bbe7ce48d908fe8c8b66acc754e64111676c1ebb
[dpdk.git] / examples / ipsec-secgw / ipsec-secgw.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016 Intel Corporation
3  */
4
5 #include <stdbool.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <stdint.h>
9 #include <inttypes.h>
10 #include <sys/types.h>
11 #include <netinet/in.h>
12 #include <netinet/ip.h>
13 #include <netinet/ip6.h>
14 #include <string.h>
15 #include <sys/queue.h>
16 #include <stdarg.h>
17 #include <errno.h>
18 #include <signal.h>
19 #include <getopt.h>
20
21 #include <rte_common.h>
22 #include <rte_bitmap.h>
23 #include <rte_byteorder.h>
24 #include <rte_log.h>
25 #include <rte_eal.h>
26 #include <rte_launch.h>
27 #include <rte_atomic.h>
28 #include <rte_cycles.h>
29 #include <rte_prefetch.h>
30 #include <rte_lcore.h>
31 #include <rte_per_lcore.h>
32 #include <rte_branch_prediction.h>
33 #include <rte_interrupts.h>
34 #include <rte_random.h>
35 #include <rte_debug.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_mempool.h>
39 #include <rte_mbuf.h>
40 #include <rte_acl.h>
41 #include <rte_lpm.h>
42 #include <rte_lpm6.h>
43 #include <rte_hash.h>
44 #include <rte_jhash.h>
45 #include <rte_cryptodev.h>
46 #include <rte_security.h>
47 #include <rte_eventdev.h>
48 #include <rte_ip.h>
49 #include <rte_ip_frag.h>
50 #include <rte_alarm.h>
51
52 #include "event_helper.h"
53 #include "flow.h"
54 #include "ipsec.h"
55 #include "ipsec_worker.h"
56 #include "parser.h"
57 #include "sad.h"
58
59 volatile bool force_quit;
60
61 #define MAX_JUMBO_PKT_LEN  9600
62
63 #define MEMPOOL_CACHE_SIZE 256
64
65 #define CDEV_QUEUE_DESC 2048
66 #define CDEV_MAP_ENTRIES 16384
67 #define CDEV_MP_CACHE_SZ 64
68 #define MAX_QUEUE_PAIRS 1
69
70 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
71
72 /* Configure how many packets ahead to prefetch, when reading packets */
73 #define PREFETCH_OFFSET 3
74
75 #define MAX_RX_QUEUE_PER_LCORE 16
76
77 #define MAX_LCORE_PARAMS 1024
78
79 /*
80  * Configurable number of RX/TX ring descriptors
81  */
82 #define IPSEC_SECGW_RX_DESC_DEFAULT 1024
83 #define IPSEC_SECGW_TX_DESC_DEFAULT 1024
84 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
85 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
86
87 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
88                 (addr)->addr_bytes[0], (addr)->addr_bytes[1], \
89                 (addr)->addr_bytes[2], (addr)->addr_bytes[3], \
90                 (addr)->addr_bytes[4], (addr)->addr_bytes[5], \
91                 0, 0)
92
93 #define FRAG_TBL_BUCKET_ENTRIES 4
94 #define MAX_FRAG_TTL_NS         (10LL * NS_PER_S)
95
96 #define MTU_TO_FRAMELEN(x)      ((x) + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN)
97
98 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
99         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
100         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
101         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
102         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
103 };
104
105 struct flow_info flow_info_tbl[RTE_MAX_ETHPORTS];
106
107 #define CMD_LINE_OPT_CONFIG             "config"
108 #define CMD_LINE_OPT_SINGLE_SA          "single-sa"
109 #define CMD_LINE_OPT_CRYPTODEV_MASK     "cryptodev_mask"
110 #define CMD_LINE_OPT_TRANSFER_MODE      "transfer-mode"
111 #define CMD_LINE_OPT_SCHEDULE_TYPE      "event-schedule-type"
112 #define CMD_LINE_OPT_RX_OFFLOAD         "rxoffload"
113 #define CMD_LINE_OPT_TX_OFFLOAD         "txoffload"
114 #define CMD_LINE_OPT_REASSEMBLE         "reassemble"
115 #define CMD_LINE_OPT_MTU                "mtu"
116 #define CMD_LINE_OPT_FRAG_TTL           "frag-ttl"
117
118 #define CMD_LINE_ARG_EVENT      "event"
119 #define CMD_LINE_ARG_POLL       "poll"
120 #define CMD_LINE_ARG_ORDERED    "ordered"
121 #define CMD_LINE_ARG_ATOMIC     "atomic"
122 #define CMD_LINE_ARG_PARALLEL   "parallel"
123
124 enum {
125         /* long options mapped to a short option */
126
127         /* first long only option value must be >= 256, so that we won't
128          * conflict with short options
129          */
130         CMD_LINE_OPT_MIN_NUM = 256,
131         CMD_LINE_OPT_CONFIG_NUM,
132         CMD_LINE_OPT_SINGLE_SA_NUM,
133         CMD_LINE_OPT_CRYPTODEV_MASK_NUM,
134         CMD_LINE_OPT_TRANSFER_MODE_NUM,
135         CMD_LINE_OPT_SCHEDULE_TYPE_NUM,
136         CMD_LINE_OPT_RX_OFFLOAD_NUM,
137         CMD_LINE_OPT_TX_OFFLOAD_NUM,
138         CMD_LINE_OPT_REASSEMBLE_NUM,
139         CMD_LINE_OPT_MTU_NUM,
140         CMD_LINE_OPT_FRAG_TTL_NUM,
141 };
142
143 static const struct option lgopts[] = {
144         {CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM},
145         {CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM},
146         {CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM},
147         {CMD_LINE_OPT_TRANSFER_MODE, 1, 0, CMD_LINE_OPT_TRANSFER_MODE_NUM},
148         {CMD_LINE_OPT_SCHEDULE_TYPE, 1, 0, CMD_LINE_OPT_SCHEDULE_TYPE_NUM},
149         {CMD_LINE_OPT_RX_OFFLOAD, 1, 0, CMD_LINE_OPT_RX_OFFLOAD_NUM},
150         {CMD_LINE_OPT_TX_OFFLOAD, 1, 0, CMD_LINE_OPT_TX_OFFLOAD_NUM},
151         {CMD_LINE_OPT_REASSEMBLE, 1, 0, CMD_LINE_OPT_REASSEMBLE_NUM},
152         {CMD_LINE_OPT_MTU, 1, 0, CMD_LINE_OPT_MTU_NUM},
153         {CMD_LINE_OPT_FRAG_TTL, 1, 0, CMD_LINE_OPT_FRAG_TTL_NUM},
154         {NULL, 0, 0, 0}
155 };
156
157 uint32_t unprotected_port_mask;
158 uint32_t single_sa_idx;
159 /* mask of enabled ports */
160 static uint32_t enabled_port_mask;
161 static uint64_t enabled_cryptodev_mask = UINT64_MAX;
162 static int32_t promiscuous_on = 1;
163 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
164 static uint32_t nb_lcores;
165 static uint32_t single_sa;
166 static uint32_t nb_bufs_in_pool;
167
168 /*
169  * RX/TX HW offload capabilities to enable/use on ethernet ports.
170  * By default all capabilities are enabled.
171  */
172 static uint64_t dev_rx_offload = UINT64_MAX;
173 static uint64_t dev_tx_offload = UINT64_MAX;
174
175 /*
176  * global values that determine multi-seg policy
177  */
178 static uint32_t frag_tbl_sz;
179 static uint32_t frame_buf_size = RTE_MBUF_DEFAULT_BUF_SIZE;
180 static uint32_t mtu_size = RTE_ETHER_MTU;
181 static uint64_t frag_ttl_ns = MAX_FRAG_TTL_NS;
182
183 /* application wide librte_ipsec/SA parameters */
184 struct app_sa_prm app_sa_prm = {
185                         .enable = 0,
186                         .cache_sz = SA_CACHE_SZ
187                 };
188 static const char *cfgfile;
189
190 struct lcore_rx_queue {
191         uint16_t port_id;
192         uint8_t queue_id;
193 } __rte_cache_aligned;
194
195 struct lcore_params {
196         uint16_t port_id;
197         uint8_t queue_id;
198         uint8_t lcore_id;
199 } __rte_cache_aligned;
200
201 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
202
203 static struct lcore_params *lcore_params;
204 static uint16_t nb_lcore_params;
205
206 static struct rte_hash *cdev_map_in;
207 static struct rte_hash *cdev_map_out;
208
209 struct buffer {
210         uint16_t len;
211         struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
212 };
213
214 struct lcore_conf {
215         uint16_t nb_rx_queue;
216         struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
217         uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
218         struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
219         struct ipsec_ctx inbound;
220         struct ipsec_ctx outbound;
221         struct rt_ctx *rt4_ctx;
222         struct rt_ctx *rt6_ctx;
223         struct {
224                 struct rte_ip_frag_tbl *tbl;
225                 struct rte_mempool *pool_dir;
226                 struct rte_mempool *pool_indir;
227                 struct rte_ip_frag_death_row dr;
228         } frag;
229 } __rte_cache_aligned;
230
231 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
232
233 static struct rte_eth_conf port_conf = {
234         .rxmode = {
235                 .mq_mode        = ETH_MQ_RX_RSS,
236                 .max_rx_pkt_len = RTE_ETHER_MAX_LEN,
237                 .split_hdr_size = 0,
238                 .offloads = DEV_RX_OFFLOAD_CHECKSUM,
239         },
240         .rx_adv_conf = {
241                 .rss_conf = {
242                         .rss_key = NULL,
243                         .rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
244                                 ETH_RSS_TCP | ETH_RSS_SCTP,
245                 },
246         },
247         .txmode = {
248                 .mq_mode = ETH_MQ_TX_NONE,
249         },
250 };
251
252 struct socket_ctx socket_ctx[NB_SOCKETS];
253
254 /*
255  * Determine is multi-segment support required:
256  *  - either frame buffer size is smaller then mtu
257  *  - or reassmeble support is requested
258  */
259 static int
260 multi_seg_required(void)
261 {
262         return (MTU_TO_FRAMELEN(mtu_size) + RTE_PKTMBUF_HEADROOM >
263                 frame_buf_size || frag_tbl_sz != 0);
264 }
265
266 static inline void
267 adjust_ipv4_pktlen(struct rte_mbuf *m, const struct rte_ipv4_hdr *iph,
268         uint32_t l2_len)
269 {
270         uint32_t plen, trim;
271
272         plen = rte_be_to_cpu_16(iph->total_length) + l2_len;
273         if (plen < m->pkt_len) {
274                 trim = m->pkt_len - plen;
275                 rte_pktmbuf_trim(m, trim);
276         }
277 }
278
279 static inline void
280 adjust_ipv6_pktlen(struct rte_mbuf *m, const struct rte_ipv6_hdr *iph,
281         uint32_t l2_len)
282 {
283         uint32_t plen, trim;
284
285         plen = rte_be_to_cpu_16(iph->payload_len) + sizeof(*iph) + l2_len;
286         if (plen < m->pkt_len) {
287                 trim = m->pkt_len - plen;
288                 rte_pktmbuf_trim(m, trim);
289         }
290 }
291
292 #if (STATS_INTERVAL > 0)
293
294 /* Print out statistics on packet distribution */
295 static void
296 print_stats_cb(__rte_unused void *param)
297 {
298         uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
299         float burst_percent, rx_per_call, tx_per_call;
300         unsigned int coreid;
301
302         total_packets_dropped = 0;
303         total_packets_tx = 0;
304         total_packets_rx = 0;
305
306         const char clr[] = { 27, '[', '2', 'J', '\0' };
307         const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
308
309         /* Clear screen and move to top left */
310         printf("%s%s", clr, topLeft);
311
312         printf("\nCore statistics ====================================");
313
314         for (coreid = 0; coreid < RTE_MAX_LCORE; coreid++) {
315                 /* skip disabled cores */
316                 if (rte_lcore_is_enabled(coreid) == 0)
317                         continue;
318                 burst_percent = (float)(core_statistics[coreid].burst_rx * 100)/
319                                         core_statistics[coreid].rx;
320                 rx_per_call =  (float)(core_statistics[coreid].rx)/
321                                        core_statistics[coreid].rx_call;
322                 tx_per_call =  (float)(core_statistics[coreid].tx)/
323                                        core_statistics[coreid].tx_call;
324                 printf("\nStatistics for core %u ------------------------------"
325                            "\nPackets received: %20"PRIu64
326                            "\nPackets sent: %24"PRIu64
327                            "\nPackets dropped: %21"PRIu64
328                            "\nBurst percent: %23.2f"
329                            "\nPackets per Rx call: %17.2f"
330                            "\nPackets per Tx call: %17.2f",
331                            coreid,
332                            core_statistics[coreid].rx,
333                            core_statistics[coreid].tx,
334                            core_statistics[coreid].dropped,
335                            burst_percent,
336                            rx_per_call,
337                            tx_per_call);
338
339                 total_packets_dropped += core_statistics[coreid].dropped;
340                 total_packets_tx += core_statistics[coreid].tx;
341                 total_packets_rx += core_statistics[coreid].rx;
342         }
343         printf("\nAggregate statistics ==============================="
344                    "\nTotal packets received: %14"PRIu64
345                    "\nTotal packets sent: %18"PRIu64
346                    "\nTotal packets dropped: %15"PRIu64,
347                    total_packets_rx,
348                    total_packets_tx,
349                    total_packets_dropped);
350         printf("\n====================================================\n");
351
352         rte_eal_alarm_set(STATS_INTERVAL * US_PER_S, print_stats_cb, NULL);
353 }
354 #endif /* STATS_INTERVAL */
355
356 static inline void
357 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
358 {
359         const struct rte_ether_hdr *eth;
360         const struct rte_ipv4_hdr *iph4;
361         const struct rte_ipv6_hdr *iph6;
362
363         eth = rte_pktmbuf_mtod(pkt, const struct rte_ether_hdr *);
364         if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
365
366                 iph4 = (const struct rte_ipv4_hdr *)rte_pktmbuf_adj(pkt,
367                         RTE_ETHER_HDR_LEN);
368                 adjust_ipv4_pktlen(pkt, iph4, 0);
369
370                 if (iph4->next_proto_id == IPPROTO_ESP)
371                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
372                 else {
373                         t->ip4.data[t->ip4.num] = &iph4->next_proto_id;
374                         t->ip4.pkts[(t->ip4.num)++] = pkt;
375                 }
376                 pkt->l2_len = 0;
377                 pkt->l3_len = sizeof(*iph4);
378                 pkt->packet_type |= RTE_PTYPE_L3_IPV4;
379         } else if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
380                 int next_proto;
381                 size_t l3len, ext_len;
382                 uint8_t *p;
383
384                 /* get protocol type */
385                 iph6 = (const struct rte_ipv6_hdr *)rte_pktmbuf_adj(pkt,
386                         RTE_ETHER_HDR_LEN);
387                 adjust_ipv6_pktlen(pkt, iph6, 0);
388
389                 next_proto = iph6->proto;
390
391                 /* determine l3 header size up to ESP extension */
392                 l3len = sizeof(struct ip6_hdr);
393                 p = rte_pktmbuf_mtod(pkt, uint8_t *);
394                 while (next_proto != IPPROTO_ESP && l3len < pkt->data_len &&
395                         (next_proto = rte_ipv6_get_next_ext(p + l3len,
396                                                 next_proto, &ext_len)) >= 0)
397                         l3len += ext_len;
398
399                 /* drop packet when IPv6 header exceeds first segment length */
400                 if (unlikely(l3len > pkt->data_len)) {
401                         free_pkts(&pkt, 1);
402                         return;
403                 }
404
405                 if (next_proto == IPPROTO_ESP)
406                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
407                 else {
408                         t->ip6.data[t->ip6.num] = &iph6->proto;
409                         t->ip6.pkts[(t->ip6.num)++] = pkt;
410                 }
411                 pkt->l2_len = 0;
412                 pkt->l3_len = l3len;
413                 pkt->packet_type |= RTE_PTYPE_L3_IPV6;
414         } else {
415                 /* Unknown/Unsupported type, drop the packet */
416                 RTE_LOG(ERR, IPSEC, "Unsupported packet type 0x%x\n",
417                         rte_be_to_cpu_16(eth->ether_type));
418                 free_pkts(&pkt, 1);
419                 return;
420         }
421
422         /* Check if the packet has been processed inline. For inline protocol
423          * processed packets, the metadata in the mbuf can be used to identify
424          * the security processing done on the packet. The metadata will be
425          * used to retrieve the application registered userdata associated
426          * with the security session.
