1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2016 Intel Corporation
10 #include <netinet/in.h>
11 #include <netinet/ip.h>
12 #include <netinet/ip6.h>
14 #include <sys/queue.h>
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
23 #include <rte_launch.h>
24 #include <rte_atomic.h>
25 #include <rte_cycles.h>
26 #include <rte_prefetch.h>
27 #include <rte_lcore.h>
28 #include <rte_per_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_interrupts.h>
31 #include <rte_random.h>
32 #include <rte_debug.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_mempool.h>
41 #include <rte_jhash.h>
42 #include <rte_cryptodev.h>
43 #include <rte_security.h>
48 #define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1
50 #define MAX_JUMBO_PKT_LEN 9600
52 #define MEMPOOL_CACHE_SIZE 256
54 #define NB_MBUF (32000)
56 #define CDEV_QUEUE_DESC 2048
57 #define CDEV_MAP_ENTRIES 16384
58 #define CDEV_MP_NB_OBJS 1024
59 #define CDEV_MP_CACHE_SZ 64
60 #define MAX_QUEUE_PAIRS 1
62 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
66 /* Configure how many packets ahead to prefetch, when reading packets */
67 #define PREFETCH_OFFSET 3
69 #define MAX_RX_QUEUE_PER_LCORE 16
71 #define MAX_LCORE_PARAMS 1024
73 #define UNPROTECTED_PORT(port) (unprotected_port_mask & (1 << portid))
76 * Configurable number of RX/TX ring descriptors
78 #define IPSEC_SECGW_RX_DESC_DEFAULT 1024
79 #define IPSEC_SECGW_TX_DESC_DEFAULT 1024
80 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
81 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
83 #if RTE_BYTE_ORDER != RTE_LITTLE_ENDIAN
84 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
85 (((uint64_t)((a) & 0xff) << 56) | \
86 ((uint64_t)((b) & 0xff) << 48) | \
87 ((uint64_t)((c) & 0xff) << 40) | \
88 ((uint64_t)((d) & 0xff) << 32) | \
89 ((uint64_t)((e) & 0xff) << 24) | \
90 ((uint64_t)((f) & 0xff) << 16) | \
91 ((uint64_t)((g) & 0xff) << 8) | \
92 ((uint64_t)(h) & 0xff))
94 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
95 (((uint64_t)((h) & 0xff) << 56) | \
96 ((uint64_t)((g) & 0xff) << 48) | \
97 ((uint64_t)((f) & 0xff) << 40) | \
98 ((uint64_t)((e) & 0xff) << 32) | \
99 ((uint64_t)((d) & 0xff) << 24) | \
100 ((uint64_t)((c) & 0xff) << 16) | \
101 ((uint64_t)((b) & 0xff) << 8) | \
102 ((uint64_t)(a) & 0xff))
104 #define ETHADDR(a, b, c, d, e, f) (__BYTES_TO_UINT64(a, b, c, d, e, f, 0, 0))
106 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
107 (addr)->addr_bytes[0], (addr)->addr_bytes[1], \
108 (addr)->addr_bytes[2], (addr)->addr_bytes[3], \
109 (addr)->addr_bytes[4], (addr)->addr_bytes[5], \
112 /* port/source ethernet addr and destination ethernet addr */
113 struct ethaddr_info {
117 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
118 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
119 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
120 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
121 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
124 #define CMD_LINE_OPT_CONFIG "config"
125 #define CMD_LINE_OPT_SINGLE_SA "single-sa"
126 #define CMD_LINE_OPT_CRYPTODEV_MASK "cryptodev_mask"
127 #define CMD_LINE_OPT_RX_OFFLOAD "rxoffload"
128 #define CMD_LINE_OPT_TX_OFFLOAD "txoffload"
131 /* long options mapped to a short option */
133 /* first long only option value must be >= 256, so that we won't
134 * conflict with short options
136 CMD_LINE_OPT_MIN_NUM = 256,
137 CMD_LINE_OPT_CONFIG_NUM,
138 CMD_LINE_OPT_SINGLE_SA_NUM,
139 CMD_LINE_OPT_CRYPTODEV_MASK_NUM,
140 CMD_LINE_OPT_RX_OFFLOAD_NUM,
141 CMD_LINE_OPT_TX_OFFLOAD_NUM,
144 static const struct option lgopts[] = {
145 {CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM},
146 {CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM},
147 {CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM},
148 {CMD_LINE_OPT_RX_OFFLOAD, 1, 0, CMD_LINE_OPT_RX_OFFLOAD_NUM},
149 {CMD_LINE_OPT_TX_OFFLOAD, 1, 0, CMD_LINE_OPT_TX_OFFLOAD_NUM},
153 /* mask of enabled ports */
154 static uint32_t enabled_port_mask;
155 static uint64_t enabled_cryptodev_mask = UINT64_MAX;
156 static uint32_t unprotected_port_mask;
157 static int32_t promiscuous_on = 1;
158 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
159 static uint32_t nb_lcores;
160 static uint32_t single_sa;
161 static uint32_t single_sa_idx;
162 static uint32_t frame_size;
165 * RX/TX HW offload capabilities to enable/use on ethernet ports.
166 * By default all capabilities are enabled.
168 static uint64_t dev_rx_offload = UINT64_MAX;
169 static uint64_t dev_tx_offload = UINT64_MAX;
171 /* application wide librte_ipsec/SA parameters */
172 struct app_sa_prm app_sa_prm = {.enable = 0};
174 struct lcore_rx_queue {
177 } __rte_cache_aligned;
179 struct lcore_params {
183 } __rte_cache_aligned;
185 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
187 static struct lcore_params *lcore_params;
188 static uint16_t nb_lcore_params;
190 static struct rte_hash *cdev_map_in;
191 static struct rte_hash *cdev_map_out;
195 struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
199 uint16_t nb_rx_queue;
200 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
201 uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
202 struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
203 struct ipsec_ctx inbound;
204 struct ipsec_ctx outbound;
205 struct rt_ctx *rt4_ctx;
206 struct rt_ctx *rt6_ctx;
207 } __rte_cache_aligned;
209 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
211 static struct rte_eth_conf port_conf = {
213 .mq_mode = ETH_MQ_RX_RSS,
214 .max_rx_pkt_len = ETHER_MAX_LEN,
216 .offloads = DEV_RX_OFFLOAD_CHECKSUM,
221 .rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
222 ETH_RSS_TCP | ETH_RSS_SCTP,
226 .mq_mode = ETH_MQ_TX_NONE,
230 static struct socket_ctx socket_ctx[NB_SOCKETS];
233 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
236 struct ether_hdr *eth;
238 eth = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
239 if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
240 nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
241 nlp = RTE_PTR_ADD(nlp, offsetof(struct ip, ip_p));
242 if (*nlp == IPPROTO_ESP)
243 t->ipsec.pkts[(t->ipsec.num)++] = pkt;
245 t->ip4.data[t->ip4.num] = nlp;
246 t->ip4.pkts[(t->ip4.num)++] = pkt;
249 pkt->l3_len = sizeof(struct ip);
250 } else if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) {
251 nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
252 nlp = RTE_PTR_ADD(nlp, offsetof(struct ip6_hdr, ip6_nxt));
253 if (*nlp == IPPROTO_ESP)
254 t->ipsec.pkts[(t->ipsec.num)++] = pkt;
256 t->ip6.data[t->ip6.num] = nlp;
257 t->ip6.pkts[(t->ip6.num)++] = pkt;
260 pkt->l3_len = sizeof(struct ip6_hdr);
262 /* Unknown/Unsupported type, drop the packet */
263 RTE_LOG(ERR, IPSEC, "Unsupported packet type 0x%x\n",
264 rte_be_to_cpu_16(eth->ether_type));
265 rte_pktmbuf_free(pkt);
268 /* Check if the packet has been processed inline. For inline protocol
269 * processed packets, the metadata in the mbuf can be used to identify
270 * the security processing done on the packet. The metadata will be
271 * used to retrieve the application registered userdata associated
272 * with the security session.
