1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2016 Intel Corporation
10 #include <netinet/in.h>
11 #include <netinet/ip.h>
12 #include <netinet/ip6.h>
14 #include <sys/queue.h>
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
23 #include <rte_launch.h>
24 #include <rte_atomic.h>
25 #include <rte_cycles.h>
26 #include <rte_prefetch.h>
27 #include <rte_lcore.h>
28 #include <rte_per_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_interrupts.h>
31 #include <rte_random.h>
32 #include <rte_debug.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_mempool.h>
41 #include <rte_jhash.h>
42 #include <rte_cryptodev.h>
43 #include <rte_security.h>
45 #include <rte_ip_frag.h>
50 #define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1
52 #define MAX_JUMBO_PKT_LEN 9600
54 #define MEMPOOL_CACHE_SIZE 256
56 #define NB_MBUF (32000)
58 #define CDEV_QUEUE_DESC 2048
59 #define CDEV_MAP_ENTRIES 16384
60 #define CDEV_MP_NB_OBJS 1024
61 #define CDEV_MP_CACHE_SZ 64
62 #define MAX_QUEUE_PAIRS 1
64 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
68 /* Configure how many packets ahead to prefetch, when reading packets */
69 #define PREFETCH_OFFSET 3
71 #define MAX_RX_QUEUE_PER_LCORE 16
73 #define MAX_LCORE_PARAMS 1024
75 #define UNPROTECTED_PORT(port) (unprotected_port_mask & (1 << portid))
78 * Configurable number of RX/TX ring descriptors
80 #define IPSEC_SECGW_RX_DESC_DEFAULT 1024
81 #define IPSEC_SECGW_TX_DESC_DEFAULT 1024
82 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
83 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
85 #if RTE_BYTE_ORDER != RTE_LITTLE_ENDIAN
86 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
87 (((uint64_t)((a) & 0xff) << 56) | \
88 ((uint64_t)((b) & 0xff) << 48) | \
89 ((uint64_t)((c) & 0xff) << 40) | \
90 ((uint64_t)((d) & 0xff) << 32) | \
91 ((uint64_t)((e) & 0xff) << 24) | \
92 ((uint64_t)((f) & 0xff) << 16) | \
93 ((uint64_t)((g) & 0xff) << 8) | \
94 ((uint64_t)(h) & 0xff))
96 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
97 (((uint64_t)((h) & 0xff) << 56) | \
98 ((uint64_t)((g) & 0xff) << 48) | \
99 ((uint64_t)((f) & 0xff) << 40) | \
100 ((uint64_t)((e) & 0xff) << 32) | \
101 ((uint64_t)((d) & 0xff) << 24) | \
102 ((uint64_t)((c) & 0xff) << 16) | \
103 ((uint64_t)((b) & 0xff) << 8) | \
104 ((uint64_t)(a) & 0xff))
106 #define ETHADDR(a, b, c, d, e, f) (__BYTES_TO_UINT64(a, b, c, d, e, f, 0, 0))
108 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
109 (addr)->addr_bytes[0], (addr)->addr_bytes[1], \
110 (addr)->addr_bytes[2], (addr)->addr_bytes[3], \
111 (addr)->addr_bytes[4], (addr)->addr_bytes[5], \
114 #define FRAG_TBL_BUCKET_ENTRIES 4
115 #define FRAG_TTL_MS (10 * MS_PER_S)
117 #define MTU_TO_FRAMELEN(x) ((x) + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN)
119 /* port/source ethernet addr and destination ethernet addr */
120 struct ethaddr_info {
124 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
125 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
126 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
127 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
128 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
131 #define CMD_LINE_OPT_CONFIG "config"
132 #define CMD_LINE_OPT_SINGLE_SA "single-sa"
133 #define CMD_LINE_OPT_CRYPTODEV_MASK "cryptodev_mask"
134 #define CMD_LINE_OPT_RX_OFFLOAD "rxoffload"
135 #define CMD_LINE_OPT_TX_OFFLOAD "txoffload"
136 #define CMD_LINE_OPT_REASSEMBLE "reassemble"
137 #define CMD_LINE_OPT_MTU "mtu"
140 /* long options mapped to a short option */
142 /* first long only option value must be >= 256, so that we won't
143 * conflict with short options
145 CMD_LINE_OPT_MIN_NUM = 256,
146 CMD_LINE_OPT_CONFIG_NUM,
147 CMD_LINE_OPT_SINGLE_SA_NUM,
148 CMD_LINE_OPT_CRYPTODEV_MASK_NUM,
149 CMD_LINE_OPT_RX_OFFLOAD_NUM,
150 CMD_LINE_OPT_TX_OFFLOAD_NUM,
151 CMD_LINE_OPT_REASSEMBLE_NUM,
152 CMD_LINE_OPT_MTU_NUM,
155 static const struct option lgopts[] = {
156 {CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM},
157 {CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM},
158 {CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM},
159 {CMD_LINE_OPT_RX_OFFLOAD, 1, 0, CMD_LINE_OPT_RX_OFFLOAD_NUM},
160 {CMD_LINE_OPT_TX_OFFLOAD, 1, 0, CMD_LINE_OPT_TX_OFFLOAD_NUM},
161 {CMD_LINE_OPT_REASSEMBLE, 1, 0, CMD_LINE_OPT_REASSEMBLE_NUM},
162 {CMD_LINE_OPT_MTU, 1, 0, CMD_LINE_OPT_MTU_NUM},
166 /* mask of enabled ports */
167 static uint32_t enabled_port_mask;
168 static uint64_t enabled_cryptodev_mask = UINT64_MAX;
169 static uint32_t unprotected_port_mask;
170 static int32_t promiscuous_on = 1;
171 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
172 static uint32_t nb_lcores;
173 static uint32_t single_sa;
174 static uint32_t single_sa_idx;
177 * RX/TX HW offload capabilities to enable/use on ethernet ports.
178 * By default all capabilities are enabled.
