4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 #include <sys/types.h>
40 #include <sys/queue.h>
47 #include <rte_common.h>
48 #include <rte_byteorder.h>
50 #include <rte_memory.h>
51 #include <rte_memcpy.h>
52 #include <rte_memzone.h>
53 #include <rte_tailq.h>
55 #include <rte_per_lcore.h>
56 #include <rte_launch.h>
57 #include <rte_atomic.h>
58 #include <rte_cycles.h>
59 #include <rte_prefetch.h>
60 #include <rte_lcore.h>
61 #include <rte_per_lcore.h>
62 #include <rte_branch_prediction.h>
63 #include <rte_interrupts.h>
65 #include <rte_random.h>
66 #include <rte_debug.h>
67 #include <rte_ether.h>
68 #include <rte_ethdev.h>
70 #include <rte_mempool.h>
75 #include <rte_string_fns.h>
76 #include <rte_timer.h>
77 #include <rte_power.h>
79 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1
81 #define MAX_PKT_BURST 32
83 #define MIN_ZERO_POLL_COUNT 5
85 /* around 100ms at 2 Ghz */
86 #define TIMER_RESOLUTION_CYCLES 200000000ULL
88 #define TIMER_NUMBER_PER_SECOND 10
90 #define SCALING_PERIOD (1000000/TIMER_NUMBER_PER_SECOND)
91 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25
93 #define APP_LOOKUP_EXACT_MATCH 0
94 #define APP_LOOKUP_LPM 1
95 #define DO_RFC_1812_CHECKS
97 #ifndef APP_LOOKUP_METHOD
98 #define APP_LOOKUP_METHOD APP_LOOKUP_LPM
101 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
102 #include <rte_hash.h>
103 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
106 #error "APP_LOOKUP_METHOD set to incorrect value"
110 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
111 "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
112 #define IPv6_BYTES(addr) \
113 addr[0], addr[1], addr[2], addr[3], \
114 addr[4], addr[5], addr[6], addr[7], \
115 addr[8], addr[9], addr[10], addr[11],\
116 addr[12], addr[13],addr[14], addr[15]
119 #define MAX_JUMBO_PKT_LEN 9600
121 #define IPV6_ADDR_LEN 16
123 #define MEMPOOL_CACHE_SIZE 256
125 #define MBUF_SIZE (2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM)
128 * This expression is used to calculate the number of mbufs needed depending on
129 * user input, taking into account memory for rx and tx hardware rings, cache
130 * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
131 * NB_MBUF never goes below a minimum value of 8192.
134 #define NB_MBUF RTE_MAX ( \
135 (nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT + \
136 nb_ports*nb_lcores*MAX_PKT_BURST + \
137 nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT + \
138 nb_lcores*MEMPOOL_CACHE_SIZE), \
141 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
145 /* Configure how many packets ahead to prefetch, when reading packets */
146 #define PREFETCH_OFFSET 3
149 * Configurable number of RX/TX ring descriptors
151 #define RTE_TEST_RX_DESC_DEFAULT 128
152 #define RTE_TEST_TX_DESC_DEFAULT 512
153 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
154 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
156 /* ethernet addresses of ports */
157 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
159 /* mask of enabled ports */
160 static uint32_t enabled_port_mask = 0;
161 /* Ports set in promiscuous mode off by default. */
162 static int promiscuous_on = 0;
163 /* NUMA is enabled by default. */
164 static int numa_on = 1;
166 enum freq_scale_hint_t
176 struct rte_mbuf *m_table[MAX_PKT_BURST];
179 struct lcore_rx_queue {
182 enum freq_scale_hint_t freq_up_hint;
183 uint32_t zero_rx_packet_count;
185 } __rte_cache_aligned;
187 #define MAX_RX_QUEUE_PER_LCORE 16
188 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
189 #define MAX_RX_QUEUE_PER_PORT 128
191 #define MAX_LCORE_PARAMS 1024
192 struct lcore_params {
196 } __rte_cache_aligned;
198 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
199 static struct lcore_params lcore_params_array_default[] = {
211 static struct lcore_params * lcore_params = lcore_params_array_default;
212 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
213 sizeof(lcore_params_array_default[0]);
215 static struct rte_eth_conf port_conf = {
217 .mq_mode = ETH_MQ_RX_RSS,
218 .max_rx_pkt_len = ETHER_MAX_LEN,
220 .header_split = 0, /**< Header Split disabled */
221 .hw_ip_checksum = 1, /**< IP checksum offload enabled */
222 .hw_vlan_filter = 0, /**< VLAN filtering disabled */
223 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */
224 .hw_strip_crc = 0, /**< CRC stripped by hardware */
229 .rss_hf = ETH_RSS_IP,
233 .mq_mode = ETH_DCB_NONE,
237 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
240 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
242 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
243 #include <rte_hash_crc.h>
244 #define DEFAULT_HASH_FUNC rte_hash_crc
246 #include <rte_jhash.h>
247 #define DEFAULT_HASH_FUNC rte_jhash
256 } __attribute__((__packed__));
259 uint8_t ip_dst[IPV6_ADDR_LEN];
260 uint8_t ip_src[IPV6_ADDR_LEN];
264 } __attribute__((__packed__));
266 struct ipv4_l3fwd_route {
267 struct ipv4_5tuple key;
271 struct ipv6_l3fwd_route {
272 struct ipv6_5tuple key;
276 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
277 {{IPv4(100,10,0,1), IPv4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
278 {{IPv4(100,20,0,2), IPv4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