275 if (pkt->ol_flags & PKT_RX_SEC_OFFLOAD) {
277 struct ipsec_mbuf_metadata *priv;
278 struct rte_security_ctx *ctx = (struct rte_security_ctx *)
279 rte_eth_dev_get_sec_ctx(
282 /* Retrieve the userdata registered. Here, the userdata
283 * registered is the SA pointer.
286 sa = (struct ipsec_sa *)
287 rte_security_get_userdata(ctx, pkt->udata64);
290 /* userdata could not be retrieved */
294 /* Save SA as priv member in mbuf. This will be used in the
295 * IPsec selector(SP-SA) check.
298 priv = get_priv(pkt);
304 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
313 for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
314 rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
316 prepare_one_packet(pkts[i], t);
318 /* Process left packets */
319 for (; i < nb_pkts; i++)
320 prepare_one_packet(pkts[i], t);
324 prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port,
325 const struct lcore_conf *qconf)
328 struct ether_hdr *ethhdr;
330 ip = rte_pktmbuf_mtod(pkt, struct ip *);
332 ethhdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, ETHER_HDR_LEN);
334 if (ip->ip_v == IPVERSION) {
335 pkt->ol_flags |= qconf->outbound.ipv4_offloads;
336 pkt->l3_len = sizeof(struct ip);
337 pkt->l2_len = ETHER_HDR_LEN;
341 /* calculate IPv4 cksum in SW */
342 if ((pkt->ol_flags & PKT_TX_IP_CKSUM) == 0)
343 ip->ip_sum = rte_ipv4_cksum((struct ipv4_hdr *)ip);
345 ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
347 pkt->ol_flags |= qconf->outbound.ipv6_offloads;
348 pkt->l3_len = sizeof(struct ip6_hdr);
349 pkt->l2_len = ETHER_HDR_LEN;
351 ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
354 memcpy(ðhdr->s_addr, ðaddr_tbl[port].src,
355 sizeof(struct ether_addr));
356 memcpy(ðhdr->d_addr, ðaddr_tbl[port].dst,
357 sizeof(struct ether_addr));
361 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port,
362 const struct lcore_conf *qconf)
365 const int32_t prefetch_offset = 2;
367 for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
368 rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
369 prepare_tx_pkt(pkts[i], port, qconf);
371 /* Process left packets */
372 for (; i < nb_pkts; i++)
373 prepare_tx_pkt(pkts[i], port, qconf);
376 /* Send burst of packets on an output interface */
377 static inline int32_t
378 send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port)
380 struct rte_mbuf **m_table;
384 queueid = qconf->tx_queue_id[port];
385 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
387 prepare_tx_burst(m_table, n, port, qconf);
389 ret = rte_eth_tx_burst(port, queueid, m_table, n);
390 if (unlikely(ret < n)) {
392 rte_pktmbuf_free(m_table[ret]);
399 /* Enqueue a single packet, and send burst if queue is filled */
400 static inline int32_t
401 send_single_packet(struct rte_mbuf *m, uint16_t port)
405 struct lcore_conf *qconf;
407 lcore_id = rte_lcore_id();
409 qconf = &lcore_conf[lcore_id];
410 len = qconf->tx_mbufs[port].len;
411 qconf->tx_mbufs[port].m_table[len] = m;
414 /* enough pkts to be sent */
415 if (unlikely(len == MAX_PKT_BURST)) {
416 send_burst(qconf, MAX_PKT_BURST, port);
420 qconf->tx_mbufs[port].len = len;
425 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
429 uint32_t i, j, res, sa_idx;
431 if (ip->num == 0 || sp == NULL)
434 rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
435 ip->num, DEFAULT_MAX_CATEGORIES);
438 for (i = 0; i < ip->num; i++) {
450 /* Only check SPI match for processed IPSec packets */
451 if (i < lim && ((m->ol_flags & PKT_RX_SEC_OFFLOAD) == 0)) {
456 sa_idx = ip->res[i] & PROTECT_MASK;
457 if (sa_idx >= IPSEC_SA_MAX_ENTRIES ||
458 !inbound_sa_check(sa, m, sa_idx)) {
468 split46_traffic(struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t num)
477 for (i = 0; i < num; i++) {
480 ip = rte_pktmbuf_mtod(m, struct ip *);
482 if (ip->ip_v == IPVERSION) {
483 trf->ip4.pkts[n4] = m;
484 trf->ip4.data[n4] = rte_pktmbuf_mtod_offset(m,
485 uint8_t *, offsetof(struct ip, ip_p));
487 } else if (ip->ip_v == IP6_VERSION) {
488 trf->ip6.pkts[n6] = m;
489 trf->ip6.data[n6] = rte_pktmbuf_mtod_offset(m,
491 offsetof(struct ip6_hdr, ip6_nxt));
503 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
504 struct ipsec_traffic *traffic)
506 uint16_t nb_pkts_in, n_ip4, n_ip6;
508 n_ip4 = traffic->ip4.num;
509 n_ip6 = traffic->ip6.num;
511 if (app_sa_prm.enable == 0) {
512 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
513 traffic->ipsec.num, MAX_PKT_BURST);
514 split46_traffic(traffic, traffic->ipsec.pkts, nb_pkts_in);
516 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
517 traffic->ipsec.saptr, traffic->ipsec.num);
518 ipsec_process(ipsec_ctx, traffic);
521 inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
524 inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
529 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
530 struct traffic_type *ipsec)
533 uint32_t i, j, sa_idx;
535 if (ip->num == 0 || sp == NULL)
538 rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
539 ip->num, DEFAULT_MAX_CATEGORIES);
542 for (i = 0; i < ip->num; i++) {
544 sa_idx = ip->res[i] & PROTECT_MASK;
545 if (ip->res[i] & DISCARD)
547 else if (ip->res[i] & BYPASS)
549 else if (sa_idx < IPSEC_SA_MAX_ENTRIES) {
550 ipsec->res[ipsec->num] = sa_idx;
551 ipsec->pkts[ipsec->num++] = m;
552 } else /* invalid SA idx */
559 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
560 struct ipsec_traffic *traffic)
563 uint16_t idx, nb_pkts_out, i;
565 /* Drop any IPsec traffic from protected ports */
566 for (i = 0; i < traffic->ipsec.num; i++)
567 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
569 traffic->ipsec.num = 0;
571 outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
573 outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
575 if (app_sa_prm.enable == 0) {
577 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
