net/mlx5: initialize flow meter ASO SQ
[dpdk.git] / examples / ip_fragmentation / main.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <sys/param.h>
11 #include <string.h>
12 #include <sys/queue.h>
13 #include <stdarg.h>
14 #include <errno.h>
15 #include <getopt.h>
16
17 #include <rte_common.h>
18 #include <rte_byteorder.h>
19 #include <rte_log.h>
20 #include <rte_memory.h>
21 #include <rte_memcpy.h>
22 #include <rte_eal.h>
23 #include <rte_launch.h>
24 #include <rte_atomic.h>
25 #include <rte_cycles.h>
26 #include <rte_prefetch.h>
27 #include <rte_lcore.h>
28 #include <rte_per_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_interrupts.h>
31 #include <rte_random.h>
32 #include <rte_debug.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_mempool.h>
36 #include <rte_mbuf.h>
37 #include <rte_lpm.h>
38 #include <rte_lpm6.h>
39 #include <rte_ip.h>
40 #include <rte_string_fns.h>
41
42 #include <rte_ip_frag.h>
43
44 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1
45
46 /* allow max jumbo frame 9.5 KB */
47 #define JUMBO_FRAME_MAX_SIZE    0x2600
48
49 #define ROUNDUP_DIV(a, b)       (((a) + (b) - 1) / (b))
50
51 /*
52  * Default byte size for the IPv6 Maximum Transfer Unit (MTU).
53  * This value includes the size of IPv6 header.
54  */
55 #define IPV4_MTU_DEFAULT        RTE_ETHER_MTU
56 #define IPV6_MTU_DEFAULT        RTE_ETHER_MTU
57
58 /*
59  * The overhead from max frame size to MTU.
60  * We have to consider the max possible overhead.
61  */
62 #define MTU_OVERHEAD    \
63         (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + \
64                 2 * sizeof(struct rte_vlan_hdr))
65
66 /*
67  * Default payload in bytes for the IPv6 packet.
68  */
69 #define IPV4_DEFAULT_PAYLOAD    (IPV4_MTU_DEFAULT - sizeof(struct rte_ipv4_hdr))
70 #define IPV6_DEFAULT_PAYLOAD    (IPV6_MTU_DEFAULT - sizeof(struct rte_ipv6_hdr))
71
72 /*
73  * Max number of fragments per packet expected - defined by config file.
74  */
75 #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG
76
77 #define NB_MBUF   8192
78
79 #define MAX_PKT_BURST   32
80 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
81
82 /* Configure how many packets ahead to prefetch, when reading packets */
83 #define PREFETCH_OFFSET 3
84
85 /*
86  * Configurable number of RX/TX ring descriptors
87  */
88 #define RTE_TEST_RX_DESC_DEFAULT 1024
89 #define RTE_TEST_TX_DESC_DEFAULT 1024
90 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
91 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
92
93 /* ethernet addresses of ports */
94 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
95
96 #ifndef IPv4_BYTES
97 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
98 #define IPv4_BYTES(addr) \
99                 (uint8_t) (((addr) >> 24) & 0xFF),\
100                 (uint8_t) (((addr) >> 16) & 0xFF),\
101                 (uint8_t) (((addr) >> 8) & 0xFF),\
102                 (uint8_t) ((addr) & 0xFF)
103 #endif
104
105 #ifndef IPv6_BYTES
106 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
107                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
108 #define IPv6_BYTES(addr) \
109         addr[0],  addr[1], addr[2],  addr[3], \
110         addr[4],  addr[5], addr[6],  addr[7], \
111         addr[8],  addr[9], addr[10], addr[11],\
112         addr[12], addr[13],addr[14], addr[15]
113 #endif
114
115 #define IPV6_ADDR_LEN 16
116
117 /* mask of enabled ports */
118 static int enabled_port_mask = 0;
119
120 static int rx_queue_per_lcore = 1;
121
122 #define MBUF_TABLE_SIZE  (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG))
123
124 struct mbuf_table {
125         uint16_t len;
126         struct rte_mbuf *m_table[MBUF_TABLE_SIZE];
127 };
128
129 struct rx_queue {
130         struct rte_mempool *direct_pool;
131         struct rte_mempool *indirect_pool;
132         struct rte_lpm *lpm;
133         struct rte_lpm6 *lpm6;
134         uint16_t portid;
135 };
136
137 #define MAX_RX_QUEUE_PER_LCORE 16
138 #define MAX_TX_QUEUE_PER_PORT 16
139 struct lcore_queue_conf {
140         uint16_t n_rx_queue;
141         uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
142         struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
143         struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
144 } __rte_cache_aligned;
145 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
146
147 static struct rte_eth_conf port_conf = {
148         .rxmode = {
149                 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
150                 .split_hdr_size = 0,
151                 .offloads = (DEV_RX_OFFLOAD_CHECKSUM |
152                              DEV_RX_OFFLOAD_SCATTER |
153                              DEV_RX_OFFLOAD_JUMBO_FRAME),
154         },
155         .txmode = {
156                 .mq_mode = ETH_MQ_TX_NONE,
157                 .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM |
158                              DEV_TX_OFFLOAD_MULTI_SEGS),
159         },
160 };
161
162 /*
163  * IPv4 forwarding table
164  */
165 struct l3fwd_ipv4_route {
166         uint32_t ip;
167         uint8_t  depth;
168         uint8_t  if_out;
169 };
170
171 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
172                 {RTE_IPV4(100,10,0,0), 16, 0},
173                 {RTE_IPV4(100,20,0,0), 16, 1},
174                 {RTE_IPV4(100,30,0,0), 16, 2},