279 {{IPv4(100,30,0,3), IPv4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
280 {{IPv4(100,40,0,4), IPv4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
283 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
286 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
287 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
288 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
289 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a},
295 typedef struct rte_hash lookup_struct_t;
296 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
297 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
299 #define L3FWD_HASH_ENTRIES 1024
301 #define IPV4_L3FWD_NUM_ROUTES \
302 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
304 #define IPV6_L3FWD_NUM_ROUTES \
305 (sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
307 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
308 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
311 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
312 struct ipv4_l3fwd_route {
318 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
319 {IPv4(1,1,1,0), 24, 0},
320 {IPv4(2,1,1,0), 24, 1},
321 {IPv4(3,1,1,0), 24, 2},
322 {IPv4(4,1,1,0), 24, 3},
323 {IPv4(5,1,1,0), 24, 4},
324 {IPv4(6,1,1,0), 24, 5},
325 {IPv4(7,1,1,0), 24, 6},
326 {IPv4(8,1,1,0), 24, 7},
329 #define IPV4_L3FWD_NUM_ROUTES \
330 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
332 #define IPV4_L3FWD_LPM_MAX_RULES 1024
334 typedef struct rte_lpm lookup_struct_t;
335 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
340 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
341 uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
342 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
343 lookup_struct_t * ipv4_lookup_struct;
344 lookup_struct_t * ipv6_lookup_struct;
345 } __rte_cache_aligned;
348 /* total sleep time in ms since last frequency scaling down */
350 /* number of long sleep recently */
351 uint32_t nb_long_sleep;
352 /* freq. scaling up trend */
354 /* total packet processed recently */
355 uint64_t nb_rx_processed;
356 /* total iterations looped recently */
357 uint64_t nb_iteration_looped;
359 } __rte_cache_aligned;
361 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned;
362 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned;
363 static struct rte_timer power_timers[RTE_MAX_LCORE];
365 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count);
366 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \
367 unsigned lcore_id, uint8_t port_id, uint16_t queue_id);
369 /* exit signal handler */
371 signal_exit_now(int sigtype)
376 if (sigtype == SIGINT) {
377 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
378 if (rte_lcore_is_enabled(lcore_id) == 0)
381 /* init power management library */
382 ret = rte_power_exit(lcore_id);
384 rte_exit(EXIT_FAILURE, "Power management "
385 "library de-initialization failed on "
386 "core%u\n", lcore_id);
390 rte_exit(EXIT_SUCCESS, "User forced exit\n");
393 /* Freqency scale down timer callback */
395 power_timer_cb(__attribute__((unused)) struct rte_timer *tim,
396 __attribute__((unused)) void *arg)
399 float sleep_time_ratio;
400 unsigned lcore_id = rte_lcore_id();
402 /* accumulate total execution time in us when callback is invoked */
403 sleep_time_ratio = (float)(stats[lcore_id].sleep_time) /
404 (float)SCALING_PERIOD;
407 * check whether need to scale down frequency a step if it sleep a lot.
409 if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD)
410 rte_power_freq_down(lcore_id);
411 else if ( (unsigned)(stats[lcore_id].nb_rx_processed /
412 stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST)
414 * scale down a step if average packet per iteration less
417 rte_power_freq_down(lcore_id);
420 * initialize another timer according to current frequency to ensure
421 * timer interval is relatively fixed.
423 hz = rte_get_timer_hz();
424 rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND,
425 SINGLE, lcore_id, power_timer_cb, NULL);
427 stats[lcore_id].nb_rx_processed = 0;
428 stats[lcore_id].nb_iteration_looped = 0;
430 stats[lcore_id].sleep_time = 0;
433 /* Send burst of packets on an output interface */
435 send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
437 struct rte_mbuf **m_table;
441 queueid = qconf->tx_queue_id[port];
442 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
444 ret = rte_eth_tx_burst(port, queueid, m_table, n);
445 if (unlikely(ret < n)) {
447 rte_pktmbuf_free(m_table[ret]);
454 /* Enqueue a single packet, and send burst if queue is filled */
456 send_single_packet(struct rte_mbuf *m, uint8_t port)
460 struct lcore_conf *qconf;
462 lcore_id = rte_lcore_id();
464 qconf = &lcore_conf[lcore_id];
465 len = qconf->tx_mbufs[port].len;
466 qconf->tx_mbufs[port].m_table[len] = m;
469 /* enough pkts to be sent */
470 if (unlikely(len == MAX_PKT_BURST)) {
471 send_burst(qconf, MAX_PKT_BURST, port);
475 qconf->tx_mbufs[port].len = len;
479 #ifdef DO_RFC_1812_CHECKS
481 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len)
483 /* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
485 * 1. The packet length reported by the Link Layer must be large
486 * enough to hold the minimum length legal IP datagram (20 bytes).