578 traffic->ipsec.res, traffic->ipsec.num,
581 for (i = 0; i < nb_pkts_out; i++) {
582 m = traffic->ipsec.pkts[i];
583 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
584 if (ip->ip_v == IPVERSION) {
585 idx = traffic->ip4.num++;
586 traffic->ip4.pkts[idx] = m;
588 idx = traffic->ip6.num++;
589 traffic->ip6.pkts[idx] = m;
593 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
594 traffic->ipsec.saptr, traffic->ipsec.num);
595 ipsec_process(ipsec_ctx, traffic);
600 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
601 struct ipsec_traffic *traffic)
604 uint32_t nb_pkts_in, i, idx;
606 /* Drop any IPv4 traffic from unprotected ports */
607 for (i = 0; i < traffic->ip4.num; i++)
608 rte_pktmbuf_free(traffic->ip4.pkts[i]);
610 traffic->ip4.num = 0;
612 /* Drop any IPv6 traffic from unprotected ports */
613 for (i = 0; i < traffic->ip6.num; i++)
614 rte_pktmbuf_free(traffic->ip6.pkts[i]);
616 traffic->ip6.num = 0;
618 if (app_sa_prm.enable == 0) {
620 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
621 traffic->ipsec.num, MAX_PKT_BURST);
623 for (i = 0; i < nb_pkts_in; i++) {
624 m = traffic->ipsec.pkts[i];
625 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
626 if (ip->ip_v == IPVERSION) {
627 idx = traffic->ip4.num++;
628 traffic->ip4.pkts[idx] = m;
630 idx = traffic->ip6.num++;
631 traffic->ip6.pkts[idx] = m;
635 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
636 traffic->ipsec.saptr, traffic->ipsec.num);
637 ipsec_process(ipsec_ctx, traffic);
642 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
643 struct ipsec_traffic *traffic)
646 uint32_t nb_pkts_out, i, n;
649 /* Drop any IPsec traffic from protected ports */
650 for (i = 0; i < traffic->ipsec.num; i++)
651 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
655 for (i = 0; i < traffic->ip4.num; i++) {
656 traffic->ipsec.pkts[n] = traffic->ip4.pkts[i];
657 traffic->ipsec.res[n++] = single_sa_idx;
660 for (i = 0; i < traffic->ip6.num; i++) {
661 traffic->ipsec.pkts[n] = traffic->ip6.pkts[i];
662 traffic->ipsec.res[n++] = single_sa_idx;
665 traffic->ip4.num = 0;
666 traffic->ip6.num = 0;
667 traffic->ipsec.num = n;
669 if (app_sa_prm.enable == 0) {
671 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
672 traffic->ipsec.res, traffic->ipsec.num,
675 /* They all sue the same SA (ip4 or ip6 tunnel) */
676 m = traffic->ipsec.pkts[0];
677 ip = rte_pktmbuf_mtod(m, struct ip *);
678 if (ip->ip_v == IPVERSION) {
679 traffic->ip4.num = nb_pkts_out;
680 for (i = 0; i < nb_pkts_out; i++)
681 traffic->ip4.pkts[i] = traffic->ipsec.pkts[i];
683 traffic->ip6.num = nb_pkts_out;
684 for (i = 0; i < nb_pkts_out; i++)
685 traffic->ip6.pkts[i] = traffic->ipsec.pkts[i];
688 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
689 traffic->ipsec.saptr, traffic->ipsec.num);
690 ipsec_process(ipsec_ctx, traffic);
694 static inline int32_t
695 get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6)
697 struct ipsec_mbuf_metadata *priv;
700 priv = get_priv(pkt);
703 if (unlikely(sa == NULL)) {
704 RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
712 return (sa->portid | RTE_LPM_LOOKUP_SUCCESS);
723 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
725 uint32_t hop[MAX_PKT_BURST * 2];
726 uint32_t dst_ip[MAX_PKT_BURST * 2];
729 uint16_t lpm_pkts = 0;
734 /* Need to do an LPM lookup for non-inline packets. Inline packets will
735 * have port ID in the SA
738 for (i = 0; i < nb_pkts; i++) {
739 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
740 /* Security offload not enabled. So an LPM lookup is
741 * required to get the hop
743 offset = offsetof(struct ip, ip_dst);
744 dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i],
746 dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]);
751 rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts);
755 for (i = 0; i < nb_pkts; i++) {
756 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
757 /* Read hop from the SA */
758 pkt_hop = get_hop_for_offload_pkt(pkts[i], 0);
760 /* Need to use hop returned by lookup */
761 pkt_hop = hop[lpm_pkts++];
764 if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) {
765 rte_pktmbuf_free(pkts[i]);
768 send_single_packet(pkts[i], pkt_hop & 0xff);
773 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
775 int32_t hop[MAX_PKT_BURST * 2];
776 uint8_t dst_ip[MAX_PKT_BURST * 2][16];
780 uint16_t lpm_pkts = 0;
785 /* Need to do an LPM lookup for non-inline packets. Inline packets will
786 * have port ID in the SA
789 for (i = 0; i < nb_pkts; i++) {
790 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
791 /* Security offload not enabled. So an LPM lookup is
792 * required to get the hop
794 offset = offsetof(struct ip6_hdr, ip6_dst);
795 ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *,
797 memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16);
802 rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop,
807 for (i = 0; i < nb_pkts; i++) {
808 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
809 /* Read hop from the SA */
810 pkt_hop = get_hop_for_offload_pkt(pkts[i], 1);
812 /* Need to use hop returned by lookup */
813 pkt_hop = hop[lpm_pkts++];
817 rte_pktmbuf_free(pkts[i]);
820 send_single_packet(pkts[i], pkt_hop & 0xff);
825 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
826 uint8_t nb_pkts, uint16_t portid)
828 struct ipsec_traffic traffic;
830 prepare_traffic(pkts, &traffic, nb_pkts);
832 if (unlikely(single_sa)) {
833 if (UNPROTECTED_PORT(portid))
834 process_pkts_inbound_nosp(&qconf->inbound, &traffic);
836 process_pkts_outbound_nosp(&qconf->outbound, &traffic);
838 if (UNPROTECTED_PORT(portid))
839 process_pkts_inbound(&qconf->inbound, &traffic);
841 process_pkts_outbound(&qconf->outbound, &traffic);
844 route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
