4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 #include <sys/types.h>
40 #include <sys/queue.h>
45 #include <rte_common.h>
46 #include <rte_byteorder.h>
48 #include <rte_memory.h>
49 #include <rte_memcpy.h>
50 #include <rte_memzone.h>
52 #include <rte_per_lcore.h>
53 #include <rte_launch.h>
54 #include <rte_atomic.h>
55 #include <rte_cycles.h>
56 #include <rte_prefetch.h>
57 #include <rte_lcore.h>
58 #include <rte_per_lcore.h>
59 #include <rte_branch_prediction.h>
60 #include <rte_interrupts.h>
62 #include <rte_random.h>
63 #include <rte_debug.h>
64 #include <rte_ether.h>
65 #include <rte_ethdev.h>
66 #include <rte_mempool.h>
68 #include <rte_malloc.h>
69 #include <rte_fbk_hash.h>
72 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1
76 #define MCAST_CLONE_PORTS 2
77 #define MCAST_CLONE_SEGS 2
79 #define PKT_MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE
80 #define NB_PKT_MBUF 8192
82 #define HDR_MBUF_DATA_SIZE (2 * RTE_PKTMBUF_HEADROOM)
83 #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS)
85 #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2)
87 /* allow max jumbo frame 9.5 KB */
88 #define JUMBO_FRAME_MAX_SIZE 0x2600
90 #define MAX_PKT_BURST 32
91 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
93 /* Configure how many packets ahead to prefetch, when reading packets */
94 #define PREFETCH_OFFSET 3
97 * Construct Ethernet multicast address from IPv4 multicast address.
98 * Citing RFC 1112, section 6.4:
99 * "An IP host group address is mapped to an Ethernet multicast address
100 * by placing the low-order 23-bits of the IP address into the low-order
101 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)."
103 #define ETHER_ADDR_FOR_IPV4_MCAST(x) \
104 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16)
107 * Configurable number of RX/TX ring descriptors
109 #define RTE_TEST_RX_DESC_DEFAULT 128
110 #define RTE_TEST_TX_DESC_DEFAULT 512
111 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
112 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
114 /* ethernet addresses of ports */
115 static struct ether_addr ports_eth_addr[MAX_PORTS];
117 /* mask of enabled ports */
118 static uint32_t enabled_port_mask = 0;
120 static uint8_t nb_ports = 0;
122 static int rx_queue_per_lcore = 1;
126 struct rte_mbuf *m_table[MAX_PKT_BURST];
129 #define MAX_RX_QUEUE_PER_LCORE 16
130 #define MAX_TX_QUEUE_PER_PORT 16
131 struct lcore_queue_conf {
134 uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
135 uint16_t tx_queue_id[MAX_PORTS];
136 struct mbuf_table tx_mbufs[MAX_PORTS];
137 } __rte_cache_aligned;
138 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
140 static const struct rte_eth_conf port_conf = {
142 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
144 .header_split = 0, /**< Header Split disabled */
145 .hw_ip_checksum = 0, /**< IP checksum offload disabled */
146 .hw_vlan_filter = 0, /**< VLAN filtering disabled */
147 .jumbo_frame = 1, /**< Jumbo Frame Support enabled */
148 .hw_strip_crc = 0, /**< CRC stripped by hardware */
151 .mq_mode = ETH_MQ_TX_NONE,
155 static struct rte_mempool *packet_pool, *header_pool, *clone_pool;
159 static struct rte_fbk_hash_params mcast_hash_params = {
160 .name = "MCAST_HASH",
162 .entries_per_bucket = 4,
168 struct rte_fbk_hash_table *mcast_hash = NULL;
170 struct mcast_group_params {
175 static struct mcast_group_params mcast_group_table[] = {
176 {IPv4(224,0,0,101), 0x1},
177 {IPv4(224,0,0,102), 0x2},
178 {IPv4(224,0,0,103), 0x3},
179 {IPv4(224,0,0,104), 0x4},
180 {IPv4(224,0,0,105), 0x5},
181 {IPv4(224,0,0,106), 0x6},
182 {IPv4(224,0,0,107), 0x7},
183 {IPv4(224,0,0,108), 0x8},
184 {IPv4(224,0,0,109), 0x9},
185 {IPv4(224,0,0,110), 0xA},
186 {IPv4(224,0,0,111), 0xB},
187 {IPv4(224,0,0,112), 0xC},
188 {IPv4(224,0,0,113), 0xD},
189 {IPv4(224,0,0,114), 0xE},
190 {IPv4(224,0,0,115), 0xF},
193 #define N_MCAST_GROUPS \
194 (sizeof (mcast_group_table) / sizeof (mcast_group_table[0]))
197 /* Send burst of packets on an output interface */
199 send_burst(struct lcore_queue_conf *qconf, uint8_t port)
201 struct rte_mbuf **m_table;
205 queueid = qconf->tx_queue_id[port];
206 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
207 n = qconf->tx_mbufs[port].len;
209 ret = rte_eth_tx_burst(port, queueid, m_table, n);
210 while (unlikely (ret < n)) {
211 rte_pktmbuf_free(m_table[ret]);
215 qconf->tx_mbufs[port].len = 0;
218 /* Get number of bits set. */
219 static inline uint32_t
224 for (n = 0; v != 0; v &= v - 1, n++)
231 * Create the output multicast packet based on the given input packet.