175                 {RTE_IPV4(100,40,0,0), 16, 3},
176                 {RTE_IPV4(100,50,0,0), 16, 4},
177                 {RTE_IPV4(100,60,0,0), 16, 5},
178                 {RTE_IPV4(100,70,0,0), 16, 6},
179                 {RTE_IPV4(100,80,0,0), 16, 7},
180 };
181
182 /*
183  * IPv6 forwarding table
184  */
185
186 struct l3fwd_ipv6_route {
187         uint8_t ip[IPV6_ADDR_LEN];
188         uint8_t depth;
189         uint8_t if_out;
190 };
191
192 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
193         {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
194         {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
195         {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
196         {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
197         {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
198         {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
199         {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
200         {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
201 };
202
203 #define LPM_MAX_RULES         1024
204 #define LPM6_MAX_RULES         1024
205 #define LPM6_NUMBER_TBL8S (1 << 16)
206
207 struct rte_lpm6_config lpm6_config = {
208                 .max_rules = LPM6_MAX_RULES,
209                 .number_tbl8s = LPM6_NUMBER_TBL8S,
210                 .flags = 0
211 };
212
213 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES];
214 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES];
215 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
216 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
217
218 /* Send burst of packets on an output interface */
219 static inline int
220 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port)
221 {
222         struct rte_mbuf **m_table;
223         int ret;
224         uint16_t queueid;
225
226         queueid = qconf->tx_queue_id[port];
227         m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
228
229         ret = rte_eth_tx_burst(port, queueid, m_table, n);
230         if (unlikely(ret < n)) {
231                 do {
232                         rte_pktmbuf_free(m_table[ret]);
233                 } while (++ret < n);
234         }
235
236         return 0;
237 }
238
239 static inline void
240 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf,
241                 uint8_t queueid, uint16_t port_in)
242 {
243         struct rx_queue *rxq;
244         uint32_t i, len, next_hop;
245         uint16_t port_out, ether_type;
246         int32_t len2;
247         uint64_t ol_flags;
248         const struct rte_ether_hdr *eth;
249
250         ol_flags = 0;
251         rxq = &qconf->rx_queue_list[queueid];
252
253         /* by default, send everything back to the source port */
254         port_out = port_in;
255
256         /* save ether type of the incoming packet */
257         eth = rte_pktmbuf_mtod(m, const struct rte_ether_hdr *);
258         ether_type = eth->ether_type;
259
260         /* Remove the Ethernet header and trailer from the input packet */
261         rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr));
262
263         /* Build transmission burst */
264         len = qconf->tx_mbufs[port_out].len;
265
266         /* if this is an IPv4 packet */
267         if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
268                 struct rte_ipv4_hdr *ip_hdr;
269                 uint32_t ip_dst;
270                 /* Read the lookup key (i.e. ip_dst) from the input packet */
271                 ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv4_hdr *);
272                 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
273
274                 /* Find destination port */
275                 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 &&
276                                 (enabled_port_mask & 1 << next_hop) != 0) {
277                         port_out = next_hop;
278
279                         /* Build transmission burst for new port */
280                         len = qconf->tx_mbufs[port_out].len;
281                 }
282
283                 /* if we don't need to do any fragmentation */
284                 if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) {
285                         qconf->tx_mbufs[port_out].m_table[len] = m;
286                         len2 = 1;
287                 } else {
288                         len2 = rte_ipv4_fragment_packet(m,
289                                 &qconf->tx_mbufs[port_out].m_table[len],
290                                 (uint16_t)(MBUF_TABLE_SIZE - len),
291                                 IPV4_MTU_DEFAULT,
292                                 rxq->direct_pool, rxq->indirect_pool);
293
294                         /* Free input packet */
295                         rte_pktmbuf_free(m);
296
297                         /* request HW to regenerate IPv4 cksum */
298                         ol_flags |= (PKT_TX_IPV4 | PKT_TX_IP_CKSUM);
299
300                         /* If we fail to fragment the packet */
301                         if (unlikely (len2 < 0))
302                                 return;
303                 }
304         } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
305                 /* if this is an IPv6 packet */
306                 struct rte_ipv6_hdr *ip_hdr;
307