845 route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
849 drain_tx_buffers(struct lcore_conf *qconf)
854 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
855 buf = &qconf->tx_mbufs[portid];
858 send_burst(qconf, buf->len, portid);
864 drain_crypto_buffers(struct lcore_conf *qconf)
867 struct ipsec_ctx *ctx;
869 /* drain inbound buffers*/
870 ctx = &qconf->inbound;
871 for (i = 0; i != ctx->nb_qps; i++) {
872 if (ctx->tbl[i].len != 0)
873 enqueue_cop_burst(ctx->tbl + i);
876 /* drain outbound buffers*/
877 ctx = &qconf->outbound;
878 for (i = 0; i != ctx->nb_qps; i++) {
879 if (ctx->tbl[i].len != 0)
880 enqueue_cop_burst(ctx->tbl + i);
885 drain_inbound_crypto_queues(const struct lcore_conf *qconf,
886 struct ipsec_ctx *ctx)
889 struct ipsec_traffic trf;
891 if (app_sa_prm.enable == 0) {
893 /* dequeue packets from crypto-queue */
894 n = ipsec_inbound_cqp_dequeue(ctx, trf.ipsec.pkts,
895 RTE_DIM(trf.ipsec.pkts));
900 /* split traffic by ipv4-ipv6 */
901 split46_traffic(&trf, trf.ipsec.pkts, n);
903 ipsec_cqp_process(ctx, &trf);
905 /* process ipv4 packets */
906 if (trf.ip4.num != 0) {
907 inbound_sp_sa(ctx->sp4_ctx, ctx->sa_ctx, &trf.ip4, 0);
908 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
911 /* process ipv6 packets */
912 if (trf.ip6.num != 0) {
913 inbound_sp_sa(ctx->sp6_ctx, ctx->sa_ctx, &trf.ip6, 0);
914 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
919 drain_outbound_crypto_queues(const struct lcore_conf *qconf,
920 struct ipsec_ctx *ctx)
923 struct ipsec_traffic trf;
925 if (app_sa_prm.enable == 0) {
927 /* dequeue packets from crypto-queue */
928 n = ipsec_outbound_cqp_dequeue(ctx, trf.ipsec.pkts,
929 RTE_DIM(trf.ipsec.pkts));
934 /* split traffic by ipv4-ipv6 */
935 split46_traffic(&trf, trf.ipsec.pkts, n);
937 ipsec_cqp_process(ctx, &trf);
939 /* process ipv4 packets */
940 if (trf.ip4.num != 0)
941 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
943 /* process ipv6 packets */
944 if (trf.ip6.num != 0)
945 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
948 /* main processing loop */
950 main_loop(__attribute__((unused)) void *dummy)
952 struct rte_mbuf *pkts[MAX_PKT_BURST];
954 uint64_t prev_tsc, diff_tsc, cur_tsc;
958 struct lcore_conf *qconf;
960 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
961 / US_PER_S * BURST_TX_DRAIN_US;
962 struct lcore_rx_queue *rxql;
965 lcore_id = rte_lcore_id();
966 qconf = &lcore_conf[lcore_id];
967 rxql = qconf->rx_queue_list;
968 socket_id = rte_lcore_to_socket_id(lcore_id);
970 qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
971 qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
972 qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
973 qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
974 qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
975 qconf->inbound.cdev_map = cdev_map_in;
976 qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
977 qconf->inbound.session_priv_pool =
978 socket_ctx[socket_id].session_priv_pool;
979 qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
980 qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
981 qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
982 qconf->outbound.cdev_map = cdev_map_out;
983 qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
984 qconf->outbound.session_priv_pool =
985 socket_ctx[socket_id].session_priv_pool;
987 if (qconf->nb_rx_queue == 0) {
988 RTE_LOG(DEBUG, IPSEC, "lcore %u has nothing to do\n",
993 RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
995 for (i = 0; i < qconf->nb_rx_queue; i++) {
996 portid = rxql[i].port_id;
997 queueid = rxql[i].queue_id;
999 " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
1000 lcore_id, portid, queueid);
1004 cur_tsc = rte_rdtsc();
1006 /* TX queue buffer drain */
1007 diff_tsc = cur_tsc - prev_tsc;
1009 if (unlikely(diff_tsc > drain_tsc)) {
1010 drain_tx_buffers(qconf);
1011 drain_crypto_buffers(qconf);
1015 for (i = 0; i < qconf->nb_rx_queue; ++i) {
1017 /* Read packets from RX queues */
1018 portid = rxql[i].port_id;
1019 queueid = rxql[i].queue_id;
1020 nb_rx = rte_eth_rx_burst(portid, queueid,
1021 pkts, MAX_PKT_BURST);
1024 process_pkts(qconf, pkts, nb_rx, portid);
1026 /* dequeue and process completed crypto-ops */
1027 if (UNPROTECTED_PORT(portid))
1028 drain_inbound_crypto_queues(qconf,
1031 drain_outbound_crypto_queues(qconf,
1045 if (lcore_params == NULL) {
1046 printf("Error: No port/queue/core mappings\n");
1050 for (i = 0; i < nb_lcore_params; ++i) {
1051 lcore = lcore_params[i].lcore_id;
1052 if (!rte_lcore_is_enabled(lcore)) {
1053 printf("error: lcore %hhu is not enabled in "
1054 "lcore mask\n", lcore);
1057 socket_id = rte_lcore_to_socket_id(lcore);
1058 if (socket_id != 0 && numa_on == 0) {
1059 printf("warning: lcore %hhu is on socket %d "
1063 portid = lcore_params[i].port_id;
1064 if ((enabled_port_mask & (1 << portid)) == 0) {
1065 printf("port %u is not enabled in port mask\n", portid);
1068 if (!rte_eth_dev_is_valid_port(portid)) {
1069 printf("port %u is not present on the board\n", portid);
1077 get_port_nb_rx_queues(const uint16_t port)
1082 for (i = 0; i < nb_lcore_params; ++i) {
1083 if (lcore_params[i].port_id == port &&
1084 lcore_params[i].queue_id > queue)
1085 queue = lcore_params[i].queue_id;
1087 return (uint8_t)(++queue);
1091 init_lcore_rx_queues(void)
1093 uint16_t i, nb_rx_queue;
1096 for (i = 0; i < nb_lcore_params; ++i) {
1097 lcore = lcore_params[i].lcore_id;
1098 nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
1099 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1100 printf("error: too many queues (%u) for lcore: %u\n",
1101 nb_rx_queue + 1, lcore);
1104 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1105 lcore_params[i].port_id;
1106 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1107 lcore_params[i].queue_id;
