1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2016 Intel Corporation
10 #include <netinet/in.h>
11 #include <netinet/ip.h>
12 #include <netinet/ip6.h>
14 #include <sys/queue.h>
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
23 #include <rte_launch.h>
24 #include <rte_atomic.h>
25 #include <rte_cycles.h>
26 #include <rte_prefetch.h>
27 #include <rte_lcore.h>
28 #include <rte_per_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_interrupts.h>
31 #include <rte_random.h>
32 #include <rte_debug.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_mempool.h>
41 #include <rte_jhash.h>
42 #include <rte_cryptodev.h>
43 #include <rte_security.h>
48 #define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1
50 #define MAX_JUMBO_PKT_LEN 9600
52 #define MEMPOOL_CACHE_SIZE 256
54 #define NB_MBUF (32000)
56 #define CDEV_QUEUE_DESC 2048
57 #define CDEV_MAP_ENTRIES 16384
58 #define CDEV_MP_NB_OBJS 1024
59 #define CDEV_MP_CACHE_SZ 64
60 #define MAX_QUEUE_PAIRS 1
62 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
66 /* Configure how many packets ahead to prefetch, when reading packets */
67 #define PREFETCH_OFFSET 3
69 #define MAX_RX_QUEUE_PER_LCORE 16
71 #define MAX_LCORE_PARAMS 1024
73 #define UNPROTECTED_PORT(port) (unprotected_port_mask & (1 << portid))
76 * Configurable number of RX/TX ring descriptors
78 #define IPSEC_SECGW_RX_DESC_DEFAULT 1024
79 #define IPSEC_SECGW_TX_DESC_DEFAULT 1024
80 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
81 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
83 #if RTE_BYTE_ORDER != RTE_LITTLE_ENDIAN
84 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
85 (((uint64_t)((a) & 0xff) << 56) | \
86 ((uint64_t)((b) & 0xff) << 48) | \
87 ((uint64_t)((c) & 0xff) << 40) | \
88 ((uint64_t)((d) & 0xff) << 32) | \
89 ((uint64_t)((e) & 0xff) << 24) | \
90 ((uint64_t)((f) & 0xff) << 16) | \
91 ((uint64_t)((g) & 0xff) << 8) | \
92 ((uint64_t)(h) & 0xff))
94 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
95 (((uint64_t)((h) & 0xff) << 56) | \
96 ((uint64_t)((g) & 0xff) << 48) | \
97 ((uint64_t)((f) & 0xff) << 40) | \
98 ((uint64_t)((e) & 0xff) << 32) | \
99 ((uint64_t)((d) & 0xff) << 24) | \
100 ((uint64_t)((c) & 0xff) << 16) | \
101 ((uint64_t)((b) & 0xff) << 8) | \
102 ((uint64_t)(a) & 0xff))
104 #define ETHADDR(a, b, c, d, e, f) (__BYTES_TO_UINT64(a, b, c, d, e, f, 0, 0))
106 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
107 (addr)->addr_bytes[0], (addr)->addr_bytes[1], \
108 (addr)->addr_bytes[2], (addr)->addr_bytes[3], \
109 (addr)->addr_bytes[4], (addr)->addr_bytes[5], \
112 /* port/source ethernet addr and destination ethernet addr */
113 struct ethaddr_info {
117 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
118 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
119 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
120 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
121 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
124 #define CMD_LINE_OPT_CONFIG "config"
125 #define CMD_LINE_OPT_SINGLE_SA "single-sa"
126 #define CMD_LINE_OPT_CRYPTODEV_MASK "cryptodev_mask"
127 #define CMD_LINE_OPT_RX_OFFLOAD "rxoffload"
128 #define CMD_LINE_OPT_TX_OFFLOAD "txoffload"
131 /* long options mapped to a short option */
133 /* first long only option value must be >= 256, so that we won't
134 * conflict with short options
136 CMD_LINE_OPT_MIN_NUM = 256,
137 CMD_LINE_OPT_CONFIG_NUM,
138 CMD_LINE_OPT_SINGLE_SA_NUM,
139 CMD_LINE_OPT_CRYPTODEV_MASK_NUM,
140 CMD_LINE_OPT_RX_OFFLOAD_NUM,
141 CMD_LINE_OPT_TX_OFFLOAD_NUM,
144 static const struct option lgopts[] = {
145 {CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM},
146 {CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM},
147 {CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM},
148 {CMD_LINE_OPT_RX_OFFLOAD, 1, 0, CMD_LINE_OPT_RX_OFFLOAD_NUM},
149 {CMD_LINE_OPT_TX_OFFLOAD, 1, 0, CMD_LINE_OPT_TX_OFFLOAD_NUM},
153 /* mask of enabled ports */
154 static uint32_t enabled_port_mask;
155 static uint64_t enabled_cryptodev_mask = UINT64_MAX;
156 static uint32_t unprotected_port_mask;
157 static int32_t promiscuous_on = 1;
158 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
159 static uint32_t nb_lcores;
160 static uint32_t single_sa;
161 static uint32_t single_sa_idx;
162 static uint32_t frame_size;
165 * RX/TX HW offload capabilities to enable/use on ethernet ports.
166 * By default all capabilities are enabled.
168 static uint64_t dev_rx_offload = UINT64_MAX;
169 static uint64_t dev_tx_offload = UINT64_MAX;
171 /* application wide librte_ipsec/SA parameters */
172 struct app_sa_prm app_sa_prm = {.enable = 0};
174 struct lcore_rx_queue {
177 } __rte_cache_aligned;
179 struct lcore_params {
183 } __rte_cache_aligned;
185 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
187 static struct lcore_params *lcore_params;
188 static uint16_t nb_lcore_params;
190 static struct rte_hash *cdev_map_in;
191 static struct rte_hash *cdev_map_out;
195 struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
199 uint16_t nb_rx_queue;
200 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
201 uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
202 struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
203 struct ipsec_ctx inbound;
204 struct ipsec_ctx outbound;
205 struct rt_ctx *rt4_ctx;
206 struct rt_ctx *rt6_ctx;
207 } __rte_cache_aligned;
209 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
211 static struct rte_eth_conf port_conf = {
213 .mq_mode = ETH_MQ_RX_RSS,
214 .max_rx_pkt_len = ETHER_MAX_LEN,
216 .offloads = DEV_RX_OFFLOAD_CHECKSUM,
221 .rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
222 ETH_RSS_TCP | ETH_RSS_SCTP,
226 .mq_mode = ETH_MQ_TX_NONE,
230 static struct socket_ctx socket_ctx[NB_SOCKETS];
233 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
236 struct ether_hdr *eth;
238 eth = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
239 if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
240 nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
241 nlp = RTE_PTR_ADD(nlp, offsetof(struct ip, ip_p));
242 if (*nlp == IPPROTO_ESP)
243 t->ipsec.pkts[(t->ipsec.num)++] = pkt;
245 t->ip4.data[t->ip4.num] = nlp;
246 t->ip4.pkts[(t->ip4.num)++] = pkt;
249 pkt->l3_len = sizeof(struct ip);
250 } else if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) {
251 nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
252 nlp = RTE_PTR_ADD(nlp, offsetof(struct ip6_hdr, ip6_nxt));
253 if (*nlp == IPPROTO_ESP)
254 t->ipsec.pkts[(t->ipsec.num)++] = pkt;
256 t->ip6.data[t->ip6.num] = nlp;
257 t->ip6.pkts[(t->ip6.num)++] = pkt;
260 pkt->l3_len = sizeof(struct ip6_hdr);
262 /* Unknown/Unsupported type, drop the packet */
263 RTE_LOG(ERR, IPSEC, "Unsupported packet type\n");
264 rte_pktmbuf_free(pkt);
267 /* Check if the packet has been processed inline. For inline protocol
268 * processed packets, the metadata in the mbuf can be used to identify
269 * the security processing done on the packet. The metadata will be
270 * used to retrieve the application registered userdata associated
271 * with the security session.