488 if (link_len < sizeof(struct ipv4_hdr))
491 /* 2. The IP checksum must be correct. */
492 /* this is checked in H/W */
495 * 3. The IP version number must be 4. If the version number is not 4
496 * then the packet may be another version of IP, such as IPng or
499 if (((pkt->version_ihl) >> 4) != 4)
502 * 4. The IP header length field must be large enough to hold the
503 * minimum length legal IP datagram (20 bytes = 5 words).
505 if ((pkt->version_ihl & 0xf) < 5)
509 * 5. The IP total length field must be large enough to hold the IP
510 * datagram header, whose length is specified in the IP header length
513 if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr))
520 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
522 print_ipv4_key(struct ipv4_5tuple key)
524 printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, "
525 "proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src,
526 key.port_dst, key.port_src, key.proto);
529 print_ipv6_key(struct ipv6_5tuple key)
531 printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", "
532 "port dst = %d, port src = %d, proto = %d\n",
533 IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src),
534 key.port_dst, key.port_src, key.proto);
537 static inline uint8_t
538 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid,
539 lookup_struct_t * ipv4_l3fwd_lookup_struct)
541 struct ipv4_5tuple key;
546 key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
547 key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
548 key.proto = ipv4_hdr->next_proto_id;
550 switch (ipv4_hdr->next_proto_id) {
552 tcp = (struct tcp_hdr *)((unsigned char *)ipv4_hdr +
553 sizeof(struct ipv4_hdr));
554 key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
555 key.port_src = rte_be_to_cpu_16(tcp->src_port);
559 udp = (struct udp_hdr *)((unsigned char *)ipv4_hdr +
560 sizeof(struct ipv4_hdr));
561 key.port_dst = rte_be_to_cpu_16(udp->dst_port);
562 key.port_src = rte_be_to_cpu_16(udp->src_port);
571 /* Find destination port */
572 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
573 return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
576 static inline uint8_t
577 get_ipv6_dst_port(struct ipv6_hdr *ipv6_hdr, uint8_t portid,
578 lookup_struct_t *ipv6_l3fwd_lookup_struct)
580 struct ipv6_5tuple key;
585 memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN);
586 memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN);
588 key.proto = ipv6_hdr->proto;
590 switch (ipv6_hdr->proto) {
592 tcp = (struct tcp_hdr *)((unsigned char *) ipv6_hdr +
593 sizeof(struct ipv6_hdr));
594 key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
595 key.port_src = rte_be_to_cpu_16(tcp->src_port);
599 udp = (struct udp_hdr *)((unsigned char *) ipv6_hdr +
600 sizeof(struct ipv6_hdr));
601 key.port_dst = rte_be_to_cpu_16(udp->dst_port);
602 key.port_src = rte_be_to_cpu_16(udp->src_port);
611 /* Find destination port */
612 ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
613 return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]);
617 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
618 static inline uint8_t
619 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid,
620 lookup_struct_t *ipv4_l3fwd_lookup_struct)
624 return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
625 rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
631 l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid,
632 struct lcore_conf *qconf)
634 struct ether_hdr *eth_hdr;
635 struct ipv4_hdr *ipv4_hdr;
639 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
641 if (m->ol_flags & PKT_RX_IPV4_HDR) {
642 /* Handle IPv4 headers.*/
644 (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, unsigned char*)
645 + sizeof(struct ether_hdr));
647 #ifdef DO_RFC_1812_CHECKS
648 /* Check to make sure the packet is valid (RFC1812) */
649 if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
655 dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
656 qconf->ipv4_lookup_struct);
657 if (dst_port >= RTE_MAX_ETHPORTS ||
658 (enabled_port_mask & 1 << dst_port) == 0)
661 /* 02:00:00:00:00:xx */
662 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0];
663 *((uint64_t *)d_addr_bytes) =
664 0x000000000002 + ((uint64_t)dst_port << 40);
666 #ifdef DO_RFC_1812_CHECKS
667 /* Update time to live and header checksum */
668 --(ipv4_hdr->time_to_live);
669 ++(ipv4_hdr->hdr_checksum);
673 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr);