427          */
428
429         if (pkt->ol_flags & PKT_RX_SEC_OFFLOAD &&
430                         rte_security_dynfield_is_registered()) {
431                 struct ipsec_sa *sa;
432                 struct ipsec_mbuf_metadata *priv;
433                 struct rte_security_ctx *ctx = (struct rte_security_ctx *)
434                                                 rte_eth_dev_get_sec_ctx(
435                                                 pkt->port);
436
437                 /* Retrieve the userdata registered. Here, the userdata
438                  * registered is the SA pointer.
439                  */
440                 sa = (struct ipsec_sa *)rte_security_get_userdata(ctx,
441                                 *rte_security_dynfield(pkt));
442                 if (sa == NULL) {
443                         /* userdata could not be retrieved */
444                         return;
445                 }
446
447                 /* Save SA as priv member in mbuf. This will be used in the
448                  * IPsec selector(SP-SA) check.
449                  */
450
451                 priv = get_priv(pkt);
452                 priv->sa = sa;
453         }
454 }
455
456 static inline void
457 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
458                 uint16_t nb_pkts)
459 {
460         int32_t i;
461
462         t->ipsec.num = 0;
463         t->ip4.num = 0;
464         t->ip6.num = 0;
465
466         for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
467                 rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
468                                         void *));
469                 prepare_one_packet(pkts[i], t);
470         }
471         /* Process left packets */
472         for (; i < nb_pkts; i++)
473                 prepare_one_packet(pkts[i], t);
474 }
475
476 static inline void
477 prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port,
478                 const struct lcore_conf *qconf)
479 {
480         struct ip *ip;
481         struct rte_ether_hdr *ethhdr;
482
483         ip = rte_pktmbuf_mtod(pkt, struct ip *);
484
485         ethhdr = (struct rte_ether_hdr *)
486                 rte_pktmbuf_prepend(pkt, RTE_ETHER_HDR_LEN);
487
488         if (ip->ip_v == IPVERSION) {
489                 pkt->ol_flags |= qconf->outbound.ipv4_offloads;
490                 pkt->l3_len = sizeof(struct ip);
491                 pkt->l2_len = RTE_ETHER_HDR_LEN;
492
493                 ip->ip_sum = 0;
494
495                 /* calculate IPv4 cksum in SW */
496                 if ((pkt->ol_flags & PKT_TX_IP_CKSUM) == 0)
497                         ip->ip_sum = rte_ipv4_cksum((struct rte_ipv4_hdr *)ip);
498
499                 ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
500         } else {
501                 pkt->ol_flags |= qconf->outbound.ipv6_offloads;
502                 pkt->l3_len = sizeof(struct ip6_hdr);
503                 pkt->l2_len = RTE_ETHER_HDR_LEN;
504
505                 ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
506         }
507
508         memcpy(&ethhdr->s_addr, &ethaddr_tbl[port].src,
509                         sizeof(struct rte_ether_addr));
510         memcpy(&ethhdr->d_addr, &ethaddr_tbl[port].dst,
511                         sizeof(struct rte_ether_addr));
512 }
513
514 static inline void
515 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port,
516                 const struct lcore_conf *qconf)
517 {
518         int32_t i;
519         const int32_t prefetch_offset = 2;
520
521         for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
522                 rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
523                 prepare_tx_pkt(pkts[i], port, qconf);
524         }
525         /* Process left packets */
526         for (; i < nb_pkts; i++)
527                 prepare_tx_pkt(pkts[i], port, qconf);
528 }
529
530 /* Send burst of packets on an output interface */
531 static inline int32_t
532 send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port)
533 {
534         struct rte_mbuf **m_table;
535         int32_t ret;
536         uint16_t queueid;
537
538         queueid = qconf->tx_queue_id[port];
539         m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
540
541         prepare_tx_burst(m_table, n, port, qconf);
542
543         ret = rte_eth_tx_burst(port, queueid, m_table, n);
544
545         core_stats_update_tx(ret);
546
547         if (unlikely(ret < n)) {
548                 do {
549                         free_pkts(&m_table[ret], 1);
550                 } while (++ret < n);
551         }
552
553         return 0;
554 }
555
556 /*
557  * Helper function to fragment and queue for TX one packet.
558  */
559 static inline uint32_t
560 send_fragment_packet(struct lcore_conf *qconf, struct rte_mbuf *m,
561         uint16_t port, uint8_t proto)
562 {
563         struct buffer *tbl;
564         uint32_t len, n;
565         int32_t rc;
566
567         tbl =  qconf->tx_mbufs + port;
568         len = tbl->len;
569
570         /* free space for new fragments */
571         if (len + RTE_LIBRTE_IP_FRAG_MAX_FRAG >=  RTE_DIM(tbl->m_table)) {
572                 send_burst(qconf, len, port);
573                 len = 0;
574         }
575
576         n = RTE_DIM(tbl->m_table) - len;
577
578         if (proto == IPPROTO_IP)
579                 rc = rte_ipv4_fragment_packet(m, tbl->m_table + len,
580                         n, mtu_size, qconf->frag.pool_dir,
581                         qconf->frag.pool_indir);
582         else
583                 rc = rte_ipv6_fragment_packet(m, tbl->m_table + len,
584                         n, mtu_size, qconf->frag.pool_dir,
585                         qconf->frag.pool_indir);
586
587         if (rc >= 0)
588                 len += rc;
589         else
590                 RTE_LOG(ERR, IPSEC,
591                         "%s: failed to fragment packet with size %u, "
592                         "error code: %d\n",
593                         __func__, m->pkt_len, rte_errno);
594
595         free_pkts(&m, 1);
596         return len;
597 }
598
599 /* Enqueue a single packet, and send burst if queue is filled */
600 static inline int32_t
601 send_single_packet(struct rte_mbuf *m, uint16_t port, uint8_t proto)
602 {
603         uint32_t lcore_id;
604         uint16_t len;
605         struct lcore_conf *qconf;
606
607         lcore_id = rte_lcore_id();
608
609         qconf = &lcore_conf[lcore_id];
610         len = qconf->tx_mbufs[port].len;
611
612         if (m->pkt_len <= mtu_size) {
613                 qconf->tx_mbufs[port].m_table[len] = m;
614                 len++;
615
616         /* need to fragment the packet */
617         } else if (frag_tbl_sz > 0)
618                 len = send_fragment_packet(qconf, m, port, proto);
619         else
620                 free_pkts(&m, 1);
621
622         /* enough pkts to be sent */
623         if (unlikely(len == MAX_PKT_BURST)) {
624                 send_burst(qconf, MAX_PKT_BURST, port);
625                 len = 0;
626         }
627
628         qconf->tx_mbufs[port].len = len;
629         return 0;
630 }
631
632 static inline void
633 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
634                 uint16_t lim)
635 {
636         struct rte_mbuf *m;
637         uint32_t i, j, res, sa_idx;
638
639         if (ip->num == 0 || sp == NULL)
640                 return;
641
642         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
643                         ip->num, DEFAULT_MAX_CATEGORIES);
644
645         j = 0;
646         for (i = 0; i < ip->num; i++) {
647                 m = ip->pkts[i];
648                 res = ip->res[i];
649                 if (res == BYPASS) {
650                         ip->pkts[j++] = m;
651                         continue;
652                 }
653                 if (res == DISCARD) {
654                         free_pkts(&m, 1);
655                         continue;
656                 }
657
658                 /* Only check SPI match for processed IPSec packets */
659                 if (i < lim && ((m->ol_flags & PKT_RX_SEC_OFFLOAD) == 0)) {
660                         free_pkts(&m, 1);
661                         continue;
662                 }
663
664                 sa_idx = res - 1;
665                 if (!inbound_sa_check(sa, m, sa_idx)) {
666                         free_pkts(&m, 1);
667                         continue;
668                 }
669                 ip->pkts[j++] = m;
670         }
671         ip->num = j;
672 }
673
674 static void
675 split46_traffic(struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t num)
676 {
677         uint32_t i, n4, n6;
678         struct ip *ip;
679         struct rte_mbuf *m;
680
681         n4 = trf->ip4.num;
682         n6 = trf->ip6.num;
683
684         for (i = 0; i < num; i++) {
685
686                 m = mb[i];
687                 ip = rte_pktmbuf_mtod(m, struct ip *);
688
689                 if (ip->ip_v == IPVERSION) {
690                         trf->ip4.pkts[n4] = m;
691                         trf->ip4.data[n4] = rte_pktmbuf_mtod_offset(m,
692                                         uint8_t *, offsetof(struct ip, ip_p));
693                         n4++;
694                 } else if (ip->ip_v == IP6_VERSION) {
695                         trf->ip6.pkts[n6] = m;
696                         trf->ip6.data[n6] = rte_pktmbuf_mtod_offset(m,
697                                         uint8_t *,
698                                         offsetof(struct ip6_hdr, ip6_nxt));
699                         n6++;
700                 } else
701                         free_pkts(&m, 1);
702         }
703
704         trf->ip4.num = n4;
705         trf->ip6.num = n6;
706 }
707
708
709 static inline void
710 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
711                 struct ipsec_traffic *traffic)
712 {
713         uint16_t nb_pkts_in, n_ip4, n_ip6;
714
715         n_ip4 = traffic->ip4.num;
716         n_ip6 = traffic->ip6.num;
717
718         if (app_sa_prm.enable == 0) {
719                 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
720                                 traffic->ipsec.num, MAX_PKT_BURST);
721                 split46_traffic(traffic, traffic->ipsec.pkts, nb_pkts_in);
722         } else {
723                 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
724                         traffic->ipsec.saptr, traffic->ipsec.num);
725                 ipsec_process(ipsec_ctx, traffic);
726         }
727
728         inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
729                         n_ip4);
730
731         inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
732                         n_ip6);
733 }
734
735 static inline void
736 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
737                 struct traffic_type *ipsec)
738 {
739         struct rte_mbuf *m;
740         uint32_t i, j, sa_idx;
741
742         if (ip->num == 0 || sp == NULL)
743                 return;
744
745         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
746                         ip->num, DEFAULT_MAX_CATEGORIES);
747
748         j = 0;
749         for (i = 0; i < ip->num; i++) {
750                 m = ip->pkts[i];
751                 sa_idx = ip->res[i] - 1;
752                 if (ip->res[i] == DISCARD)
753                         free_pkts(&m, 1);
754                 else if (ip->res[i] == BYPASS)
755                         ip->pkts[j++] = m;
756                 else {
757                         ipsec->res[ipsec->num] = sa_idx;
758                         ipsec->pkts[ipsec->num++] = m;
759                 }
760         }
761         ip->num = j;
762 }
763
764 static inline void
765 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
766                 struct ipsec_traffic *traffic)
767 {
768         struct rte_mbuf *m;
769         uint16_t idx, nb_pkts_out, i;
770
771         /* Drop any IPsec traffic from protected ports */
772         free_pkts(traffic->ipsec.pkts, traffic->ipsec.num);
773
774         traffic->ipsec.num = 0;
775
776         outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
777
778         outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
779
780         if (app_sa_prm.enable == 0) {
781
782                 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
783                                 traffic->ipsec.res, traffic->ipsec.num,
784                                 MAX_PKT_BURST);
785
786                 for (i = 0; i < nb_pkts_out; i++) {
787                         m = traffic->ipsec.pkts[i];
788                         struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
789                         if (ip->ip_v == IPVERSION) {
790                                 idx = traffic->ip4.num++;
791                                 traffic->ip4.pkts[idx] = m;
792                         } else {
793                                 idx = traffic->ip6.num++;
794                                 traffic->ip6.pkts[idx] = m;
795                         }
796                 }
797         } else {
798                 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
799                         traffic->ipsec.saptr, traffic->ipsec.num);
800                 ipsec_process(ipsec_ctx, traffic);
801         }
802 }
803
804 static inline void
805 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
806                 struct ipsec_traffic *traffic)
807 {
808         struct rte_mbuf *m;
809         uint32_t nb_pkts_in, i, idx;
810
811         /* Drop any IPv4 traffic from unprotected ports */
812         free_pkts(traffic->ip4.pkts, traffic->ip4.num);
813
814         traffic->ip4.num = 0;
815
816         /* Drop any IPv6 traffic from unprotected ports */
817         free_pkts(traffic->ip6.pkts, traffic->ip6.num);
818
819         traffic->ip6.num = 0;
820
821         if (app_sa_prm.enable == 0) {
822
823                 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
824                                 traffic->ipsec.num, MAX_PKT_BURST);
825
826                 for (i = 0; i < nb_pkts_in; i++) {
827                         m = traffic->ipsec.pkts[i];
828                         struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
829                         if (ip->ip_v == IPVERSION) {
830                                 idx = traffic->ip4.num++;
831                                 traffic->ip4.pkts[idx] = m;
832                         } else {
833                                 idx = traffic->ip6.num++;
834                                 traffic->ip6.pkts[idx] = m;
835                         }
836                 }
837         } else {
838                 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
839                         traffic->ipsec.saptr, traffic->ipsec.num);
840                 ipsec_process(ipsec_ctx, traffic);
841         }
842 }
843
844 static inline void
845 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
846                 struct ipsec_traffic *traffic)
847 {
848         struct rte_mbuf *m;
849         uint32_t nb_pkts_out, i, n;
850         struct ip *ip;
851
852         /* Drop any IPsec traffic from protected ports */
853         free_pkts(traffic->ipsec.pkts, traffic->ipsec.num);
854
855         n = 0;
856
857         for (i = 0; i < traffic->ip4.num; i++) {
858                 traffic->ipsec.pkts[n] = traffic->ip4.pkts[i];
859                 traffic->ipsec.res[n++] = single_sa_idx;
860         }
861
862         for (i = 0; i < traffic->ip6.num; i++) {
863                 traffic->ipsec.pkts[n] = traffic->ip6.pkts[i];
864                 traffic->ipsec.res[n++] = single_sa_idx;
865         }
866
867         traffic->ip4.num = 0;
868         traffic->ip6.num = 0;
869         traffic->ipsec.num = n;
870
871         if (app_sa_prm.enable == 0) {
872
873                 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