274 if (pkt->ol_flags & PKT_RX_SEC_OFFLOAD) {
276 struct ipsec_mbuf_metadata *priv;
277 struct rte_security_ctx *ctx = (struct rte_security_ctx *)
278 rte_eth_dev_get_sec_ctx(
281 /* Retrieve the userdata registered. Here, the userdata
282 * registered is the SA pointer.
285 sa = (struct ipsec_sa *)
286 rte_security_get_userdata(ctx, pkt->udata64);
289 /* userdata could not be retrieved */
293 /* Save SA as priv member in mbuf. This will be used in the
294 * IPsec selector(SP-SA) check.
297 priv = get_priv(pkt);
303 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
312 for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
313 rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
315 prepare_one_packet(pkts[i], t);
317 /* Process left packets */
318 for (; i < nb_pkts; i++)
319 prepare_one_packet(pkts[i], t);
323 prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port,
324 const struct lcore_conf *qconf)
327 struct ether_hdr *ethhdr;
329 ip = rte_pktmbuf_mtod(pkt, struct ip *);
331 ethhdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, ETHER_HDR_LEN);
333 if (ip->ip_v == IPVERSION) {
334 pkt->ol_flags |= qconf->outbound.ipv4_offloads;
335 pkt->l3_len = sizeof(struct ip);
336 pkt->l2_len = ETHER_HDR_LEN;
340 /* calculate IPv4 cksum in SW */
341 if ((pkt->ol_flags & PKT_TX_IP_CKSUM) == 0)
342 ip->ip_sum = rte_ipv4_cksum((struct ipv4_hdr *)ip);
344 ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
346 pkt->ol_flags |= qconf->outbound.ipv6_offloads;
347 pkt->l3_len = sizeof(struct ip6_hdr);
348 pkt->l2_len = ETHER_HDR_LEN;
350 ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
353 memcpy(ðhdr->s_addr, ðaddr_tbl[port].src,
354 sizeof(struct ether_addr));
355 memcpy(ðhdr->d_addr, ðaddr_tbl[port].dst,
356 sizeof(struct ether_addr));
360 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port,
361 const struct lcore_conf *qconf)
364 const int32_t prefetch_offset = 2;
366 for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
367 rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
368 prepare_tx_pkt(pkts[i], port, qconf);
370 /* Process left packets */
371 for (; i < nb_pkts; i++)
372 prepare_tx_pkt(pkts[i], port, qconf);
375 /* Send burst of packets on an output interface */
376 static inline int32_t
377 send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port)
379 struct rte_mbuf **m_table;
383 queueid = qconf->tx_queue_id[port];
384 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
386 prepare_tx_burst(m_table, n, port, qconf);
388 ret = rte_eth_tx_burst(port, queueid, m_table, n);
389 if (unlikely(ret < n)) {
391 rte_pktmbuf_free(m_table[ret]);
398 /* Enqueue a single packet, and send burst if queue is filled */
399 static inline int32_t
400 send_single_packet(struct rte_mbuf *m, uint16_t port)
404 struct lcore_conf *qconf;
406 lcore_id = rte_lcore_id();
408 qconf = &lcore_conf[lcore_id];
409 len = qconf->tx_mbufs[port].len;
410 qconf->tx_mbufs[port].m_table[len] = m;
413 /* enough pkts to be sent */
414 if (unlikely(len == MAX_PKT_BURST)) {
415 send_burst(qconf, MAX_PKT_BURST, port);
419 qconf->tx_mbufs[port].len = len;
424 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
428 uint32_t i, j, res, sa_idx;
430 if (ip->num == 0 || sp == NULL)
433 rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
434 ip->num, DEFAULT_MAX_CATEGORIES);
437 for (i = 0; i < ip->num; i++) {
449 /* Only check SPI match for processed IPSec packets */
450 if (i < lim && ((m->ol_flags & PKT_RX_SEC_OFFLOAD) == 0)) {
455 sa_idx = ip->res[i] & PROTECT_MASK;
456 if (sa_idx >= IPSEC_SA_MAX_ENTRIES ||
457 !inbound_sa_check(sa, m, sa_idx)) {
467 split46_traffic(struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t num)
476 for (i = 0; i < num; i++) {
479 ip = rte_pktmbuf_mtod(m, struct ip *);
481 if (ip->ip_v == IPVERSION) {
482 trf->ip4.pkts[n4] = m;
483 trf->ip4.data[n4] = rte_pktmbuf_mtod_offset(m,
484 uint8_t *, offsetof(struct ip, ip_p));
486 } else if (ip->ip_v == IP6_VERSION) {
487 trf->ip6.pkts[n6] = m;
488 trf->ip6.data[n6] = rte_pktmbuf_mtod_offset(m,
490 offsetof(struct ip6_hdr, ip6_nxt));
502 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
503 struct ipsec_traffic *traffic)
505 uint16_t nb_pkts_in, n_ip4, n_ip6;
507 n_ip4 = traffic->ip4.num;
508 n_ip6 = traffic->ip6.num;
510 if (app_sa_prm.enable == 0) {
511 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
512 traffic->ipsec.num, MAX_PKT_BURST);
513 split46_traffic(traffic, traffic->ipsec.pkts, nb_pkts_in);
515 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
516 traffic->ipsec.saptr, traffic->ipsec.num);
517 ipsec_process(ipsec_ctx, traffic);
520 inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
523 inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
528 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
529 struct traffic_type *ipsec)
532 uint32_t i, j, sa_idx;
534 if (ip->num == 0 || sp == NULL)
537 rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
538 ip->num, DEFAULT_MAX_CATEGORIES);
541 for (i = 0; i < ip->num; i++) {
543 sa_idx = ip->res[i] & PROTECT_MASK;
544 if (ip->res[i] & DISCARD)
546 else if (ip->res[i] & BYPASS)
548 else if (sa_idx < IPSEC_SA_MAX_ENTRIES) {
549 ipsec->res[ipsec->num] = sa_idx;
550 ipsec->pkts[ipsec->num++] = m;
551 } else /* invalid SA idx */
558 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
559 struct ipsec_traffic *traffic)
562 uint16_t idx, nb_pkts_out, i;
564 /* Drop any IPsec traffic from protected ports */
565 for (i = 0; i < traffic->ipsec.num; i++)
566 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
568 traffic->ipsec.num = 0;
570 outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
572 outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
574 if (app_sa_prm.enable == 0) {
576 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