232 * There are two approaches for creating outgoing packet, though both
233 * are based on data zero-copy idea, they differ in few details:
234 * First one creates a clone of the input packet, e.g - walk though all
235 * segments of the input packet, and for each of them create a new packet
236 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone()
237 * for more details). Then new mbuf is allocated for the packet header
238 * and is prepended to the 'clone' mbuf.
239 * Second approach doesn't make a clone, it just increment refcnt for all
240 * input packet segments. Then it allocates new mbuf for the packet header
241 * and prepends it to the input packet.
242 * Basically first approach reuses only input packet's data, but creates
243 * it's own copy of packet's metadata. Second approach reuses both input's
244 * packet data and metadata.
245 * The advantage of first approach - is that each outgoing packet has it's
246 * own copy of metadata, so we can safely modify data pointer of the
247 * input packet. That allows us to skip creation if the output packet for
248 * the last destination port, but instead modify input packet's header inplace,
249 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times.
250 * The advantage of second approach - less work for each outgoing packet,
251 * e.g: we skip "clone" operation completely. Though it comes with a price -
252 * input packet's metadata has to be intact. So for N destination ports we
253 * need to invoke mcast_out_pkt N times.
254 * So for small number of outgoing ports (and segments in the input packet)
255 * first approach will be faster.
256 * As number of outgoing ports (and/or input segments) will grow,
257 * second way will become more preferable.
262 * Control which of the two approaches described above should be used:
263 * - 0 - use second approach:
264 * Don't "clone" input packet.
265 * Prepend new header directly to the input packet
266 * - 1 - use first approach:
267 * Make a "clone" of input packet first.
268 * Prepend new header to the clone of the input packet
270 * - The pointer to the new outgoing packet.
271 * - NULL if operation failed.
273 static inline struct rte_mbuf *
274 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone)
276 struct rte_mbuf *hdr;
278 /* Create new mbuf for the header. */
279 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL))
282 /* If requested, then make a new clone packet. */
283 if (use_clone != 0 &&
284 unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) {
285 rte_pktmbuf_free(hdr);
289 /* prepend new header */
293 /* update header's fields */
294 hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len);
295 hdr->nb_segs = (uint8_t)(pkt->nb_segs + 1);
297 /* copy metadata from source packet*/
298 hdr->port = pkt->port;
299 hdr->vlan_tci = pkt->vlan_tci;
300 hdr->vlan_tci_outer = pkt->vlan_tci_outer;
301 hdr->tx_offload = pkt->tx_offload;
302 hdr->hash = pkt->hash;
304 hdr->ol_flags = pkt->ol_flags;
306 __rte_mbuf_sanity_check(hdr, 1);
311 * Write new Ethernet header to the outgoing packet,
312 * and put it into the outgoing queue for the given port.
315 mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr,
316 struct lcore_queue_conf *qconf, uint8_t port)
318 struct ether_hdr *ethdr;
321 /* Construct Ethernet header. */
322 ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr));
323 RTE_ASSERT(ethdr != NULL);
325 ether_addr_copy(dest_addr, ðdr->d_addr);
326 ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr);
327 ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);
329 /* Put new packet into the output queue */
330 len = qconf->tx_mbufs[port].len;
331 qconf->tx_mbufs[port].m_table[len] = pkt;
332 qconf->tx_mbufs[port].len = ++len;
334 /* Transmit packets */
335 if (unlikely(MAX_PKT_BURST == len))
336 send_burst(qconf, port);
339 /* Multicast forward of the input packet */
341 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf)
344 struct ipv4_hdr *iphdr;
345 uint32_t dest_addr, port_mask, port_num, use_clone;
350 struct ether_addr as_addr;
353 /* Remove the Ethernet header from the input packet */
354 iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr));
355 RTE_ASSERT(iphdr != NULL);
357 dest_addr = rte_be_to_cpu_32(iphdr->dst_addr);
360 * Check that it is a valid multicast address and
361 * we have some active ports assigned to it.