675 send_single_packet(m, dst_port);
678 /* Handle IPv6 headers.*/
679 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
680 struct ipv6_hdr *ipv6_hdr;
683 (struct ipv6_hdr *)(rte_pktmbuf_mtod(m, unsigned char*)
684 + sizeof(struct ether_hdr));
686 dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
687 qconf->ipv6_lookup_struct);
689 if (dst_port >= RTE_MAX_ETHPORTS ||
690 (enabled_port_mask & 1 << dst_port) == 0)
693 /* 02:00:00:00:00:xx */
694 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0];
695 *((uint64_t *)d_addr_bytes) =
696 0x000000000002 + ((uint64_t)dst_port << 40);
699 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr);
701 send_single_packet(m, dst_port);
703 /* We don't currently handle IPv6 packets in LPM mode. */
710 #define SLEEP_GEAR1_THRESHOLD 100
711 #define SLEEP_GEAR2_THRESHOLD 1000
713 static inline uint32_t
714 power_idle_heuristic(uint32_t zero_rx_packet_count)
716 /* If zero count is less than 100, use it as the sleep time in us */
717 if (zero_rx_packet_count < SLEEP_GEAR1_THRESHOLD)
718 return zero_rx_packet_count;
719 /* If zero count is less than 1000, sleep time should be 100 us */
720 else if ((zero_rx_packet_count >= SLEEP_GEAR1_THRESHOLD) &&
721 (zero_rx_packet_count < SLEEP_GEAR2_THRESHOLD))
722 return SLEEP_GEAR1_THRESHOLD;
723 /* If zero count is greater than 1000, sleep time should be 1000 us */
724 else if (zero_rx_packet_count >= SLEEP_GEAR2_THRESHOLD)
725 return SLEEP_GEAR2_THRESHOLD;
730 static inline enum freq_scale_hint_t
731 power_freq_scaleup_heuristic(unsigned lcore_id,
736 * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries
739 #define FREQ_GEAR1_RX_PACKET_THRESHOLD MAX_PKT_BURST
740 #define FREQ_GEAR2_RX_PACKET_THRESHOLD (MAX_PKT_BURST*2)
741 #define FREQ_GEAR3_RX_PACKET_THRESHOLD (MAX_PKT_BURST*3)
742 #define FREQ_UP_TREND1_ACC 1
743 #define FREQ_UP_TREND2_ACC 100
744 #define FREQ_UP_THRESHOLD 10000
746 if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
747 FREQ_GEAR3_RX_PACKET_THRESHOLD) > 0)) {
748 stats[lcore_id].trend = 0;
750 } else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
751 FREQ_GEAR2_RX_PACKET_THRESHOLD) > 0))
752 stats[lcore_id].trend += FREQ_UP_TREND2_ACC;
753 else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
754 FREQ_GEAR1_RX_PACKET_THRESHOLD) > 0))
755 stats[lcore_id].trend += FREQ_UP_TREND1_ACC;
757 if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) {
758 stats[lcore_id].trend = 0;
765 /* main processing loop */
767 main_loop(__attribute__((unused)) void *dummy)
769 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
771 uint64_t prev_tsc, diff_tsc, cur_tsc;
772 uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power;
774 uint8_t portid, queueid;
775 struct lcore_conf *qconf;
776 struct lcore_rx_queue *rx_queue;
777 enum freq_scale_hint_t lcore_scaleup_hint;
779 uint32_t lcore_rx_idle_count = 0;
780 uint32_t lcore_idle_hint = 0;
782 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
786 lcore_id = rte_lcore_id();
787 qconf = &lcore_conf[lcore_id];
789 if (qconf->n_rx_queue == 0) {
790 RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id);
794 RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id);
796 for (i = 0; i < qconf->n_rx_queue; i++) {
798 portid = qconf->rx_queue_list[i].port_id;
799 queueid = qconf->rx_queue_list[i].queue_id;
800 RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%hhu "
801 "rxqueueid=%hhu\n", lcore_id, portid, queueid);
805 stats[lcore_id].nb_iteration_looped++;
807 cur_tsc = rte_rdtsc();
808 cur_tsc_power = cur_tsc;
811 * TX burst queue drain
813 diff_tsc = cur_tsc - prev_tsc;
814 if (unlikely(diff_tsc > drain_tsc)) {
817 * This could be optimized (use queueid instead of
818 * portid), but it is not called so often
820 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
821 if (qconf->tx_mbufs[portid].len == 0)
823 send_burst(&lcore_conf[lcore_id],
824 qconf->tx_mbufs[portid].len,
826 qconf->tx_mbufs[portid].len = 0;
832 diff_tsc_power = cur_tsc_power - prev_tsc_power;
833 if (diff_tsc_power > TIMER_RESOLUTION_CYCLES) {
835 prev_tsc_power = cur_tsc_power;
839 * Read packet from RX queues
841 lcore_scaleup_hint = FREQ_CURRENT;
842 lcore_rx_idle_count = 0;
843 for (i = 0; i < qconf->n_rx_queue; ++i) {
844 rx_queue = &(qconf->rx_queue_list[i]);
845 rx_queue->idle_hint = 0;
846 portid = rx_queue->port_id;
847 queueid = rx_queue->queue_id;
849 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