180 static uint64_t dev_rx_offload = UINT64_MAX;
181 static uint64_t dev_tx_offload = UINT64_MAX;
184 * global values that determine multi-seg policy
186 static uint32_t frag_tbl_sz;
187 static uint32_t frame_buf_size = RTE_MBUF_DEFAULT_BUF_SIZE;
188 static uint32_t mtu_size = RTE_ETHER_MTU;
190 /* application wide librte_ipsec/SA parameters */
191 struct app_sa_prm app_sa_prm = {.enable = 0};
193 struct lcore_rx_queue {
196 } __rte_cache_aligned;
198 struct lcore_params {
202 } __rte_cache_aligned;
204 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
206 static struct lcore_params *lcore_params;
207 static uint16_t nb_lcore_params;
209 static struct rte_hash *cdev_map_in;
210 static struct rte_hash *cdev_map_out;
214 struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
218 uint16_t nb_rx_queue;
219 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
220 uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
221 struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
222 struct ipsec_ctx inbound;
223 struct ipsec_ctx outbound;
224 struct rt_ctx *rt4_ctx;
225 struct rt_ctx *rt6_ctx;
227 struct rte_ip_frag_tbl *tbl;
228 struct rte_mempool *pool_dir;
229 struct rte_mempool *pool_indir;
230 struct rte_ip_frag_death_row dr;
232 } __rte_cache_aligned;
234 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
236 static struct rte_eth_conf port_conf = {
238 .mq_mode = ETH_MQ_RX_RSS,
239 .max_rx_pkt_len = RTE_ETHER_MAX_LEN,
241 .offloads = DEV_RX_OFFLOAD_CHECKSUM,
246 .rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
247 ETH_RSS_TCP | ETH_RSS_SCTP,
251 .mq_mode = ETH_MQ_TX_NONE,
255 static struct socket_ctx socket_ctx[NB_SOCKETS];
258 * Determine is multi-segment support required:
259 * - either frame buffer size is smaller then mtu
260 * - or reassmeble support is requested
263 multi_seg_required(void)
265 return (MTU_TO_FRAMELEN(mtu_size) + RTE_PKTMBUF_HEADROOM >
266 frame_buf_size || frag_tbl_sz != 0);
270 adjust_ipv4_pktlen(struct rte_mbuf *m, const struct rte_ipv4_hdr *iph,
275 plen = rte_be_to_cpu_16(iph->total_length) + l2_len;
276 if (plen < m->pkt_len) {
277 trim = m->pkt_len - plen;
278 rte_pktmbuf_trim(m, trim);
283 adjust_ipv6_pktlen(struct rte_mbuf *m, const struct rte_ipv6_hdr *iph,
288 plen = rte_be_to_cpu_16(iph->payload_len) + sizeof(*iph) + l2_len;
289 if (plen < m->pkt_len) {
290 trim = m->pkt_len - plen;
291 rte_pktmbuf_trim(m, trim);
296 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
298 const struct rte_ether_hdr *eth;
299 const struct rte_ipv4_hdr *iph4;
300 const struct rte_ipv6_hdr *iph6;
302 eth = rte_pktmbuf_mtod(pkt, const struct rte_ether_hdr *);
303 if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
305 iph4 = (const struct rte_ipv4_hdr *)rte_pktmbuf_adj(pkt,
307 adjust_ipv4_pktlen(pkt, iph4, 0);
309 if (iph4->next_proto_id == IPPROTO_ESP)
310 t->ipsec.pkts[(t->ipsec.num)++] = pkt;
312 t->ip4.data[t->ip4.num] = &iph4->next_proto_id;
313 t->ip4.pkts[(t->ip4.num)++] = pkt;
316 pkt->l3_len = sizeof(*iph4);
317 } else if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
319 size_t l3len, ext_len;
322 /* get protocol type */
323 iph6 = (const struct rte_ipv6_hdr *)rte_pktmbuf_adj(pkt,
325 adjust_ipv6_pktlen(pkt, iph6, 0);
327 next_proto = iph6->proto;
329 /* determine l3 header size up to ESP extension */
330 l3len = sizeof(struct ip6_hdr);
331 p = rte_pktmbuf_mtod(pkt, uint8_t *);
332 while (next_proto != IPPROTO_ESP && l3len < pkt->data_len &&
333 (next_proto = rte_ipv6_get_next_ext(p + l3len,
334 next_proto, &ext_len)) >= 0)
337 /* drop packet when IPv6 header exceeds first segment length */
338 if (unlikely(l3len > pkt->data_len)) {
339 rte_pktmbuf_free(pkt);
343 if (next_proto == IPPROTO_ESP)
344 t->ipsec.pkts[(t->ipsec.num)++] = pkt;
346 t->ip6.data[t->ip6.num] = &iph6->proto;
347 t->ip6.pkts[(t->ip6.num)++] = pkt;
352 /* Unknown/Unsupported type, drop the packet */
353 RTE_LOG(ERR, IPSEC, "Unsupported packet type 0x%x\n",
354 rte_be_to_cpu_16(eth->ether_type));
355 rte_pktmbuf_free(pkt);
358 /* Check if the packet has been processed inline. For inline protocol
359 * processed packets, the metadata in the mbuf can be used to identify
360 * the security processing done on the packet. The metadata will be
361 * used to retrieve the application registered userdata associated
362 * with the security session.
365 if (pkt->ol_flags & PKT_RX_SEC_OFFLOAD) {
367 struct ipsec_mbuf_metadata *priv;
368 struct rte_security_ctx *ctx = (struct rte_security_ctx *)
369 rte_eth_dev_get_sec_ctx(
372 /* Retrieve the userdata registered. Here, the userdata
373 * registered is the SA pointer.
376 sa = (struct ipsec_sa *)
377 rte_security_get_userdata(ctx, pkt->udata64);
380 /* userdata could not be retrieved */
384 /* Save SA as priv member in mbuf. This will be used in the
385 * IPsec selector(SP-SA) check.
388 priv = get_priv(pkt);
394 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
403 for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
404 rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
406 prepare_one_packet(pkts[i], t);
408 /* Process left packets */
409 for (; i < nb_pkts; i++)
410 prepare_one_packet(pkts[i], t);
414 prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port,
415 const struct lcore_conf *qconf)
418 struct rte_ether_hdr *ethhdr;
420 ip = rte_pktmbuf_mtod(pkt, struct ip *);
422 ethhdr = (struct rte_ether_hdr *)
423 rte_pktmbuf_prepend(pkt, RTE_ETHER_HDR_LEN);
425 if (ip->ip_v == IPVERSION) {
426 pkt->ol_flags |= qconf->outbound.ipv4_offloads;
427 pkt->l3_len = sizeof(struct ip);
428 pkt->l2_len = RTE_ETHER_HDR_LEN;
432 /* calculate IPv4 cksum in SW */
433 if ((pkt->ol_flags & PKT_TX_IP_CKSUM) == 0)
434 ip->ip_sum = rte_ipv4_cksum((struct rte_ipv4_hdr *)ip);
436 ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
438 pkt->ol_flags |= qconf->outbound.ipv6_offloads;
439 pkt->l3_len = sizeof(struct ip6_hdr);
440 pkt->l2_len = RTE_ETHER_HDR_LEN;
442 ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
445 memcpy(ðhdr->s_addr, ðaddr_tbl[port].src,
446 sizeof(struct rte_ether_addr));
447 memcpy(ðhdr->d_addr, ðaddr_tbl[port].dst,
448 sizeof(struct rte_ether_addr));
452 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port,
453 const struct lcore_conf *qconf)
456 const int32_t prefetch_offset = 2;
458 for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
459 rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
460 prepare_tx_pkt(pkts[i], port, qconf);
462 /* Process left packets */
463 for (; i < nb_pkts; i++)
464 prepare_tx_pkt(pkts[i], port, qconf);
467 /* Send burst of packets on an output interface */
468 static inline int32_t
469 send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port)
471 struct rte_mbuf **m_table;
475 queueid = qconf->tx_queue_id[port];
476 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
478 prepare_tx_burst(m_table, n, port, qconf);
480 ret = rte_eth_tx_burst(port, queueid, m_table, n);
481 if (unlikely(ret < n)) {
483 rte_pktmbuf_free(m_table[ret]);
491 * Helper function to fragment and queue for TX one packet.