874                                 traffic->ipsec.res, traffic->ipsec.num,
875                                 MAX_PKT_BURST);
876
877                 /* They all sue the same SA (ip4 or ip6 tunnel) */
878                 m = traffic->ipsec.pkts[0];
879                 ip = rte_pktmbuf_mtod(m, struct ip *);
880                 if (ip->ip_v == IPVERSION) {
881                         traffic->ip4.num = nb_pkts_out;
882                         for (i = 0; i < nb_pkts_out; i++)
883                                 traffic->ip4.pkts[i] = traffic->ipsec.pkts[i];
884                 } else {
885                         traffic->ip6.num = nb_pkts_out;
886                         for (i = 0; i < nb_pkts_out; i++)
887                                 traffic->ip6.pkts[i] = traffic->ipsec.pkts[i];
888                 }
889         } else {
890                 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
891                         traffic->ipsec.saptr, traffic->ipsec.num);
892                 ipsec_process(ipsec_ctx, traffic);
893         }
894 }
895
896 static inline int32_t
897 get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6)
898 {
899         struct ipsec_mbuf_metadata *priv;
900         struct ipsec_sa *sa;
901
902         priv = get_priv(pkt);
903
904         sa = priv->sa;
905         if (unlikely(sa == NULL)) {
906                 RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
907                 goto fail;
908         }
909
910         if (is_ipv6)
911                 return sa->portid;
912
913         /* else */
914         return (sa->portid | RTE_LPM_LOOKUP_SUCCESS);
915
916 fail:
917         if (is_ipv6)
918                 return -1;
919
920         /* else */
921         return 0;
922 }
923
924 static inline void
925 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
926 {
927         uint32_t hop[MAX_PKT_BURST * 2];
928         uint32_t dst_ip[MAX_PKT_BURST * 2];
929         int32_t pkt_hop = 0;
930         uint16_t i, offset;
931         uint16_t lpm_pkts = 0;
932
933         if (nb_pkts == 0)
934                 return;
935
936         /* Need to do an LPM lookup for non-inline packets. Inline packets will
937          * have port ID in the SA
938          */
939
940         for (i = 0; i < nb_pkts; i++) {
941                 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
942                         /* Security offload not enabled. So an LPM lookup is
943                          * required to get the hop
944                          */
945                         offset = offsetof(struct ip, ip_dst);
946                         dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i],
947                                         uint32_t *, offset);
948                         dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]);
949                         lpm_pkts++;
950                 }
951         }
952
953         rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts);
954
955         lpm_pkts = 0;
956
957         for (i = 0; i < nb_pkts; i++) {
958                 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
959                         /* Read hop from the SA */
960                         pkt_hop = get_hop_for_offload_pkt(pkts[i], 0);
961                 } else {
962                         /* Need to use hop returned by lookup */
963                         pkt_hop = hop[lpm_pkts++];
964                 }
965
966                 if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) {
967                         free_pkts(&pkts[i], 1);
968                         continue;
969                 }
970                 send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IP);
971         }
972 }
973
974 static inline void
975 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
976 {
977         int32_t hop[MAX_PKT_BURST * 2];
978         uint8_t dst_ip[MAX_PKT_BURST * 2][16];
979         uint8_t *ip6_dst;
980         int32_t pkt_hop = 0;
981         uint16_t i, offset;
982         uint16_t lpm_pkts = 0;
983
984         if (nb_pkts == 0)
985                 return;
986
987         /* Need to do an LPM lookup for non-inline packets. Inline packets will
988          * have port ID in the SA
989          */
990
991         for (i = 0; i < nb_pkts; i++) {
992                 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
993                         /* Security offload not enabled. So an LPM lookup is
994                          * required to get the hop
995                          */
996                         offset = offsetof(struct ip6_hdr, ip6_dst);
997                         ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *,
998                                         offset);
999                         memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16);
1000                         lpm_pkts++;
1001                 }
1002         }
1003
1004         rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop,
1005                         lpm_pkts);
1006
1007         lpm_pkts = 0;
1008
1009         for (i = 0; i < nb_pkts; i++) {
1010                 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
1011                         /* Read hop from the SA */
1012                         pkt_hop = get_hop_for_offload_pkt(pkts[i], 1);
1013                 } else {
1014                         /* Need to use hop returned by lookup */
1015                         pkt_hop = hop[lpm_pkts++];
1016                 }
1017
1018                 if (pkt_hop == -1) {
1019                         free_pkts(&pkts[i], 1);
1020                         continue;
1021                 }
1022                 send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IPV6);
1023         }
1024 }
1025
1026 static inline void
1027 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
1028                 uint8_t nb_pkts, uint16_t portid)
1029 {
1030         struct ipsec_traffic traffic;
1031
1032         prepare_traffic(pkts, &traffic, nb_pkts);
1033
1034         if (unlikely(single_sa)) {
1035                 if (is_unprotected_port(portid))
1036                         process_pkts_inbound_nosp(&qconf->inbound, &traffic);
1037                 else
1038                         process_pkts_outbound_nosp(&qconf->outbound, &traffic);
1039         } else {
1040                 if (is_unprotected_port(portid))
1041                         process_pkts_inbound(&qconf->inbound, &traffic);
1042                 else
1043                         process_pkts_outbound(&qconf->outbound, &traffic);
1044         }
1045
1046         route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
1047         route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
1048 }
1049
1050 static inline void
1051 drain_tx_buffers(struct lcore_conf *qconf)
1052 {
1053         struct buffer *buf;
1054         uint32_t portid;
1055
1056         for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
1057                 buf = &qconf->tx_mbufs[portid];
1058                 if (buf->len == 0)
1059                         continue;
1060                 send_burst(qconf, buf->len, portid);
1061                 buf->len = 0;
1062         }
1063 }
1064
1065 static inline void
1066 drain_crypto_buffers(struct lcore_conf *qconf)
1067 {
1068         uint32_t i;
1069         struct ipsec_ctx *ctx;
1070
1071         /* drain inbound buffers*/
1072         ctx = &qconf->inbound;
1073         for (i = 0; i != ctx->nb_qps; i++) {
1074                 if (ctx->tbl[i].len != 0)
1075                         enqueue_cop_burst(ctx->tbl  + i);
1076         }
1077
1078         /* drain outbound buffers*/
1079         ctx = &qconf->outbound;
1080         for (i = 0; i != ctx->nb_qps; i++) {
1081                 if (ctx->tbl[i].len != 0)
1082                         enqueue_cop_burst(ctx->tbl  + i);
1083         }
1084 }
1085
1086 static void
1087 drain_inbound_crypto_queues(const struct lcore_conf *qconf,
1088                 struct ipsec_ctx *ctx)
1089 {
1090         uint32_t n;
1091         struct ipsec_traffic trf;
1092
1093         if (app_sa_prm.enable == 0) {
1094
1095                 /* dequeue packets from crypto-queue */
1096                 n = ipsec_inbound_cqp_dequeue(ctx, trf.ipsec.pkts,
1097                         RTE_DIM(trf.ipsec.pkts));
1098
1099                 trf.ip4.num = 0;
1100                 trf.ip6.num = 0;
1101
1102                 /* split traffic by ipv4-ipv6 */
1103                 split46_traffic(&trf, trf.ipsec.pkts, n);
1104         } else
1105                 ipsec_cqp_process(ctx, &trf);
1106
1107         /* process ipv4 packets */
1108         if (trf.ip4.num != 0) {
1109                 inbound_sp_sa(ctx->sp4_ctx, ctx->sa_ctx, &trf.ip4, 0);
1110                 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
1111         }
1112
1113         /* process ipv6 packets */
1114         if (trf.ip6.num != 0) {
1115                 inbound_sp_sa(ctx->sp6_ctx, ctx->sa_ctx, &trf.ip6, 0);
1116                 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
1117         }
1118 }
1119
1120 static void
1121 drain_outbound_crypto_queues(const struct lcore_conf *qconf,
1122                 struct ipsec_ctx *ctx)
1123 {
1124         uint32_t n;
1125         struct ipsec_traffic trf;
1126
1127         if (app_sa_prm.enable == 0) {
1128
1129                 /* dequeue packets from crypto-queue */
1130                 n = ipsec_outbound_cqp_dequeue(ctx, trf.ipsec.pkts,
1131                         RTE_DIM(trf.ipsec.pkts));
1132
1133                 trf.ip4.num = 0;
1134                 trf.ip6.num = 0;
1135
1136                 /* split traffic by ipv4-ipv6 */
1137                 split46_traffic(&trf, trf.ipsec.pkts, n);
1138         } else
1139                 ipsec_cqp_process(ctx, &trf);
1140
1141         /* process ipv4 packets */
1142         if (trf.ip4.num != 0)
1143                 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
1144
1145         /* process ipv6 packets */
1146         if (trf.ip6.num != 0)
1147                 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
1148 }
1149
1150 /* main processing loop */
1151 void
1152 ipsec_poll_mode_worker(void)
1153 {
1154         struct rte_mbuf *pkts[MAX_PKT_BURST];
1155         uint32_t lcore_id;
1156         uint64_t prev_tsc, diff_tsc, cur_tsc;
1157         int32_t i, nb_rx;
1158         uint16_t portid;
1159         uint8_t queueid;
1160         struct lcore_conf *qconf;
1161         int32_t rc, socket_id;
1162         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
1163                         / US_PER_S * BURST_TX_DRAIN_US;
1164         struct lcore_rx_queue *rxql;
1165
1166         prev_tsc = 0;
1167         lcore_id = rte_lcore_id();
1168         qconf = &lcore_conf[lcore_id];
1169         rxql = qconf->rx_queue_list;
1170         socket_id = rte_lcore_to_socket_id(lcore_id);
1171
1172         qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
1173         qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
1174         qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
1175         qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
1176         qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
1177         qconf->inbound.cdev_map = cdev_map_in;
1178         qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
1179         qconf->inbound.session_priv_pool =
1180                         socket_ctx[socket_id].session_priv_pool;
1181         qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
1182         qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
1183         qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
1184         qconf->outbound.cdev_map = cdev_map_out;
1185         qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
1186         qconf->outbound.session_priv_pool =
1187                         socket_ctx[socket_id].session_priv_pool;
1188         qconf->frag.pool_dir = socket_ctx[socket_id].mbuf_pool;
1189         qconf->frag.pool_indir = socket_ctx[socket_id].mbuf_pool_indir;
1190
1191         rc = ipsec_sad_lcore_cache_init(app_sa_prm.cache_sz);
1192         if (rc != 0) {
1193                 RTE_LOG(ERR, IPSEC,
1194                         "SAD cache init on lcore %u, failed with code: %d\n",
1195                         lcore_id, rc);
1196                 return;
1197         }
1198
1199         if (qconf->nb_rx_queue == 0) {
1200                 RTE_LOG(DEBUG, IPSEC, "lcore %u has nothing to do\n",
1201                         lcore_id);
1202                 return;
1203         }
1204
1205         RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
1206
1207         for (i = 0; i < qconf->nb_rx_queue; i++) {
1208                 portid = rxql[i].port_id;
1209                 queueid = rxql[i].queue_id;
1210                 RTE_LOG(INFO, IPSEC,
1211                         " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
1212                         lcore_id, portid, queueid);
1213         }
1214
1215         while (!force_quit) {
1216                 cur_tsc = rte_rdtsc();
1217
1218                 /* TX queue buffer drain */
1219                 diff_tsc = cur_tsc - prev_tsc;
1220
1221                 if (unlikely(diff_tsc > drain_tsc)) {
1222                         drain_tx_buffers(qconf);
1223                         drain_crypto_buffers(qconf);
1224                         prev_tsc = cur_tsc;
1225                 }
1226
1227                 for (i = 0; i < qconf->nb_rx_queue; ++i) {
1228
1229                         /* Read packets from RX queues */
1230                         portid = rxql[i].port_id;
1231                         queueid = rxql[i].queue_id;
1232                         nb_rx = rte_eth_rx_burst(portid, queueid,
1233                                         pkts, MAX_PKT_BURST);
1234
1235                         if (nb_rx > 0) {
1236                                 core_stats_update_rx(nb_rx);
1237                                 process_pkts(qconf, pkts, nb_rx, portid);
1238                         }
1239
1240                         /* dequeue and process completed crypto-ops */
1241                         if (is_unprotected_port(portid))
1242                                 drain_inbound_crypto_queues(qconf,
1243                                         &qconf->inbound);
1244                         else
1245                                 drain_outbound_crypto_queues(qconf,
1246                                         &qconf->outbound);
1247                 }
1248         }
1249 }
1250
1251 int
1252 check_flow_params(uint16_t fdir_portid, uint8_t fdir_qid)
1253 {
1254         uint16_t i;
1255         uint16_t portid;
1256         uint8_t queueid;
1257
1258         for (i = 0; i < nb_lcore_params; ++i) {
1259                 portid = lcore_params_array[i].port_id;
1260                 if (portid == fdir_portid) {
1261                         queueid = lcore_params_array[i].queue_id;
1262                         if (queueid == fdir_qid)
1263                                 break;
1264                 }
1265
1266                 if (i == nb_lcore_params - 1)
1267                         return -1;
1268         }
1269
1270         return 1;
1271 }
1272
1273 static int32_t
1274 check_poll_mode_params(struct eh_conf *eh_conf)
1275 {
1276         uint8_t lcore;
1277         uint16_t portid;
1278         uint16_t i;
1279         int32_t socket_id;
1280
1281         if (!eh_conf)
1282                 return -EINVAL;
1283
1284         if (eh_conf->mode != EH_PKT_TRANSFER_MODE_POLL)
1285                 return 0;
1286
1287         if (lcore_params == NULL) {
1288                 printf("Error: No port/queue/core mappings\n");
1289                 return -1;
1290         }
1291
1292         for (i = 0; i < nb_lcore_params; ++i) {
1293                 lcore = lcore_params[i].lcore_id;