308                 /* Read the lookup key (i.e. ip_dst) from the input packet */
309                 ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv6_hdr *);
310
311                 /* Find destination port */
312                 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr,
313                                                 &next_hop) == 0 &&
314                                 (enabled_port_mask & 1 << next_hop) != 0) {
315                         port_out = next_hop;
316
317                         /* Build transmission burst for new port */
318                         len = qconf->tx_mbufs[port_out].len;
319                 }
320
321                 /* if we don't need to do any fragmentation */
322                 if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) {
323                         qconf->tx_mbufs[port_out].m_table[len] = m;
324                         len2 = 1;
325                 } else {
326                         len2 = rte_ipv6_fragment_packet(m,
327                                 &qconf->tx_mbufs[port_out].m_table[len],
328                                 (uint16_t)(MBUF_TABLE_SIZE - len),
329                                 IPV6_MTU_DEFAULT,
330                                 rxq->direct_pool, rxq->indirect_pool);
331
332                         /* Free input packet */
333                         rte_pktmbuf_free(m);
334
335                         /* If we fail to fragment the packet */
336                         if (unlikely (len2 < 0))
337                                 return;
338                 }
339         }
340         /* else, just forward the packet */
341         else {
342                 qconf->tx_mbufs[port_out].m_table[len] = m;
343                 len2 = 1;
344         }
345
346         for (i = len; i < len + len2; i ++) {
347                 void *d_addr_bytes;
348
349                 m = qconf->tx_mbufs[port_out].m_table[i];
350                 struct rte_ether_hdr *eth_hdr = (struct rte_ether_hdr *)
351                         rte_pktmbuf_prepend(m,
352                                 (uint16_t)sizeof(struct rte_ether_hdr));
353                 if (eth_hdr == NULL) {
354                         rte_panic("No headroom in mbuf.\n");
355                 }
356
357                 m->ol_flags |= ol_flags;
358                 m->l2_len = sizeof(struct rte_ether_hdr);
359
360                 /* 02:00:00:00:00:xx */
361                 d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
362                 *((uint64_t *)d_addr_bytes) = 0x000000000002 +
363                         ((uint64_t)port_out << 40);
364
365                 /* src addr */
366                 rte_ether_addr_copy(&ports_eth_addr[port_out],
367                                 &eth_hdr->s_addr);
368                 eth_hdr->ether_type = ether_type;
369         }
370
371         len += len2;
372
373         if (likely(len < MAX_PKT_BURST)) {
374                 qconf->tx_mbufs[port_out].len = (uint16_t)len;
375                 return;
376         }
377
378         /* Transmit packets */
379         send_burst(qconf, (uint16_t)len, port_out);
380         qconf->tx_mbufs[port_out].len = 0;
381 }
382
383 /* main processing loop */
384 static int
385 main_loop(__rte_unused void *dummy)
386 {
387         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
388         unsigned lcore_id;
389         uint64_t prev_tsc, diff_tsc, cur_tsc;
390         int i, j, nb_rx;
391         uint16_t portid;
392         struct lcore_queue_conf *qconf;
393         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
394
395         prev_tsc = 0;
396
397         lcore_id = rte_lcore_id();
398         qconf = &lcore_queue_conf[lcore_id];
399
400         if (qconf->n_rx_queue == 0) {
401                 RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id);
402                 return 0;
403         }
404
405         RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id);
406
407         for (i = 0; i < qconf->n_rx_queue; i++) {
408
409                 portid = qconf->rx_queue_list[i].portid;
410                 RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id,
411                                 portid);
412         }
413
414         while (1) {
415
416                 cur_tsc = rte_rdtsc();
417
418                 /*
419                  * TX burst queue drain
420                  */
421                 diff_tsc = cur_tsc - prev_tsc;
422                 if (unlikely(diff_tsc > drain_tsc)) {
423
424                         /*
425                          * This could be optimized (use queueid instead of
426                          * portid), but it is not called so often
427                          */
428                         for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
429                                 if (qconf->tx_mbufs[portid].len == 0)
430                                         continue;
431                                 send_burst(&lcore_queue_conf[lcore_id],
432                                            qconf->tx_mbufs[portid].len,
433                                            portid);
434                                 qconf->tx_mbufs[portid].len = 0;
435                         }
436
437                         prev_tsc = cur_tsc;
438                 }
439
440                 /*