493 static inline uint32_t
494 send_fragment_packet(struct lcore_conf *qconf, struct rte_mbuf *m,
495 uint16_t port, uint8_t proto)
501 tbl = qconf->tx_mbufs + port;
504 /* free space for new fragments */
505 if (len + RTE_LIBRTE_IP_FRAG_MAX_FRAG >= RTE_DIM(tbl->m_table)) {
506 send_burst(qconf, len, port);
510 n = RTE_DIM(tbl->m_table) - len;
512 if (proto == IPPROTO_IP)
513 rc = rte_ipv4_fragment_packet(m, tbl->m_table + len,
514 n, mtu_size, qconf->frag.pool_dir,
515 qconf->frag.pool_indir);
517 rc = rte_ipv6_fragment_packet(m, tbl->m_table + len,
518 n, mtu_size, qconf->frag.pool_dir,
519 qconf->frag.pool_indir);
525 "%s: failed to fragment packet with size %u, "
527 __func__, m->pkt_len, rte_errno);
533 /* Enqueue a single packet, and send burst if queue is filled */
534 static inline int32_t
535 send_single_packet(struct rte_mbuf *m, uint16_t port, uint8_t proto)
539 struct lcore_conf *qconf;
541 lcore_id = rte_lcore_id();
543 qconf = &lcore_conf[lcore_id];
544 len = qconf->tx_mbufs[port].len;
546 if (m->pkt_len <= mtu_size) {
547 qconf->tx_mbufs[port].m_table[len] = m;
550 /* need to fragment the packet */
552 len = send_fragment_packet(qconf, m, port, proto);
554 /* enough pkts to be sent */
555 if (unlikely(len == MAX_PKT_BURST)) {
556 send_burst(qconf, MAX_PKT_BURST, port);
560 qconf->tx_mbufs[port].len = len;
565 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
569 uint32_t i, j, res, sa_idx;
571 if (ip->num == 0 || sp == NULL)
574 rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
575 ip->num, DEFAULT_MAX_CATEGORIES);
578 for (i = 0; i < ip->num; i++) {
585 if (res == DISCARD) {
590 /* Only check SPI match for processed IPSec packets */
591 if (i < lim && ((m->ol_flags & PKT_RX_SEC_OFFLOAD) == 0)) {
596 sa_idx = SPI2IDX(res);
597 if (!inbound_sa_check(sa, m, sa_idx)) {
607 split46_traffic(struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t num)
616 for (i = 0; i < num; i++) {
619 ip = rte_pktmbuf_mtod(m, struct ip *);
621 if (ip->ip_v == IPVERSION) {
622 trf->ip4.pkts[n4] = m;
623 trf->ip4.data[n4] = rte_pktmbuf_mtod_offset(m,
624 uint8_t *, offsetof(struct ip, ip_p));
626 } else if (ip->ip_v == IP6_VERSION) {
627 trf->ip6.pkts[n6] = m;
628 trf->ip6.data[n6] = rte_pktmbuf_mtod_offset(m,
630 offsetof(struct ip6_hdr, ip6_nxt));
642 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
643 struct ipsec_traffic *traffic)
645 uint16_t nb_pkts_in, n_ip4, n_ip6;
647 n_ip4 = traffic->ip4.num;
648 n_ip6 = traffic->ip6.num;
650 if (app_sa_prm.enable == 0) {
651 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
652 traffic->ipsec.num, MAX_PKT_BURST);
653 split46_traffic(traffic, traffic->ipsec.pkts, nb_pkts_in);
655 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
656 traffic->ipsec.saptr, traffic->ipsec.num);
657 ipsec_process(ipsec_ctx, traffic);
660 inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
663 inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
668 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
669 struct traffic_type *ipsec)
672 uint32_t i, j, sa_idx;
674 if (ip->num == 0 || sp == NULL)
677 rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
678 ip->num, DEFAULT_MAX_CATEGORIES);
681 for (i = 0; i < ip->num; i++) {
683 sa_idx = SPI2IDX(ip->res[i]);
684 if (ip->res[i] == DISCARD)
686 else if (ip->res[i] == BYPASS)
689 ipsec->res[ipsec->num] = sa_idx;
690 ipsec->pkts[ipsec->num++] = m;
697 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
698 struct ipsec_traffic *traffic)
701 uint16_t idx, nb_pkts_out, i;
703 /* Drop any IPsec traffic from protected ports */
704 for (i = 0; i < traffic->ipsec.num; i++)
705 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
707 traffic->ipsec.num = 0;
709 outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
711 outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
713 if (app_sa_prm.enable == 0) {
715 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
716 traffic->ipsec.res, traffic->ipsec.num,
719 for (i = 0; i < nb_pkts_out; i++) {
720 m = traffic->ipsec.pkts[i];
721 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
722 if (ip->ip_v == IPVERSION) {
723 idx = traffic->ip4.num++;
724 traffic->ip4.pkts[idx] = m;
726 idx = traffic->ip6.num++;
727 traffic->ip6.pkts[idx] = m;
731 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
732 traffic->ipsec.saptr, traffic->ipsec.num);
733 ipsec_process(ipsec_ctx, traffic);
738 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
739 struct ipsec_traffic *traffic)
742 uint32_t nb_pkts_in, i, idx;
744 /* Drop any IPv4 traffic from unprotected ports */
745 for (i = 0; i < traffic->ip4.num; i++)
746 rte_pktmbuf_free(traffic->ip4.pkts[i]);
748 traffic->ip4.num = 0;
750 /* Drop any IPv6 traffic from unprotected ports */
751 for (i = 0; i < traffic->ip6.num; i++)
752 rte_pktmbuf_free(traffic->ip6.pkts[i]);
754 traffic->ip6.num = 0;
756 if (app_sa_prm.enable == 0) {
758 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
759 traffic->ipsec.num, MAX_PKT_BURST);
761 for (i = 0; i < nb_pkts_in; i++) {
762 m = traffic->ipsec.pkts[i];
763 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
764 if (ip->ip_v == IPVERSION) {
765 idx = traffic->ip4.num++;
766 traffic->ip4.pkts[idx] = m;
768 idx = traffic->ip6.num++;
769 traffic->ip6.pkts[idx] = m;
773 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
774 traffic->ipsec.saptr, traffic->ipsec.num);
775 ipsec_process(ipsec_ctx, traffic);
780 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
781 struct ipsec_traffic *traffic)
784 uint32_t nb_pkts_out, i, n;
787 /* Drop any IPsec traffic from protected ports */
788 for (i = 0; i < traffic->ipsec.num; i++)
789 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
793 for (i = 0; i < traffic->ip4.num; i++) {
794 traffic->ipsec.pkts[n] = traffic->ip4.pkts[i];
795 traffic->ipsec.res[n++] = single_sa_idx;
798 for (i = 0; i < traffic->ip6.num; i++) {
799 traffic->ipsec.pkts[n] = traffic->ip6.pkts[i];
800 traffic->ipsec.res[n++] = single_sa_idx;
803 traffic->ip4.num = 0;
804 traffic->ip6.num = 0;
805 traffic->ipsec.num = n;
807 if (app_sa_prm.enable == 0) {
809 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
810 traffic->ipsec.res, traffic->ipsec.num,
813 /* They all sue the same SA (ip4 or ip6 tunnel) */
814 m = traffic->ipsec.pkts[0];
815 ip = rte_pktmbuf_mtod(m, struct ip *);
816 if (ip->ip_v == IPVERSION) {
817 traffic->ip4.num = nb_pkts_out;
818 for (i = 0; i < nb_pkts_out; i++)
819 traffic->ip4.pkts[i] = traffic->ipsec.pkts[i];
821 traffic->ip6.num = nb_pkts_out;
822 for (i = 0; i < nb_pkts_out; i++)
823 traffic->ip6.pkts[i] = traffic->ipsec.pkts[i];
826 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
827 traffic->ipsec.saptr, traffic->ipsec.num);
828 ipsec_process(ipsec_ctx, traffic);
832 static inline int32_t
833 get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6)
835 struct ipsec_mbuf_metadata *priv;
838 priv = get_priv(pkt);
841 if (unlikely(sa == NULL)) {
842 RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
850 return (sa->portid | RTE_LPM_LOOKUP_SUCCESS);
861 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
863 uint32_t hop[MAX_PKT_BURST * 2];
864 uint32_t dst_ip[MAX_PKT_BURST * 2];
867 uint16_t lpm_pkts = 0;
872 /* Need to do an LPM lookup for non-inline packets. Inline packets will
873 * have port ID in the SA
876 for (i = 0; i < nb_pkts; i++) {
877 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
878 /* Security offload not enabled. So an LPM lookup is
879 * required to get the hop
881 offset = offsetof(struct ip, ip_dst);
882 dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i],