1294                 if (!rte_lcore_is_enabled(lcore)) {
1295                         printf("error: lcore %hhu is not enabled in "
1296                                 "lcore mask\n", lcore);
1297                         return -1;
1298                 }
1299                 socket_id = rte_lcore_to_socket_id(lcore);
1300                 if (socket_id != 0 && numa_on == 0) {
1301                         printf("warning: lcore %hhu is on socket %d "
1302                                 "with numa off\n",
1303                                 lcore, socket_id);
1304                 }
1305                 portid = lcore_params[i].port_id;
1306                 if ((enabled_port_mask & (1 << portid)) == 0) {
1307                         printf("port %u is not enabled in port mask\n", portid);
1308                         return -1;
1309                 }
1310                 if (!rte_eth_dev_is_valid_port(portid)) {
1311                         printf("port %u is not present on the board\n", portid);
1312                         return -1;
1313                 }
1314         }
1315         return 0;
1316 }
1317
1318 static uint8_t
1319 get_port_nb_rx_queues(const uint16_t port)
1320 {
1321         int32_t queue = -1;
1322         uint16_t i;
1323
1324         for (i = 0; i < nb_lcore_params; ++i) {
1325                 if (lcore_params[i].port_id == port &&
1326                                 lcore_params[i].queue_id > queue)
1327                         queue = lcore_params[i].queue_id;
1328         }
1329         return (uint8_t)(++queue);
1330 }
1331
1332 static int32_t
1333 init_lcore_rx_queues(void)
1334 {
1335         uint16_t i, nb_rx_queue;
1336         uint8_t lcore;
1337
1338         for (i = 0; i < nb_lcore_params; ++i) {
1339                 lcore = lcore_params[i].lcore_id;
1340                 nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
1341                 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1342                         printf("error: too many queues (%u) for lcore: %u\n",
1343                                         nb_rx_queue + 1, lcore);
1344                         return -1;
1345                 }
1346                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1347                         lcore_params[i].port_id;
1348                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1349                         lcore_params[i].queue_id;
1350                 lcore_conf[lcore].nb_rx_queue++;
1351         }
1352         return 0;
1353 }
1354
1355 /* display usage */
1356 static void
1357 print_usage(const char *prgname)
1358 {
1359         fprintf(stderr, "%s [EAL options] --"
1360                 " -p PORTMASK"
1361                 " [-P]"
1362                 " [-u PORTMASK]"
1363                 " [-j FRAMESIZE]"
1364                 " [-l]"
1365                 " [-w REPLAY_WINDOW_SIZE]"
1366                 " [-e]"
1367                 " [-a]"
1368                 " [-c]"
1369                 " [-s NUMBER_OF_MBUFS_IN_PKT_POOL]"
1370                 " -f CONFIG_FILE"
1371                 " --config (port,queue,lcore)[,(port,queue,lcore)]"
1372                 " [--single-sa SAIDX]"
1373                 " [--cryptodev_mask MASK]"
1374                 " [--transfer-mode MODE]"
1375                 " [--event-schedule-type TYPE]"
1376                 " [--" CMD_LINE_OPT_RX_OFFLOAD " RX_OFFLOAD_MASK]"
1377                 " [--" CMD_LINE_OPT_TX_OFFLOAD " TX_OFFLOAD_MASK]"
1378                 " [--" CMD_LINE_OPT_REASSEMBLE " REASSEMBLE_TABLE_SIZE]"
1379                 " [--" CMD_LINE_OPT_MTU " MTU]"
1380                 "\n\n"
1381                 "  -p PORTMASK: Hexadecimal bitmask of ports to configure\n"
1382                 "  -P : Enable promiscuous mode\n"
1383                 "  -u PORTMASK: Hexadecimal bitmask of unprotected ports\n"
1384                 "  -j FRAMESIZE: Data buffer size, minimum (and default)\n"
1385                 "     value: RTE_MBUF_DEFAULT_BUF_SIZE\n"
1386                 "  -l enables code-path that uses librte_ipsec\n"
1387                 "  -w REPLAY_WINDOW_SIZE specifies IPsec SQN replay window\n"
1388                 "     size for each SA\n"
1389                 "  -e enables ESN\n"
1390                 "  -a enables SA SQN atomic behaviour\n"
1391                 "  -c specifies inbound SAD cache size,\n"
1392                 "     zero value disables the cache (default value: 128)\n"
1393                 "  -s number of mbufs in packet pool, if not specified number\n"
1394                 "     of mbufs will be calculated based on number of cores,\n"
1395                 "     ports and crypto queues\n"
1396                 "  -f CONFIG_FILE: Configuration file\n"
1397                 "  --config (port,queue,lcore): Rx queue configuration. In poll\n"
1398                 "                               mode determines which queues from\n"
1399                 "                               which ports are mapped to which cores.\n"
1400                 "                               In event mode this option is not used\n"
1401                 "                               as packets are dynamically scheduled\n"
1402                 "                               to cores by HW.\n"
1403                 "  --single-sa SAIDX: In poll mode use single SA index for\n"
1404                 "                     outbound traffic, bypassing the SP\n"
1405                 "                     In event mode selects driver submode,\n"
1406                 "                     SA index value is ignored\n"
1407                 "  --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n"
1408                 "                         devices to configure\n"
1409                 "  --transfer-mode MODE\n"
1410                 "               \"poll\"  : Packet transfer via polling (default)\n"
1411                 "               \"event\" : Packet transfer via event device\n"
1412                 "  --event-schedule-type TYPE queue schedule type, used only when\n"
1413                 "                             transfer mode is set to event\n"
1414                 "               \"ordered\"  : Ordered (default)\n"
1415                 "               \"atomic\"   : Atomic\n"
1416                 "               \"parallel\" : Parallel\n"
1417                 "  --" CMD_LINE_OPT_RX_OFFLOAD
1418                 ": bitmask of the RX HW offload capabilities to enable/use\n"
1419                 "                         (DEV_RX_OFFLOAD_*)\n"
1420                 "  --" CMD_LINE_OPT_TX_OFFLOAD
1421                 ": bitmask of the TX HW offload capabilities to enable/use\n"
1422                 "                         (DEV_TX_OFFLOAD_*)\n"
1423                 "  --" CMD_LINE_OPT_REASSEMBLE " NUM"
1424                 ": max number of entries in reassemble(fragment) table\n"
1425                 "    (zero (default value) disables reassembly)\n"
1426                 "  --" CMD_LINE_OPT_MTU " MTU"
1427                 ": MTU value on all ports (default value: 1500)\n"
1428                 "    outgoing packets with bigger size will be fragmented\n"
1429                 "    incoming packets with bigger size will be discarded\n"
1430                 "  --" CMD_LINE_OPT_FRAG_TTL " FRAG_TTL_NS"
1431                 ": fragments lifetime in nanoseconds, default\n"
1432                 "    and maximum value is 10.000.000.000 ns (10 s)\n"
1433                 "\n",
1434                 prgname);
1435 }
1436
1437 static int
1438 parse_mask(const char *str, uint64_t *val)
1439 {
1440         char *end;
1441         unsigned long t;
1442
1443         errno = 0;
1444         t = strtoul(str, &end, 0);
1445         if (errno != 0 || end[0] != 0)
1446                 return -EINVAL;
1447
1448         *val = t;
1449         return 0;
1450 }
1451
1452 static int32_t
1453 parse_portmask(const char *portmask)
1454 {
1455         char *end = NULL;
1456         unsigned long pm;
1457
1458         /* parse hexadecimal string */
1459         pm = strtoul(portmask, &end, 16);
1460         if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1461                 return -1;
1462
1463         if ((pm == 0) && errno)
1464                 return -1;
1465
1466         return pm;
1467 }
1468
1469 static int64_t
1470 parse_decimal(const char *str)
1471 {
1472         char *end = NULL;
1473         uint64_t num;
1474
1475         num = strtoull(str, &end, 10);
1476         if ((str[0] == '\0') || (end == NULL) || (*end != '\0')
1477                 || num > INT64_MAX)
1478                 return -1;
1479
1480         return num;
1481 }
1482
1483 static int32_t
1484 parse_config(const char *q_arg)
1485 {
1486         char s[256];
1487         const char *p, *p0 = q_arg;
1488         char *end;
1489         enum fieldnames {
1490                 FLD_PORT = 0,
1491                 FLD_QUEUE,
1492                 FLD_LCORE,
1493                 _NUM_FLD
1494         };
1495         unsigned long int_fld[_NUM_FLD];
1496         char *str_fld[_NUM_FLD];
1497         int32_t i;
1498         uint32_t size;
1499
1500         nb_lcore_params = 0;
1501
1502         while ((p = strchr(p0, '(')) != NULL) {
1503                 ++p;
1504                 p0 = strchr(p, ')');
1505                 if (p0 == NULL)
1506                         return -1;
1507
1508                 size = p0 - p;
1509                 if (size >= sizeof(s))
1510                         return -1;
1511
1512                 snprintf(s, sizeof(s), "%.*s", size, p);
1513                 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1514                                 _NUM_FLD)
1515                         return -1;
1516                 for (i = 0; i < _NUM_FLD; i++) {
1517                         errno = 0;
1518                         int_fld[i] = strtoul(str_fld[i], &end, 0);
1519                         if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1520                                 return -1;
1521                 }
1522                 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1523                         printf("exceeded max number of lcore params: %hu\n",
1524                                 nb_lcore_params);
1525                         return -1;
1526                 }
1527                 lcore_params_array[nb_lcore_params].port_id =
1528                         (uint8_t)int_fld[FLD_PORT];
1529                 lcore_params_array[nb_lcore_params].queue_id =
1530                         (uint8_t)int_fld[FLD_QUEUE];
1531                 lcore_params_array[nb_lcore_params].lcore_id =
1532                         (uint8_t)int_fld[FLD_LCORE];
1533                 ++nb_lcore_params;
1534         }
1535         lcore_params = lcore_params_array;
1536         return 0;
1537 }
1538
1539 static void
1540 print_app_sa_prm(const struct app_sa_prm *prm)
1541 {
1542         printf("librte_ipsec usage: %s\n",
1543                 (prm->enable == 0) ? "disabled" : "enabled");
1544
1545         printf("replay window size: %u\n", prm->window_size);
1546         printf("ESN: %s\n", (prm->enable_esn == 0) ? "disabled" : "enabled");
1547         printf("SA flags: %#" PRIx64 "\n", prm->flags);
1548         printf("Frag TTL: %" PRIu64 " ns\n", frag_ttl_ns);
1549 }
1550
1551 static int
1552 parse_transfer_mode(struct eh_conf *conf, const char *optarg)
1553 {
1554         if (!strcmp(CMD_LINE_ARG_POLL, optarg))
1555                 conf->mode = EH_PKT_TRANSFER_MODE_POLL;
1556         else if (!strcmp(CMD_LINE_ARG_EVENT, optarg))
1557                 conf->mode = EH_PKT_TRANSFER_MODE_EVENT;
1558         else {
1559                 printf("Unsupported packet transfer mode\n");
1560                 return -EINVAL;
1561         }
1562
1563         return 0;
1564 }
1565
1566 static int
1567 parse_schedule_type(struct eh_conf *conf, const char *optarg)
1568 {
1569         struct eventmode_conf *em_conf = NULL;
1570
1571         /* Get eventmode conf */
1572         em_conf = conf->mode_params;
1573
1574         if (!strcmp(CMD_LINE_ARG_ORDERED, optarg))
1575                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED;
1576         else if (!strcmp(CMD_LINE_ARG_ATOMIC, optarg))
1577                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ATOMIC;
1578         else if (!strcmp(CMD_LINE_ARG_PARALLEL, optarg))
1579                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_PARALLEL;
1580         else {
1581                 printf("Unsupported queue schedule type\n");
1582                 return -EINVAL;
1583         }
1584
1585         return 0;
1586 }
1587
1588 static int32_t
1589 parse_args(int32_t argc, char **argv, struct eh_conf *eh_conf)
1590 {
1591         int opt;
1592         int64_t ret;
1593         char **argvopt;
1594         int32_t option_index;
1595         char *prgname = argv[0];
1596         int32_t f_present = 0;
1597
1598         argvopt = argv;
1599
1600         while ((opt = getopt_long(argc, argvopt, "aelp:Pu:f:j:w:c:s:",
1601                                 lgopts, &option_index)) != EOF) {
1602
1603                 switch (opt) {
1604                 case 'p':
1605                         enabled_port_mask = parse_portmask(optarg);
1606                         if (enabled_port_mask == 0) {
1607                                 printf("invalid portmask\n");
1608                                 print_usage(prgname);
1609                                 return -1;
1610                         }
1611                         break;
1612                 case 'P':
1613                         printf("Promiscuous mode selected\n");
1614                         promiscuous_on = 1;
1615                         break;
1616                 case 'u':
1617                         unprotected_port_mask = parse_portmask(optarg);
1618                         if (unprotected_port_mask == 0) {
1619                                 printf("invalid unprotected portmask\n");
1620                                 print_usage(prgname);
1621                                 return -1;
1622                         }
1623                         break;
1624                 case 'f':
1625                         if (f_present == 1) {
1626                                 printf("\"-f\" option present more than "
1627                                         "once!\n");
1628                                 print_usage(prgname);
1629                                 return -1;
1630                         }
1631                         cfgfile = optarg;
1632                         f_present = 1;
1633                         break;
1634
1635                 case 's':
1636                         ret = parse_decimal(optarg);
1637                         if (ret < 0) {
1638                                 printf("Invalid number of buffers in a pool: "
1639                                         "%s\n", optarg);
1640                                 print_usage(prgname);
1641                                 return -1;
1642                         }
1643
1644                         nb_bufs_in_pool = ret;
1645                         break;
1646
1647                 case 'j':
1648                         ret = parse_decimal(optarg);
1649                         if (ret < RTE_MBUF_DEFAULT_BUF_SIZE ||
1650                                         ret > UINT16_MAX) {
1651                                 printf("Invalid frame buffer size value: %s\n",
1652                                         optarg);
1653                                 print_usage(prgname);
1654                                 return -1;
1655                         }
1656                         frame_buf_size = ret;
1657                         printf("Custom frame buffer size %u\n", frame_buf_size);
1658                         break;
1659                 case 'l':
1660                         app_sa_prm.enable = 1;