441                  * Read packet from RX queues
442                  */
443                 for (i = 0; i < qconf->n_rx_queue; i++) {
444
445                         portid = qconf->rx_queue_list[i].portid;
446                         nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
447                                                  MAX_PKT_BURST);
448
449                         /* Prefetch first packets */
450                         for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
451                                 rte_prefetch0(rte_pktmbuf_mtod(
452                                                 pkts_burst[j], void *));
453                         }
454
455                         /* Prefetch and forward already prefetched packets */
456                         for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
457                                 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
458                                                 j + PREFETCH_OFFSET], void *));
459                                 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
460                         }
461
462                         /* Forward remaining prefetched packets */
463                         for (; j < nb_rx; j++) {
464                                 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
465                         }
466                 }
467         }
468 }
469
470 /* display usage */
471 static void
472 print_usage(const char *prgname)
473 {
474         printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
475                "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
476                "  -q NQ: number of queue (=ports) per lcore (default is 1)\n",
477                prgname);
478 }
479
480 static int
481 parse_portmask(const char *portmask)
482 {
483         char *end = NULL;
484         unsigned long pm;
485
486         /* parse hexadecimal string */
487         pm = strtoul(portmask, &end, 16);
488         if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
489                 return -1;
490
491         if (pm == 0)
492                 return -1;
493
494         return pm;
495 }
496
497 static int
498 parse_nqueue(const char *q_arg)
499 {
500         char *end = NULL;
501         unsigned long n;
502
503         /* parse hexadecimal string */
504         n = strtoul(q_arg, &end, 10);
505         if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
506                 return -1;
507         if (n == 0)
508                 return -1;
509         if (n >= MAX_RX_QUEUE_PER_LCORE)
510                 return -1;
511
512         return n;
513 }
514
515 /* Parse the argument given in the command line of the application */
516 static int
517 parse_args(int argc, char **argv)
518 {
519         int opt, ret;
520         char **argvopt;
521         int option_index;
522         char *prgname = argv[0];
523         static struct option lgopts[] = {
524                 {NULL, 0, 0, 0}
525         };
526
527         argvopt = argv;
528
529         while ((opt = getopt_long(argc, argvopt, "p:q:",
530                                   lgopts, &option_index)) != EOF) {
531
532                 switch (opt) {
533                 /* portmask */
534                 case 'p':
535                         enabled_port_mask = parse_portmask(optarg);
536                         if (enabled_port_mask < 0) {
537                                 printf("invalid portmask\n");
538                                 print_usage(prgname);
539                                 return -1;
540                         }
541                         break;
542
543                 /* nqueue */
544                 case 'q':
545                         rx_queue_per_lcore = parse_nqueue(optarg);
546                         if (rx_queue_per_lcore < 0) {
547                                 printf("invalid queue number\n");
548                                 print_usage(prgname);
549                                 return -1;
550                         }
551                         break;
552
553                 /* long options */
554                 case 0:
555                         print_usage(prgname);
556                         return -1;
557
558                 default:
559                         print_usage(prgname);
560                         return -1;
561                 }
562         }
563
564         if (enabled_port_mask == 0) {
565                 printf("portmask not specified\n");
566                 print_usage(prgname);
567                 return -1;
568         }
569
570         if (optind >= 0)
571                 argv[optind-1] = prgname;
572
573         ret = optind-1;
574         optind = 1; /* reset getopt lib */
575         return ret;
576 }
577
578 static void
579 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
580 {
581         char buf[RTE_ETHER_ADDR_FMT_SIZE];
582         rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
583         printf("%s%s", name, buf);
584 }
585
586 /* Check the link status of all ports in up to 9s, and print them finally */
587 static void
588 check_all_ports_link_status(uint32_t port_mask)
589 {
590 #define CHECK_INTERVAL 100 /* 100ms */
591 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
592         uint16_t portid;
593         uint8_t count, all_ports_up, print_flag = 0;