884 dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]);
889 rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts);
893 for (i = 0; i < nb_pkts; i++) {
894 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
895 /* Read hop from the SA */
896 pkt_hop = get_hop_for_offload_pkt(pkts[i], 0);
898 /* Need to use hop returned by lookup */
899 pkt_hop = hop[lpm_pkts++];
902 if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) {
903 rte_pktmbuf_free(pkts[i]);
906 send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IP);
911 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
913 int32_t hop[MAX_PKT_BURST * 2];
914 uint8_t dst_ip[MAX_PKT_BURST * 2][16];
918 uint16_t lpm_pkts = 0;
923 /* Need to do an LPM lookup for non-inline packets. Inline packets will
924 * have port ID in the SA
927 for (i = 0; i < nb_pkts; i++) {
928 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
929 /* Security offload not enabled. So an LPM lookup is
930 * required to get the hop
932 offset = offsetof(struct ip6_hdr, ip6_dst);
933 ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *,
935 memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16);
940 rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop,
945 for (i = 0; i < nb_pkts; i++) {
946 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
947 /* Read hop from the SA */
948 pkt_hop = get_hop_for_offload_pkt(pkts[i], 1);
950 /* Need to use hop returned by lookup */
951 pkt_hop = hop[lpm_pkts++];
955 rte_pktmbuf_free(pkts[i]);
958 send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IPV6);
963 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
964 uint8_t nb_pkts, uint16_t portid)
966 struct ipsec_traffic traffic;
968 prepare_traffic(pkts, &traffic, nb_pkts);
970 if (unlikely(single_sa)) {
971 if (UNPROTECTED_PORT(portid))
972 process_pkts_inbound_nosp(&qconf->inbound, &traffic);
974 process_pkts_outbound_nosp(&qconf->outbound, &traffic);
976 if (UNPROTECTED_PORT(portid))
977 process_pkts_inbound(&qconf->inbound, &traffic);
979 process_pkts_outbound(&qconf->outbound, &traffic);
982 route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
983 route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
987 drain_tx_buffers(struct lcore_conf *qconf)
992 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
993 buf = &qconf->tx_mbufs[portid];
996 send_burst(qconf, buf->len, portid);
1002 drain_crypto_buffers(struct lcore_conf *qconf)
1005 struct ipsec_ctx *ctx;
1007 /* drain inbound buffers*/
1008 ctx = &qconf->inbound;
1009 for (i = 0; i != ctx->nb_qps; i++) {
1010 if (ctx->tbl[i].len != 0)
1011 enqueue_cop_burst(ctx->tbl + i);
1014 /* drain outbound buffers*/
1015 ctx = &qconf->outbound;
1016 for (i = 0; i != ctx->nb_qps; i++) {
1017 if (ctx->tbl[i].len != 0)
1018 enqueue_cop_burst(ctx->tbl + i);
1023 drain_inbound_crypto_queues(const struct lcore_conf *qconf,
1024 struct ipsec_ctx *ctx)
1027 struct ipsec_traffic trf;
1029 if (app_sa_prm.enable == 0) {
1031 /* dequeue packets from crypto-queue */
1032 n = ipsec_inbound_cqp_dequeue(ctx, trf.ipsec.pkts,
1033 RTE_DIM(trf.ipsec.pkts));
1038 /* split traffic by ipv4-ipv6 */
1039 split46_traffic(&trf, trf.ipsec.pkts, n);
1041 ipsec_cqp_process(ctx, &trf);
1043 /* process ipv4 packets */
1044 if (trf.ip4.num != 0) {
1045 inbound_sp_sa(ctx->sp4_ctx, ctx->sa_ctx, &trf.ip4, 0);
1046 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
1049 /* process ipv6 packets */
1050 if (trf.ip6.num != 0) {
1051 inbound_sp_sa(ctx->sp6_ctx, ctx->sa_ctx, &trf.ip6, 0);
1052 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
1057 drain_outbound_crypto_queues(const struct lcore_conf *qconf,
1058 struct ipsec_ctx *ctx)
1061 struct ipsec_traffic trf;
1063 if (app_sa_prm.enable == 0) {
1065 /* dequeue packets from crypto-queue */
1066 n = ipsec_outbound_cqp_dequeue(ctx, trf.ipsec.pkts,
1067 RTE_DIM(trf.ipsec.pkts));
1072 /* split traffic by ipv4-ipv6 */
1073 split46_traffic(&trf, trf.ipsec.pkts, n);
1075 ipsec_cqp_process(ctx, &trf);
1077 /* process ipv4 packets */
1078 if (trf.ip4.num != 0)
1079 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
1081 /* process ipv6 packets */
1082 if (trf.ip6.num != 0)
1083 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
1086 /* main processing loop */
1088 main_loop(__attribute__((unused)) void *dummy)
1090 struct rte_mbuf *pkts[MAX_PKT_BURST];
1092 uint64_t prev_tsc, diff_tsc, cur_tsc;
1096 struct lcore_conf *qconf;
1098 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
1099 / US_PER_S * BURST_TX_DRAIN_US;
1100 struct lcore_rx_queue *rxql;
1103 lcore_id = rte_lcore_id();
1104 qconf = &lcore_conf[lcore_id];
1105 rxql = qconf->rx_queue_list;
1106 socket_id = rte_lcore_to_socket_id(lcore_id);
1108 qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
1109 qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
1110 qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
1111 qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
1112 qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
1113 qconf->inbound.cdev_map = cdev_map_in;
1114 qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
1115 qconf->inbound.session_priv_pool =
1116 socket_ctx[socket_id].session_priv_pool;
1117 qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
1118 qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
1119 qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
1120 qconf->outbound.cdev_map = cdev_map_out;
1121 qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
1122 qconf->outbound.session_priv_pool =
1123 socket_ctx[socket_id].session_priv_pool;
1124 qconf->frag.pool_dir = socket_ctx[socket_id].mbuf_pool;
1125 qconf->frag.pool_indir = socket_ctx[socket_id].mbuf_pool_indir;
1127 if (qconf->nb_rx_queue == 0) {
1128 RTE_LOG(DEBUG, IPSEC, "lcore %u has nothing to do\n",
1133 RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
1135 for (i = 0; i < qconf->nb_rx_queue; i++) {
1136 portid = rxql[i].port_id;
1137 queueid = rxql[i].queue_id;
1138 RTE_LOG(INFO, IPSEC,
1139 " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
1140 lcore_id, portid, queueid);
1144 cur_tsc = rte_rdtsc();
1146 /* TX queue buffer drain */
1147 diff_tsc = cur_tsc - prev_tsc;
1149 if (unlikely(diff_tsc > drain_tsc)) {
1150 drain_tx_buffers(qconf);
1151 drain_crypto_buffers(qconf);
1155 for (i = 0; i < qconf->nb_rx_queue; ++i) {
1157 /* Read packets from RX queues */
1158 portid = rxql[i].port_id;
1159 queueid = rxql[i].queue_id;
1160 nb_rx = rte_eth_rx_burst(portid, queueid,
1161 pkts, MAX_PKT_BURST);
1164 process_pkts(qconf, pkts, nb_rx, portid);
1166 /* dequeue and process completed crypto-ops */
1167 if (UNPROTECTED_PORT(portid))
1168 drain_inbound_crypto_queues(qconf,
1171 drain_outbound_crypto_queues(qconf,
1185 if (lcore_params == NULL) {
1186 printf("Error: No port/queue/core mappings\n");
1190 for (i = 0; i < nb_lcore_params; ++i) {
1191 lcore = lcore_params[i].lcore_id;
1192 if (!rte_lcore_is_enabled(lcore)) {
1193 printf("error: lcore %hhu is not enabled in "
1194 "lcore mask\n", lcore);
1197 socket_id = rte_lcore_to_socket_id(lcore);
1198 if (socket_id != 0 && numa_on == 0) {
1199 printf("warning: lcore %hhu is on socket %d "
1203 portid = lcore_params[i].port_id;
1204 if ((enabled_port_mask & (1 << portid)) == 0) {
1205 printf("port %u is not enabled in port mask\n", portid);
1208 if (!rte_eth_dev_is_valid_port(portid)) {
1209 printf("port %u is not present on the board\n", portid);
1217 get_port_nb_rx_queues(const uint16_t port)
1222 for (i = 0; i < nb_lcore_params; ++i) {
1223 if (lcore_params[i].port_id == port &&
1224 lcore_params[i].queue_id > queue)
1225 queue = lcore_params[i].queue_id;