577 traffic->ipsec.res, traffic->ipsec.num,
580 for (i = 0; i < nb_pkts_out; i++) {
581 m = traffic->ipsec.pkts[i];
582 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
583 if (ip->ip_v == IPVERSION) {
584 idx = traffic->ip4.num++;
585 traffic->ip4.pkts[idx] = m;
587 idx = traffic->ip6.num++;
588 traffic->ip6.pkts[idx] = m;
592 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
593 traffic->ipsec.saptr, traffic->ipsec.num);
594 ipsec_process(ipsec_ctx, traffic);
599 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
600 struct ipsec_traffic *traffic)
603 uint32_t nb_pkts_in, i, idx;
605 /* Drop any IPv4 traffic from unprotected ports */
606 for (i = 0; i < traffic->ip4.num; i++)
607 rte_pktmbuf_free(traffic->ip4.pkts[i]);
609 traffic->ip4.num = 0;
611 /* Drop any IPv6 traffic from unprotected ports */
612 for (i = 0; i < traffic->ip6.num; i++)
613 rte_pktmbuf_free(traffic->ip6.pkts[i]);
615 traffic->ip6.num = 0;
617 if (app_sa_prm.enable == 0) {
619 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
620 traffic->ipsec.num, MAX_PKT_BURST);
622 for (i = 0; i < nb_pkts_in; i++) {
623 m = traffic->ipsec.pkts[i];
624 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
625 if (ip->ip_v == IPVERSION) {
626 idx = traffic->ip4.num++;
627 traffic->ip4.pkts[idx] = m;
629 idx = traffic->ip6.num++;
630 traffic->ip6.pkts[idx] = m;
634 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
635 traffic->ipsec.saptr, traffic->ipsec.num);
636 ipsec_process(ipsec_ctx, traffic);
641 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
642 struct ipsec_traffic *traffic)
645 uint32_t nb_pkts_out, i, n;
648 /* Drop any IPsec traffic from protected ports */
649 for (i = 0; i < traffic->ipsec.num; i++)
650 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
654 for (i = 0; i < traffic->ip4.num; i++) {
655 traffic->ipsec.pkts[n] = traffic->ip4.pkts[i];
656 traffic->ipsec.res[n++] = single_sa_idx;
659 for (i = 0; i < traffic->ip6.num; i++) {
660 traffic->ipsec.pkts[n] = traffic->ip6.pkts[i];
661 traffic->ipsec.res[n++] = single_sa_idx;
664 traffic->ip4.num = 0;
665 traffic->ip6.num = 0;
666 traffic->ipsec.num = n;
668 if (app_sa_prm.enable == 0) {
670 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
671 traffic->ipsec.res, traffic->ipsec.num,
674 /* They all sue the same SA (ip4 or ip6 tunnel) */
675 m = traffic->ipsec.pkts[0];
676 ip = rte_pktmbuf_mtod(m, struct ip *);
677 if (ip->ip_v == IPVERSION) {
678 traffic->ip4.num = nb_pkts_out;
679 for (i = 0; i < nb_pkts_out; i++)
680 traffic->ip4.pkts[i] = traffic->ipsec.pkts[i];
682 traffic->ip6.num = nb_pkts_out;
683 for (i = 0; i < nb_pkts_out; i++)
684 traffic->ip6.pkts[i] = traffic->ipsec.pkts[i];
687 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
688 traffic->ipsec.saptr, traffic->ipsec.num);
689 ipsec_process(ipsec_ctx, traffic);
693 static inline int32_t
694 get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6)
696 struct ipsec_mbuf_metadata *priv;
699 priv = get_priv(pkt);
702 if (unlikely(sa == NULL)) {
703 RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
711 return (sa->portid | RTE_LPM_LOOKUP_SUCCESS);
722 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
724 uint32_t hop[MAX_PKT_BURST * 2];
725 uint32_t dst_ip[MAX_PKT_BURST * 2];
728 uint16_t lpm_pkts = 0;
733 /* Need to do an LPM lookup for non-inline packets. Inline packets will
734 * have port ID in the SA
737 for (i = 0; i < nb_pkts; i++) {
738 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
739 /* Security offload not enabled. So an LPM lookup is
740 * required to get the hop
742 offset = offsetof(struct ip, ip_dst);
743 dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i],
745 dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]);
750 rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts);
754 for (i = 0; i < nb_pkts; i++) {
755 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
756 /* Read hop from the SA */
757 pkt_hop = get_hop_for_offload_pkt(pkts[i], 0);
759 /* Need to use hop returned by lookup */
760 pkt_hop = hop[lpm_pkts++];
763 if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) {
764 rte_pktmbuf_free(pkts[i]);
767 send_single_packet(pkts[i], pkt_hop & 0xff);
772 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
774 int32_t hop[MAX_PKT_BURST * 2];
775 uint8_t dst_ip[MAX_PKT_BURST * 2][16];
779 uint16_t lpm_pkts = 0;
784 /* Need to do an LPM lookup for non-inline packets. Inline packets will
785 * have port ID in the SA
788 for (i = 0; i < nb_pkts; i++) {
789 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
790 /* Security offload not enabled. So an LPM lookup is
791 * required to get the hop
793 offset = offsetof(struct ip6_hdr, ip6_dst);
794 ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *,
796 memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16);
801 rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop,
806 for (i = 0; i < nb_pkts; i++) {
807 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
808 /* Read hop from the SA */
809 pkt_hop = get_hop_for_offload_pkt(pkts[i], 1);
811 /* Need to use hop returned by lookup */
812 pkt_hop = hop[lpm_pkts++];
816 rte_pktmbuf_free(pkts[i]);
819 send_single_packet(pkts[i], pkt_hop & 0xff);
824 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
825 uint8_t nb_pkts, uint16_t portid)
827 struct ipsec_traffic traffic;
829 prepare_traffic(pkts, &traffic, nb_pkts);
831 if (unlikely(single_sa)) {
832 if (UNPROTECTED_PORT(portid))
833 process_pkts_inbound_nosp(&qconf->inbound, &traffic);
835 process_pkts_outbound_nosp(&qconf->outbound, &traffic);
837 if (UNPROTECTED_PORT(portid))
838 process_pkts_inbound(&qconf->inbound, &traffic);
840 process_pkts_outbound(&qconf->outbound, &traffic);
843 route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