594         struct rte_eth_link link;
595         int ret;
596         char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
597
598         printf("\nChecking link status");
599         fflush(stdout);
600         for (count = 0; count <= MAX_CHECK_TIME; count++) {
601                 all_ports_up = 1;
602                 RTE_ETH_FOREACH_DEV(portid) {
603                         if ((port_mask & (1 << portid)) == 0)
604                                 continue;
605                         memset(&link, 0, sizeof(link));
606                         ret = rte_eth_link_get_nowait(portid, &link);
607                         if (ret < 0) {
608                                 all_ports_up = 0;
609                                 if (print_flag == 1)
610                                         printf("Port %u link get failed: %s\n",
611                                                 portid, rte_strerror(-ret));
612                                 continue;
613                         }
614                         /* print link status if flag set */
615                         if (print_flag == 1) {
616                                 rte_eth_link_to_str(link_status_text,
617                                         sizeof(link_status_text), &link);
618                                 printf("Port %d %s\n", portid,
619                                        link_status_text);
620                                 continue;
621                         }
622                         /* clear all_ports_up flag if any link down */
623                         if (link.link_status == ETH_LINK_DOWN) {
624                                 all_ports_up = 0;
625                                 break;
626                         }
627                 }
628                 /* after finally printing all link status, get out */
629                 if (print_flag == 1)
630                         break;
631
632                 if (all_ports_up == 0) {
633                         printf(".");
634                         fflush(stdout);
635                         rte_delay_ms(CHECK_INTERVAL);
636                 }
637
638                 /* set the print_flag if all ports up or timeout */
639                 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
640                         print_flag = 1;
641                         printf("\ndone\n");
642                 }
643         }
644 }
645
646 /* Check L3 packet type detection capability of the NIC port */
647 static int
648 check_ptype(int portid)
649 {
650         int i, ret;
651         int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0;
652         uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
653
654         ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
655         if (ret <= 0)
656                 return 0;
657
658         uint32_t ptypes[ret];
659
660         ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
661         for (i = 0; i < ret; ++i) {
662                 if (ptypes[i] & RTE_PTYPE_L3_IPV4)
663                         ptype_l3_ipv4 = 1;
664                 if (ptypes[i] & RTE_PTYPE_L3_IPV6)
665                         ptype_l3_ipv6 = 1;
666         }
667
668         if (ptype_l3_ipv4 == 0)
669                 printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
670
671         if (ptype_l3_ipv6 == 0)
672                 printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
673
674         if (ptype_l3_ipv4 && ptype_l3_ipv6)
675                 return 1;
676
677         return 0;
678
679 }
680
681 /* Parse packet type of a packet by SW */
682 static inline void
683 parse_ptype(struct rte_mbuf *m)
684 {
685         struct rte_ether_hdr *eth_hdr;
686         uint32_t packet_type = RTE_PTYPE_UNKNOWN;
687         uint16_t ether_type;
688
689         eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
690         ether_type = eth_hdr->ether_type;
691         if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
692                 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
693         else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6))
694                 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
695
696         m->packet_type = packet_type;
697 }
698
699 /* callback function to detect packet type for a queue of a port */
700 static uint16_t
701 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
702                    struct rte_mbuf *pkts[], uint16_t nb_pkts,
703                    uint16_t max_pkts __rte_unused,
704                    void *user_param __rte_unused)
705 {
706         uint16_t i;
707
708         for (i = 0; i < nb_pkts; ++i)
709                 parse_ptype(pkts[i]);
710
711         return nb_pkts;
712 }
713
714 static int
715 init_routing_table(void)
716 {
717         struct rte_lpm *lpm;
718         struct rte_lpm6 *lpm6;
719         int socket, ret;
720         unsigned i;
721
722         for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
723                 if (socket_lpm[socket]) {
724                         lpm = socket_lpm[socket];
725                         /* populate the LPM table */
726                         for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
727                                 ret = rte_lpm_add(lpm,
728                                         l3fwd_ipv4_route_array[i].ip,