1661                         break;
1662                 case 'w':
1663                         app_sa_prm.window_size = parse_decimal(optarg);
1664                         break;
1665                 case 'e':
1666                         app_sa_prm.enable_esn = 1;
1667                         break;
1668                 case 'a':
1669                         app_sa_prm.enable = 1;
1670                         app_sa_prm.flags |= RTE_IPSEC_SAFLAG_SQN_ATOM;
1671                         break;
1672                 case 'c':
1673                         ret = parse_decimal(optarg);
1674                         if (ret < 0) {
1675                                 printf("Invalid SA cache size: %s\n", optarg);
1676                                 print_usage(prgname);
1677                                 return -1;
1678                         }
1679                         app_sa_prm.cache_sz = ret;
1680                         break;
1681                 case CMD_LINE_OPT_CONFIG_NUM:
1682                         ret = parse_config(optarg);
1683                         if (ret) {
1684                                 printf("Invalid config\n");
1685                                 print_usage(prgname);
1686                                 return -1;
1687                         }
1688                         break;
1689                 case CMD_LINE_OPT_SINGLE_SA_NUM:
1690                         ret = parse_decimal(optarg);
1691                         if (ret == -1 || ret > UINT32_MAX) {
1692                                 printf("Invalid argument[sa_idx]\n");
1693                                 print_usage(prgname);
1694                                 return -1;
1695                         }
1696
1697                         /* else */
1698                         single_sa = 1;
1699                         single_sa_idx = ret;
1700                         eh_conf->ipsec_mode = EH_IPSEC_MODE_TYPE_DRIVER;
1701                         printf("Configured with single SA index %u\n",
1702                                         single_sa_idx);
1703                         break;
1704                 case CMD_LINE_OPT_CRYPTODEV_MASK_NUM:
1705                         ret = parse_portmask(optarg);
1706                         if (ret == -1) {
1707                                 printf("Invalid argument[portmask]\n");
1708                                 print_usage(prgname);
1709                                 return -1;
1710                         }
1711
1712                         /* else */
1713                         enabled_cryptodev_mask = ret;
1714                         break;
1715
1716                 case CMD_LINE_OPT_TRANSFER_MODE_NUM:
1717                         ret = parse_transfer_mode(eh_conf, optarg);
1718                         if (ret < 0) {
1719                                 printf("Invalid packet transfer mode\n");
1720                                 print_usage(prgname);
1721                                 return -1;
1722                         }
1723                         break;
1724
1725                 case CMD_LINE_OPT_SCHEDULE_TYPE_NUM:
1726                         ret = parse_schedule_type(eh_conf, optarg);
1727                         if (ret < 0) {
1728                                 printf("Invalid queue schedule type\n");
1729                                 print_usage(prgname);
1730                                 return -1;
1731                         }
1732                         break;
1733
1734                 case CMD_LINE_OPT_RX_OFFLOAD_NUM:
1735                         ret = parse_mask(optarg, &dev_rx_offload);
1736                         if (ret != 0) {
1737                                 printf("Invalid argument for \'%s\': %s\n",
1738                                         CMD_LINE_OPT_RX_OFFLOAD, optarg);
1739                                 print_usage(prgname);
1740                                 return -1;
1741                         }
1742                         break;
1743                 case CMD_LINE_OPT_TX_OFFLOAD_NUM:
1744                         ret = parse_mask(optarg, &dev_tx_offload);
1745                         if (ret != 0) {
1746                                 printf("Invalid argument for \'%s\': %s\n",
1747                                         CMD_LINE_OPT_TX_OFFLOAD, optarg);
1748                                 print_usage(prgname);
1749                                 return -1;
1750                         }
1751                         break;
1752                 case CMD_LINE_OPT_REASSEMBLE_NUM:
1753                         ret = parse_decimal(optarg);
1754                         if (ret < 0 || ret > UINT32_MAX) {
1755                                 printf("Invalid argument for \'%s\': %s\n",
1756                                         CMD_LINE_OPT_REASSEMBLE, optarg);
1757                                 print_usage(prgname);
1758                                 return -1;
1759                         }
1760                         frag_tbl_sz = ret;
1761                         break;
1762                 case CMD_LINE_OPT_MTU_NUM:
1763                         ret = parse_decimal(optarg);
1764                         if (ret < 0 || ret > RTE_IPV4_MAX_PKT_LEN) {
1765                                 printf("Invalid argument for \'%s\': %s\n",
1766                                         CMD_LINE_OPT_MTU, optarg);
1767                                 print_usage(prgname);
1768                                 return -1;
1769                         }
1770                         mtu_size = ret;
1771                         break;
1772                 case CMD_LINE_OPT_FRAG_TTL_NUM:
1773                         ret = parse_decimal(optarg);
1774                         if (ret < 0 || ret > MAX_FRAG_TTL_NS) {
1775                                 printf("Invalid argument for \'%s\': %s\n",
1776                                         CMD_LINE_OPT_MTU, optarg);
1777                                 print_usage(prgname);
1778                                 return -1;
1779                         }
1780                         frag_ttl_ns = ret;
1781                         break;
1782                 default:
1783                         print_usage(prgname);
1784                         return -1;
1785                 }
1786         }
1787
1788         if (f_present == 0) {
1789                 printf("Mandatory option \"-f\" not present\n");
1790                 return -1;
1791         }
1792
1793         /* check do we need to enable multi-seg support */
1794         if (multi_seg_required()) {
1795                 /* legacy mode doesn't support multi-seg */
1796                 app_sa_prm.enable = 1;
1797                 printf("frame buf size: %u, mtu: %u, "
1798                         "number of reassemble entries: %u\n"
1799                         "multi-segment support is required\n",
1800                         frame_buf_size, mtu_size, frag_tbl_sz);
1801         }
1802
1803         print_app_sa_prm(&app_sa_prm);
1804
1805         if (optind >= 0)
1806                 argv[optind-1] = prgname;
1807
1808         ret = optind-1;
1809         optind = 1; /* reset getopt lib */
1810         return ret;
1811 }
1812
1813 static void
1814 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
1815 {
1816         char buf[RTE_ETHER_ADDR_FMT_SIZE];
1817         rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
1818         printf("%s%s", name, buf);
1819 }
1820
1821 /*
1822  * Update destination ethaddr for the port.
1823  */
1824 int
1825 add_dst_ethaddr(uint16_t port, const struct rte_ether_addr *addr)
1826 {
1827         if (port >= RTE_DIM(ethaddr_tbl))
1828                 return -EINVAL;
1829
1830         ethaddr_tbl[port].dst = ETHADDR_TO_UINT64(addr);
1831         return 0;
1832 }
1833
1834 /* Check the link status of all ports in up to 9s, and print them finally */
1835 static void
1836 check_all_ports_link_status(uint32_t port_mask)
1837 {
1838 #define CHECK_INTERVAL 100 /* 100ms */
1839 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1840         uint16_t portid;
1841         uint8_t count, all_ports_up, print_flag = 0;
1842         struct rte_eth_link link;
1843         int ret;
1844         char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
1845
1846         printf("\nChecking link status");
1847         fflush(stdout);
1848         for (count = 0; count <= MAX_CHECK_TIME; count++) {
1849                 all_ports_up = 1;
1850                 RTE_ETH_FOREACH_DEV(portid) {
1851                         if ((port_mask & (1 << portid)) == 0)
1852                                 continue;
1853                         memset(&link, 0, sizeof(link));
1854                         ret = rte_eth_link_get_nowait(portid, &link);
1855                         if (ret < 0) {
1856                                 all_ports_up = 0;
1857                                 if (print_flag == 1)
1858                                         printf("Port %u link get failed: %s\n",
1859                                                 portid, rte_strerror(-ret));
1860                                 continue;
1861                         }
1862                         /* print link status if flag set */
1863                         if (print_flag == 1) {
1864                                 rte_eth_link_to_str(link_status_text,
1865                                         sizeof(link_status_text), &link);
1866                                 printf("Port %d %s\n", portid,
1867                                        link_status_text);
1868                                 continue;
1869                         }
1870                         /* clear all_ports_up flag if any link down */
1871                         if (link.link_status == ETH_LINK_DOWN) {
1872                                 all_ports_up = 0;
1873                                 break;
1874                         }
1875                 }
1876                 /* after finally printing all link status, get out */
1877                 if (print_flag == 1)
1878                         break;
1879
1880                 if (all_ports_up == 0) {
1881                         printf(".");
1882                         fflush(stdout);
1883                         rte_delay_ms(CHECK_INTERVAL);
1884                 }
1885
1886                 /* set the print_flag if all ports up or timeout */
1887                 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1888                         print_flag = 1;
1889                         printf("done\n");
1890                 }
1891         }
1892 }
1893
1894 static int32_t
1895 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1896                 uint16_t qp, struct lcore_params *params,
1897                 struct ipsec_ctx *ipsec_ctx,
1898                 const struct rte_cryptodev_capabilities *cipher,
1899                 const struct rte_cryptodev_capabilities *auth,
1900                 const struct rte_cryptodev_capabilities *aead)
1901 {
1902         int32_t ret = 0;
1903         unsigned long i;
1904         struct cdev_key key = { 0 };
1905
1906         key.lcore_id = params->lcore_id;
1907         if (cipher)
1908                 key.cipher_algo = cipher->sym.cipher.algo;
1909         if (auth)
1910                 key.auth_algo = auth->sym.auth.algo;
1911         if (aead)
1912                 key.aead_algo = aead->sym.aead.algo;
1913
1914         ret = rte_hash_lookup(map, &key);
1915         if (ret != -ENOENT)
1916                 return 0;
1917
1918         for (i = 0; i < ipsec_ctx->nb_qps; i++)
1919                 if (ipsec_ctx->tbl[i].id == cdev_id)
1920                         break;
1921
1922         if (i == ipsec_ctx->nb_qps) {
1923                 if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1924                         printf("Maximum number of crypto devices assigned to "
1925                                 "a core, increase MAX_QP_PER_LCORE value\n");
1926                         return 0;
1927                 }
1928                 ipsec_ctx->tbl[i].id = cdev_id;
1929                 ipsec_ctx->tbl[i].qp = qp;
1930                 ipsec_ctx->nb_qps++;
1931                 printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1932                                 "(cdev_id_qp %lu)\n", str, key.lcore_id,
1933                                 cdev_id, qp, i);
1934         }
1935
1936         ret = rte_hash_add_key_data(map, &key, (void *)i);
1937         if (ret < 0) {
1938                 printf("Faled to insert cdev mapping for (lcore %u, "
1939                                 "cdev %u, qp %u), errno %d\n",
1940                                 key.lcore_id, ipsec_ctx->tbl[i].id,
1941                                 ipsec_ctx->tbl[i].qp, ret);
1942                 return 0;
1943         }
1944
1945         return 1;
1946 }
1947
1948 static int32_t
1949 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1950                 uint16_t qp, struct lcore_params *params)
1951 {
1952         int32_t ret = 0;
1953         const struct rte_cryptodev_capabilities *i, *j;
1954         struct rte_hash *map;
1955         struct lcore_conf *qconf;
1956         struct ipsec_ctx *ipsec_ctx;
1957         const char *str;
1958
1959         qconf = &lcore_conf[params->lcore_id];
1960
1961         if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1962                 map = cdev_map_out;
1963                 ipsec_ctx = &qconf->outbound;
1964                 str = "Outbound";
1965         } else {
1966                 map = cdev_map_in;
1967                 ipsec_ctx = &qconf->inbound;
1968                 str = "Inbound";
1969         }
1970
1971         /* Required cryptodevs with operation chainning */
1972         if (!(dev_info->feature_flags &
1973                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
1974                 return ret;
1975
1976         for (i = dev_info->capabilities;
1977                         i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
1978                 if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1979                         continue;
1980
1981                 if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1982                         ret |= add_mapping(map, str, cdev_id, qp, params,
1983                                         ipsec_ctx, NULL, NULL, i);
1984                         continue;
1985                 }
1986
1987                 if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
1988                         continue;
1989
1990                 for (j = dev_info->capabilities;
1991                                 j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
1992                         if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1993                                 continue;
1994
1995                         if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
1996                                 continue;
1997
1998                         ret |= add_mapping(map, str, cdev_id, qp, params,
1999                                                 ipsec_ctx, i, j, NULL);
2000                 }
2001         }
2002
2003         return ret;
2004 }
2005
2006 /* Check if the device is enabled by cryptodev_mask */
2007 static int
2008 check_cryptodev_mask(uint8_t cdev_id)
2009 {
2010         if (enabled_cryptodev_mask & (1 << cdev_id))
2011                 return 0;
2012
2013         return -1;
2014 }
2015
2016 static uint16_t
2017 cryptodevs_init(uint16_t req_queue_num)
2018 {
2019         struct rte_cryptodev_config dev_conf;
2020         struct rte_cryptodev_qp_conf qp_conf;
2021         uint16_t idx, max_nb_qps, qp, total_nb_qps, i;
2022         int16_t cdev_id;
2023         struct rte_hash_parameters params = { 0 };
2024
2025         const uint64_t mseg_flag = multi_seg_required() ?