844 route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
848 drain_tx_buffers(struct lcore_conf *qconf)
853 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
854 buf = &qconf->tx_mbufs[portid];
857 send_burst(qconf, buf->len, portid);
863 drain_crypto_buffers(struct lcore_conf *qconf)
866 struct ipsec_ctx *ctx;
868 /* drain inbound buffers*/
869 ctx = &qconf->inbound;
870 for (i = 0; i != ctx->nb_qps; i++) {
871 if (ctx->tbl[i].len != 0)
872 enqueue_cop_burst(ctx->tbl + i);
875 /* drain outbound buffers*/
876 ctx = &qconf->outbound;
877 for (i = 0; i != ctx->nb_qps; i++) {
878 if (ctx->tbl[i].len != 0)
879 enqueue_cop_burst(ctx->tbl + i);
884 drain_inbound_crypto_queues(const struct lcore_conf *qconf,
885 struct ipsec_ctx *ctx)
888 struct ipsec_traffic trf;
890 if (app_sa_prm.enable == 0) {
892 /* dequeue packets from crypto-queue */
893 n = ipsec_inbound_cqp_dequeue(ctx, trf.ipsec.pkts,
894 RTE_DIM(trf.ipsec.pkts));
899 /* split traffic by ipv4-ipv6 */
900 split46_traffic(&trf, trf.ipsec.pkts, n);
902 ipsec_cqp_process(ctx, &trf);
904 /* process ipv4 packets */
905 if (trf.ip4.num != 0) {
906 inbound_sp_sa(ctx->sp4_ctx, ctx->sa_ctx, &trf.ip4, 0);
907 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
910 /* process ipv6 packets */
911 if (trf.ip6.num != 0) {
912 inbound_sp_sa(ctx->sp6_ctx, ctx->sa_ctx, &trf.ip6, 0);
913 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
918 drain_outbound_crypto_queues(const struct lcore_conf *qconf,
919 struct ipsec_ctx *ctx)
922 struct ipsec_traffic trf;
924 if (app_sa_prm.enable == 0) {
926 /* dequeue packets from crypto-queue */
927 n = ipsec_outbound_cqp_dequeue(ctx, trf.ipsec.pkts,
928 RTE_DIM(trf.ipsec.pkts));
933 /* split traffic by ipv4-ipv6 */
934 split46_traffic(&trf, trf.ipsec.pkts, n);
936 ipsec_cqp_process(ctx, &trf);
938 /* process ipv4 packets */
939 if (trf.ip4.num != 0)
940 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
942 /* process ipv6 packets */
943 if (trf.ip6.num != 0)
944 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
947 /* main processing loop */
949 main_loop(__attribute__((unused)) void *dummy)
951 struct rte_mbuf *pkts[MAX_PKT_BURST];
953 uint64_t prev_tsc, diff_tsc, cur_tsc;
957 struct lcore_conf *qconf;
959 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
960 / US_PER_S * BURST_TX_DRAIN_US;
961 struct lcore_rx_queue *rxql;
964 lcore_id = rte_lcore_id();
965 qconf = &lcore_conf[lcore_id];
966 rxql = qconf->rx_queue_list;
967 socket_id = rte_lcore_to_socket_id(lcore_id);
969 qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
970 qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
971 qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
972 qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
973 qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
974 qconf->inbound.cdev_map = cdev_map_in;
975 qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
976 qconf->inbound.session_priv_pool =
977 socket_ctx[socket_id].session_priv_pool;
978 qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
979 qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
980 qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
981 qconf->outbound.cdev_map = cdev_map_out;
982 qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
983 qconf->outbound.session_priv_pool =
984 socket_ctx[socket_id].session_priv_pool;
986 if (qconf->nb_rx_queue == 0) {
987 RTE_LOG(INFO, IPSEC, "lcore %u has nothing to do\n", lcore_id);
991 RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
993 for (i = 0; i < qconf->nb_rx_queue; i++) {
994 portid = rxql[i].port_id;
995 queueid = rxql[i].queue_id;
997 " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
998 lcore_id, portid, queueid);
1002 cur_tsc = rte_rdtsc();
1004 /* TX queue buffer drain */
1005 diff_tsc = cur_tsc - prev_tsc;
1007 if (unlikely(diff_tsc > drain_tsc)) {
1008 drain_tx_buffers(qconf);
1009 drain_crypto_buffers(qconf);
1013 for (i = 0; i < qconf->nb_rx_queue; ++i) {
1015 /* Read packets from RX queues */
1016 portid = rxql[i].port_id;
1017 queueid = rxql[i].queue_id;
1018 nb_rx = rte_eth_rx_burst(portid, queueid,
1019 pkts, MAX_PKT_BURST);
1022 process_pkts(qconf, pkts, nb_rx, portid);
1024 /* dequeue and process completed crypto-ops */
1025 if (UNPROTECTED_PORT(portid))
1026 drain_inbound_crypto_queues(qconf,
1029 drain_outbound_crypto_queues(qconf,
1043 if (lcore_params == NULL) {
1044 printf("Error: No port/queue/core mappings\n");
1048 for (i = 0; i < nb_lcore_params; ++i) {
1049 lcore = lcore_params[i].lcore_id;
1050 if (!rte_lcore_is_enabled(lcore)) {
1051 printf("error: lcore %hhu is not enabled in "
1052 "lcore mask\n", lcore);
1055 socket_id = rte_lcore_to_socket_id(lcore);
1056 if (socket_id != 0 && numa_on == 0) {
1057 printf("warning: lcore %hhu is on socket %d "
1061 portid = lcore_params[i].port_id;
1062 if ((enabled_port_mask & (1 << portid)) == 0) {
1063 printf("port %u is not enabled in port mask\n", portid);
1066 if (!rte_eth_dev_is_valid_port(portid)) {
1067 printf("port %u is not present on the board\n", portid);
1075 get_port_nb_rx_queues(const uint16_t port)
1080 for (i = 0; i < nb_lcore_params; ++i) {
1081 if (lcore_params[i].port_id == port &&
1082 lcore_params[i].queue_id > queue)
1083 queue = lcore_params[i].queue_id;
1085 return (uint8_t)(++queue);
1089 init_lcore_rx_queues(void)
1091 uint16_t i, nb_rx_queue;
1094 for (i = 0; i < nb_lcore_params; ++i) {
1095 lcore = lcore_params[i].lcore_id;
1096 nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
1097 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1098 printf("error: too many queues (%u) for lcore: %u\n",
1099 nb_rx_queue + 1, lcore);
1102 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1103 lcore_params[i].port_id;
1104 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1105 lcore_params[i].queue_id;