729                                         l3fwd_ipv4_route_array[i].depth,
730                                         l3fwd_ipv4_route_array[i].if_out);
731
732                                 if (ret < 0) {
733                                         RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
734                                                 "LPM table\n", i);
735                                         return -1;
736                                 }
737
738                                 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT
739                                                 "/%d (port %d)\n",
740                                         socket,
741                                         IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
742                                         l3fwd_ipv4_route_array[i].depth,
743                                         l3fwd_ipv4_route_array[i].if_out);
744                         }
745                 }
746
747                 if (socket_lpm6[socket]) {
748                         lpm6 = socket_lpm6[socket];
749                         /* populate the LPM6 table */
750                         for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
751                                 ret = rte_lpm6_add(lpm6,
752                                         l3fwd_ipv6_route_array[i].ip,
753                                         l3fwd_ipv6_route_array[i].depth,
754                                         l3fwd_ipv6_route_array[i].if_out);
755
756                                 if (ret < 0) {
757                                         RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
758                                                 "LPM6 table\n", i);
759                                         return -1;
760                                 }
761
762                                 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT
763                                                 "/%d (port %d)\n",
764                                         socket,
765                                         IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
766                                         l3fwd_ipv6_route_array[i].depth,
767                                         l3fwd_ipv6_route_array[i].if_out);
768                         }
769                 }
770         }
771         return 0;
772 }
773
774 static int
775 init_mem(void)
776 {
777         char buf[PATH_MAX];
778         struct rte_mempool *mp;
779         struct rte_lpm *lpm;
780         struct rte_lpm6 *lpm6;
781         struct rte_lpm_config lpm_config;
782         int socket;
783         unsigned lcore_id;
784
785         /* traverse through lcores and initialize structures on each socket */
786
787         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
788
789                 if (rte_lcore_is_enabled(lcore_id) == 0)
790                         continue;
791
792                 socket = rte_lcore_to_socket_id(lcore_id);
793
794                 if (socket == SOCKET_ID_ANY)
795                         socket = 0;
796
797                 if (socket_direct_pool[socket] == NULL) {
798                         RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n",
799                                         socket);
800                         snprintf(buf, sizeof(buf), "pool_direct_%i", socket);
801
802                         mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32,
803                                 0, RTE_MBUF_DEFAULT_BUF_SIZE, socket);
804                         if (mp == NULL) {
805                                 RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n");
806                                 return -1;
807                         }
808                         socket_direct_pool[socket] = mp;
809                 }
810
811                 if (socket_indirect_pool[socket] == NULL) {
812                         RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n",
813                                         socket);
814                         snprintf(buf, sizeof(buf), "pool_indirect_%i", socket);
815
816                         mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0,
817                                 socket);
818                         if (mp == NULL) {
819                                 RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n");
820                                 return -1;
821                         }
822                         socket_indirect_pool[socket] = mp;
823                 }
824
825                 if (socket_lpm[socket] == NULL) {
826                         RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket);
827                         snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
828
829                         lpm_config.max_rules = LPM_MAX_RULES;
830                         lpm_config.number_tbl8s = 256;
831                         lpm_config.flags = 0;
832
833                         lpm = rte_lpm_create(buf, socket, &lpm_config);
834                         if (lpm == NULL) {
835                                 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
836                                 return -1;
837                         }
