w = &worker_data[i];
570                 w->dev_id = dev_id;
571                 if (rte_event_port_setup(dev_id, i, &wkr_p_conf) < 0) {
572                         printf("Error setting up port %d\n", i);
573                         return -1;
574                 }
575
576                 if (rte_event_port_link(dev_id, i, NULL, NULL, 0)
577                                 != nb_queues) {
578                         printf("%d: error creating link for port %d\n",
579                                         __LINE__, i);
580                         return -1;
581                 }
582                 w->port_id = i;
583         }
584         /*
585          * Reduce the load on ingress event queue by splitting the traffic
586          * across multiple event queues.
587          * for example, nb_stages =  2 and nb_ethdev = 2 then
588          *
589          *      nb_queues = (2 * 2) + 2 = 6 (non atq)
590          *      rx_stride = 3
591          *
592          * So, traffic is split across queue 0 and queue 3 since queue id for
593          * rx adapter is chosen <ethport_id> * <rx_stride> i.e in the above
594          * case eth port 0, 1 will inject packets into event queue 0, 3
595          * respectively.
596          *
597          * This forms two set of queue pipelines 0->1->2->tx and 3->4->5->tx.
598          */
599         cdata.rx_stride = atq ? 1 : nb_slots;
600         ret = rte_event_dev_service_id_get(dev_id,
601                                 &fdata->evdev_service_id);
602         if (ret != -ESRCH && ret != 0) {
603                 printf("Error getting the service ID\n");
604                 return -1;
605         }
606         rte_service_runstate_set(fdata->evdev_service_id, 1);
607         rte_service_set_runstate_mapped_check(fdata->evdev_service_id, 0);
608
609         if (rte_event_dev_start(dev_id) < 0)
610                 rte_exit(EXIT_FAILURE, "Error starting eventdev");
611
612         return dev_id;
613 }
614
615
616 struct rx_adptr_services {
617         uint16_t nb_rx_adptrs;
618         uint32_t *rx_adpt_arr;
619 };
620
621 static int32_t
622 service_rx_adapter(void *arg)
623 {
624         int i;
625         struct rx_adptr_services *adptr_services = arg;
626
627         for (i = 0; i < adptr_services->nb_rx_adptrs; i++)
628                 rte_service_run_iter_on_app_lcore(
629                                 adptr_services->rx_adpt_arr[i], 1);
630         return 0;
631 }
632
633 /*
634  * Initializes a given port using global settings and with the RX buffers
635  * coming from the mbuf_pool passed as a parameter.
636  */
637 static inline int
638 port_init(uint8_t port, struct rte_mempool *mbuf_pool)
639 {
640         struct rte_eth_rxconf rx_conf;
641         static const struct rte_eth_conf port_conf_default = {
642                 .rxmode = {
643                         .mq_mode = RTE_ETH_MQ_RX_RSS,
644                 },
645                 .rx_adv_conf = {
646                         .rss_conf = {
647                                 .rss_hf = RTE_ETH_RSS_IP |
648                                           RTE_ETH_RSS_TCP |
649                                           RTE_ETH_RSS_UDP,
650                         }
651                 }
652         };
653         const uint16_t rx_rings = 1, tx_rings = 1;
654         const uint16_t rx_ring_size = 512, tx_ring_size = 512;
655         struct rte_eth_conf port_conf = port_conf_default;
656         int retval;
657         uint16_t q;
658         struct rte_eth_dev_info dev_info;
659         struct rte_eth_txconf txconf;
660
661         if (!rte_eth_dev_is_valid_port(port))
662                 return -1;
663
664         retval = rte_eth_dev_info_get(port, &dev_info);
665         if (retval != 0) {
666                 printf("Error during getting device (port %u) info: %s\n",
667                                 port, strerror(-retval));
668                 return retval;
669         }
670
671         if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
672                 port_conf.txmode.offloads |=
673                         RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
674         rx_conf = dev_info.default_rxconf;
675         rx_conf.offloads = port_conf.rxmode.offloads;
676
677         port_conf.rx_adv_conf.rss_conf.rss_hf &=
678                 dev_info.flow_type_rss_offloads;
679         if (port_conf.rx_adv_conf.rss_conf.rss_hf !=
680                         port_conf_default.rx_adv_conf.rss_conf.rss_hf) {
681                 printf("Port %u modified RSS hash function based on hardware support,"
682                         "requested:%#"PRIx64" configured:%#"PRIx64"\n",
683                         port,
684                         port_conf_default.rx_adv_conf.rss_conf.rss_hf,
685                         port_conf.rx_adv_conf.rss_conf.rss_hf);
686         }
687
688         /* Configure the Ethernet device. */