1106 lcore_conf[lcore].nb_rx_queue++;
1113 print_usage(const char *prgname)
1115 fprintf(stderr, "%s [EAL options] --"
1121 " [-w REPLAY_WINDOW_SIZE]"
1125 " --config (port,queue,lcore)[,(port,queue,lcore)]"
1126 " [--single-sa SAIDX]"
1127 " [--cryptodev_mask MASK]"
1128 " [--" CMD_LINE_OPT_RX_OFFLOAD " RX_OFFLOAD_MASK]"
1129 " [--" CMD_LINE_OPT_TX_OFFLOAD " TX_OFFLOAD_MASK]"
1131 " -p PORTMASK: Hexadecimal bitmask of ports to configure\n"
1132 " -P : Enable promiscuous mode\n"
1133 " -u PORTMASK: Hexadecimal bitmask of unprotected ports\n"
1134 " -j FRAMESIZE: Enable jumbo frame with 'FRAMESIZE' as maximum\n"
1136 " -l enables code-path that uses librte_ipsec\n"
1137 " -w REPLAY_WINDOW_SIZE specifies IPsec SQN replay window\n"
1138 " size for each SA\n"
1140 " -a enables SA SQN atomic behaviour\n"
1141 " -f CONFIG_FILE: Configuration file\n"
1142 " --config (port,queue,lcore): Rx queue configuration\n"
1143 " --single-sa SAIDX: Use single SA index for outbound traffic,\n"
1144 " bypassing the SP\n"
1145 " --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n"
1146 " devices to configure\n"
1147 " --" CMD_LINE_OPT_RX_OFFLOAD
1148 ": bitmask of the RX HW offload capabilities to enable/use\n"
1149 " (DEV_RX_OFFLOAD_*)\n"
1150 " --" CMD_LINE_OPT_TX_OFFLOAD
1151 ": bitmask of the TX HW offload capabilities to enable/use\n"
1152 " (DEV_TX_OFFLOAD_*)\n"
1158 parse_mask(const char *str, uint64_t *val)
1164 t = strtoul(str, &end, 0);
1165 if (errno != 0 || end[0] != 0)
1173 parse_portmask(const char *portmask)
1178 /* parse hexadecimal string */
1179 pm = strtoul(portmask, &end, 16);
1180 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1183 if ((pm == 0) && errno)
1190 parse_decimal(const char *str)
1195 num = strtoul(str, &end, 10);
1196 if ((str[0] == '\0') || (end == NULL) || (*end != '\0'))
1203 parse_config(const char *q_arg)
1206 const char *p, *p0 = q_arg;
1214 unsigned long int_fld[_NUM_FLD];
1215 char *str_fld[_NUM_FLD];
1219 nb_lcore_params = 0;
1221 while ((p = strchr(p0, '(')) != NULL) {
1223 p0 = strchr(p, ')');
1228 if (size >= sizeof(s))
1231 snprintf(s, sizeof(s), "%.*s", size, p);
1232 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1235 for (i = 0; i < _NUM_FLD; i++) {
1237 int_fld[i] = strtoul(str_fld[i], &end, 0);
1238 if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1241 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1242 printf("exceeded max number of lcore params: %hu\n",
1246 lcore_params_array[nb_lcore_params].port_id =
1247 (uint8_t)int_fld[FLD_PORT];
1248 lcore_params_array[nb_lcore_params].queue_id =
1249 (uint8_t)int_fld[FLD_QUEUE];
1250 lcore_params_array[nb_lcore_params].lcore_id =
1251 (uint8_t)int_fld[FLD_LCORE];
1254 lcore_params = lcore_params_array;
1259 print_app_sa_prm(const struct app_sa_prm *prm)
1261 printf("librte_ipsec usage: %s\n",
1262 (prm->enable == 0) ? "disabled" : "enabled");
1264 if (prm->enable == 0)
1267 printf("replay window size: %u\n", prm->window_size);
1268 printf("ESN: %s\n", (prm->enable_esn == 0) ? "disabled" : "enabled");
1269 printf("SA flags: %#" PRIx64 "\n", prm->flags);
1273 parse_args(int32_t argc, char **argv)
1277 int32_t option_index;
1278 char *prgname = argv[0];
1279 int32_t f_present = 0;
1283 while ((opt = getopt_long(argc, argvopt, "aelp:Pu:f:j:w:",
1284 lgopts, &option_index)) != EOF) {
1288 enabled_port_mask = parse_portmask(optarg);
1289 if (enabled_port_mask == 0) {
1290 printf("invalid portmask\n");
1291 print_usage(prgname);
1296 printf("Promiscuous mode selected\n");
1300 unprotected_port_mask = parse_portmask(optarg);
1301 if (unprotected_port_mask == 0) {
1302 printf("invalid unprotected portmask\n");
1303 print_usage(prgname);
1308 if (f_present == 1) {
1309 printf("\"-f\" option present more than "
1311 print_usage(prgname);
1314 if (parse_cfg_file(optarg) < 0) {
1315 printf("parsing file \"%s\" failed\n",
1317 print_usage(prgname);
1324 int32_t size = parse_decimal(optarg);
1326 printf("Invalid jumbo frame size\n");
1328 print_usage(prgname);
1331 printf("Using default value 9000\n");
1337 printf("Enabled jumbo frames size %u\n", frame_size);
1340 app_sa_prm.enable = 1;
1343 app_sa_prm.enable = 1;
1344 app_sa_prm.window_size = parse_decimal(optarg);
1347 app_sa_prm.enable = 1;
1348 app_sa_prm.enable_esn = 1;
1351 app_sa_prm.enable = 1;
1352 app_sa_prm.flags |= RTE_IPSEC_SAFLAG_SQN_ATOM;
1354 case CMD_LINE_OPT_CONFIG_NUM:
1355 ret = parse_config(optarg);
1357 printf("Invalid config\n");
1358 print_usage(prgname);
1362 case CMD_LINE_OPT_SINGLE_SA_NUM:
1363 ret = parse_decimal(optarg);
1365 printf("Invalid argument[sa_idx]\n");
1366 print_usage(prgname);
1372 single_sa_idx = ret;
1373 printf("Configured with single SA index %u\n",
1376 case CMD_LINE_OPT_CRYPTODEV_MASK_NUM:
1377 ret = parse_portmask(optarg);
1379 printf("Invalid argument[portmask]\n");
1380 print_usage(prgname);
1385 enabled_cryptodev_mask = ret;
1387 case CMD_LINE_OPT_RX_OFFLOAD_NUM:
1388 ret = parse_mask(optarg, &dev_rx_offload);
1390 printf("Invalid argument for \'%s\': %s\n",
1391 CMD_LINE_OPT_RX_OFFLOAD, optarg);
1392 print_usage(prgname);
1396 case CMD_LINE_OPT_TX_OFFLOAD_NUM:
1397 ret = parse_mask(optarg, &dev_tx_offload);
1399 printf("Invalid argument for \'%s\': %s\n",
1400 CMD_LINE_OPT_TX_OFFLOAD, optarg);
1401 print_usage(prgname);
1406 print_usage(prgname);
1411 if (f_present == 0) {
1412 printf("Mandatory option \"-f\" not present\n");
1416 print_app_sa_prm(&app_sa_prm);
1419 argv[optind-1] = prgname;
1422 optind = 1; /* reset getopt lib */
1427 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1429 char buf[ETHER_ADDR_FMT_SIZE];
1430 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
1431 printf("%s%s", name, buf);
1435 * Update destination ethaddr for the port.