838                         socket_lpm[socket] = lpm;
839                 }
840
841                 if (socket_lpm6[socket] == NULL) {
842                         RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket);
843                         snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
844
845                         lpm6 = rte_lpm6_create(buf, socket, &lpm6_config);
846                         if (lpm6 == NULL) {
847                                 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
848                                 return -1;
849                         }
850                         socket_lpm6[socket] = lpm6;
851                 }
852         }
853
854         return 0;
855 }
856
857 int
858 main(int argc, char **argv)
859 {
860         struct lcore_queue_conf *qconf;
861         struct rte_eth_dev_info dev_info;
862         struct rte_eth_txconf *txconf;
863         struct rx_queue *rxq;
864         int socket, ret;
865         uint16_t nb_ports;
866         uint16_t queueid = 0;
867         unsigned lcore_id = 0, rx_lcore_id = 0;
868         uint32_t n_tx_queue, nb_lcores;
869         uint16_t portid;
870
871         /* init EAL */
872         ret = rte_eal_init(argc, argv);
873         if (ret < 0)
874                 rte_exit(EXIT_FAILURE, "rte_eal_init failed");
875         argc -= ret;
876         argv += ret;
877
878         /* parse application arguments (after the EAL ones) */
879         ret = parse_args(argc, argv);
880         if (ret < 0)
881                 rte_exit(EXIT_FAILURE, "Invalid arguments");
882
883         nb_ports = rte_eth_dev_count_avail();
884         if (nb_ports == 0)
885                 rte_exit(EXIT_FAILURE, "No ports found!\n");
886
887         nb_lcores = rte_lcore_count();
888
889         /* initialize structures (mempools, lpm etc.) */
890         if (init_mem() < 0)
891                 rte_panic("Cannot initialize memory structures!\n");
892
893         /* check if portmask has non-existent ports */
894         if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
895                 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
896
897         /* initialize all ports */
898         RTE_ETH_FOREACH_DEV(portid) {
899                 struct rte_eth_conf local_port_conf = port_conf;
900                 struct rte_eth_rxconf rxq_conf;
901
902                 /* skip ports that are not enabled */
903                 if ((enabled_port_mask & (1 << portid)) == 0) {
904                         printf("Skipping disabled port %d\n", portid);
905                         continue;
906                 }
907
908                 qconf = &lcore_queue_conf[rx_lcore_id];
909
910                 /* limit the frame size to the maximum supported by NIC */
911                 ret = rte_eth_dev_info_get(portid, &dev_info);
912                 if (ret != 0)
913                         rte_exit(EXIT_FAILURE,
914                                 "Error during getting device (port %u) info: %s\n",
915                                 portid, strerror(-ret));
916
917                 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN(
918                     dev_info.max_rx_pktlen,
919                     local_port_conf.rxmode.max_rx_pkt_len);
920
921                 /* get the lcore_id for this port */
922                 while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
923                        qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
924
925                         rx_lcore_id ++;
926                         if (rx_lcore_id >= RTE_MAX_LCORE)
927                                 rte_exit(EXIT_FAILURE, "Not enough cores\n");
928
929                         qconf = &lcore_queue_conf[rx_lcore_id];
930                 }
931
932                 socket = (int) rte_lcore_to_socket_id(rx_lcore_id);
933                 if (socket == SOCKET_ID_ANY)
934                         socket = 0;
935
936                 rxq = &qconf->rx_queue_list[qconf->n_rx_queue];
937                 rxq->portid = portid;
938                 rxq->direct_pool = socket_direct_pool[socket];
939                 rxq->indirect_pool = socket_indirect_pool[socket];
940                 rxq->lpm = socket_lpm[socket];
941                 rxq->lpm6 = socket_lpm6[socket];
942                 qconf->n_rx_queue++;
943
944                 /* init port */
945                 printf("Initializing port %d on lcore %u...", portid,
946                        rx_lcore_id);
947                 fflush(stdout);
948
949                 n_tx_queue = nb_lcores;
950                 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
951                         n_tx_queue = MAX_TX_QUEUE_PER_PORT;
952                 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
953                                             &local_port_conf);
954                 if (ret < 0) {
955                         printf("\n");
956                         rte_exit(EXIT_FAILURE, "Cannot configure device: "
957                                 "err=%d, port=%d\n",
958                                 ret, portid);
959                 }
960
961                 /* set the mtu to the maximum received packet size */
962                 ret = rte_eth_dev_set_mtu(portid,
963                         local_port_conf.rxmode.max_rx_pkt_len - MTU_OVERHEAD);