689         retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
690         if (retval != 0)
691                 return retval;
692
693         /* Allocate and set up 1 RX queue per Ethernet port. */
694         for (q = 0; q < rx_rings; q++) {
695                 retval = rte_eth_rx_queue_setup(port, q, rx_ring_size,
696                                 rte_eth_dev_socket_id(port), &rx_conf,
697                                 mbuf_pool);
698                 if (retval < 0)
699                         return retval;
700         }
701
702         txconf = dev_info.default_txconf;
703         txconf.offloads = port_conf_default.txmode.offloads;
704         /* Allocate and set up 1 TX queue per Ethernet port. */
705         for (q = 0; q < tx_rings; q++) {
706                 retval = rte_eth_tx_queue_setup(port, q, tx_ring_size,
707                                 rte_eth_dev_socket_id(port), &txconf);
708                 if (retval < 0)
709                         return retval;
710         }
711
712         /* Display the port MAC address. */
713         struct rte_ether_addr addr;
714         retval = rte_eth_macaddr_get(port, &addr);
715         if (retval != 0) {
716                 printf("Failed to get MAC address (port %u): %s\n",
717                                 port, rte_strerror(-retval));
718                 return retval;
719         }
720
721         printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
722                         " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
723                         (unsigned int)port, RTE_ETHER_ADDR_BYTES(&addr));
724
725         /* Enable RX in promiscuous mode for the Ethernet device. */
726         retval = rte_eth_promiscuous_enable(port);
727         if (retval != 0)
728                 return retval;
729
730         return 0;
731 }
732
733 static int
734 init_ports(uint16_t num_ports)
735 {
736         uint16_t portid;
737
738         if (!cdata.num_mbuf)
739                 cdata.num_mbuf = 16384 * num_ports;
740
741         struct rte_mempool *mp = rte_pktmbuf_pool_create("packet_pool",
742                         /* mbufs */ cdata.num_mbuf,
743                         /* cache_size */ 512,
744                         /* priv_size*/ 0,
745                         /* data_room_size */ RTE_MBUF_DEFAULT_BUF_SIZE,
746                         rte_socket_id());
747
748         RTE_ETH_FOREACH_DEV(portid)
749                 if (port_init(portid, mp) != 0)
750                         rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu16 "\n",
751                                         portid);
752
753         return 0;
754 }
755
756 static void
757 init_adapters(uint16_t nb_ports)
758 {
759         int i;
760         int ret;
761         uint8_t evdev_id = 0;
762         struct rx_adptr_services *adptr_services = NULL;
763         struct rte_event_dev_info dev_info;
764
765         ret = rte_event_dev_info_get(evdev_id, &dev_info);
766         adptr_services = rte_zmalloc(NULL, sizeof(struct rx_adptr_services), 0);
767
768         struct rte_event_port_conf adptr_p_conf = {
769                 .dequeue_depth = cdata.worker_cq_depth,
770                 .enqueue_depth = 64,
771                 .new_event_threshold = 4096,
772                 .event_port_cfg = RTE_EVENT_PORT_CFG_HINT_PRODUCER,
773         };
774
775         init_ports(nb_ports);
776         if (adptr_p_conf.new_event_threshold > dev_info.max_num_events)
777                 adptr_p_conf.new_event_threshold = dev_info.max_num_events;
778         if (adptr_p_conf.dequeue_depth > dev_info.max_event_port_dequeue_depth)
779                 adptr_p_conf.dequeue_depth =
780                         dev_info.max_event_port_dequeue_depth;
781         if (adptr_p_conf.enqueue_depth > dev_info.max_event_port_enqueue_depth)
782                 adptr_p_conf.enqueue_depth =
783                         dev_info.max_event_port_enqueue_depth;
784
785         struct rte_event_eth_rx_adapter_queue_conf queue_conf;
786         memset(&queue_conf, 0, sizeof(queue_conf));
787         queue_conf.ev.sched_type = cdata.queue_type;
788
789         for (i = 0; i < nb_ports; i++) {
790                 uint32_t cap;
791                 uint32_t service_id;
792
793                 ret = rte_event_eth_rx_adapter_create(i, evdev_id,
794                                 &adptr_p_conf);
795                 if (ret)
796                         rte_exit(EXIT_FAILURE,
797                                         "failed to create rx adapter[%d]", i);
798
799                 ret = rte_event_eth_rx_adapter_caps_get(evdev_id, i, &cap);
800                 if (ret)
801                         rte_exit(EXIT_FAILURE,
802                                         "failed to get event rx adapter "
803                                         "capabilities");
804
805                 queue_conf.ev.queue_id = cdata.rx_stride ?