2026                                 RTE_CRYPTODEV_FF_IN_PLACE_SGL : 0;
2027
2028         params.entries = CDEV_MAP_ENTRIES;
2029         params.key_len = sizeof(struct cdev_key);
2030         params.hash_func = rte_jhash;
2031         params.hash_func_init_val = 0;
2032         params.socket_id = rte_socket_id();
2033
2034         params.name = "cdev_map_in";
2035         cdev_map_in = rte_hash_create(&params);
2036         if (cdev_map_in == NULL)
2037                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
2038                                 rte_errno);
2039
2040         params.name = "cdev_map_out";
2041         cdev_map_out = rte_hash_create(&params);
2042         if (cdev_map_out == NULL)
2043                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
2044                                 rte_errno);
2045
2046         printf("lcore/cryptodev/qp mappings:\n");
2047
2048         idx = 0;
2049         total_nb_qps = 0;
2050         for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
2051                 struct rte_cryptodev_info cdev_info;
2052
2053                 if (check_cryptodev_mask((uint8_t)cdev_id))
2054                         continue;
2055
2056                 rte_cryptodev_info_get(cdev_id, &cdev_info);
2057
2058                 if ((mseg_flag & cdev_info.feature_flags) != mseg_flag)
2059                         rte_exit(EXIT_FAILURE,
2060                                 "Device %hd does not support \'%s\' feature\n",
2061                                 cdev_id,
2062                                 rte_cryptodev_get_feature_name(mseg_flag));
2063
2064                 if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
2065                         max_nb_qps = cdev_info.max_nb_queue_pairs;
2066                 else
2067                         max_nb_qps = nb_lcore_params;
2068
2069                 qp = 0;
2070                 i = 0;
2071                 while (qp < max_nb_qps && i < nb_lcore_params) {
2072                         if (add_cdev_mapping(&cdev_info, cdev_id, qp,
2073                                                 &lcore_params[idx]))
2074                                 qp++;
2075                         idx++;
2076                         idx = idx % nb_lcore_params;
2077                         i++;
2078                 }
2079
2080                 qp = RTE_MIN(max_nb_qps, RTE_MAX(req_queue_num, qp));
2081                 if (qp == 0)
2082                         continue;
2083
2084                 total_nb_qps += qp;
2085                 dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
2086                 dev_conf.nb_queue_pairs = qp;
2087                 dev_conf.ff_disable = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO;
2088
2089                 uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions;
2090                 if (dev_max_sess != 0 &&
2091                                 dev_max_sess < get_nb_crypto_sessions())
2092                         rte_exit(EXIT_FAILURE,
2093                                 "Device does not support at least %u "
2094                                 "sessions", get_nb_crypto_sessions());
2095
2096                 if (rte_cryptodev_configure(cdev_id, &dev_conf))
2097                         rte_panic("Failed to initialize cryptodev %u\n",
2098                                         cdev_id);
2099
2100                 qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
2101                 qp_conf.mp_session =
2102                         socket_ctx[dev_conf.socket_id].session_pool;
2103                 qp_conf.mp_session_private =
2104                         socket_ctx[dev_conf.socket_id].session_priv_pool;
2105                 for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
2106                         if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
2107                                         &qp_conf, dev_conf.socket_id))
2108                                 rte_panic("Failed to setup queue %u for "
2109                                                 "cdev_id %u\n", 0, cdev_id);
2110
2111                 if (rte_cryptodev_start(cdev_id))
2112                         rte_panic("Failed to start cryptodev %u\n",
2113                                         cdev_id);
2114         }
2115
2116         printf("\n");
2117
2118         return total_nb_qps;
2119 }
2120
2121 static void
2122 port_init(uint16_t portid, uint64_t req_rx_offloads, uint64_t req_tx_offloads)
2123 {
2124         uint32_t frame_size;
2125         struct rte_eth_dev_info dev_info;
2126         struct rte_eth_txconf *txconf;
2127         uint16_t nb_tx_queue, nb_rx_queue;
2128         uint16_t tx_queueid, rx_queueid, queue, lcore_id;
2129         int32_t ret, socket_id;
2130         struct lcore_conf *qconf;
2131         struct rte_ether_addr ethaddr;
2132         struct rte_eth_conf local_port_conf = port_conf;
2133
2134         ret = rte_eth_dev_info_get(portid, &dev_info);
2135         if (ret != 0)
2136                 rte_exit(EXIT_FAILURE,
2137                         "Error during getting device (port %u) info: %s\n",
2138                         portid, strerror(-ret));
2139
2140         /* limit allowed HW offloafs, as user requested */
2141         dev_info.rx_offload_capa &= dev_rx_offload;
2142         dev_info.tx_offload_capa &= dev_tx_offload;
2143
2144         printf("Configuring device port %u:\n", portid);
2145
2146         ret = rte_eth_macaddr_get(portid, &ethaddr);
2147         if (ret != 0)
2148                 rte_exit(EXIT_FAILURE,
2149                         "Error getting MAC address (port %u): %s\n",
2150                         portid, rte_strerror(-ret));
2151
2152         ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(&ethaddr);
2153         print_ethaddr("Address: ", &ethaddr);
2154         printf("\n");
2155
2156         nb_rx_queue = get_port_nb_rx_queues(portid);
2157         nb_tx_queue = nb_lcores;
2158
2159         if (nb_rx_queue > dev_info.max_rx_queues)
2160                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
2161                                 "(max rx queue is %u)\n",
2162                                 nb_rx_queue, dev_info.max_rx_queues);
2163
2164         if (nb_tx_queue > dev_info.max_tx_queues)
2165                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
2166                                 "(max tx queue is %u)\n",
2167                                 nb_tx_queue, dev_info.max_tx_queues);
2168
2169         printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
2170                         nb_rx_queue, nb_tx_queue);
2171
2172         frame_size = MTU_TO_FRAMELEN(mtu_size);
2173         if (frame_size > local_port_conf.rxmode.max_rx_pkt_len)
2174                 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2175         local_port_conf.rxmode.max_rx_pkt_len = frame_size;
2176
2177         if (multi_seg_required()) {
2178                 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_SCATTER;
2179                 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS;
2180         }
2181
2182         local_port_conf.rxmode.offloads |= req_rx_offloads;
2183         local_port_conf.txmode.offloads |= req_tx_offloads;
2184
2185         /* Check that all required capabilities are supported */
2186         if ((local_port_conf.rxmode.offloads & dev_info.rx_offload_capa) !=
2187                         local_port_conf.rxmode.offloads)
2188                 rte_exit(EXIT_FAILURE,
2189                         "Error: port %u required RX offloads: 0x%" PRIx64
2190                         ", avaialbe RX offloads: 0x%" PRIx64 "\n",
2191                         portid, local_port_conf.rxmode.offloads,
2192                         dev_info.rx_offload_capa);
2193
2194         if ((local_port_conf.txmode.offloads & dev_info.tx_offload_capa) !=
2195                         local_port_conf.txmode.offloads)
2196                 rte_exit(EXIT_FAILURE,
2197                         "Error: port %u required TX offloads: 0x%" PRIx64
2198                         ", avaialbe TX offloads: 0x%" PRIx64 "\n",
2199                         portid, local_port_conf.txmode.offloads,
2200                         dev_info.tx_offload_capa);
2201
2202         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
2203                 local_port_conf.txmode.offloads |=
2204                         DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2205
2206         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM)
2207                 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_IPV4_CKSUM;
2208
2209         printf("port %u configurng rx_offloads=0x%" PRIx64
2210                 ", tx_offloads=0x%" PRIx64 "\n",
2211                 portid, local_port_conf.rxmode.offloads,
2212                 local_port_conf.txmode.offloads);
2213
2214         local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
2215                 dev_info.flow_type_rss_offloads;
2216         if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
2217                         port_conf.rx_adv_conf.rss_conf.rss_hf) {
2218                 printf("Port %u modified RSS hash function based on hardware support,"
2219                         "requested:%#"PRIx64" configured:%#"PRIx64"\n",
2220                         portid,
2221                         port_conf.rx_adv_conf.rss_conf.rss_hf,
2222                         local_port_conf.rx_adv_conf.rss_conf.rss_hf);
2223         }
2224
2225         ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
2226                         &local_port_conf);
2227         if (ret < 0)
2228                 rte_exit(EXIT_FAILURE, "Cannot configure device: "
2229                                 "err=%d, port=%d\n", ret, portid);
2230
2231         ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);
2232         if (ret < 0)
2233                 rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: "
2234                                 "err=%d, port=%d\n", ret, portid);
2235
2236         /* init one TX queue per lcore */
2237         tx_queueid = 0;
2238         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2239                 if (rte_lcore_is_enabled(lcore_id) == 0)
2240                         continue;
2241
2242                 if (numa_on)
2243                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2244                 else
2245                         socket_id = 0;
2246
2247                 /* init TX queue */
2248                 printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
2249
2250                 txconf = &dev_info.default_txconf;
2251                 txconf->offloads = local_port_conf.txmode.offloads;
2252
2253                 ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
2254                                 socket_id, txconf);
2255                 if (ret < 0)
2256                         rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
2257                                         "err=%d, port=%d\n", ret, portid);
2258
2259                 qconf = &lcore_conf[lcore_id];
2260                 qconf->tx_queue_id[portid] = tx_queueid;
2261
2262                 /* Pre-populate pkt offloads based on capabilities */
2263                 qconf->outbound.ipv4_offloads = PKT_TX_IPV4;
2264                 qconf->outbound.ipv6_offloads = PKT_TX_IPV6;
2265                 if (local_port_conf.txmode.offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
2266                         qconf->outbound.ipv4_offloads |= PKT_TX_IP_CKSUM;
2267
2268                 tx_queueid++;
2269
2270                 /* init RX queues */
2271                 for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
2272                         struct rte_eth_rxconf rxq_conf;
2273
2274                         if (portid != qconf->rx_queue_list[queue].port_id)
2275                                 continue;
2276
2277                         rx_queueid = qconf->rx_queue_list[queue].queue_id;
2278
2279                         printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
2280                                         socket_id);
2281
2282                         rxq_conf = dev_info.default_rxconf;
2283                         rxq_conf.offloads = local_port_conf.rxmode.offloads;
2284                         ret = rte_eth_rx_queue_setup(portid, rx_queueid,
2285                                         nb_rxd, socket_id, &rxq_conf,
2286                                         socket_ctx[socket_id].mbuf_pool);
2287                         if (ret < 0)
2288                                 rte_exit(EXIT_FAILURE,
2289                                         "rte_eth_rx_queue_setup: err=%d, "
2290                                         "port=%d\n", ret, portid);
2291                 }
2292         }
2293         printf("\n");
2294 }
2295
2296 static size_t
2297 max_session_size(void)
2298 {
2299         size_t max_sz, sz;
2300         void *sec_ctx;
2301         int16_t cdev_id, port_id, n;
2302
2303         max_sz = 0;
2304         n =  rte_cryptodev_count();
2305         for (cdev_id = 0; cdev_id != n; cdev_id++) {
2306                 sz = rte_cryptodev_sym_get_private_session_size(cdev_id);
2307                 if (sz > max_sz)
2308                         max_sz = sz;
2309                 /*
2310                  * If crypto device is security capable, need to check the
2311                  * size of security session as well.