363 if(!IS_IPV4_MCAST(dest_addr) ||
364 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 ||
365 (port_mask = hash & enabled_port_mask) == 0) {
370 /* Calculate number of destination ports. */
371 port_num = bitcnt(port_mask);
373 /* Should we use rte_pktmbuf_clone() or not. */
374 use_clone = (port_num <= MCAST_CLONE_PORTS &&
375 m->nb_segs <= MCAST_CLONE_SEGS);
377 /* Mark all packet's segments as referenced port_num times */
379 rte_pktmbuf_refcnt_update(m, (uint16_t)port_num);
381 /* construct destination ethernet address */
382 dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr);
384 for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {
386 /* Prepare output packet and send it out. */
387 if ((port_mask & 1) != 0) {
388 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL))
389 mcast_send_pkt(mc, &dst_eth_addr.as_addr,
391 else if (use_clone == 0)
397 * If we making clone packets, then, for the last destination port,
398 * we can overwrite input packet's metadata.
401 mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port);
406 /* Send burst of outgoing packet, if timeout expires. */
408 send_timeout_burst(struct lcore_queue_conf *qconf)
412 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
414 cur_tsc = rte_rdtsc();
415 if (likely (cur_tsc < qconf->tx_tsc + drain_tsc))
418 for (portid = 0; portid < MAX_PORTS; portid++) {
419 if (qconf->tx_mbufs[portid].len != 0)
420 send_burst(qconf, portid);
422 qconf->tx_tsc = cur_tsc;
425 /* main processing loop */
427 main_loop(__rte_unused void *dummy)
429 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
433 struct lcore_queue_conf *qconf;
435 lcore_id = rte_lcore_id();
436 qconf = &lcore_queue_conf[lcore_id];
439 if (qconf->n_rx_queue == 0) {
440 RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n",
445 RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n",
448 for (i = 0; i < qconf->n_rx_queue; i++) {
450 portid = qconf->rx_queue_list[i];
451 RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n",
452 lcore_id, (int) portid);
458 * Read packet from RX queues
460 for (i = 0; i < qconf->n_rx_queue; i++) {
462 portid = qconf->rx_queue_list[i];
463 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
466 /* Prefetch first packets */
467 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
468 rte_prefetch0(rte_pktmbuf_mtod(
469 pkts_burst[j], void *));
472 /* Prefetch and forward already prefetched packets */
473 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
474 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
475 j + PREFETCH_OFFSET], void *));
476 mcast_forward(pkts_burst[j], qconf);
479 /* Forward remaining prefetched packets */
480 for (; j < nb_rx; j++) {
481 mcast_forward(pkts_burst[j], qconf);
485 /* Send out packets from TX queues */
486 send_timeout_burst(qconf);
492 print_usage(const char *prgname)
494 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
495 " -p PORTMASK: hexadecimal bitmask of ports to configure\n"
496 " -q NQ: number of queue (=ports) per lcore (default is 1)\n",
501 parse_portmask(const char *portmask)
506 /* parse hexadecimal string */
507 pm = strtoul(portmask, &end, 16);
508 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
515 parse_nqueue(const char *q_arg)
520 /* parse numerical string */
522 n = strtoul(q_arg, &end, 0);
523 if (errno != 0 || end == NULL || *end != '\0' ||
524 n == 0 || n >= MAX_RX_QUEUE_PER_LCORE)
530 /* Parse the argument given in the command line of the application */
532 parse_args(int argc, char **argv)
537 char *prgname = argv[0];
538 static struct option lgopts[] = {
544 while ((opt = getopt_long(argc, argvopt, "p:q:",
545 lgopts, &option_index)) != EOF) {
550 enabled_port_mask = parse_portmask(optarg);
551 if (enabled_port_mask == 0) {
552 printf("invalid portmask\n");
553 print_usage(prgname);
560 rx_queue_per_lcore = parse_nqueue(optarg);
561 if (rx_queue_per_lcore < 0) {
562 printf("invalid queue number\n");
563 print_usage(prgname);
569 print_usage(prgname);
575 argv[optind-1] = prgname;
578 optind = 0; /* reset getopt lib */
583 print_ethaddr(const char *name, struct ether_addr *eth_addr)
585 char buf[ETHER_ADDR_FMT_SIZE];
586 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
587 printf("%s%s", name, buf);
591 init_mcast_hash(void)
595 mcast_hash_params.socket_id = rte_socket_id();
596 mcast_hash = rte_fbk_hash_create(&mcast_hash_params);
597 if (mcast_hash == NULL){
601 for (i = 0; i < N_MCAST_GROUPS; i ++){
602 if (rte_fbk_hash_add_key(mcast_hash,
603 mcast_group_table[i].ip,
604 mcast_group_table[i].port_mask) < 0) {
612 /* Check the link status of all ports in up to 9s, and print them finally */
614 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