1108 lcore_conf[lcore].nb_rx_queue++;
1115 print_usage(const char *prgname)
1117 fprintf(stderr, "%s [EAL options] --"
1123 " [-w REPLAY_WINDOW_SIZE]"
1127 " --config (port,queue,lcore)[,(port,queue,lcore)]"
1128 " [--single-sa SAIDX]"
1129 " [--cryptodev_mask MASK]"
1130 " [--" CMD_LINE_OPT_RX_OFFLOAD " RX_OFFLOAD_MASK]"
1131 " [--" CMD_LINE_OPT_TX_OFFLOAD " TX_OFFLOAD_MASK]"
1133 " -p PORTMASK: Hexadecimal bitmask of ports to configure\n"
1134 " -P : Enable promiscuous mode\n"
1135 " -u PORTMASK: Hexadecimal bitmask of unprotected ports\n"
1136 " -j FRAMESIZE: Enable jumbo frame with 'FRAMESIZE' as maximum\n"
1138 " -l enables code-path that uses librte_ipsec\n"
1139 " -w REPLAY_WINDOW_SIZE specifies IPsec SQN replay window\n"
1140 " size for each SA\n"
1142 " -a enables SA SQN atomic behaviour\n"
1143 " -f CONFIG_FILE: Configuration file\n"
1144 " --config (port,queue,lcore): Rx queue configuration\n"
1145 " --single-sa SAIDX: Use single SA index for outbound traffic,\n"
1146 " bypassing the SP\n"
1147 " --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n"
1148 " devices to configure\n"
1149 " --" CMD_LINE_OPT_RX_OFFLOAD
1150 ": bitmask of the RX HW offload capabilities to enable/use\n"
1151 " (DEV_RX_OFFLOAD_*)\n"
1152 " --" CMD_LINE_OPT_TX_OFFLOAD
1153 ": bitmask of the TX HW offload capabilities to enable/use\n"
1154 " (DEV_TX_OFFLOAD_*)\n"
1160 parse_mask(const char *str, uint64_t *val)
1166 t = strtoul(str, &end, 0);
1167 if (errno != 0 || end[0] != 0)
1175 parse_portmask(const char *portmask)
1180 /* parse hexadecimal string */
1181 pm = strtoul(portmask, &end, 16);
1182 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1185 if ((pm == 0) && errno)
1192 parse_decimal(const char *str)
1197 num = strtoul(str, &end, 10);
1198 if ((str[0] == '\0') || (end == NULL) || (*end != '\0'))
1205 parse_config(const char *q_arg)
1208 const char *p, *p0 = q_arg;
1216 unsigned long int_fld[_NUM_FLD];
1217 char *str_fld[_NUM_FLD];
1221 nb_lcore_params = 0;
1223 while ((p = strchr(p0, '(')) != NULL) {
1225 p0 = strchr(p, ')');
1230 if (size >= sizeof(s))
1233 snprintf(s, sizeof(s), "%.*s", size, p);
1234 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1237 for (i = 0; i < _NUM_FLD; i++) {
1239 int_fld[i] = strtoul(str_fld[i], &end, 0);
1240 if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1243 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1244 printf("exceeded max number of lcore params: %hu\n",
1248 lcore_params_array[nb_lcore_params].port_id =
1249 (uint8_t)int_fld[FLD_PORT];
1250 lcore_params_array[nb_lcore_params].queue_id =
1251 (uint8_t)int_fld[FLD_QUEUE];
1252 lcore_params_array[nb_lcore_params].lcore_id =
1253 (uint8_t)int_fld[FLD_LCORE];
1256 lcore_params = lcore_params_array;
1261 print_app_sa_prm(const struct app_sa_prm *prm)
1263 printf("librte_ipsec usage: %s\n",
1264 (prm->enable == 0) ? "disabled" : "enabled");
1266 if (prm->enable == 0)
1269 printf("replay window size: %u\n", prm->window_size);
1270 printf("ESN: %s\n", (prm->enable_esn == 0) ? "disabled" : "enabled");
1271 printf("SA flags: %#" PRIx64 "\n", prm->flags);
1275 parse_args(int32_t argc, char **argv)
1279 int32_t option_index;
1280 char *prgname = argv[0];
1281 int32_t f_present = 0;
1285 while ((opt = getopt_long(argc, argvopt, "aelp:Pu:f:j:w:",
1286 lgopts, &option_index)) != EOF) {
1290 enabled_port_mask = parse_portmask(optarg);
1291 if (enabled_port_mask == 0) {
1292 printf("invalid portmask\n");
1293 print_usage(prgname);
1298 printf("Promiscuous mode selected\n");
1302 unprotected_port_mask = parse_portmask(optarg);
1303 if (unprotected_port_mask == 0) {
1304 printf("invalid unprotected portmask\n");
1305 print_usage(prgname);
1310 if (f_present == 1) {
1311 printf("\"-f\" option present more than "
1313 print_usage(prgname);
1316 if (parse_cfg_file(optarg) < 0) {
1317 printf("parsing file \"%s\" failed\n",
1319 print_usage(prgname);
1326 int32_t size = parse_decimal(optarg);
1328 printf("Invalid jumbo frame size\n");
1330 print_usage(prgname);
1333 printf("Using default value 9000\n");
1339 printf("Enabled jumbo frames size %u\n", frame_size);
1342 app_sa_prm.enable = 1;
1345 app_sa_prm.enable = 1;
1346 app_sa_prm.window_size = parse_decimal(optarg);
1349 app_sa_prm.enable = 1;
1350 app_sa_prm.enable_esn = 1;
1353 app_sa_prm.enable = 1;
1354 app_sa_prm.flags |= RTE_IPSEC_SAFLAG_SQN_ATOM;
1356 case CMD_LINE_OPT_CONFIG_NUM:
1357 ret = parse_config(optarg);
1359 printf("Invalid config\n");
1360 print_usage(prgname);
1364 case CMD_LINE_OPT_SINGLE_SA_NUM:
1365 ret = parse_decimal(optarg);
1367 printf("Invalid argument[sa_idx]\n");
1368 print_usage(prgname);
1374 single_sa_idx = ret;
1375 printf("Configured with single SA index %u\n",
1378 case CMD_LINE_OPT_CRYPTODEV_MASK_NUM:
1379 ret = parse_portmask(optarg);
1381 printf("Invalid argument[portmask]\n");
1382 print_usage(prgname);
1387 enabled_cryptodev_mask = ret;
1389 case CMD_LINE_OPT_RX_OFFLOAD_NUM:
1390 ret = parse_mask(optarg, &dev_rx_offload);
1392 printf("Invalid argument for \'%s\': %s\n",
1393 CMD_LINE_OPT_RX_OFFLOAD, optarg);
1394 print_usage(prgname);
1398 case CMD_LINE_OPT_TX_OFFLOAD_NUM:
1399 ret = parse_mask(optarg, &dev_tx_offload);
1401 printf("Invalid argument for \'%s\': %s\n",
1402 CMD_LINE_OPT_TX_OFFLOAD, optarg);
1403 print_usage(prgname);
1408 print_usage(prgname);
1413 if (f_present == 0) {
1414 printf("Mandatory option \"-f\" not present\n");
1418 print_app_sa_prm(&app_sa_prm);
1421 argv[optind-1] = prgname;
1424 optind = 1; /* reset getopt lib */
1429 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1431 char buf[ETHER_ADDR_FMT_SIZE];
1432 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
1433 printf("%s%s", name, buf);
1437 * Update destination ethaddr for the port.