2312                  */
2313
2314                 /* Get security context of the crypto device */
2315                 sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id);
2316                 if (sec_ctx == NULL)
2317                         continue;
2318
2319                 /* Get size of security session */
2320                 sz = rte_security_session_get_size(sec_ctx);
2321                 if (sz > max_sz)
2322                         max_sz = sz;
2323         }
2324
2325         RTE_ETH_FOREACH_DEV(port_id) {
2326                 if ((enabled_port_mask & (1 << port_id)) == 0)
2327                         continue;
2328
2329                 sec_ctx = rte_eth_dev_get_sec_ctx(port_id);
2330                 if (sec_ctx == NULL)
2331                         continue;
2332
2333                 sz = rte_security_session_get_size(sec_ctx);
2334                 if (sz > max_sz)
2335                         max_sz = sz;
2336         }
2337
2338         return max_sz;
2339 }
2340
2341 static void
2342 session_pool_init(struct socket_ctx *ctx, int32_t socket_id, size_t sess_sz)
2343 {
2344         char mp_name[RTE_MEMPOOL_NAMESIZE];
2345         struct rte_mempool *sess_mp;
2346         uint32_t nb_sess;
2347
2348         snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2349                         "sess_mp_%u", socket_id);
2350         nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ *
2351                 rte_lcore_count());
2352         sess_mp = rte_cryptodev_sym_session_pool_create(
2353                         mp_name, nb_sess, sess_sz, CDEV_MP_CACHE_SZ, 0,
2354                         socket_id);
2355         ctx->session_pool = sess_mp;
2356
2357         if (ctx->session_pool == NULL)
2358                 rte_exit(EXIT_FAILURE,
2359                         "Cannot init session pool on socket %d\n", socket_id);
2360         else
2361                 printf("Allocated session pool on socket %d\n", socket_id);
2362 }
2363
2364 static void
2365 session_priv_pool_init(struct socket_ctx *ctx, int32_t socket_id,
2366         size_t sess_sz)
2367 {
2368         char mp_name[RTE_MEMPOOL_NAMESIZE];
2369         struct rte_mempool *sess_mp;
2370         uint32_t nb_sess;
2371
2372         snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2373                         "sess_mp_priv_%u", socket_id);
2374         nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ *
2375                 rte_lcore_count());
2376         sess_mp = rte_mempool_create(mp_name,
2377                         nb_sess,
2378                         sess_sz,
2379                         CDEV_MP_CACHE_SZ,
2380                         0, NULL, NULL, NULL,
2381                         NULL, socket_id,
2382                         0);
2383         ctx->session_priv_pool = sess_mp;
2384
2385         if (ctx->session_priv_pool == NULL)
2386                 rte_exit(EXIT_FAILURE,
2387                         "Cannot init session priv pool on socket %d\n",
2388                         socket_id);
2389         else
2390                 printf("Allocated session priv pool on socket %d\n",
2391                         socket_id);
2392 }
2393
2394 static void
2395 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
2396 {
2397         char s[64];
2398         int32_t ms;
2399
2400         snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
2401         ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
2402                         MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
2403                         frame_buf_size, socket_id);
2404
2405         /*
2406          * if multi-segment support is enabled, then create a pool
2407          * for indirect mbufs.
2408          */
2409         ms = multi_seg_required();
2410         if (ms != 0) {
2411                 snprintf(s, sizeof(s), "mbuf_pool_indir_%d", socket_id);
2412                 ctx->mbuf_pool_indir = rte_pktmbuf_pool_create(s, nb_mbuf,
2413                         MEMPOOL_CACHE_SIZE, 0, 0, socket_id);
2414         }
2415
2416         if (ctx->mbuf_pool == NULL || (ms != 0 && ctx->mbuf_pool_indir == NULL))
2417                 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
2418                                 socket_id);
2419         else
2420                 printf("Allocated mbuf pool on socket %d\n", socket_id);
2421 }
2422
2423 static inline int
2424 inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md)
2425 {
2426         struct ipsec_sa *sa;
2427
2428         /* For inline protocol processing, the metadata in the event will
2429          * uniquely identify the security session which raised the event.
2430          * Application would then need the userdata it had registered with the
2431          * security session to process the event.
2432          */
2433
2434         sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md);
2435
2436         if (sa == NULL) {
2437                 /* userdata could not be retrieved */
2438                 return -1;
2439         }
2440
2441         /* Sequence number over flow. SA need to be re-established */
2442         RTE_SET_USED(sa);
2443         return 0;
2444 }
2445
2446 static int
2447 inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type,
2448                  void *param, void *ret_param)
2449 {
2450         uint64_t md;
2451         struct rte_eth_event_ipsec_desc *event_desc = NULL;
2452         struct rte_security_ctx *ctx = (struct rte_security_ctx *)
2453                                         rte_eth_dev_get_sec_ctx(port_id);
2454
2455         RTE_SET_USED(param);
2456
2457         if (type != RTE_ETH_EVENT_IPSEC)
2458                 return -1;
2459
2460         event_desc = ret_param;
2461         if (event_desc == NULL) {
2462                 printf("Event descriptor not set\n");
2463                 return -1;
2464         }
2465
2466         md = event_desc->metadata;
2467
2468         if (event_desc->subtype == RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW)
2469                 return inline_ipsec_event_esn_overflow(ctx, md);
2470         else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) {
2471                 printf("Invalid IPsec event reported\n");
2472                 return -1;
2473         }
2474
2475         return -1;
2476 }
2477
2478 static uint16_t
2479 rx_callback(__rte_unused uint16_t port, __rte_unused uint16_t queue,
2480         struct rte_mbuf *pkt[], uint16_t nb_pkts,
2481         __rte_unused uint16_t max_pkts, void *user_param)
2482 {
2483         uint64_t tm;
2484         uint32_t i, k;
2485         struct lcore_conf *lc;
2486         struct rte_mbuf *mb;
2487         struct rte_ether_hdr *eth;
2488
2489         lc = user_param;
2490         k = 0;
2491         tm = 0;
2492
2493         for (i = 0; i != nb_pkts; i++) {
2494
2495                 mb = pkt[i];
2496                 eth = rte_pktmbuf_mtod(mb, struct rte_ether_hdr *);
2497                 if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
2498
2499                         struct rte_ipv4_hdr *iph;
2500
2501                         iph = (struct rte_ipv4_hdr *)(eth + 1);
2502                         if (rte_ipv4_frag_pkt_is_fragmented(iph)) {
2503
2504                                 mb->l2_len = sizeof(*eth);
2505                                 mb->l3_len = sizeof(*iph);
2506                                 tm = (tm != 0) ? tm : rte_rdtsc();
2507                                 mb = rte_ipv4_frag_reassemble_packet(
2508                                         lc->frag.tbl, &lc->frag.dr,
2509                                         mb, tm, iph);
2510
2511                                 if (mb != NULL) {
2512                                         /* fix ip cksum after reassemble. */
2513                                         iph = rte_pktmbuf_mtod_offset(mb,
2514                                                 struct rte_ipv4_hdr *,
2515                                                 mb->l2_len);
2516                                         iph->hdr_checksum = 0;
2517                                         iph->hdr_checksum = rte_ipv4_cksum(iph);
2518                                 }
2519                         }
2520                 } else if (eth->ether_type ==
2521                                 rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
2522
2523                         struct rte_ipv6_hdr *iph;
2524                         struct ipv6_extension_fragment *fh;
2525
2526                         iph = (struct rte_ipv6_hdr *)(eth + 1);
2527                         fh = rte_ipv6_frag_get_ipv6_fragment_header(iph);
2528                         if (fh != NULL) {
2529                                 mb->l2_len = sizeof(*eth);
2530                                 mb->l3_len = (uintptr_t)fh - (uintptr_t)iph +
2531                                         sizeof(*fh);
2532                                 tm = (tm != 0) ? tm : rte_rdtsc();
2533                                 mb = rte_ipv6_frag_reassemble_packet(
2534                                         lc->frag.tbl, &lc->frag.dr,
2535                                         mb, tm, iph, fh);
2536                                 if (mb != NULL)
2537                                         /* fix l3_len after reassemble. */
2538                                         mb->l3_len = mb->l3_len - sizeof(*fh);
2539                         }
2540                 }
2541
2542                 pkt[k] = mb;
2543                 k += (mb != NULL);
2544         }
2545
2546         /* some fragments were encountered, drain death row */
2547         if (tm != 0)
2548                 rte_ip_frag_free_death_row(&lc->frag.dr, 0);
2549
2550         return k;
2551 }
2552
2553
2554 static int
2555 reassemble_lcore_init(struct lcore_conf *lc, uint32_t cid)
2556 {
2557         int32_t sid;
2558         uint32_t i;
2559         uint64_t frag_cycles;
2560         const struct lcore_rx_queue *rxq;
2561         const struct rte_eth_rxtx_callback *cb;
2562
2563         /* create fragment table */
2564         sid = rte_lcore_to_socket_id(cid);
2565         frag_cycles = (rte_get_tsc_hz() + NS_PER_S - 1) /
2566                 NS_PER_S * frag_ttl_ns;
2567
2568         lc->frag.tbl = rte_ip_frag_table_create(frag_tbl_sz,
2569                 FRAG_TBL_BUCKET_ENTRIES, frag_tbl_sz, frag_cycles, sid);
2570         if (lc->frag.tbl == NULL) {
2571                 printf("%s(%u): failed to create fragment table of size: %u, "
2572                         "error code: %d\n",
2573                         __func__, cid, frag_tbl_sz, rte_errno);
2574                 return -ENOMEM;
2575         }
2576
2577         /* setup reassemble RX callbacks for all queues */
2578         for (i = 0; i != lc->nb_rx_queue; i++) {
2579
2580                 rxq = lc->rx_queue_list + i;
2581                 cb = rte_eth_add_rx_callback(rxq->port_id, rxq->queue_id,
2582                         rx_callback, lc);
2583                 if (cb == NULL) {
2584                         printf("%s(%u): failed to install RX callback for "
2585                                 "portid=%u, queueid=%u, error code: %d\n",
2586                                 __func__, cid,
2587                                 rxq->port_id, rxq->queue_id, rte_errno);
2588                         return -ENOMEM;
2589                 }
2590         }
2591
2592         return 0;
2593 }
2594
2595 static int
2596 reassemble_init(void)
2597 {
2598         int32_t rc;
2599         uint32_t i, lc;
2600
2601         rc = 0;
2602         for (i = 0; i != nb_lcore_params; i++) {
2603                 lc = lcore_params[i].lcore_id;
2604                 rc = reassemble_lcore_init(lcore_conf + lc, lc);
2605                 if (rc != 0)
2606                         break;
2607         }
2608
2609         return rc;
2610 }
2611
2612 static void
2613 create_default_ipsec_flow(uint16_t port_id, uint64_t rx_offloads)
2614 {
2615         struct rte_flow_action action[2];
2616         struct rte_flow_item pattern[2];
2617         struct rte_flow_attr attr = {0};
2618         struct rte_flow_error err;
2619         struct rte_flow *flow;
2620         int ret;
2621
2622         if (!(rx_offloads & DEV_RX_OFFLOAD_SECURITY))
2623                 return;
2624
2625         /* Add the default rte_flow to enable SECURITY for all ESP packets */
2626
2627         pattern[0].type = RTE_FLOW_ITEM_TYPE_ESP;
2628         pattern[0].spec = NULL;
2629         pattern[0].mask = NULL;
2630         pattern[0].last = NULL;
2631         pattern[1].type = RTE_FLOW_ITEM_TYPE_END;
2632
2633         action[0].type = RTE_FLOW_ACTION_TYPE_SECURITY;
2634         action[0].conf = NULL;
2635         action[1].type = RTE_FLOW_ACTION_TYPE_END;
2636         action[1].conf = NULL;
2637
2638         attr.ingress = 1;
2639
2640         ret = rte_flow_validate(port_id, &attr, pattern, action, &err);
2641         if (ret)
2642                 return;
2643
2644         flow = rte_flow_create(port_id, &attr, pattern, action, &err);
2645         if (flow == NULL)
2646                 return;
2647
2648         flow_info_tbl[port_id].rx_def_flow = flow;
2649         RTE_LOG(INFO, IPSEC,
2650                 "Created default flow enabling SECURITY for all ESP traffic on port %d\n",
2651                 port_id);
2652 }
2653
2654 static void
2655 signal_handler(int signum)
2656 {
2657         if (signum == SIGINT || signum == SIGTERM) {
2658                 printf("\n\nSignal %d received, preparing to exit...\n",
2659                                 signum);
2660                 force_quit = true;
2661         }
2662 }
2663
2664 static void
2665 ev_mode_sess_verify(struct ipsec_sa *sa, int nb_sa)
2666 {
2667         struct rte_ipsec_session *ips;
2668         int32_t i;
2669
2670         if (!sa || !nb_sa)
2671                 return;
2672
2673         for (i = 0; i < nb_sa; i++) {
2674                 ips = ipsec_get_primary_session(&sa[i]);
2675                 if (ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL)
2676                         rte_exit(EXIT_FAILURE, "Event mode supports only "
2677                                  "inline protocol sessions\n");
2678         }
2679
2680 }
2681
2682 static int32_t
2683 check_event_mode_params(struct eh_conf *eh_conf)
2684 {
2685         struct eventmode_conf *em_conf = NULL;
2686         struct lcore_params *params;
2687         uint16_t portid;
2688
2689         if (!eh_conf || !eh_conf->mode_params)
2690                 return -EINVAL;
2691
2692         /* Get eventmode conf */
2693         em_conf = eh_conf->mode_params;
2694
2695         if (eh_conf->mode == EH_PKT_TRANSFER_MODE_POLL &&
2696             em_conf->ext_params.sched_type != SCHED_TYPE_NOT_SET) {
2697                 printf("error: option --event-schedule-type applies only to "
2698                        "event mode\n");
2699                 return -EINVAL;
2700         }
2701
2702         if (eh_conf->mode != EH_PKT_TRANSFER_MODE_EVENT)
2703                 return 0;
2704
2705         /* Set schedule type to ORDERED if it wasn't explicitly set by user */
2706         if (em_conf->ext_params.sched_type == SCHED_TYPE_NOT_SET)
2707                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED;
2708
2709         /*
2710          * Event mode currently supports only inline protocol sessions.