616 #define CHECK_INTERVAL 100 /* 100ms */
617 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
618 uint8_t portid, count, all_ports_up, print_flag = 0;
619 struct rte_eth_link link;
621 printf("\nChecking link status");
623 for (count = 0; count <= MAX_CHECK_TIME; count++) {
625 for (portid = 0; portid < port_num; portid++) {
626 if ((port_mask & (1 << portid)) == 0)
628 memset(&link, 0, sizeof(link));
629 rte_eth_link_get_nowait(portid, &link);
630 /* print link status if flag set */
631 if (print_flag == 1) {
632 if (link.link_status)
633 printf("Port %d Link Up - speed %u "
634 "Mbps - %s\n", (uint8_t)portid,
635 (unsigned)link.link_speed,
636 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
637 ("full-duplex") : ("half-duplex\n"));
639 printf("Port %d Link Down\n",
643 /* clear all_ports_up flag if any link down */
644 if (link.link_status == ETH_LINK_DOWN) {
649 /* after finally printing all link status, get out */
653 if (all_ports_up == 0) {
656 rte_delay_ms(CHECK_INTERVAL);
659 /* set the print_flag if all ports up or timeout */
660 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
668 main(int argc, char **argv)
670 struct lcore_queue_conf *qconf;
671 struct rte_eth_dev_info dev_info;
672 struct rte_eth_txconf *txconf;
675 unsigned lcore_id = 0, rx_lcore_id = 0;
676 uint32_t n_tx_queue, nb_lcores;
680 ret = rte_eal_init(argc, argv);
682 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
686 /* parse application arguments (after the EAL ones) */
687 ret = parse_args(argc, argv);
689 rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n");
691 /* create the mbuf pools */
692 packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32,
693 0, PKT_MBUF_DATA_SIZE, rte_socket_id());
695 if (packet_pool == NULL)
696 rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n");
698 header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32,
699 0, HDR_MBUF_DATA_SIZE, rte_socket_id());
701 if (header_pool == NULL)
702 rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n");
704 clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32,
705 0, 0, rte_socket_id());
707 if (clone_pool == NULL)
708 rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n");
710 nb_ports = rte_eth_dev_count();
712 rte_exit(EXIT_FAILURE, "No physical ports!\n");
713 if (nb_ports > MAX_PORTS)
714 nb_ports = MAX_PORTS;
716 nb_lcores = rte_lcore_count();
718 /* initialize all ports */
719 for (portid = 0; portid < nb_ports; portid++) {
720 /* skip ports that are not enabled */
721 if ((enabled_port_mask & (1 << portid)) == 0) {
722 printf("Skipping disabled port %d\n", portid);
726 qconf = &lcore_queue_conf[rx_lcore_id];
728 /* get the lcore_id for this port */
729 while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
730 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
733 qconf = &lcore_queue_conf[rx_lcore_id];
735 if (rx_lcore_id >= RTE_MAX_LCORE)
736 rte_exit(EXIT_FAILURE, "Not enough cores\n");
738 qconf->rx_queue_list[qconf->n_rx_queue] = portid;
742 printf("Initializing port %d on lcore %u... ", portid,
746 n_tx_queue = nb_lcores;
747 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
748 n_tx_queue = MAX_TX_QUEUE_PER_PORT;
749 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
752 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
755 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
756 print_ethaddr(" Address:", &ports_eth_addr[portid]);
759 /* init one RX queue */
761 printf("rxq=%hu ", queueid);
763 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
764 rte_eth_dev_socket_id(portid),
768 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n",
771 /* init one TX queue per couple (lcore,port) */
774 RTE_LCORE_FOREACH(lcore_id) {
775 if (rte_lcore_is_enabled(lcore_id) == 0)
777 printf("txq=%u,%hu ", lcore_id, queueid);
780 rte_eth_dev_info_get(portid, &dev_info);
781 txconf = &dev_info.default_txconf;
782 txconf->txq_flags = 0;
783 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
784 rte_lcore_to_socket_id(lcore_id), txconf);
786 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
787 "port=%d\n", ret, portid);
789 qconf = &lcore_queue_conf[lcore_id];
790 qconf->tx_queue_id[portid] = queueid;
795 ret = rte_eth_dev_start(portid);
797 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
803 check_all_ports_link_status(nb_ports, enabled_port_mask);
805 /* initialize the multicast hash */
806 int retval = init_mcast_hash();
808 rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n");
810 /* launch per-lcore init on every lcore */
811 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
812 RTE_LCORE_FOREACH_SLAVE(lcore_id) {
813 if (rte_eal_wait_lcore(lcore_id) < 0)