1438 add_dst_ethaddr(uint16_t port, const struct ether_addr *addr)
1440 if (port > RTE_DIM(ethaddr_tbl))
1443 ethaddr_tbl[port].dst = ETHADDR_TO_UINT64(addr);
1447 /* Check the link status of all ports in up to 9s, and print them finally */
1449 check_all_ports_link_status(uint32_t port_mask)
1451 #define CHECK_INTERVAL 100 /* 100ms */
1452 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1454 uint8_t count, all_ports_up, print_flag = 0;
1455 struct rte_eth_link link;
1457 printf("\nChecking link status");
1459 for (count = 0; count <= MAX_CHECK_TIME; count++) {
1461 RTE_ETH_FOREACH_DEV(portid) {
1462 if ((port_mask & (1 << portid)) == 0)
1464 memset(&link, 0, sizeof(link));
1465 rte_eth_link_get_nowait(portid, &link);
1466 /* print link status if flag set */
1467 if (print_flag == 1) {
1468 if (link.link_status)
1470 "Port%d Link Up - speed %u Mbps -%s\n",
1471 portid, link.link_speed,
1472 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1473 ("full-duplex") : ("half-duplex\n"));
1475 printf("Port %d Link Down\n", portid);
1478 /* clear all_ports_up flag if any link down */
1479 if (link.link_status == ETH_LINK_DOWN) {
1484 /* after finally printing all link status, get out */
1485 if (print_flag == 1)
1488 if (all_ports_up == 0) {
1491 rte_delay_ms(CHECK_INTERVAL);
1494 /* set the print_flag if all ports up or timeout */
1495 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1503 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1504 uint16_t qp, struct lcore_params *params,
1505 struct ipsec_ctx *ipsec_ctx,
1506 const struct rte_cryptodev_capabilities *cipher,
1507 const struct rte_cryptodev_capabilities *auth,
1508 const struct rte_cryptodev_capabilities *aead)
1512 struct cdev_key key = { 0 };
1514 key.lcore_id = params->lcore_id;
1516 key.cipher_algo = cipher->sym.cipher.algo;
1518 key.auth_algo = auth->sym.auth.algo;
1520 key.aead_algo = aead->sym.aead.algo;
1522 ret = rte_hash_lookup(map, &key);
1526 for (i = 0; i < ipsec_ctx->nb_qps; i++)
1527 if (ipsec_ctx->tbl[i].id == cdev_id)
1530 if (i == ipsec_ctx->nb_qps) {
1531 if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1532 printf("Maximum number of crypto devices assigned to "
1533 "a core, increase MAX_QP_PER_LCORE value\n");
1536 ipsec_ctx->tbl[i].id = cdev_id;
1537 ipsec_ctx->tbl[i].qp = qp;
1538 ipsec_ctx->nb_qps++;
1539 printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1540 "(cdev_id_qp %lu)\n", str, key.lcore_id,
1544 ret = rte_hash_add_key_data(map, &key, (void *)i);
1546 printf("Faled to insert cdev mapping for (lcore %u, "
1547 "cdev %u, qp %u), errno %d\n",
1548 key.lcore_id, ipsec_ctx->tbl[i].id,
1549 ipsec_ctx->tbl[i].qp, ret);
1557 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1558 uint16_t qp, struct lcore_params *params)
1561 const struct rte_cryptodev_capabilities *i, *j;
1562 struct rte_hash *map;
1563 struct lcore_conf *qconf;
1564 struct ipsec_ctx *ipsec_ctx;
1567 qconf = &lcore_conf[params->lcore_id];
1569 if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1571 ipsec_ctx = &qconf->outbound;
1575 ipsec_ctx = &qconf->inbound;
1579 /* Required cryptodevs with operation chainning */
1580 if (!(dev_info->feature_flags &
1581 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
1584 for (i = dev_info->capabilities;
1585 i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
1586 if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1589 if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1590 ret |= add_mapping(map, str, cdev_id, qp, params,
1591 ipsec_ctx, NULL, NULL, i);
1595 if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
1598 for (j = dev_info->capabilities;
1599 j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
1600 if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1603 if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
1606 ret |= add_mapping(map, str, cdev_id, qp, params,
1607 ipsec_ctx, i, j, NULL);
1614 /* Check if the device is enabled by cryptodev_mask */
1616 check_cryptodev_mask(uint8_t cdev_id)
1618 if (enabled_cryptodev_mask & (1 << cdev_id))
1625 cryptodevs_init(void)
1627 struct rte_cryptodev_config dev_conf;
1628 struct rte_cryptodev_qp_conf qp_conf;
1629 uint16_t idx, max_nb_qps, qp, i;
1630 int16_t cdev_id, port_id;
1631 struct rte_hash_parameters params = { 0 };
1633 params.entries = CDEV_MAP_ENTRIES;
1634 params.key_len = sizeof(struct cdev_key);
1635 params.hash_func = rte_jhash;
1636 params.hash_func_init_val = 0;
1637 params.socket_id = rte_socket_id();
1639 params.name = "cdev_map_in";
1640 cdev_map_in = rte_hash_create(¶ms);
1641 if (cdev_map_in == NULL)
1642 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1645 params.name = "cdev_map_out";
1646 cdev_map_out = rte_hash_create(¶ms);
1647 if (cdev_map_out == NULL)
1648 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1651 printf("lcore/cryptodev/qp mappings:\n");
1653 uint32_t max_sess_sz = 0, sess_sz;
1654 for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
1657 /* Get crypto priv session size */
1658 sess_sz = rte_cryptodev_sym_get_private_session_size(cdev_id);
1659 if (sess_sz > max_sess_sz)
1660 max_sess_sz = sess_sz;
1663 * If crypto device is security capable, need to check the
1664 * size of security session as well.