1440 add_dst_ethaddr(uint16_t port, const struct ether_addr *addr)
1442 if (port > RTE_DIM(ethaddr_tbl))
1445 ethaddr_tbl[port].dst = ETHADDR_TO_UINT64(addr);
1449 /* Check the link status of all ports in up to 9s, and print them finally */
1451 check_all_ports_link_status(uint32_t port_mask)
1453 #define CHECK_INTERVAL 100 /* 100ms */
1454 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1456 uint8_t count, all_ports_up, print_flag = 0;
1457 struct rte_eth_link link;
1459 printf("\nChecking link status");
1461 for (count = 0; count <= MAX_CHECK_TIME; count++) {
1463 RTE_ETH_FOREACH_DEV(portid) {
1464 if ((port_mask & (1 << portid)) == 0)
1466 memset(&link, 0, sizeof(link));
1467 rte_eth_link_get_nowait(portid, &link);
1468 /* print link status if flag set */
1469 if (print_flag == 1) {
1470 if (link.link_status)
1472 "Port%d Link Up - speed %u Mbps -%s\n",
1473 portid, link.link_speed,
1474 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1475 ("full-duplex") : ("half-duplex\n"));
1477 printf("Port %d Link Down\n", portid);
1480 /* clear all_ports_up flag if any link down */
1481 if (link.link_status == ETH_LINK_DOWN) {
1486 /* after finally printing all link status, get out */
1487 if (print_flag == 1)
1490 if (all_ports_up == 0) {
1493 rte_delay_ms(CHECK_INTERVAL);
1496 /* set the print_flag if all ports up or timeout */
1497 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1505 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1506 uint16_t qp, struct lcore_params *params,
1507 struct ipsec_ctx *ipsec_ctx,
1508 const struct rte_cryptodev_capabilities *cipher,
1509 const struct rte_cryptodev_capabilities *auth,
1510 const struct rte_cryptodev_capabilities *aead)
1514 struct cdev_key key = { 0 };
1516 key.lcore_id = params->lcore_id;
1518 key.cipher_algo = cipher->sym.cipher.algo;
1520 key.auth_algo = auth->sym.auth.algo;
1522 key.aead_algo = aead->sym.aead.algo;
1524 ret = rte_hash_lookup(map, &key);
1528 for (i = 0; i < ipsec_ctx->nb_qps; i++)
1529 if (ipsec_ctx->tbl[i].id == cdev_id)
1532 if (i == ipsec_ctx->nb_qps) {
1533 if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1534 printf("Maximum number of crypto devices assigned to "
1535 "a core, increase MAX_QP_PER_LCORE value\n");
1538 ipsec_ctx->tbl[i].id = cdev_id;
1539 ipsec_ctx->tbl[i].qp = qp;
1540 ipsec_ctx->nb_qps++;
1541 printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1542 "(cdev_id_qp %lu)\n", str, key.lcore_id,
1546 ret = rte_hash_add_key_data(map, &key, (void *)i);
1548 printf("Faled to insert cdev mapping for (lcore %u, "
1549 "cdev %u, qp %u), errno %d\n",
1550 key.lcore_id, ipsec_ctx->tbl[i].id,
1551 ipsec_ctx->tbl[i].qp, ret);
1559 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1560 uint16_t qp, struct lcore_params *params)
1563 const struct rte_cryptodev_capabilities *i, *j;
1564 struct rte_hash *map;
1565 struct lcore_conf *qconf;
1566 struct ipsec_ctx *ipsec_ctx;
1569 qconf = &lcore_conf[params->lcore_id];
1571 if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1573 ipsec_ctx = &qconf->outbound;
1577 ipsec_ctx = &qconf->inbound;
1581 /* Required cryptodevs with operation chainning */
1582 if (!(dev_info->feature_flags &
1583 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
1586 for (i = dev_info->capabilities;
1587 i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
1588 if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1591 if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1592 ret |= add_mapping(map, str, cdev_id, qp, params,
1593 ipsec_ctx, NULL, NULL, i);
1597 if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
1600 for (j = dev_info->capabilities;
1601 j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
1602 if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1605 if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
1608 ret |= add_mapping(map, str, cdev_id, qp, params,
1609 ipsec_ctx, i, j, NULL);
1616 /* Check if the device is enabled by cryptodev_mask */
1618 check_cryptodev_mask(uint8_t cdev_id)
1620 if (enabled_cryptodev_mask & (1 << cdev_id))
1627 cryptodevs_init(void)
1629 struct rte_cryptodev_config dev_conf;
1630 struct rte_cryptodev_qp_conf qp_conf;
1631 uint16_t idx, max_nb_qps, qp, i;
1632 int16_t cdev_id, port_id;
1633 struct rte_hash_parameters params = { 0 };
1635 params.entries = CDEV_MAP_ENTRIES;
1636 params.key_len = sizeof(struct cdev_key);
1637 params.hash_func = rte_jhash;
1638 params.hash_func_init_val = 0;
1639 params.socket_id = rte_socket_id();
1641 params.name = "cdev_map_in";
1642 cdev_map_in = rte_hash_create(¶ms);
1643 if (cdev_map_in == NULL)
1644 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1647 params.name = "cdev_map_out";
1648 cdev_map_out = rte_hash_create(¶ms);
1649 if (cdev_map_out == NULL)
1650 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1653 printf("lcore/cryptodev/qp mappings:\n");
1655 uint32_t max_sess_sz = 0, sess_sz;
1656 for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
1659 /* Get crypto priv session size */
1660 sess_sz = rte_cryptodev_sym_get_private_session_size(cdev_id);
1661 if (sess_sz > max_sess_sz)
1662 max_sess_sz = sess_sz;
1665 * If crypto device is security capable, need to check the
1666 * size of security session as well.