806                         (i * cdata.rx_stride)
807                         : (uint8_t)cdata.qid[0];
808
809                 ret = rte_event_eth_rx_adapter_queue_add(i, i, -1, &queue_conf);
810                 if (ret)
811                         rte_exit(EXIT_FAILURE,
812                                         "Failed to add queues to Rx adapter");
813
814                 /* Producer needs to be scheduled. */
815                 if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
816                         ret = rte_event_eth_rx_adapter_service_id_get(i,
817                                         &service_id);
818                         if (ret != -ESRCH && ret != 0) {
819                                 rte_exit(EXIT_FAILURE,
820                                 "Error getting the service ID for rx adptr\n");
821                         }
822
823                         rte_service_runstate_set(service_id, 1);
824                         rte_service_set_runstate_mapped_check(service_id, 0);
825
826                         adptr_services->nb_rx_adptrs++;
827                         adptr_services->rx_adpt_arr = rte_realloc(
828                                         adptr_services->rx_adpt_arr,
829                                         adptr_services->nb_rx_adptrs *
830                                         sizeof(uint32_t), 0);
831                         adptr_services->rx_adpt_arr[
832                                 adptr_services->nb_rx_adptrs - 1] =
833                                 service_id;
834                 }
835
836                 ret = rte_event_eth_rx_adapter_start(i);
837                 if (ret)
838                         rte_exit(EXIT_FAILURE, "Rx adapter[%d] start failed",
839                                         i);
840         }
841
842         /* We already know that Tx adapter has INTERNAL port cap*/
843         ret = rte_event_eth_tx_adapter_create(cdata.tx_adapter_id, evdev_id,
844                         &adptr_p_conf);
845         if (ret)
846                 rte_exit(EXIT_FAILURE, "failed to create tx adapter[%d]",
847                                 cdata.tx_adapter_id);
848
849         for (i = 0; i < nb_ports; i++) {
850                 ret = rte_event_eth_tx_adapter_queue_add(cdata.tx_adapter_id, i,
851                                 -1);
852                 if (ret)
853                         rte_exit(EXIT_FAILURE,
854                                         "Failed to add queues to Tx adapter");
855         }
856
857         ret = rte_event_eth_tx_adapter_start(cdata.tx_adapter_id);
858         if (ret)
859                 rte_exit(EXIT_FAILURE, "Tx adapter[%d] start failed",
860                                 cdata.tx_adapter_id);
861
862         if (adptr_services->nb_rx_adptrs) {
863                 struct rte_service_spec service;
864
865                 memset(&service, 0, sizeof(struct rte_service_spec));
866                 snprintf(service.name, sizeof(service.name), "rx_service");
867                 service.callback = service_rx_adapter;
868                 service.callback_userdata = (void *)adptr_services;
869
870                 int32_t ret = rte_service_component_register(&service,
871                                 &fdata->rxadptr_service_id);
872                 if (ret)
873                         rte_exit(EXIT_FAILURE,
874                                 "Rx adapter service register failed");
875
876                 rte_service_runstate_set(fdata->rxadptr_service_id, 1);
877                 rte_service_component_runstate_set(fdata->rxadptr_service_id,
878                                 1);
879                 rte_service_set_runstate_mapped_check(fdata->rxadptr_service_id,
880                                 0);
881         } else {
882                 memset(fdata->rx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
883                 rte_free(adptr_services);
884         }
885
886         if (!adptr_services->nb_rx_adptrs && (dev_info.event_dev_cap &
887                          RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED))
888                 fdata->cap.scheduler = NULL;
889 }
890
891 static void
892 worker_tx_enq_opt_check(void)