1667 /* Get security context of the crypto device */
1668 sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id);
1669 if (sec_ctx == NULL)
1672 /* Get size of security session */
1673 sess_sz = rte_security_session_get_size(sec_ctx);
1674 if (sess_sz > max_sess_sz)
1675 max_sess_sz = sess_sz;
1677 RTE_ETH_FOREACH_DEV(port_id) {
1680 if ((enabled_port_mask & (1 << port_id)) == 0)
1683 sec_ctx = rte_eth_dev_get_sec_ctx(port_id);
1684 if (sec_ctx == NULL)
1687 sess_sz = rte_security_session_get_size(sec_ctx);
1688 if (sess_sz > max_sess_sz)
1689 max_sess_sz = sess_sz;
1693 for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
1694 struct rte_cryptodev_info cdev_info;
1696 if (check_cryptodev_mask((uint8_t)cdev_id))
1699 rte_cryptodev_info_get(cdev_id, &cdev_info);
1701 if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
1702 max_nb_qps = cdev_info.max_nb_queue_pairs;
1704 max_nb_qps = nb_lcore_params;
1708 while (qp < max_nb_qps && i < nb_lcore_params) {
1709 if (add_cdev_mapping(&cdev_info, cdev_id, qp,
1710 &lcore_params[idx]))
1713 idx = idx % nb_lcore_params;
1720 dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
1721 dev_conf.nb_queue_pairs = qp;
1723 uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions;
1724 if (dev_max_sess != 0 && dev_max_sess < CDEV_MP_NB_OBJS)
1725 rte_exit(EXIT_FAILURE,
1726 "Device does not support at least %u "
1727 "sessions", CDEV_MP_NB_OBJS);
1729 if (!socket_ctx[dev_conf.socket_id].session_pool) {
1730 char mp_name[RTE_MEMPOOL_NAMESIZE];
1731 struct rte_mempool *sess_mp;
1733 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1734 "sess_mp_%u", dev_conf.socket_id);
1735 sess_mp = rte_cryptodev_sym_session_pool_create(
1736 mp_name, CDEV_MP_NB_OBJS,
1737 0, CDEV_MP_CACHE_SZ, 0,
1738 dev_conf.socket_id);
1739 socket_ctx[dev_conf.socket_id].session_pool = sess_mp;
1742 if (!socket_ctx[dev_conf.socket_id].session_priv_pool) {
1743 char mp_name[RTE_MEMPOOL_NAMESIZE];
1744 struct rte_mempool *sess_mp;
1746 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1747 "sess_mp_priv_%u", dev_conf.socket_id);
1748 sess_mp = rte_mempool_create(mp_name,
1752 0, NULL, NULL, NULL,
1753 NULL, dev_conf.socket_id,
1755 socket_ctx[dev_conf.socket_id].session_priv_pool =
1759 if (!socket_ctx[dev_conf.socket_id].session_priv_pool ||
1760 !socket_ctx[dev_conf.socket_id].session_pool)
1761 rte_exit(EXIT_FAILURE,
1762 "Cannot create session pool on socket %d\n",
1763 dev_conf.socket_id);
1765 printf("Allocated session pool on socket %d\n",
1766 dev_conf.socket_id);
1768 if (rte_cryptodev_configure(cdev_id, &dev_conf))
1769 rte_panic("Failed to initialize cryptodev %u\n",
1772 qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
1773 qp_conf.mp_session =
1774 socket_ctx[dev_conf.socket_id].session_pool;
1775 qp_conf.mp_session_private =
1776 socket_ctx[dev_conf.socket_id].session_priv_pool;
1777 for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
1778 if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
1779 &qp_conf, dev_conf.socket_id))
1780 rte_panic("Failed to setup queue %u for "
1781 "cdev_id %u\n", 0, cdev_id);
1783 if (rte_cryptodev_start(cdev_id))
1784 rte_panic("Failed to start cryptodev %u\n",
1788 /* create session pools for eth devices that implement security */
1789 RTE_ETH_FOREACH_DEV(port_id) {
1790 if ((enabled_port_mask & (1 << port_id)) &&
1791 rte_eth_dev_get_sec_ctx(port_id)) {
1792 int socket_id = rte_eth_dev_socket_id(port_id);
1794 if (!socket_ctx[socket_id].session_pool) {
1795 char mp_name[RTE_MEMPOOL_NAMESIZE];
1796 struct rte_mempool *sess_mp;
1798 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1799 "sess_mp_%u", socket_id);
1800 sess_mp = rte_mempool_create(mp_name,
1801 (CDEV_MP_NB_OBJS * 2),
1804 0, NULL, NULL, NULL,
1807 if (sess_mp == NULL)
1808 rte_exit(EXIT_FAILURE,
1809 "Cannot create session pool "
1810 "on socket %d\n", socket_id);
1812 printf("Allocated session pool "
1813 "on socket %d\n", socket_id);
1814 socket_ctx[socket_id].session_pool = sess_mp;
1826 port_init(uint16_t portid, uint64_t req_rx_offloads, uint64_t req_tx_offloads)
1828 struct rte_eth_dev_info dev_info;
1829 struct rte_eth_txconf *txconf;
1830 uint16_t nb_tx_queue, nb_rx_queue;
1831 uint16_t tx_queueid, rx_queueid, queue, lcore_id;
1832 int32_t ret, socket_id;
1833 struct lcore_conf *qconf;
1834 struct ether_addr ethaddr;
1835 struct rte_eth_conf local_port_conf = port_conf;
1837 rte_eth_dev_info_get(portid, &dev_info);
1839 /* limit allowed HW offloafs, as user requested */
1840 dev_info.rx_offload_capa &= dev_rx_offload;
1841 dev_info.tx_offload_capa &= dev_tx_offload;
1843 printf("Configuring device port %u:\n", portid);
1845 rte_eth_macaddr_get(portid, ðaddr);
1846 ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(ðaddr);
1847 print_ethaddr("Address: ", ðaddr);
1850 nb_rx_queue = get_port_nb_rx_queues(portid);
1851 nb_tx_queue = nb_lcores;
1853 if (nb_rx_queue > dev_info.max_rx_queues)
1854 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1855 "(max rx queue is %u)\n",
1856 nb_rx_queue, dev_info.max_rx_queues);
1858 if (nb_tx_queue > dev_info.max_tx_queues)
1859 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1860 "(max tx queue is %u)\n",
1861 nb_tx_queue, dev_info.max_tx_queues);
1863 printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
1864 nb_rx_queue, nb_tx_queue);
1867 local_port_conf.rxmode.max_rx_pkt_len = frame_size;
1868 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1871 local_port_conf.rxmode.offloads |= req_rx_offloads;
1872 local_port_conf.txmode.offloads |= req_tx_offloads;
1874 /* Check that all required capabilities are supported */
1875 if ((local_port_conf.rxmode.offloads & dev_info.rx_offload_capa) !=
1876 local_port_conf.rxmode.offloads)
1877 rte_exit(EXIT_FAILURE,
1878 "Error: port %u required RX offloads: 0x%" PRIx64
1879 ", avaialbe RX offloads: 0x%" PRIx64 "\n",
1880 portid, local_port_conf.rxmode.offloads,
1881 dev_info.rx_offload_capa);
1883 if ((local_port_conf.txmode.offloads & dev_info.tx_offload_capa) !=
1884 local_port_conf.txmode.offloads)
1885 rte_exit(EXIT_FAILURE,
1886 "Error: port %u required TX offloads: 0x%" PRIx64
1887 ", avaialbe TX offloads: 0x%" PRIx64 "\n",
1888 portid, local_port_conf.txmode.offloads,
1889 dev_info.tx_offload_capa);
1891 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
1892 local_port_conf.txmode.offloads |=
1893 DEV_TX_OFFLOAD_MBUF_FAST_FREE;
1895 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM)