964                 if (ret < 0) {
965                         printf("\n");
966                         rte_exit(EXIT_FAILURE, "Set MTU failed: "
967                                 "err=%d, port=%d\n",
968                         ret, portid);
969                 }
970
971                 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
972                                             &nb_txd);
973                 if (ret < 0) {
974                         printf("\n");
975                         rte_exit(EXIT_FAILURE, "Cannot adjust number of "
976                                 "descriptors: err=%d, port=%d\n", ret, portid);
977                 }
978
979                 /* init one RX queue */
980                 rxq_conf = dev_info.default_rxconf;
981                 rxq_conf.offloads = local_port_conf.rxmode.offloads;
982                 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
983                                              socket, &rxq_conf,
984                                              socket_direct_pool[socket]);
985                 if (ret < 0) {
986                         printf("\n");
987                         rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
988                                 "err=%d, port=%d\n",
989                                 ret, portid);
990                 }
991
992                 ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
993                 if (ret < 0) {
994                         printf("\n");
995                         rte_exit(EXIT_FAILURE,
996                                 "rte_eth_macaddr_get: err=%d, port=%d\n",
997                                 ret, portid);
998                 }
999
1000                 print_ethaddr(" Address:", &ports_eth_addr[portid]);
1001                 printf("\n");
1002
1003                 /* init one TX queue per couple (lcore,port) */
1004                 ret = rte_eth_dev_info_get(portid, &dev_info);
1005                 if (ret != 0)
1006                         rte_exit(EXIT_FAILURE,
1007                                 "Error during getting device (port %u) info: %s\n",
1008                                 portid, strerror(-ret));
1009
1010                 queueid = 0;
1011                 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1012                         if (rte_lcore_is_enabled(lcore_id) == 0)
1013                                 continue;
1014
1015                         if (queueid >= dev_info.nb_tx_queues)
1016                                 break;
1017
1018                         socket = (int) rte_lcore_to_socket_id(lcore_id);
1019                         printf("txq=%u,%d ", lcore_id, queueid);
1020                         fflush(stdout);
1021
1022                         txconf = &dev_info.default_txconf;
1023                         txconf->offloads = local_port_conf.txmode.offloads;
1024                         ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1025                                                      socket, txconf);
1026                         if (ret < 0) {
1027                                 printf("\n");
1028                                 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1029                                         "err=%d, port=%d\n", ret, portid);
1030                         }
1031
1032                         qconf = &lcore_queue_conf[lcore_id];
1033                         qconf->tx_queue_id[portid] = queueid;
1034                         queueid++;
1035                 }
1036
1037                 printf("\n");
1038         }
1039
1040         printf("\n");
1041
1042         /* start ports */
1043         RTE_ETH_FOREACH_DEV(portid) {
1044                 if ((enabled_port_mask & (1 << portid)) == 0) {
1045                         continue;
1046                 }
1047                 /* Start device */
1048                 ret = rte_eth_dev_start(portid);
1049                 if (ret < 0)
1050                         rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
1051                                 ret, portid);
1052
1053                 ret = rte_eth_promiscuous_enable(portid);
1054                 if (ret != 0)
1055                         rte_exit(EXIT_FAILURE,
1056                                 "rte_eth_promiscuous_enable: err=%s, port=%d\n",
1057                                 rte_strerror(-ret), portid);
1058
1059                 if (check_ptype(portid) == 0) {
1060                         rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL);
1061                         printf("Add Rx callback function to detect L3 packet type by SW :"
1062                                 " port = %d\n", portid);
1063                 }
1064         }
1065
1066         if (init_routing_table() < 0)
1067                 rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
1068
1069         check_all_ports_link_status(enabled_port_mask);
1070
1071         /* launch per-lcore init on every lcore */
1072         rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN);
1073         RTE_LCORE_FOREACH_WORKER(lcore_id) {
1074                 if (rte_eal_wait_lcore(lcore_id) < 0)
1075                         return -1;
1076         }
1077
1078         /* clean up the EAL */
1079         rte_eal_cleanup();
1080
1081         return 0;
1082 }