851 stats[lcore_id].nb_rx_processed += nb_rx;
852 if (unlikely(nb_rx == 0)) {
854 * no packet received from rx queue, try to
855 * sleep for a while forcing CPU enter deeper
858 rx_queue->zero_rx_packet_count++;
860 if (rx_queue->zero_rx_packet_count <=
864 rx_queue->idle_hint = power_idle_heuristic(\
865 rx_queue->zero_rx_packet_count);
866 lcore_rx_idle_count++;
868 rx_queue->zero_rx_packet_count = 0;
871 * do not scale up frequency immediately as
872 * user to kernel space communication is costly
873 * which might impact packet I/O for received
876 rx_queue->freq_up_hint =
877 power_freq_scaleup_heuristic(lcore_id,
881 /* Prefetch first packets */
882 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
883 rte_prefetch0(rte_pktmbuf_mtod(
884 pkts_burst[j], void *));
887 /* Prefetch and forward already prefetched packets */
888 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
889 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
890 j + PREFETCH_OFFSET], void *));
891 l3fwd_simple_forward(pkts_burst[j], portid,
895 /* Forward remaining prefetched packets */
896 for (; j < nb_rx; j++) {
897 l3fwd_simple_forward(pkts_burst[j], portid,
902 if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
903 for (i = 1, lcore_scaleup_hint =
904 qconf->rx_queue_list[0].freq_up_hint;
905 i < qconf->n_rx_queue; ++i) {
906 rx_queue = &(qconf->rx_queue_list[i]);
907 if (rx_queue->freq_up_hint >
910 rx_queue->freq_up_hint;
913 if (lcore_scaleup_hint == FREQ_HIGHEST)
914 rte_power_freq_max(lcore_id);
915 else if (lcore_scaleup_hint == FREQ_HIGHER)
916 rte_power_freq_up(lcore_id);
919 * All Rx queues empty in recent consecutive polls,
920 * sleep in a conservative manner, meaning sleep as
923 for (i = 1, lcore_idle_hint =
924 qconf->rx_queue_list[0].idle_hint;
925 i < qconf->n_rx_queue; ++i) {
926 rx_queue = &(qconf->rx_queue_list[i]);
927 if (rx_queue->idle_hint < lcore_idle_hint)
928 lcore_idle_hint = rx_queue->idle_hint;
931 if ( lcore_idle_hint < SLEEP_GEAR1_THRESHOLD)
933 * execute "pause" instruction to avoid context
934 * switch for short sleep.
936 rte_delay_us(lcore_idle_hint);
938 /* long sleep force runing thread to suspend */
939 usleep(lcore_idle_hint);
941 stats[lcore_id].sleep_time += lcore_idle_hint;
947 check_lcore_params(void)
949 uint8_t queue, lcore;
953 for (i = 0; i < nb_lcore_params; ++i) {
954 queue = lcore_params[i].queue_id;
955 if (queue >= MAX_RX_QUEUE_PER_PORT) {
956 printf("invalid queue number: %hhu\n", queue);
959 lcore = lcore_params[i].lcore_id;
960 if (!rte_lcore_is_enabled(lcore)) {
961 printf("error: lcore %hhu is not enabled in lcore "
965 if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
967 printf("warning: lcore %hhu is on socket %d with numa "
968 "off\n", lcore, socketid);
975 check_port_config(const unsigned nb_ports)
980 for (i = 0; i < nb_lcore_params; ++i) {
981 portid = lcore_params[i].port_id;
982 if ((enabled_port_mask & (1 << portid)) == 0) {
983 printf("port %u is not enabled in port mask\n",
987 if (portid >= nb_ports) {
988 printf("port %u is not present on the board\n",
997 get_port_n_rx_queues(const uint8_t port)
1002 for (i = 0; i < nb_lcore_params; ++i) {
1003 if (lcore_params[i].port_id == port &&
1004 lcore_params[i].queue_id > queue)
1005 queue = lcore_params[i].queue_id;
1007 return (uint8_t)(++queue);
1011 init_lcore_rx_queues(void)
1013 uint16_t i, nb_rx_queue;
1016 for (i = 0; i < nb_lcore_params; ++i) {
1017 lcore = lcore_params[i].lcore_id;
1018 nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1019 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1020 printf("error: too many queues (%u) for lcore: %u\n",
1021 (unsigned)nb_rx_queue + 1, (unsigned)lcore);
1024 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1025 lcore_params[i].port_id;
1026 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1027 lcore_params[i].queue_id;
1028 lcore_conf[lcore].n_rx_queue++;
1036 print_usage(const char *prgname)
1038 printf ("%s [EAL options] -- -p PORTMASK -P"
1039 " [--config (port,queue,lcore)[,(port,queue,lcore]]"
1040 " [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
1041 " -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1042 " -P : enable promiscuous mode\n"
1043 " --config (port,queue,lcore): rx queues configuration\n"
1044 " --no-numa: optional, disable numa awareness\n"
1045 " --enable-jumbo: enable jumbo frame"
1046 " which max packet len is PKTLEN in decimal (64-9600)\n",