1227 return (uint8_t)(++queue);
1231 init_lcore_rx_queues(void)
1233 uint16_t i, nb_rx_queue;
1236 for (i = 0; i < nb_lcore_params; ++i) {
1237 lcore = lcore_params[i].lcore_id;
1238 nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
1239 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1240 printf("error: too many queues (%u) for lcore: %u\n",
1241 nb_rx_queue + 1, lcore);
1244 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1245 lcore_params[i].port_id;
1246 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1247 lcore_params[i].queue_id;
1248 lcore_conf[lcore].nb_rx_queue++;
1255 print_usage(const char *prgname)
1257 fprintf(stderr, "%s [EAL options] --"
1263 " [-w REPLAY_WINDOW_SIZE]"
1267 " --config (port,queue,lcore)[,(port,queue,lcore)]"
1268 " [--single-sa SAIDX]"
1269 " [--cryptodev_mask MASK]"
1270 " [--" CMD_LINE_OPT_RX_OFFLOAD " RX_OFFLOAD_MASK]"
1271 " [--" CMD_LINE_OPT_TX_OFFLOAD " TX_OFFLOAD_MASK]"
1272 " [--" CMD_LINE_OPT_REASSEMBLE " REASSEMBLE_TABLE_SIZE]"
1273 " [--" CMD_LINE_OPT_MTU " MTU]"
1275 " -p PORTMASK: Hexadecimal bitmask of ports to configure\n"
1276 " -P : Enable promiscuous mode\n"
1277 " -u PORTMASK: Hexadecimal bitmask of unprotected ports\n"
1278 " -j FRAMESIZE: Data buffer size, minimum (and default)\n"
1279 " value: RTE_MBUF_DEFAULT_BUF_SIZE\n"
1280 " -l enables code-path that uses librte_ipsec\n"
1281 " -w REPLAY_WINDOW_SIZE specifies IPsec SQN replay window\n"
1282 " size for each SA\n"
1284 " -a enables SA SQN atomic behaviour\n"
1285 " -f CONFIG_FILE: Configuration file\n"
1286 " --config (port,queue,lcore): Rx queue configuration\n"
1287 " --single-sa SAIDX: Use single SA index for outbound traffic,\n"
1288 " bypassing the SP\n"
1289 " --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n"
1290 " devices to configure\n"
1291 " --" CMD_LINE_OPT_RX_OFFLOAD
1292 ": bitmask of the RX HW offload capabilities to enable/use\n"
1293 " (DEV_RX_OFFLOAD_*)\n"
1294 " --" CMD_LINE_OPT_TX_OFFLOAD
1295 ": bitmask of the TX HW offload capabilities to enable/use\n"
1296 " (DEV_TX_OFFLOAD_*)\n"
1297 " --" CMD_LINE_OPT_REASSEMBLE " NUM"
1298 ": max number of entries in reassemble(fragment) table\n"
1299 " (zero (default value) disables reassembly)\n"
1300 " --" CMD_LINE_OPT_MTU " MTU"
1301 ": MTU value on all ports (default value: 1500)\n"
1302 " outgoing packets with bigger size will be fragmented\n"
1303 " incoming packets with bigger size will be discarded\n"
1309 parse_mask(const char *str, uint64_t *val)
1315 t = strtoul(str, &end, 0);
1316 if (errno != 0 || end[0] != 0)
1324 parse_portmask(const char *portmask)
1329 /* parse hexadecimal string */
1330 pm = strtoul(portmask, &end, 16);
1331 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1334 if ((pm == 0) && errno)
1341 parse_decimal(const char *str)
1346 num = strtoul(str, &end, 10);
1347 if ((str[0] == '\0') || (end == NULL) || (*end != '\0'))
1354 parse_config(const char *q_arg)
1357 const char *p, *p0 = q_arg;
1365 unsigned long int_fld[_NUM_FLD];
1366 char *str_fld[_NUM_FLD];
1370 nb_lcore_params = 0;
1372 while ((p = strchr(p0, '(')) != NULL) {
1374 p0 = strchr(p, ')');
1379 if (size >= sizeof(s))
1382 snprintf(s, sizeof(s), "%.*s", size, p);
1383 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1386 for (i = 0; i < _NUM_FLD; i++) {
1388 int_fld[i] = strtoul(str_fld[i], &end, 0);
1389 if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1392 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1393 printf("exceeded max number of lcore params: %hu\n",
1397 lcore_params_array[nb_lcore_params].port_id =
1398 (uint8_t)int_fld[FLD_PORT];
1399 lcore_params_array[nb_lcore_params].queue_id =
1400 (uint8_t)int_fld[FLD_QUEUE];
1401 lcore_params_array[nb_lcore_params].lcore_id =
1402 (uint8_t)int_fld[FLD_LCORE];
1405 lcore_params = lcore_params_array;
1410 print_app_sa_prm(const struct app_sa_prm *prm)
1412 printf("librte_ipsec usage: %s\n",
1413 (prm->enable == 0) ? "disabled" : "enabled");
1415 if (prm->enable == 0)
1418 printf("replay window size: %u\n", prm->window_size);
1419 printf("ESN: %s\n", (prm->enable_esn == 0) ? "disabled" : "enabled");
1420 printf("SA flags: %#" PRIx64 "\n", prm->flags);
1424 parse_args(int32_t argc, char **argv)
1428 int32_t option_index;
1429 char *prgname = argv[0];
1430 int32_t f_present = 0;
1434 while ((opt = getopt_long(argc, argvopt, "aelp:Pu:f:j:w:",
1435 lgopts, &option_index)) != EOF) {
1439 enabled_port_mask = parse_portmask(optarg);
1440 if (enabled_port_mask == 0) {
1441 printf("invalid portmask\n");
1442 print_usage(prgname);
1447 printf("Promiscuous mode selected\n");
1451 unprotected_port_mask = parse_portmask(optarg);
1452 if (unprotected_port_mask == 0) {
1453 printf("invalid unprotected portmask\n");
1454 print_usage(prgname);
1459 if (f_present == 1) {
1460 printf("\"-f\" option present more than "
1462 print_usage(prgname);
1465 if (parse_cfg_file(optarg) < 0) {
1466 printf("parsing file \"%s\" failed\n",
1468 print_usage(prgname);
1474 ret = parse_decimal(optarg);
1475 if (ret < RTE_MBUF_DEFAULT_BUF_SIZE ||
1477 printf("Invalid frame buffer size value: %s\n",
1479 print_usage(prgname);
1482 frame_buf_size = ret;
1483 printf("Custom frame buffer size %u\n", frame_buf_size);
1486 app_sa_prm.enable = 1;
1489 app_sa_prm.enable = 1;
1490 app_sa_prm.window_size = parse_decimal(optarg);
1493 app_sa_prm.enable = 1;
1494 app_sa_prm.enable_esn = 1;
1497 app_sa_prm.enable = 1;
1498 app_sa_prm.flags |= RTE_IPSEC_SAFLAG_SQN_ATOM;
1500 case CMD_LINE_OPT_CONFIG_NUM:
1501 ret = parse_config(optarg);
1503 printf("Invalid config\n");
1504 print_usage(prgname);
1508 case CMD_LINE_OPT_SINGLE_SA_NUM:
1509 ret = parse_decimal(optarg);
1511 printf("Invalid argument[sa_idx]\n");
1512 print_usage(prgname);
1518 single_sa_idx = ret;
1519 printf("Configured with single SA index %u\n",
1522 case CMD_LINE_OPT_CRYPTODEV_MASK_NUM:
1523 ret = parse_portmask(optarg);
1525 printf("Invalid argument[portmask]\n");
1526 print_usage(prgname);
1531 enabled_cryptodev_mask = ret;
1533 case CMD_LINE_OPT_RX_OFFLOAD_NUM:
1534 ret = parse_mask(optarg, &dev_rx_offload);
1536 printf("Invalid argument for \'%s\': %s\n",
1537 CMD_LINE_OPT_RX_OFFLOAD, optarg);
1538 print_usage(prgname);
1542 case CMD_LINE_OPT_TX_OFFLOAD_NUM:
1543 ret = parse_mask(optarg, &dev_tx_offload);
1545 printf("Invalid argument for \'%s\': %s\n",
1546 CMD_LINE_OPT_TX_OFFLOAD, optarg);
1547 print_usage(prgname);
1551 case CMD_LINE_OPT_REASSEMBLE_NUM:
1552 ret = parse_decimal(optarg);
1554 printf("Invalid argument for \'%s\': %s\n",
1555 CMD_LINE_OPT_REASSEMBLE, optarg);
1556 print_usage(prgname);
1561 case CMD_LINE_OPT_MTU_NUM:
1562 ret = parse_decimal(optarg);
1563 if (ret < 0 || ret > RTE_IPV4_MAX_PKT_LEN) {
1564 printf("Invalid argument for \'%s\': %s\n",
1565 CMD_LINE_OPT_MTU, optarg);
1566 print_usage(prgname);
1572 print_usage(prgname);
1577 if (f_present == 0) {
1578 printf("Mandatory option \"-f\" not present\n");
1582 /* check do we need to enable multi-seg support */
1583 if (multi_seg_required()) {
1584 /* legacy mode doesn't support multi-seg */
1585 app_sa_prm.enable = 1;
1586 printf("frame buf size: %u, mtu: %u, "
1587 "number of reassemble entries: %u\n"
1588 "multi-segment support is required\n",
1589 frame_buf_size, mtu_size, frag_tbl_sz);
1592 print_app_sa_prm(&app_sa_prm);
1595 argv[optind-1] = prgname;
1598 optind = 1; /* reset getopt lib */
1603 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
1605 char buf[RTE_ETHER_ADDR_FMT_SIZE];
1606 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
1607 printf("%s%s", name, buf);
1611 * Update destination ethaddr for the port.