1669 /* Get security context of the crypto device */
1670 sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id);
1671 if (sec_ctx == NULL)
1674 /* Get size of security session */
1675 sess_sz = rte_security_session_get_size(sec_ctx);
1676 if (sess_sz > max_sess_sz)
1677 max_sess_sz = sess_sz;
1679 RTE_ETH_FOREACH_DEV(port_id) {
1682 if ((enabled_port_mask & (1 << port_id)) == 0)
1685 sec_ctx = rte_eth_dev_get_sec_ctx(port_id);
1686 if (sec_ctx == NULL)
1689 sess_sz = rte_security_session_get_size(sec_ctx);
1690 if (sess_sz > max_sess_sz)
1691 max_sess_sz = sess_sz;
1695 for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
1696 struct rte_cryptodev_info cdev_info;
1698 if (check_cryptodev_mask((uint8_t)cdev_id))
1701 rte_cryptodev_info_get(cdev_id, &cdev_info);
1703 if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
1704 max_nb_qps = cdev_info.max_nb_queue_pairs;
1706 max_nb_qps = nb_lcore_params;
1710 while (qp < max_nb_qps && i < nb_lcore_params) {
1711 if (add_cdev_mapping(&cdev_info, cdev_id, qp,
1712 &lcore_params[idx]))
1715 idx = idx % nb_lcore_params;
1722 dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
1723 dev_conf.nb_queue_pairs = qp;
1725 uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions;
1726 if (dev_max_sess != 0 && dev_max_sess < CDEV_MP_NB_OBJS)
1727 rte_exit(EXIT_FAILURE,
1728 "Device does not support at least %u "
1729 "sessions", CDEV_MP_NB_OBJS);
1731 if (!socket_ctx[dev_conf.socket_id].session_pool) {
1732 char mp_name[RTE_MEMPOOL_NAMESIZE];
1733 struct rte_mempool *sess_mp;
1735 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1736 "sess_mp_%u", dev_conf.socket_id);
1737 sess_mp = rte_cryptodev_sym_session_pool_create(
1738 mp_name, CDEV_MP_NB_OBJS,
1739 0, CDEV_MP_CACHE_SZ, 0,
1740 dev_conf.socket_id);
1741 socket_ctx[dev_conf.socket_id].session_pool = sess_mp;
1744 if (!socket_ctx[dev_conf.socket_id].session_priv_pool) {
1745 char mp_name[RTE_MEMPOOL_NAMESIZE];
1746 struct rte_mempool *sess_mp;
1748 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1749 "sess_mp_priv_%u", dev_conf.socket_id);
1750 sess_mp = rte_mempool_create(mp_name,
1754 0, NULL, NULL, NULL,
1755 NULL, dev_conf.socket_id,
1757 socket_ctx[dev_conf.socket_id].session_priv_pool =
1761 if (!socket_ctx[dev_conf.socket_id].session_priv_pool ||
1762 !socket_ctx[dev_conf.socket_id].session_pool)
1763 rte_exit(EXIT_FAILURE,
1764 "Cannot create session pool on socket %d\n",
1765 dev_conf.socket_id);
1767 printf("Allocated session pool on socket %d\n",
1768 dev_conf.socket_id);
1770 if (rte_cryptodev_configure(cdev_id, &dev_conf))
1771 rte_panic("Failed to initialize cryptodev %u\n",
1774 qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
1775 qp_conf.mp_session =
1776 socket_ctx[dev_conf.socket_id].session_pool;
1777 qp_conf.mp_session_private =
1778 socket_ctx[dev_conf.socket_id].session_priv_pool;
1779 for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
1780 if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
1781 &qp_conf, dev_conf.socket_id))
1782 rte_panic("Failed to setup queue %u for "
1783 "cdev_id %u\n", 0, cdev_id);
1785 if (rte_cryptodev_start(cdev_id))
1786 rte_panic("Failed to start cryptodev %u\n",
1790 /* create session pools for eth devices that implement security */
1791 RTE_ETH_FOREACH_DEV(port_id) {
1792 if ((enabled_port_mask & (1 << port_id)) &&
1793 rte_eth_dev_get_sec_ctx(port_id)) {
1794 int socket_id = rte_eth_dev_socket_id(port_id);
1796 if (!socket_ctx[socket_id].session_pool) {
1797 char mp_name[RTE_MEMPOOL_NAMESIZE];
1798 struct rte_mempool *sess_mp;
1800 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1801 "sess_mp_%u", socket_id);
1802 sess_mp = rte_mempool_create(mp_name,
1803 (CDEV_MP_NB_OBJS * 2),
1806 0, NULL, NULL, NULL,
1809 if (sess_mp == NULL)
1810 rte_exit(EXIT_FAILURE,
1811 "Cannot create session pool "
1812 "on socket %d\n", socket_id);
1814 printf("Allocated session pool "
1815 "on socket %d\n", socket_id);
1816 socket_ctx[socket_id].session_pool = sess_mp;
1828 port_init(uint16_t portid, uint64_t req_rx_offloads, uint64_t req_tx_offloads)
1830 struct rte_eth_dev_info dev_info;
1831 struct rte_eth_txconf *txconf;
1832 uint16_t nb_tx_queue, nb_rx_queue;
1833 uint16_t tx_queueid, rx_queueid, queue, lcore_id;
1834 int32_t ret, socket_id;
1835 struct lcore_conf *qconf;
1836 struct ether_addr ethaddr;
1837 struct rte_eth_conf local_port_conf = port_conf;
1839 rte_eth_dev_info_get(portid, &dev_info);
1841 /* limit allowed HW offloafs, as user requested */
1842 dev_info.rx_offload_capa &= dev_rx_offload;
1843 dev_info.tx_offload_capa &= dev_tx_offload;
1845 printf("Configuring device port %u:\n", portid);
1847 rte_eth_macaddr_get(portid, ðaddr);
1848 ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(ðaddr);
1849 print_ethaddr("Address: ", ðaddr);
1852 nb_rx_queue = get_port_nb_rx_queues(portid);
1853 nb_tx_queue = nb_lcores;
1855 if (nb_rx_queue > dev_info.max_rx_queues)
1856 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1857 "(max rx queue is %u)\n",
1858 nb_rx_queue, dev_info.max_rx_queues);
1860 if (nb_tx_queue > dev_info.max_tx_queues)
1861 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1862 "(max tx queue is %u)\n",
1863 nb_tx_queue, dev_info.max_tx_queues);
1865 printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
1866 nb_rx_queue, nb_tx_queue);
1869 local_port_conf.rxmode.max_rx_pkt_len = frame_size;
1870 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1873 local_port_conf.rxmode.offloads |= req_rx_offloads;
1874 local_port_conf.txmode.offloads |= req_tx_offloads;
1876 /* Check that all required capabilities are supported */
1877 if ((local_port_conf.rxmode.offloads & dev_info.rx_offload_capa) !=
1878 local_port_conf.rxmode.offloads)
1879 rte_exit(EXIT_FAILURE,
1880 "Error: port %u required RX offloads: 0x%" PRIx64
1881 ", avaialbe RX offloads: 0x%" PRIx64 "\n",
1882 portid, local_port_conf.rxmode.offloads,
1883 dev_info.rx_offload_capa);
1885 if ((local_port_conf.txmode.offloads & dev_info.tx_offload_capa) !=
1886 local_port_conf.txmode.offloads)
1887 rte_exit(EXIT_FAILURE,
1888 "Error: port %u required TX offloads: 0x%" PRIx64
1889 ", avaialbe TX offloads: 0x%" PRIx64 "\n",
1890 portid, local_port_conf.txmode.offloads,
1891 dev_info.tx_offload_capa);
1893 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
1894 local_port_conf.txmode.offloads |=
1895 DEV_TX_OFFLOAD_MBUF_FAST_FREE;
1897 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM)