1050 static int parse_max_pkt_len(const char *pktlen)
1055 /* parse decimal string */
1056 len = strtoul(pktlen, &end, 10);
1057 if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1067 parse_portmask(const char *portmask)
1072 /* parse hexadecimal string */
1073 pm = strtoul(portmask, &end, 16);
1074 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1084 parse_config(const char *q_arg)
1087 const char *p, *p0 = q_arg;
1095 unsigned long int_fld[_NUM_FLD];
1096 char *str_fld[_NUM_FLD];
1100 nb_lcore_params = 0;
1102 while ((p = strchr(p0,'(')) != NULL) {
1104 if((p0 = strchr(p,')')) == NULL)
1108 if(size >= sizeof(s))
1111 snprintf(s, sizeof(s), "%.*s", size, p);
1112 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1115 for (i = 0; i < _NUM_FLD; i++){
1117 int_fld[i] = strtoul(str_fld[i], &end, 0);
1118 if (errno != 0 || end == str_fld[i] || int_fld[i] >
1122 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1123 printf("exceeded max number of lcore params: %hu\n",
1127 lcore_params_array[nb_lcore_params].port_id =
1128 (uint8_t)int_fld[FLD_PORT];
1129 lcore_params_array[nb_lcore_params].queue_id =
1130 (uint8_t)int_fld[FLD_QUEUE];
1131 lcore_params_array[nb_lcore_params].lcore_id =
1132 (uint8_t)int_fld[FLD_LCORE];
1135 lcore_params = lcore_params_array;
1140 /* Parse the argument given in the command line of the application */
1142 parse_args(int argc, char **argv)
1147 char *prgname = argv[0];
1148 static struct option lgopts[] = {
1149 {"config", 1, 0, 0},
1150 {"no-numa", 0, 0, 0},
1151 {"enable-jumbo", 0, 0, 0},
1157 while ((opt = getopt_long(argc, argvopt, "p:P",
1158 lgopts, &option_index)) != EOF) {
1163 enabled_port_mask = parse_portmask(optarg);
1164 if (enabled_port_mask == 0) {
1165 printf("invalid portmask\n");
1166 print_usage(prgname);
1171 printf("Promiscuous mode selected\n");
1177 if (!strncmp(lgopts[option_index].name, "config", 6)) {
1178 ret = parse_config(optarg);
1180 printf("invalid config\n");
1181 print_usage(prgname);
1186 if (!strncmp(lgopts[option_index].name,
1188 printf("numa is disabled \n");
1192 if (!strncmp(lgopts[option_index].name,
1193 "enable-jumbo", 12)) {
1194 struct option lenopts =
1195 {"max-pkt-len", required_argument, \
1198 printf("jumbo frame is enabled \n");
1199 port_conf.rxmode.jumbo_frame = 1;
1202 * if no max-pkt-len set, use the default value
1205 if (0 == getopt_long(argc, argvopt, "",
1206 &lenopts, &option_index)) {
1207 ret = parse_max_pkt_len(optarg);
1209 (ret > MAX_JUMBO_PKT_LEN)){
1210 printf("invalid packet "
1212 print_usage(prgname);
1215 port_conf.rxmode.max_rx_pkt_len = ret;
1217 printf("set jumbo frame "
1218 "max packet length to %u\n",
1219 (unsigned int)port_conf.rxmode.max_rx_pkt_len);
1225 print_usage(prgname);
1231 argv[optind-1] = prgname;
1234 optind = 0; /* reset getopt lib */
1239 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1241 char buf[ETHER_ADDR_FMT_SIZE];
1242 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
1243 printf("%s%s", name, buf);
1246 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1248 setup_hash(int socketid)
1250 struct rte_hash_parameters ipv4_l3fwd_hash_params = {
1252 .entries = L3FWD_HASH_ENTRIES,
1253 .bucket_entries = 4,
1254 .key_len = sizeof(struct ipv4_5tuple),
1255 .hash_func = DEFAULT_HASH_FUNC,
1256 .hash_func_init_val = 0,
1259 struct rte_hash_parameters ipv6_l3fwd_hash_params = {
1261 .entries = L3FWD_HASH_ENTRIES,
1262 .bucket_entries = 4,
1263 .key_len = sizeof(struct ipv6_5tuple),
1264 .hash_func = DEFAULT_HASH_FUNC,
1265 .hash_func_init_val = 0,
1272 /* create ipv4 hash */
1273 snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
1274 ipv4_l3fwd_hash_params.name = s;
1275 ipv4_l3fwd_hash_params.socket_id = socketid;
1276 ipv4_l3fwd_lookup_struct[socketid] =
1277 rte_hash_create(&ipv4_l3fwd_hash_params);
1278 if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1279 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1280 "socket %d\n", socketid);
1282 /* create ipv6 hash */
1283 snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
1284 ipv6_l3fwd_hash_params.name = s;
1285 ipv6_l3fwd_hash_params.socket_id = socketid;
1286 ipv6_l3fwd_lookup_struct[socketid] =
1287 rte_hash_create(&ipv6_l3fwd_hash_params);
1288 if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
1289 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1290 "socket %d\n", socketid);
1293 /* populate the ipv4 hash */