1614 add_dst_ethaddr(uint16_t port, const struct rte_ether_addr *addr)
1616 if (port >= RTE_DIM(ethaddr_tbl))
1619 ethaddr_tbl[port].dst = ETHADDR_TO_UINT64(addr);
1623 /* Check the link status of all ports in up to 9s, and print them finally */
1625 check_all_ports_link_status(uint32_t port_mask)
1627 #define CHECK_INTERVAL 100 /* 100ms */
1628 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1630 uint8_t count, all_ports_up, print_flag = 0;
1631 struct rte_eth_link link;
1633 printf("\nChecking link status");
1635 for (count = 0; count <= MAX_CHECK_TIME; count++) {
1637 RTE_ETH_FOREACH_DEV(portid) {
1638 if ((port_mask & (1 << portid)) == 0)
1640 memset(&link, 0, sizeof(link));
1641 rte_eth_link_get_nowait(portid, &link);
1642 /* print link status if flag set */
1643 if (print_flag == 1) {
1644 if (link.link_status)
1646 "Port%d Link Up - speed %u Mbps -%s\n",
1647 portid, link.link_speed,
1648 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1649 ("full-duplex") : ("half-duplex\n"));
1651 printf("Port %d Link Down\n", portid);
1654 /* clear all_ports_up flag if any link down */
1655 if (link.link_status == ETH_LINK_DOWN) {
1660 /* after finally printing all link status, get out */
1661 if (print_flag == 1)
1664 if (all_ports_up == 0) {
1667 rte_delay_ms(CHECK_INTERVAL);
1670 /* set the print_flag if all ports up or timeout */
1671 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1679 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1680 uint16_t qp, struct lcore_params *params,
1681 struct ipsec_ctx *ipsec_ctx,
1682 const struct rte_cryptodev_capabilities *cipher,
1683 const struct rte_cryptodev_capabilities *auth,
1684 const struct rte_cryptodev_capabilities *aead)
1688 struct cdev_key key = { 0 };
1690 key.lcore_id = params->lcore_id;
1692 key.cipher_algo = cipher->sym.cipher.algo;
1694 key.auth_algo = auth->sym.auth.algo;
1696 key.aead_algo = aead->sym.aead.algo;
1698 ret = rte_hash_lookup(map, &key);
1702 for (i = 0; i < ipsec_ctx->nb_qps; i++)
1703 if (ipsec_ctx->tbl[i].id == cdev_id)
1706 if (i == ipsec_ctx->nb_qps) {
1707 if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1708 printf("Maximum number of crypto devices assigned to "
1709 "a core, increase MAX_QP_PER_LCORE value\n");
1712 ipsec_ctx->tbl[i].id = cdev_id;
1713 ipsec_ctx->tbl[i].qp = qp;
1714 ipsec_ctx->nb_qps++;
1715 printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1716 "(cdev_id_qp %lu)\n", str, key.lcore_id,
1720 ret = rte_hash_add_key_data(map, &key, (void *)i);
1722 printf("Faled to insert cdev mapping for (lcore %u, "
1723 "cdev %u, qp %u), errno %d\n",
1724 key.lcore_id, ipsec_ctx->tbl[i].id,
1725 ipsec_ctx->tbl[i].qp, ret);
1733 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1734 uint16_t qp, struct lcore_params *params)
1737 const struct rte_cryptodev_capabilities *i, *j;
1738 struct rte_hash *map;
1739 struct lcore_conf *qconf;
1740 struct ipsec_ctx *ipsec_ctx;
1743 qconf = &lcore_conf[params->lcore_id];
1745 if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1747 ipsec_ctx = &qconf->outbound;
1751 ipsec_ctx = &qconf->inbound;
1755 /* Required cryptodevs with operation chainning */
1756 if (!(dev_info->feature_flags &
1757 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
1760 for (i = dev_info->capabilities;
1761 i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
1762 if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1765 if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1766 ret |= add_mapping(map, str, cdev_id, qp, params,
1767 ipsec_ctx, NULL, NULL, i);
1771 if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
1774 for (j = dev_info->capabilities;
1775 j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
1776 if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1779 if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
1782 ret |= add_mapping(map, str, cdev_id, qp, params,
1783 ipsec_ctx, i, j, NULL);
1790 /* Check if the device is enabled by cryptodev_mask */
1792 check_cryptodev_mask(uint8_t cdev_id)
1794 if (enabled_cryptodev_mask & (1 << cdev_id))
1801 cryptodevs_init(void)
1803 struct rte_cryptodev_config dev_conf;
1804 struct rte_cryptodev_qp_conf qp_conf;
1805 uint16_t idx, max_nb_qps, qp, i;
1807 struct rte_hash_parameters params = { 0 };
1809 const uint64_t mseg_flag = multi_seg_required() ?
1810 RTE_CRYPTODEV_FF_IN_PLACE_SGL : 0;
1812 params.entries = CDEV_MAP_ENTRIES;
1813 params.key_len = sizeof(struct cdev_key);
1814 params.hash_func = rte_jhash;
1815 params.hash_func_init_val = 0;
1816 params.socket_id = rte_socket_id();
1818 params.name = "cdev_map_in";
1819 cdev_map_in = rte_hash_create(¶ms);
1820 if (cdev_map_in == NULL)
1821 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1824 params.name = "cdev_map_out";
1825 cdev_map_out = rte_hash_create(¶ms);
1826 if (cdev_map_out == NULL)
1827 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1830 printf("lcore/cryptodev/qp mappings:\n");
1833 for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
1834 struct rte_cryptodev_info cdev_info;
1836 if (check_cryptodev_mask((uint8_t)cdev_id))
1839 rte_cryptodev_info_get(cdev_id, &cdev_info);
1841 if ((mseg_flag & cdev_info.feature_flags) != mseg_flag)
1842 rte_exit(EXIT_FAILURE,
1843 "Device %hd does not support \'%s\' feature\n",
1845 rte_cryptodev_get_feature_name(mseg_flag));
1847 if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
1848 max_nb_qps = cdev_info.max_nb_queue_pairs;
1850 max_nb_qps = nb_lcore_params;
1854 while (qp < max_nb_qps && i < nb_lcore_params) {
1855 if (add_cdev_mapping(&cdev_info, cdev_id, qp,
1856 &lcore_params[idx]))
1859 idx = idx % nb_lcore_params;
1866 dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
1867 dev_conf.nb_queue_pairs = qp;
1868 dev_conf.ff_disable = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO;
1870 uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions;
1871 if (dev_max_sess != 0 && dev_max_sess < CDEV_MP_NB_OBJS)
1872 rte_exit(EXIT_FAILURE,
1873 "Device does not support at least %u "
1874 "sessions", CDEV_MP_NB_OBJS);
1876 if (rte_cryptodev_configure(cdev_id, &dev_conf))
1877 rte_panic("Failed to initialize cryptodev %u\n",
1880 qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
1881 qp_conf.mp_session =
1882 socket_ctx[dev_conf.socket_id].session_pool;
1883 qp_conf.mp_session_private =
1884 socket_ctx[dev_conf.socket_id].session_priv_pool;
1885 for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
1886 if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
1887 &qp_conf, dev_conf.socket_id))
1888 rte_panic("Failed to setup queue %u for "
1889 "cdev_id %u\n", 0, cdev_id);
1891 if (rte_cryptodev_start(cdev_id))
1892 rte_panic("Failed to start cryptodev %u\n",
1902 port_init(uint16_t portid, uint64_t req_rx_offloads, uint64_t req_tx_offloads)
1904 uint32_t frame_size;
1905 struct rte_eth_dev_info dev_info;
1906 struct rte_eth_txconf *txconf;
1907 uint16_t nb_tx_queue, nb_rx_queue;
1908 uint16_t tx_queueid, rx_queueid, queue, lcore_id;
1909 int32_t ret, socket_id;
1910 struct lcore_conf *qconf;
1911 struct rte_ether_addr ethaddr;
1912 struct rte_eth_conf local_port_conf = port_conf;