2711          * If there are other types of sessions configured then exit with
2712          * error.
2713          */
2714         ev_mode_sess_verify(sa_in, nb_sa_in);
2715         ev_mode_sess_verify(sa_out, nb_sa_out);
2716
2717
2718         /* Option --config does not apply to event mode */
2719         if (nb_lcore_params > 0) {
2720                 printf("error: option --config applies only to poll mode\n");
2721                 return -EINVAL;
2722         }
2723
2724         /*
2725          * In order to use the same port_init routine for both poll and event
2726          * modes initialize lcore_params with one queue for each eth port
2727          */
2728         lcore_params = lcore_params_array;
2729         RTE_ETH_FOREACH_DEV(portid) {
2730                 if ((enabled_port_mask & (1 << portid)) == 0)
2731                         continue;
2732
2733                 params = &lcore_params[nb_lcore_params++];
2734                 params->port_id = portid;
2735                 params->queue_id = 0;
2736                 params->lcore_id = rte_get_next_lcore(0, 0, 1);
2737         }
2738
2739         return 0;
2740 }
2741
2742 static void
2743 inline_sessions_free(struct sa_ctx *sa_ctx)
2744 {
2745         struct rte_ipsec_session *ips;
2746         struct ipsec_sa *sa;
2747         int32_t ret;
2748         uint32_t i;
2749
2750         if (!sa_ctx)
2751                 return;
2752
2753         for (i = 0; i < sa_ctx->nb_sa; i++) {
2754
2755                 sa = &sa_ctx->sa[i];
2756                 if (!sa->spi)
2757                         continue;
2758
2759                 ips = ipsec_get_primary_session(sa);
2760                 if (ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL &&
2761                     ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO)
2762                         continue;
2763
2764                 if (!rte_eth_dev_is_valid_port(sa->portid))
2765                         continue;
2766
2767                 ret = rte_security_session_destroy(
2768                                 rte_eth_dev_get_sec_ctx(sa->portid),
2769                                 ips->security.ses);
2770                 if (ret)
2771                         RTE_LOG(ERR, IPSEC, "Failed to destroy security "
2772                                             "session type %d, spi %d\n",
2773                                             ips->type, sa->spi);
2774         }
2775 }
2776
2777 static uint32_t
2778 calculate_nb_mbufs(uint16_t nb_ports, uint16_t nb_crypto_qp, uint32_t nb_rxq,
2779                 uint32_t nb_txq)
2780 {
2781         return RTE_MAX((nb_rxq * nb_rxd +
2782                         nb_ports * nb_lcores * MAX_PKT_BURST +
2783                         nb_ports * nb_txq * nb_txd +
2784                         nb_lcores * MEMPOOL_CACHE_SIZE +
2785                         nb_crypto_qp * CDEV_QUEUE_DESC +
2786                         nb_lcores * frag_tbl_sz *
2787                         FRAG_TBL_BUCKET_ENTRIES),
2788                        8192U);
2789 }
2790
2791 int32_t
2792 main(int32_t argc, char **argv)
2793 {
2794         int32_t ret;
2795         uint32_t lcore_id, nb_txq, nb_rxq = 0;
2796         uint32_t cdev_id;
2797         uint32_t i;
2798         uint8_t socket_id;
2799         uint16_t portid, nb_crypto_qp, nb_ports = 0;
2800         uint64_t req_rx_offloads[RTE_MAX_ETHPORTS];
2801         uint64_t req_tx_offloads[RTE_MAX_ETHPORTS];
2802         struct eh_conf *eh_conf = NULL;
2803         size_t sess_sz;
2804
2805         nb_bufs_in_pool = 0;
2806
2807         /* init EAL */
2808         ret = rte_eal_init(argc, argv);
2809         if (ret < 0)
2810                 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2811         argc -= ret;
2812         argv += ret;
2813
2814         force_quit = false;
2815         signal(SIGINT, signal_handler);
2816         signal(SIGTERM, signal_handler);
2817
2818         /* initialize event helper configuration */
2819         eh_conf = eh_conf_init();
2820         if (eh_conf == NULL)
2821                 rte_exit(EXIT_FAILURE, "Failed to init event helper config");
2822
2823         /* parse application arguments (after the EAL ones) */
2824         ret = parse_args(argc, argv, eh_conf);
2825         if (ret < 0)
2826                 rte_exit(EXIT_FAILURE, "Invalid parameters\n");
2827
2828         /* parse configuration file */
2829         if (parse_cfg_file(cfgfile) < 0) {
2830                 printf("parsing file \"%s\" failed\n",
2831                         optarg);
2832                 print_usage(argv[0]);
2833                 return -1;
2834         }
2835
2836         if ((unprotected_port_mask & enabled_port_mask) !=
2837                         unprotected_port_mask)
2838                 rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
2839                                 unprotected_port_mask);
2840
2841         if (check_poll_mode_params(eh_conf) < 0)
2842                 rte_exit(EXIT_FAILURE, "check_poll_mode_params failed\n");
2843
2844         if (check_event_mode_params(eh_conf) < 0)
2845                 rte_exit(EXIT_FAILURE, "check_event_mode_params failed\n");
2846
2847         ret = init_lcore_rx_queues();
2848         if (ret < 0)
2849                 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2850
2851         nb_lcores = rte_lcore_count();
2852
2853         sess_sz = max_session_size();
2854
2855         /*
2856          * In event mode request minimum number of crypto queues
2857          * to be reserved equal to number of ports.
2858          */
2859         if (eh_conf->mode == EH_PKT_TRANSFER_MODE_EVENT)
2860                 nb_crypto_qp = rte_eth_dev_count_avail();
2861         else
2862                 nb_crypto_qp = 0;
2863
2864         nb_crypto_qp = cryptodevs_init(nb_crypto_qp);
2865
2866         if (nb_bufs_in_pool == 0) {
2867                 RTE_ETH_FOREACH_DEV(portid) {
2868                         if ((enabled_port_mask & (1 << portid)) == 0)
2869                                 continue;
2870                         nb_ports++;
2871                         nb_rxq += get_port_nb_rx_queues(portid);
2872                 }
2873
2874                 nb_txq = nb_lcores;
2875
2876                 nb_bufs_in_pool = calculate_nb_mbufs(nb_ports, nb_crypto_qp,
2877                                                 nb_rxq, nb_txq);
2878         }
2879
2880         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2881                 if (rte_lcore_is_enabled(lcore_id) == 0)
2882                         continue;
2883
2884                 if (numa_on)
2885                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2886                 else
2887                         socket_id = 0;
2888
2889                 /* mbuf_pool is initialised by the pool_init() function*/
2890                 if (socket_ctx[socket_id].mbuf_pool)
2891                         continue;
2892
2893                 pool_init(&socket_ctx[socket_id], socket_id, nb_bufs_in_pool);
2894                 session_pool_init(&socket_ctx[socket_id], socket_id, sess_sz);
2895                 session_priv_pool_init(&socket_ctx[socket_id], socket_id,
2896                         sess_sz);
2897         }
2898         printf("Number of mbufs in packet pool %d\n", nb_bufs_in_pool);
2899
2900         RTE_ETH_FOREACH_DEV(portid) {
2901                 if ((enabled_port_mask & (1 << portid)) == 0)
2902                         continue;
2903
2904                 sa_check_offloads(portid, &req_rx_offloads[portid],
2905                                 &req_tx_offloads[portid]);
2906                 port_init(portid, req_rx_offloads[portid],
2907                                 req_tx_offloads[portid]);
2908         }
2909
2910         /*
2911          * Set the enabled port mask in helper config for use by helper
2912          * sub-system. This will be used while initializing devices using
2913          * helper sub-system.
2914          */
2915         eh_conf->eth_portmask = enabled_port_mask;
2916
2917         /* Initialize eventmode components */
2918         ret = eh_devs_init(eh_conf);
2919         if (ret < 0)
2920                 rte_exit(EXIT_FAILURE, "eh_devs_init failed, err=%d\n", ret);
2921
2922         /* start ports */
2923         RTE_ETH_FOREACH_DEV(portid) {
2924                 if ((enabled_port_mask & (1 << portid)) == 0)
2925                         continue;
2926
2927                 /* Create flow before starting the device */
2928                 create_default_ipsec_flow(portid, req_rx_offloads[portid]);
2929
2930                 ret = rte_eth_dev_start(portid);
2931                 if (ret < 0)
2932                         rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
2933                                         "err=%d, port=%d\n", ret, portid);
2934                 /*
2935                  * If enabled, put device in promiscuous mode.
2936                  * This allows IO forwarding mode to forward packets
2937                  * to itself through 2 cross-connected  ports of the
2938                  * target machine.
2939                  */
2940                 if (promiscuous_on) {
2941                         ret = rte_eth_promiscuous_enable(portid);
2942                         if (ret != 0)
2943                                 rte_exit(EXIT_FAILURE,
2944                                         "rte_eth_promiscuous_enable: err=%s, port=%d\n",
2945                                         rte_strerror(-ret), portid);
2946                 }
2947
2948                 rte_eth_dev_callback_register(portid,
2949                         RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL);
2950         }
2951
2952         /* fragment reassemble is enabled */
2953         if (frag_tbl_sz != 0) {
2954                 ret = reassemble_init();
2955                 if (ret != 0)
2956                         rte_exit(EXIT_FAILURE, "failed at reassemble init");
2957         }
2958
2959         /* Replicate each context per socket */
2960         for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) {
2961                 socket_id = rte_socket_id_by_idx(i);
2962                 if ((socket_ctx[socket_id].mbuf_pool != NULL) &&
2963                         (socket_ctx[socket_id].sa_in == NULL) &&
2964                         (socket_ctx[socket_id].sa_out == NULL)) {
2965                         sa_init(&socket_ctx[socket_id], socket_id);
2966                         sp4_init(&socket_ctx[socket_id], socket_id);
2967                         sp6_init(&socket_ctx[socket_id], socket_id);
2968                         rt_init(&socket_ctx[socket_id], socket_id);
2969                 }
2970         }
2971
2972         flow_init();
2973
2974         check_all_ports_link_status(enabled_port_mask);
2975
2976 #if (STATS_INTERVAL > 0)
2977         rte_eal_alarm_set(STATS_INTERVAL * US_PER_S, print_stats_cb, NULL);
2978 #else
2979         RTE_LOG(INFO, IPSEC, "Stats display disabled\n");
2980 #endif /* STATS_INTERVAL */
2981
2982         /* launch per-lcore init on every lcore */
2983         rte_eal_mp_remote_launch(ipsec_launch_one_lcore, eh_conf, CALL_MAIN);
2984         RTE_LCORE_FOREACH_WORKER(lcore_id) {
2985                 if (rte_eal_wait_lcore(lcore_id) < 0)
2986                         return -1;
2987         }
2988
2989         /* Uninitialize eventmode components */
2990         ret = eh_devs_uninit(eh_conf);
2991         if (ret < 0)
2992                 rte_exit(EXIT_FAILURE, "eh_devs_uninit failed, err=%d\n", ret);
2993
2994         /* Free eventmode configuration memory */
2995         eh_conf_uninit(eh_conf);
2996
2997         /* Destroy inline inbound and outbound sessions */
2998         for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) {
2999                 socket_id = rte_socket_id_by_idx(i);
3000                 inline_sessions_free(socket_ctx[socket_id].sa_in);
3001                 inline_sessions_free(socket_ctx[socket_id].sa_out);
3002         }
3003
3004         for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
3005                 printf("Closing cryptodev %d...", cdev_id);
3006                 rte_cryptodev_stop(cdev_id);
3007                 rte_cryptodev_close(cdev_id);
3008                 printf(" Done\n");
3009         }
3010
3011         RTE_ETH_FOREACH_DEV(portid) {
3012                 if ((enabled_port_mask & (1 << portid)) == 0)
3013                         continue;
3014
3015                 printf("Closing port %d...", portid);
3016                 if (flow_info_tbl[portid].rx_def_flow) {
3017                         struct rte_flow_error err;
3018
3019                         ret = rte_flow_destroy(portid,
3020                                 flow_info_tbl[portid].rx_def_flow, &err);
3021                         if (ret)
3022                                 RTE_LOG(ERR, IPSEC, "Failed to destroy flow "
3023                                         " for port %u, err msg: %s\n", portid,
3024                                         err.message);
3025                 }
3026                 ret = rte_eth_dev_stop(portid);
3027                 if (ret != 0)
3028                         RTE_LOG(ERR, IPSEC,
3029                                 "rte_eth_dev_stop: err=%s, port=%u\n",
3030                                 rte_strerror(-ret), portid);
3031
3032                 rte_eth_dev_close(portid);
3033                 printf(" Done\n");
3034         }
3035         printf("Bye...\n");
3036
3037         return 0;
3038 }