1294 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
1295 ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid],
1296 (void *) &ipv4_l3fwd_route_array[i].key);
1298 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1299 "l3fwd hash on socket %d\n", i, socketid);
1301 ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out;
1302 printf("Hash: Adding key\n");
1303 print_ipv4_key(ipv4_l3fwd_route_array[i].key);
1306 /* populate the ipv6 hash */
1307 for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
1308 ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid],
1309 (void *) &ipv6_l3fwd_route_array[i].key);
1311 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1312 "l3fwd hash on socket %d\n", i, socketid);
1314 ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out;
1315 printf("Hash: Adding key\n");
1316 print_ipv6_key(ipv6_l3fwd_route_array[i].key);
1321 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1323 setup_lpm(int socketid)
1329 /* create the LPM table */
1330 snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
1331 ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid,
1332 IPV4_L3FWD_LPM_MAX_RULES, 0);
1333 if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1334 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
1335 " on socket %d\n", socketid);
1337 /* populate the LPM table */
1338 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
1339 ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
1340 ipv4_l3fwd_route_array[i].ip,
1341 ipv4_l3fwd_route_array[i].depth,
1342 ipv4_l3fwd_route_array[i].if_out);
1345 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
1346 "l3fwd LPM table on socket %d\n",
1350 printf("LPM: Adding route 0x%08x / %d (%d)\n",
1351 (unsigned)ipv4_l3fwd_route_array[i].ip,
1352 ipv4_l3fwd_route_array[i].depth,
1353 ipv4_l3fwd_route_array[i].if_out);
1359 init_mem(unsigned nb_mbuf)
1361 struct lcore_conf *qconf;
1366 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1367 if (rte_lcore_is_enabled(lcore_id) == 0)
1371 socketid = rte_lcore_to_socket_id(lcore_id);
1375 if (socketid >= NB_SOCKETS) {
1376 rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is "
1377 "out of range %d\n", socketid,
1378 lcore_id, NB_SOCKETS);
1380 if (pktmbuf_pool[socketid] == NULL) {
1381 snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
1382 pktmbuf_pool[socketid] =
1383 rte_mempool_create(s, nb_mbuf,
1384 MBUF_SIZE, MEMPOOL_CACHE_SIZE,
1385 sizeof(struct rte_pktmbuf_pool_private),
1386 rte_pktmbuf_pool_init, NULL,
1387 rte_pktmbuf_init, NULL,
1389 if (pktmbuf_pool[socketid] == NULL)
1390 rte_exit(EXIT_FAILURE,
1391 "Cannot init mbuf pool on socket %d\n",
1394 printf("Allocated mbuf pool on socket %d\n",
1397 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1398 setup_lpm(socketid);
1400 setup_hash(socketid);
1403 qconf = &lcore_conf[lcore_id];
1404 qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
1405 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1406 qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
1412 /* Check the link status of all ports in up to 9s, and print them finally */
1414 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1416 #define CHECK_INTERVAL 100 /* 100ms */
1417 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1418 uint8_t portid, count, all_ports_up, print_flag = 0;
1419 struct rte_eth_link link;
1421 printf("\nChecking link status");
1423 for (count = 0; count <= MAX_CHECK_TIME; count++) {
1425 for (portid = 0; portid < port_num; portid++) {
1426 if ((port_mask & (1 << portid)) == 0)
1428 memset(&link, 0, sizeof(link));
1429 rte_eth_link_get_nowait(portid, &link);
1430 /* print link status if flag set */
1431 if (print_flag == 1) {
1432 if (link.link_status)
1433 printf("Port %d Link Up - speed %u "
1434 "Mbps - %s\n", (uint8_t)portid,
1435 (unsigned)link.link_speed,
1436 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1437 ("full-duplex") : ("half-duplex\n"));
1439 printf("Port %d Link Down\n",
1443 /* clear all_ports_up flag if any link down */
1444 if (link.link_status == 0) {
1449 /* after finally printing all link status, get out */
1450 if (print_flag == 1)
1453 if (all_ports_up == 0) {
1456 rte_delay_ms(CHECK_INTERVAL);
1459 /* set the print_flag if all ports up or timeout */
1460 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1468 main(int argc, char **argv)
1470 struct lcore_conf *qconf;
1471 struct rte_eth_dev_info dev_info;
1472 struct rte_eth_txconf *txconf;