1914 rte_eth_dev_info_get(portid, &dev_info);
1916 /* limit allowed HW offloafs, as user requested */
1917 dev_info.rx_offload_capa &= dev_rx_offload;
1918 dev_info.tx_offload_capa &= dev_tx_offload;
1920 printf("Configuring device port %u:\n", portid);
1922 rte_eth_macaddr_get(portid, ðaddr);
1923 ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(ðaddr);
1924 print_ethaddr("Address: ", ðaddr);
1927 nb_rx_queue = get_port_nb_rx_queues(portid);
1928 nb_tx_queue = nb_lcores;
1930 if (nb_rx_queue > dev_info.max_rx_queues)
1931 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1932 "(max rx queue is %u)\n",
1933 nb_rx_queue, dev_info.max_rx_queues);
1935 if (nb_tx_queue > dev_info.max_tx_queues)
1936 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1937 "(max tx queue is %u)\n",
1938 nb_tx_queue, dev_info.max_tx_queues);
1940 printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
1941 nb_rx_queue, nb_tx_queue);
1943 frame_size = MTU_TO_FRAMELEN(mtu_size);
1944 if (frame_size > local_port_conf.rxmode.max_rx_pkt_len)
1945 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1946 local_port_conf.rxmode.max_rx_pkt_len = frame_size;
1948 if (multi_seg_required()) {
1949 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_SCATTER;
1950 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS;
1953 local_port_conf.rxmode.offloads |= req_rx_offloads;
1954 local_port_conf.txmode.offloads |= req_tx_offloads;
1956 /* Check that all required capabilities are supported */
1957 if ((local_port_conf.rxmode.offloads & dev_info.rx_offload_capa) !=
1958 local_port_conf.rxmode.offloads)
1959 rte_exit(EXIT_FAILURE,
1960 "Error: port %u required RX offloads: 0x%" PRIx64
1961 ", avaialbe RX offloads: 0x%" PRIx64 "\n",
1962 portid, local_port_conf.rxmode.offloads,
1963 dev_info.rx_offload_capa);
1965 if ((local_port_conf.txmode.offloads & dev_info.tx_offload_capa) !=
1966 local_port_conf.txmode.offloads)
1967 rte_exit(EXIT_FAILURE,
1968 "Error: port %u required TX offloads: 0x%" PRIx64
1969 ", avaialbe TX offloads: 0x%" PRIx64 "\n",
1970 portid, local_port_conf.txmode.offloads,
1971 dev_info.tx_offload_capa);
1973 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
1974 local_port_conf.txmode.offloads |=
1975 DEV_TX_OFFLOAD_MBUF_FAST_FREE;
1977 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM)
1978 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_IPV4_CKSUM;
1980 printf("port %u configurng rx_offloads=0x%" PRIx64
1981 ", tx_offloads=0x%" PRIx64 "\n",
1982 portid, local_port_conf.rxmode.offloads,
1983 local_port_conf.txmode.offloads);
1985 local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
1986 dev_info.flow_type_rss_offloads;
1987 if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
1988 port_conf.rx_adv_conf.rss_conf.rss_hf) {
1989 printf("Port %u modified RSS hash function based on hardware support,"
1990 "requested:%#"PRIx64" configured:%#"PRIx64"\n",
1992 port_conf.rx_adv_conf.rss_conf.rss_hf,
1993 local_port_conf.rx_adv_conf.rss_conf.rss_hf);
1996 ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
1999 rte_exit(EXIT_FAILURE, "Cannot configure device: "
2000 "err=%d, port=%d\n", ret, portid);
2002 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);
2004 rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: "
2005 "err=%d, port=%d\n", ret, portid);
2007 /* init one TX queue per lcore */
2009 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2010 if (rte_lcore_is_enabled(lcore_id) == 0)
2014 socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2019 printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
2021 txconf = &dev_info.default_txconf;
2022 txconf->offloads = local_port_conf.txmode.offloads;
2024 ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
2027 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
2028 "err=%d, port=%d\n", ret, portid);
2030 qconf = &lcore_conf[lcore_id];
2031 qconf->tx_queue_id[portid] = tx_queueid;
2033 /* Pre-populate pkt offloads based on capabilities */
2034 qconf->outbound.ipv4_offloads = PKT_TX_IPV4;
2035 qconf->outbound.ipv6_offloads = PKT_TX_IPV6;
2036 if (local_port_conf.txmode.offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
2037 qconf->outbound.ipv4_offloads |= PKT_TX_IP_CKSUM;
2041 /* init RX queues */
2042 for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
2043 struct rte_eth_rxconf rxq_conf;
2045 if (portid != qconf->rx_queue_list[queue].port_id)
2048 rx_queueid = qconf->rx_queue_list[queue].queue_id;
2050 printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
2053 rxq_conf = dev_info.default_rxconf;
2054 rxq_conf.offloads = local_port_conf.rxmode.offloads;
2055 ret = rte_eth_rx_queue_setup(portid, rx_queueid,
2056 nb_rxd, socket_id, &rxq_conf,
2057 socket_ctx[socket_id].mbuf_pool);
2059 rte_exit(EXIT_FAILURE,
2060 "rte_eth_rx_queue_setup: err=%d, "
2061 "port=%d\n", ret, portid);
2068 max_session_size(void)
2072 int16_t cdev_id, port_id, n;
2075 n = rte_cryptodev_count();
2076 for (cdev_id = 0; cdev_id != n; cdev_id++) {
2077 sz = rte_cryptodev_sym_get_private_session_size(cdev_id);
2081 * If crypto device is security capable, need to check the
2082 * size of security session as well.
2085 /* Get security context of the crypto device */
2086 sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id);
2087 if (sec_ctx == NULL)
2090 /* Get size of security session */
2091 sz = rte_security_session_get_size(sec_ctx);
2096 RTE_ETH_FOREACH_DEV(port_id) {
2097 if ((enabled_port_mask & (1 << port_id)) == 0)
2100 sec_ctx = rte_eth_dev_get_sec_ctx(port_id);
2101 if (sec_ctx == NULL)
2104 sz = rte_security_session_get_size(sec_ctx);
2113 session_pool_init(struct socket_ctx *ctx, int32_t socket_id, size_t sess_sz)
2115 char mp_name[RTE_MEMPOOL_NAMESIZE];
2116 struct rte_mempool *sess_mp;
2118 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2119 "sess_mp_%u", socket_id);
2120 sess_mp = rte_cryptodev_sym_session_pool_create(
2121 mp_name, CDEV_MP_NB_OBJS,
2122 sess_sz, CDEV_MP_CACHE_SZ, 0,
2124 ctx->session_pool = sess_mp;
2126 if (ctx->session_pool == NULL)
2127 rte_exit(EXIT_FAILURE,
2128 "Cannot init session pool on socket %d\n", socket_id);
2130 printf("Allocated session pool on socket %d\n", socket_id);
2134 session_priv_pool_init(struct socket_ctx *ctx, int32_t socket_id,
2137 char mp_name[RTE_MEMPOOL_NAMESIZE];
2138 struct rte_mempool *sess_mp;
2140 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2141 "sess_mp_priv_%u", socket_id);
2142 sess_mp = rte_mempool_create(mp_name,
2146 0, NULL, NULL, NULL,
2149 ctx->session_priv_pool = sess_mp;
2151 if (ctx->session_priv_pool == NULL)
2152 rte_exit(EXIT_FAILURE,
2153 "Cannot init session priv pool on socket %d\n",
2156 printf("Allocated session priv pool on socket %d\n",
2161 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
2166 snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
2167 ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
2168 MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
2169 frame_buf_size, socket_id);
2172 * if multi-segment support is enabled, then create a pool
2173 * for indirect mbufs.