1896 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_IPV4_CKSUM;
1898 printf("port %u configurng rx_offloads=0x%" PRIx64
1899 ", tx_offloads=0x%" PRIx64 "\n",
1900 portid, local_port_conf.rxmode.offloads,
1901 local_port_conf.txmode.offloads);
1903 local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
1904 dev_info.flow_type_rss_offloads;
1905 if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
1906 port_conf.rx_adv_conf.rss_conf.rss_hf) {
1907 printf("Port %u modified RSS hash function based on hardware support,"
1908 "requested:%#"PRIx64" configured:%#"PRIx64"\n",
1910 port_conf.rx_adv_conf.rss_conf.rss_hf,
1911 local_port_conf.rx_adv_conf.rss_conf.rss_hf);
1914 ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
1917 rte_exit(EXIT_FAILURE, "Cannot configure device: "
1918 "err=%d, port=%d\n", ret, portid);
1920 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);
1922 rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: "
1923 "err=%d, port=%d\n", ret, portid);
1925 /* init one TX queue per lcore */
1927 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1928 if (rte_lcore_is_enabled(lcore_id) == 0)
1932 socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1937 printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
1939 txconf = &dev_info.default_txconf;
1940 txconf->offloads = local_port_conf.txmode.offloads;
1942 ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
1945 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1946 "err=%d, port=%d\n", ret, portid);
1948 qconf = &lcore_conf[lcore_id];
1949 qconf->tx_queue_id[portid] = tx_queueid;
1951 /* Pre-populate pkt offloads based on capabilities */
1952 qconf->outbound.ipv4_offloads = PKT_TX_IPV4;
1953 qconf->outbound.ipv6_offloads = PKT_TX_IPV6;
1954 if (local_port_conf.txmode.offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
1955 qconf->outbound.ipv4_offloads |= PKT_TX_IP_CKSUM;
1959 /* init RX queues */
1960 for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
1961 struct rte_eth_rxconf rxq_conf;
1963 if (portid != qconf->rx_queue_list[queue].port_id)
1966 rx_queueid = qconf->rx_queue_list[queue].queue_id;
1968 printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
1971 rxq_conf = dev_info.default_rxconf;
1972 rxq_conf.offloads = local_port_conf.rxmode.offloads;
1973 ret = rte_eth_rx_queue_setup(portid, rx_queueid,
1974 nb_rxd, socket_id, &rxq_conf,
1975 socket_ctx[socket_id].mbuf_pool);
1977 rte_exit(EXIT_FAILURE,
1978 "rte_eth_rx_queue_setup: err=%d, "
1979 "port=%d\n", ret, portid);
1986 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
1989 uint32_t buff_size = frame_size ? (frame_size + RTE_PKTMBUF_HEADROOM) :
1990 RTE_MBUF_DEFAULT_BUF_SIZE;
1993 snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
1994 ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
1995 MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
1998 if (ctx->mbuf_pool == NULL)
1999 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
2002 printf("Allocated mbuf pool on socket %d\n", socket_id);
2006 inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md)
2008 struct ipsec_sa *sa;
2010 /* For inline protocol processing, the metadata in the event will
2011 * uniquely identify the security session which raised the event.
2012 * Application would then need the userdata it had registered with the
2013 * security session to process the event.
2016 sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md);
2019 /* userdata could not be retrieved */
2023 /* Sequence number over flow. SA need to be re-established */
2029 inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type,
2030 void *param, void *ret_param)
2033 struct rte_eth_event_ipsec_desc *event_desc = NULL;
2034 struct rte_security_ctx *ctx = (struct rte_security_ctx *)
2035 rte_eth_dev_get_sec_ctx(port_id);
2037 RTE_SET_USED(param);
2039 if (type != RTE_ETH_EVENT_IPSEC)
2042 event_desc = ret_param;
2043 if (event_desc == NULL) {
2044 printf("Event descriptor not set\n");
2048 md = event_desc->metadata;
2050 if (event_desc->subtype == RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW)
2051 return inline_ipsec_event_esn_overflow(ctx, md);
2052 else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) {
2053 printf("Invalid IPsec event reported\n");
2061 main(int32_t argc, char **argv)
2067 uint64_t req_rx_offloads, req_tx_offloads;
2070 ret = rte_eal_init(argc, argv);
2072 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2076 /* parse application arguments (after the EAL ones) */
2077 ret = parse_args(argc, argv);
2079 rte_exit(EXIT_FAILURE, "Invalid parameters\n");
2081 if ((unprotected_port_mask & enabled_port_mask) !=
2082 unprotected_port_mask)
2083 rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
2084 unprotected_port_mask);
2086 if (check_params() < 0)
2087 rte_exit(EXIT_FAILURE, "check_params failed\n");
2089 ret = init_lcore_rx_queues();
2091 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2093 nb_lcores = rte_lcore_count();
2095 /* Replicate each context per socket */
2096 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2097 if (rte_lcore_is_enabled(lcore_id) == 0)
2101 socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2105 if (socket_ctx[socket_id].mbuf_pool)
2109 sp4_init(&socket_ctx[socket_id], socket_id);
2111 sp6_init(&socket_ctx[socket_id], socket_id);
2114 sa_init(&socket_ctx[socket_id], socket_id);
2116 rt_init(&socket_ctx[socket_id], socket_id);
2118 pool_init(&socket_ctx[socket_id], socket_id, NB_MBUF);
2121 RTE_ETH_FOREACH_DEV(portid) {
2122 if ((enabled_port_mask & (1 << portid)) == 0)
2125 sa_check_offloads(portid, &req_rx_offloads, &req_tx_offloads);
2126 port_init(portid, req_rx_offloads, req_tx_offloads);
2132 RTE_ETH_FOREACH_DEV(portid) {
2133 if ((enabled_port_mask & (1 << portid)) == 0)
2137 ret = rte_eth_dev_start(portid);
2139 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
2140 "err=%d, port=%d\n", ret, portid);
2142 * If enabled, put device in promiscuous mode.
2143 * This allows IO forwarding mode to forward packets
2144 * to itself through 2 cross-connected ports of the
2148 rte_eth_promiscuous_enable(portid);
2150 rte_eth_dev_callback_register(portid,
2151 RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL);
2154 check_all_ports_link_status(enabled_port_mask);
2156 /* launch per-lcore init on every lcore */
2157 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
2158 RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2159 if (rte_eal_wait_lcore(lcore_id) < 0)