893 {
894         int i;
895         int ret;
896         uint32_t cap = 0;
897         uint8_t rx_needed = 0;
898         uint8_t sched_needed = 0;
899         struct rte_event_dev_info eventdev_info;
900
901         memset(&eventdev_info, 0, sizeof(struct rte_event_dev_info));
902         rte_event_dev_info_get(0, &eventdev_info);
903
904         if (cdata.all_type_queues && !(eventdev_info.event_dev_cap &
905                                 RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES))
906                 rte_exit(EXIT_FAILURE,
907                                 "Event dev doesn't support all type queues\n");
908         sched_needed = !(eventdev_info.event_dev_cap &
909                 RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED);
910
911         RTE_ETH_FOREACH_DEV(i) {
912                 ret = rte_event_eth_rx_adapter_caps_get(0, i, &cap);
913                 if (ret)
914                         rte_exit(EXIT_FAILURE,
915                                 "failed to get event rx adapter capabilities");
916                 rx_needed |=
917                         !(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT);
918         }
919
920         if (cdata.worker_lcore_mask == 0 ||
921                         (rx_needed && cdata.rx_lcore_mask == 0) ||
922                         (sched_needed && cdata.sched_lcore_mask == 0)) {
923                 printf("Core part of pipeline was not assigned any cores. "
924                         "This will stall the pipeline, please check core masks "
925                         "(use -h for details on setting core masks):\n"
926                         "\trx: %"PRIu64"\n\tsched: %"PRIu64
927                         "\n\tworkers: %"PRIu64"\n", cdata.rx_lcore_mask,
928                         cdata.sched_lcore_mask, cdata.worker_lcore_mask);
929                 rte_exit(-1, "Fix core masks\n");
930         }
931
932         if (!sched_needed)
933                 memset(fdata->sched_core, 0,
934                                 sizeof(unsigned int) * MAX_NUM_CORE);
935         if (!rx_needed)
936                 memset(fdata->rx_core, 0,
937                                 sizeof(unsigned int) * MAX_NUM_CORE);
938
939         memset(fdata->tx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
940 }
941
942 static worker_loop
943 get_worker_loop_single_burst(uint8_t atq)
944 {
945         if (atq)
946                 return worker_do_tx_single_burst_atq;
947
948         return worker_do_tx_single_burst;
949 }
950
951 static worker_loop
952 get_worker_loop_single_non_burst(uint8_t atq)
953 {
954         if (atq)
955                 return worker_do_tx_single_atq;
956
957         return worker_do_tx_single;
958 }
959
960 static worker_loop
961 get_worker_loop_burst(uint8_t atq)
962 {
963         if (atq)
964                 return worker_do_tx_burst_atq;
965
966         return worker_do_tx_burst;
967 }
968
969 static worker_loop
970 get_worker_loop_non_burst(uint8_t atq)
971 {
972         if (atq)
973                 return worker_do_tx_atq;
974
975         return worker_do_tx;
976 }
977
978 static worker_loop
979 get_worker_single_stage(bool burst)
980 {
981         uint8_t atq = cdata.all_type_queues ? 1 : 0;
982
983         if (burst)
984                 return get_worker_loop_single_burst(atq);
985
986         return get_worker_loop_single_non_burst(atq);
987 }
988
989 static worker_loop
990 get_worker_multi_stage(bool burst)
991 {
992         uint8_t atq = cdata.all_type_queues ? 1 : 0;
993
994         if (burst)
995                 return get_worker_loop_burst(atq);
996
997         return get_worker_loop_non_burst(atq);
998 }
999
1000 void
1001 set_worker_tx_enq_setup_data(struct setup_data *caps, bool burst)
1002 {
1003         if (cdata.num_stages == 1)
1004                 caps->worker = get_worker_single_stage(burst);
1005         else
1006                 caps->worker = get_worker_multi_stage(burst);
1007
1008         caps->check_opt = worker_tx_enq_opt_check;
1009         caps->scheduler = schedule_devices;
1010         caps->evdev_setup = setup_eventdev_worker_tx_enq;
1011         caps->adptr_setup = init_adapters;
1012 }