2175 ms = multi_seg_required();
2177 snprintf(s, sizeof(s), "mbuf_pool_indir_%d", socket_id);
2178 ctx->mbuf_pool_indir = rte_pktmbuf_pool_create(s, nb_mbuf,
2179 MEMPOOL_CACHE_SIZE, 0, 0, socket_id);
2182 if (ctx->mbuf_pool == NULL || (ms != 0 && ctx->mbuf_pool_indir == NULL))
2183 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
2186 printf("Allocated mbuf pool on socket %d\n", socket_id);
2190 inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md)
2192 struct ipsec_sa *sa;
2194 /* For inline protocol processing, the metadata in the event will
2195 * uniquely identify the security session which raised the event.
2196 * Application would then need the userdata it had registered with the
2197 * security session to process the event.
2200 sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md);
2203 /* userdata could not be retrieved */
2207 /* Sequence number over flow. SA need to be re-established */
2213 inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type,
2214 void *param, void *ret_param)
2217 struct rte_eth_event_ipsec_desc *event_desc = NULL;
2218 struct rte_security_ctx *ctx = (struct rte_security_ctx *)
2219 rte_eth_dev_get_sec_ctx(port_id);
2221 RTE_SET_USED(param);
2223 if (type != RTE_ETH_EVENT_IPSEC)
2226 event_desc = ret_param;
2227 if (event_desc == NULL) {
2228 printf("Event descriptor not set\n");
2232 md = event_desc->metadata;
2234 if (event_desc->subtype == RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW)
2235 return inline_ipsec_event_esn_overflow(ctx, md);
2236 else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) {
2237 printf("Invalid IPsec event reported\n");
2245 rx_callback(__rte_unused uint16_t port, __rte_unused uint16_t queue,
2246 struct rte_mbuf *pkt[], uint16_t nb_pkts,
2247 __rte_unused uint16_t max_pkts, void *user_param)
2251 struct lcore_conf *lc;
2252 struct rte_mbuf *mb;
2253 struct rte_ether_hdr *eth;
2259 for (i = 0; i != nb_pkts; i++) {
2262 eth = rte_pktmbuf_mtod(mb, struct rte_ether_hdr *);
2263 if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
2265 struct rte_ipv4_hdr *iph;
2267 iph = (struct rte_ipv4_hdr *)(eth + 1);
2268 if (rte_ipv4_frag_pkt_is_fragmented(iph)) {
2270 mb->l2_len = sizeof(*eth);
2271 mb->l3_len = sizeof(*iph);
2272 tm = (tm != 0) ? tm : rte_rdtsc();
2273 mb = rte_ipv4_frag_reassemble_packet(
2274 lc->frag.tbl, &lc->frag.dr,
2278 /* fix ip cksum after reassemble. */
2279 iph = rte_pktmbuf_mtod_offset(mb,
2280 struct rte_ipv4_hdr *,
2282 iph->hdr_checksum = 0;
2283 iph->hdr_checksum = rte_ipv4_cksum(iph);
2286 } else if (eth->ether_type ==
2287 rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
2289 struct rte_ipv6_hdr *iph;
2290 struct ipv6_extension_fragment *fh;
2292 iph = (struct rte_ipv6_hdr *)(eth + 1);
2293 fh = rte_ipv6_frag_get_ipv6_fragment_header(iph);
2295 mb->l2_len = sizeof(*eth);
2296 mb->l3_len = (uintptr_t)fh - (uintptr_t)iph +
2298 tm = (tm != 0) ? tm : rte_rdtsc();
2299 mb = rte_ipv6_frag_reassemble_packet(
2300 lc->frag.tbl, &lc->frag.dr,
2303 /* fix l3_len after reassemble. */
2304 mb->l3_len = mb->l3_len - sizeof(*fh);
2312 /* some fragments were encountered, drain death row */
2314 rte_ip_frag_free_death_row(&lc->frag.dr, 0);
2321 reassemble_lcore_init(struct lcore_conf *lc, uint32_t cid)
2325 uint64_t frag_cycles;
2326 const struct lcore_rx_queue *rxq;
2327 const struct rte_eth_rxtx_callback *cb;
2329 /* create fragment table */
2330 sid = rte_lcore_to_socket_id(cid);
2331 frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) /
2332 MS_PER_S * FRAG_TTL_MS;
2334 lc->frag.tbl = rte_ip_frag_table_create(frag_tbl_sz,
2335 FRAG_TBL_BUCKET_ENTRIES, frag_tbl_sz, frag_cycles, sid);
2336 if (lc->frag.tbl == NULL) {
2337 printf("%s(%u): failed to create fragment table of size: %u, "
2339 __func__, cid, frag_tbl_sz, rte_errno);
2343 /* setup reassemble RX callbacks for all queues */
2344 for (i = 0; i != lc->nb_rx_queue; i++) {
2346 rxq = lc->rx_queue_list + i;
2347 cb = rte_eth_add_rx_callback(rxq->port_id, rxq->queue_id,
2350 printf("%s(%u): failed to install RX callback for "
2351 "portid=%u, queueid=%u, error code: %d\n",
2353 rxq->port_id, rxq->queue_id, rte_errno);
2362 reassemble_init(void)
2368 for (i = 0; i != nb_lcore_params; i++) {
2369 lc = lcore_params[i].lcore_id;
2370 rc = reassemble_lcore_init(lcore_conf + lc, lc);
2379 main(int32_t argc, char **argv)
2386 uint64_t req_rx_offloads, req_tx_offloads;
2390 ret = rte_eal_init(argc, argv);
2392 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2396 /* parse application arguments (after the EAL ones) */
2397 ret = parse_args(argc, argv);
2399 rte_exit(EXIT_FAILURE, "Invalid parameters\n");
2401 if ((unprotected_port_mask & enabled_port_mask) !=
2402 unprotected_port_mask)
2403 rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
2404 unprotected_port_mask);
2406 if (check_params() < 0)
2407 rte_exit(EXIT_FAILURE, "check_params failed\n");
2409 ret = init_lcore_rx_queues();
2411 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2413 nb_lcores = rte_lcore_count();
2415 sess_sz = max_session_size();
2417 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2418 if (rte_lcore_is_enabled(lcore_id) == 0)
2422 socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2426 /* mbuf_pool is initialised by the pool_init() function*/
2427 if (socket_ctx[socket_id].mbuf_pool)
2430 pool_init(&socket_ctx[socket_id], socket_id, NB_MBUF);
2431 session_pool_init(&socket_ctx[socket_id], socket_id, sess_sz);
2432 session_priv_pool_init(&socket_ctx[socket_id], socket_id,
2436 RTE_ETH_FOREACH_DEV(portid) {
2437 if ((enabled_port_mask & (1 << portid)) == 0)
2440 sa_check_offloads(portid, &req_rx_offloads, &req_tx_offloads);
2441 port_init(portid, req_rx_offloads, req_tx_offloads);
2447 RTE_ETH_FOREACH_DEV(portid) {
2448 if ((enabled_port_mask & (1 << portid)) == 0)
2453 * note: device must be started before a flow rule
2456 ret = rte_eth_dev_start(portid);
2458 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
2459 "err=%d, port=%d\n", ret, portid);
2461 * If enabled, put device in promiscuous mode.
2462 * This allows IO forwarding mode to forward packets
2463 * to itself through 2 cross-connected ports of the
2467 rte_eth_promiscuous_enable(portid);
2469 rte_eth_dev_callback_register(portid,
2470 RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL);
2473 /* fragment reassemble is enabled */
2474 if (frag_tbl_sz != 0) {
2475 ret = reassemble_init();
2477 rte_exit(EXIT_FAILURE, "failed at reassemble init");
2480 /* Replicate each context per socket */
2481 for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) {
2482 socket_id = rte_socket_id_by_idx(i);
2483 if ((socket_ctx[socket_id].mbuf_pool != NULL) &&
2484 (socket_ctx[socket_id].sa_in == NULL) &&
2485 (socket_ctx[socket_id].sa_out == NULL)) {
2486 sa_init(&socket_ctx[socket_id], socket_id);
2487 sp4_init(&socket_ctx[socket_id], socket_id);
2488 sp6_init(&socket_ctx[socket_id], socket_id);
2489 rt_init(&socket_ctx[socket_id], socket_id);
2493 check_all_ports_link_status(enabled_port_mask);
2495 /* launch per-lcore init on every lcore */
2496 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
2497 RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2498 if (rte_eal_wait_lcore(lcore_id) < 0)