1478 uint32_t n_tx_queue, nb_lcores;
1479 uint8_t portid, nb_rx_queue, queue, socketid;
1481 /* catch SIGINT and restore cpufreq governor to ondemand */
1482 signal(SIGINT, signal_exit_now);
1485 ret = rte_eal_init(argc, argv);
1487 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1491 /* init RTE timer library to be used late */
1492 rte_timer_subsystem_init();
1494 /* parse application arguments (after the EAL ones) */
1495 ret = parse_args(argc, argv);
1497 rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
1499 if (check_lcore_params() < 0)
1500 rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
1502 ret = init_lcore_rx_queues();
1504 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
1507 nb_ports = rte_eth_dev_count();
1508 if (nb_ports > RTE_MAX_ETHPORTS)
1509 nb_ports = RTE_MAX_ETHPORTS;
1511 if (check_port_config(nb_ports) < 0)
1512 rte_exit(EXIT_FAILURE, "check_port_config failed\n");
1514 nb_lcores = rte_lcore_count();
1516 /* initialize all ports */
1517 for (portid = 0; portid < nb_ports; portid++) {
1518 /* skip ports that are not enabled */
1519 if ((enabled_port_mask & (1 << portid)) == 0) {
1520 printf("\nSkipping disabled port %d\n", portid);
1525 printf("Initializing port %d ... ", portid );
1528 nb_rx_queue = get_port_n_rx_queues(portid);
1529 n_tx_queue = nb_lcores;
1530 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
1531 n_tx_queue = MAX_TX_QUEUE_PER_PORT;
1532 printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
1533 nb_rx_queue, (unsigned)n_tx_queue );
1534 ret = rte_eth_dev_configure(portid, nb_rx_queue,
1535 (uint16_t)n_tx_queue, &port_conf);
1537 rte_exit(EXIT_FAILURE, "Cannot configure device: "
1538 "err=%d, port=%d\n", ret, portid);
1540 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
1541 print_ethaddr(" Address:", &ports_eth_addr[portid]);
1545 ret = init_mem(NB_MBUF);
1547 rte_exit(EXIT_FAILURE, "init_mem failed\n");
1549 /* init one TX queue per couple (lcore,port) */
1551 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1552 if (rte_lcore_is_enabled(lcore_id) == 0)
1557 (uint8_t)rte_lcore_to_socket_id(lcore_id);
1561 printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
1564 rte_eth_dev_info_get(portid, &dev_info);
1565 txconf = &dev_info.default_txconf;
1566 if (port_conf.rxmode.jumbo_frame)
1567 txconf->txq_flags = 0;
1568 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1571 rte_exit(EXIT_FAILURE,
1572 "rte_eth_tx_queue_setup: err=%d, "
1573 "port=%d\n", ret, portid);
1575 qconf = &lcore_conf[lcore_id];
1576 qconf->tx_queue_id[portid] = queueid;
1582 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1583 if (rte_lcore_is_enabled(lcore_id) == 0)
1586 /* init power management library */
1587 ret = rte_power_init(lcore_id);
1589 rte_exit(EXIT_FAILURE, "Power management library "
1590 "initialization failed on core%u\n", lcore_id);
1592 /* init timer structures for each enabled lcore */
1593 rte_timer_init(&power_timers[lcore_id]);
1594 hz = rte_get_timer_hz();
1595 rte_timer_reset(&power_timers[lcore_id],
1596 hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id,
1597 power_timer_cb, NULL);
1599 qconf = &lcore_conf[lcore_id];
1600 printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
1602 /* init RX queues */
1603 for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
1604 portid = qconf->rx_queue_list[queue].port_id;
1605 queueid = qconf->rx_queue_list[queue].queue_id;
1609 (uint8_t)rte_lcore_to_socket_id(lcore_id);
1613 printf("rxq=%d,%d,%d ", portid, queueid, socketid);
1616 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
1618 pktmbuf_pool[socketid]);
1620 rte_exit(EXIT_FAILURE,
1621 "rte_eth_rx_queue_setup: err=%d, "
1622 "port=%d\n", ret, portid);
1629 for (portid = 0; portid < nb_ports; portid++) {
1630 if ((enabled_port_mask & (1 << portid)) == 0) {
1634 ret = rte_eth_dev_start(portid);
1636 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, "
1637 "port=%d\n", ret, portid);
1640 * If enabled, put device in promiscuous mode.
1641 * This allows IO forwarding mode to forward packets
1642 * to itself through 2 cross-connected ports of the
1646 rte_eth_promiscuous_enable(portid);
1649 check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
1651 /* launch per-lcore init on every lcore */
1652 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1653 RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1654 if (rte_eal_wait_lcore(lcore_id) < 0)