1898 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_IPV4_CKSUM;
1900 printf("port %u configurng rx_offloads=0x%" PRIx64
1901 ", tx_offloads=0x%" PRIx64 "\n",
1902 portid, local_port_conf.rxmode.offloads,
1903 local_port_conf.txmode.offloads);
1905 local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
1906 dev_info.flow_type_rss_offloads;
1907 if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
1908 port_conf.rx_adv_conf.rss_conf.rss_hf) {
1909 printf("Port %u modified RSS hash function based on hardware support,"
1910 "requested:%#"PRIx64" configured:%#"PRIx64"\n",
1912 port_conf.rx_adv_conf.rss_conf.rss_hf,
1913 local_port_conf.rx_adv_conf.rss_conf.rss_hf);
1916 ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
1919 rte_exit(EXIT_FAILURE, "Cannot configure device: "
1920 "err=%d, port=%d\n", ret, portid);
1922 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);
1924 rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: "
1925 "err=%d, port=%d\n", ret, portid);
1927 /* init one TX queue per lcore */
1929 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1930 if (rte_lcore_is_enabled(lcore_id) == 0)
1934 socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1939 printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
1941 txconf = &dev_info.default_txconf;
1942 txconf->offloads = local_port_conf.txmode.offloads;
1944 ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
1947 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1948 "err=%d, port=%d\n", ret, portid);
1950 qconf = &lcore_conf[lcore_id];
1951 qconf->tx_queue_id[portid] = tx_queueid;
1953 /* Pre-populate pkt offloads based on capabilities */
1954 qconf->outbound.ipv4_offloads = PKT_TX_IPV4;
1955 qconf->outbound.ipv6_offloads = PKT_TX_IPV6;
1956 if (local_port_conf.txmode.offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
1957 qconf->outbound.ipv4_offloads |= PKT_TX_IP_CKSUM;
1961 /* init RX queues */
1962 for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
1963 struct rte_eth_rxconf rxq_conf;
1965 if (portid != qconf->rx_queue_list[queue].port_id)
1968 rx_queueid = qconf->rx_queue_list[queue].queue_id;
1970 printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
1973 rxq_conf = dev_info.default_rxconf;
1974 rxq_conf.offloads = local_port_conf.rxmode.offloads;
1975 ret = rte_eth_rx_queue_setup(portid, rx_queueid,
1976 nb_rxd, socket_id, &rxq_conf,
1977 socket_ctx[socket_id].mbuf_pool);
1979 rte_exit(EXIT_FAILURE,
1980 "rte_eth_rx_queue_setup: err=%d, "
1981 "port=%d\n", ret, portid);
1988 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
1991 uint32_t buff_size = frame_size ? (frame_size + RTE_PKTMBUF_HEADROOM) :
1992 RTE_MBUF_DEFAULT_BUF_SIZE;
1995 snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
1996 ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
1997 MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
2000 if (ctx->mbuf_pool == NULL)
2001 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
2004 printf("Allocated mbuf pool on socket %d\n", socket_id);
2008 inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md)
2010 struct ipsec_sa *sa;
2012 /* For inline protocol processing, the metadata in the event will
2013 * uniquely identify the security session which raised the event.
2014 * Application would then need the userdata it had registered with the
2015 * security session to process the event.
2018 sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md);
2021 /* userdata could not be retrieved */
2025 /* Sequence number over flow. SA need to be re-established */
2031 inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type,
2032 void *param, void *ret_param)
2035 struct rte_eth_event_ipsec_desc *event_desc = NULL;
2036 struct rte_security_ctx *ctx = (struct rte_security_ctx *)
2037 rte_eth_dev_get_sec_ctx(port_id);
2039 RTE_SET_USED(param);
2041 if (type != RTE_ETH_EVENT_IPSEC)
2044 event_desc = ret_param;
2045 if (event_desc == NULL) {
2046 printf("Event descriptor not set\n");
2050 md = event_desc->metadata;
2052 if (event_desc->subtype == RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW)
2053 return inline_ipsec_event_esn_overflow(ctx, md);
2054 else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) {
2055 printf("Invalid IPsec event reported\n");
2063 main(int32_t argc, char **argv)
2069 uint64_t req_rx_offloads, req_tx_offloads;
2072 ret = rte_eal_init(argc, argv);
2074 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2078 /* parse application arguments (after the EAL ones) */
2079 ret = parse_args(argc, argv);
2081 rte_exit(EXIT_FAILURE, "Invalid parameters\n");
2083 if ((unprotected_port_mask & enabled_port_mask) !=
2084 unprotected_port_mask)
2085 rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
2086 unprotected_port_mask);
2088 if (check_params() < 0)
2089 rte_exit(EXIT_FAILURE, "check_params failed\n");
2091 ret = init_lcore_rx_queues();
2093 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2095 nb_lcores = rte_lcore_count();
2097 /* Replicate each context per socket */
2098 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2099 if (rte_lcore_is_enabled(lcore_id) == 0)
2103 socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2107 if (socket_ctx[socket_id].mbuf_pool)
2111 sp4_init(&socket_ctx[socket_id], socket_id);
2113 sp6_init(&socket_ctx[socket_id], socket_id);
2116 sa_init(&socket_ctx[socket_id], socket_id);
2118 rt_init(&socket_ctx[socket_id], socket_id);
2120 pool_init(&socket_ctx[socket_id], socket_id, NB_MBUF);
2123 RTE_ETH_FOREACH_DEV(portid) {
2124 if ((enabled_port_mask & (1 << portid)) == 0)
2127 sa_check_offloads(portid, &req_rx_offloads, &req_tx_offloads);
2128 port_init(portid, req_rx_offloads, req_tx_offloads);
2134 RTE_ETH_FOREACH_DEV(portid) {
2135 if ((enabled_port_mask & (1 << portid)) == 0)
2139 ret = rte_eth_dev_start(portid);
2141 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
2142 "err=%d, port=%d\n", ret, portid);
2144 * If enabled, put device in promiscuous mode.
2145 * This allows IO forwarding mode to forward packets
2146 * to itself through 2 cross-connected ports of the
2150 rte_eth_promiscuous_enable(portid);
2152 rte_eth_dev_callback_register(portid,
2153 RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL);
2156 check_all_ports_link_status(enabled_port_mask);
2158 /* launch per-lcore init on every lcore */
2159 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
2160 RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2161 if (rte_eal_wait_lcore(lcore_id) < 0)