4677c69ae805f6f88a0543b393d99ce5b0e45c5e
[dpdk.git] / iavf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_alarm.h>
20 #include <rte_atomic.h>
21 #include <rte_eal.h>
22 #include <rte_ether.h>
23 #include <ethdev_driver.h>
24 #include <ethdev_pci.h>
25 #include <rte_malloc.h>
26 #include <rte_memzone.h>
27 #include <rte_dev.h>
28
29 #include "iavf.h"
30 #include "iavf_rxtx.h"
31 #include "iavf_generic_flow.h"
32 #include "rte_pmd_iavf.h"
33 #include "iavf_ipsec_crypto.h"
34
35 /* devargs */
36 #define IAVF_PROTO_XTR_ARG         "proto_xtr"
37
38 static const char * const iavf_valid_args[] = {
39         IAVF_PROTO_XTR_ARG,
40         NULL
41 };
42
43 static const struct rte_mbuf_dynfield iavf_proto_xtr_metadata_param = {
44         .name = "intel_pmd_dynfield_proto_xtr_metadata",
45         .size = sizeof(uint32_t),
46         .align = __alignof__(uint32_t),
47         .flags = 0,
48 };
49
50 struct iavf_proto_xtr_ol {
51         const struct rte_mbuf_dynflag param;
52         uint64_t *ol_flag;
53         bool required;
54 };
55
56 static struct iavf_proto_xtr_ol iavf_proto_xtr_params[] = {
57         [IAVF_PROTO_XTR_VLAN] = {
58                 .param = { .name = "intel_pmd_dynflag_proto_xtr_vlan" },
59                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_vlan_mask },
60         [IAVF_PROTO_XTR_IPV4] = {
61                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv4" },
62                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask },
63         [IAVF_PROTO_XTR_IPV6] = {
64                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6" },
65                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask },
66         [IAVF_PROTO_XTR_IPV6_FLOW] = {
67                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6_flow" },
68                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask },
69         [IAVF_PROTO_XTR_TCP] = {
70                 .param = { .name = "intel_pmd_dynflag_proto_xtr_tcp" },
71                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_tcp_mask },
72         [IAVF_PROTO_XTR_IP_OFFSET] = {
73                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ip_offset" },
74                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask },
75         [IAVF_PROTO_XTR_IPSEC_CRYPTO_SAID] = {
76                 .param = {
77                 .name = "intel_pmd_dynflag_proto_xtr_ipsec_crypto_said" },
78                 .ol_flag =
79                         &rte_pmd_ifd_dynflag_proto_xtr_ipsec_crypto_said_mask },
80 };
81
82 static int iavf_dev_configure(struct rte_eth_dev *dev);
83 static int iavf_dev_start(struct rte_eth_dev *dev);
84 static int iavf_dev_stop(struct rte_eth_dev *dev);
85 static int iavf_dev_close(struct rte_eth_dev *dev);
86 static int iavf_dev_reset(struct rte_eth_dev *dev);
87 static int iavf_dev_info_get(struct rte_eth_dev *dev,
88                              struct rte_eth_dev_info *dev_info);
89 static const uint32_t *iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
90 static int iavf_dev_stats_get(struct rte_eth_dev *dev,
91                              struct rte_eth_stats *stats);
92 static int iavf_dev_stats_reset(struct rte_eth_dev *dev);
93 static int iavf_dev_xstats_reset(struct rte_eth_dev *dev);
94 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
95                                  struct rte_eth_xstat *xstats, unsigned int n);
96 static int iavf_dev_xstats_get_names(struct rte_eth_dev *dev,
97                                        struct rte_eth_xstat_name *xstats_names,
98                                        unsigned int limit);
99 static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev);
100 static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev);
101 static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev);
102 static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev);
103 static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev,
104                                 struct rte_ether_addr *addr,
105                                 uint32_t index,
106                                 uint32_t pool);
107 static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
108 static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev,
109                                    uint16_t vlan_id, int on);
110 static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
111 static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
112                                    struct rte_eth_rss_reta_entry64 *reta_conf,
113                                    uint16_t reta_size);
114 static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
115                                   struct rte_eth_rss_reta_entry64 *reta_conf,
116                                   uint16_t reta_size);
117 static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
118                                    struct rte_eth_rss_conf *rss_conf);
119 static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
120                                      struct rte_eth_rss_conf *rss_conf);
121 static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
122 static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
123                                          struct rte_ether_addr *mac_addr);
124 static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
125                                         uint16_t queue_id);
126 static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
127                                          uint16_t queue_id);
128 static int iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
129                                  const struct rte_flow_ops **ops);
130 static int iavf_set_mc_addr_list(struct rte_eth_dev *dev,
131                         struct rte_ether_addr *mc_addrs,
132                         uint32_t mc_addrs_num);
133 static int iavf_tm_ops_get(struct rte_eth_dev *dev __rte_unused, void *arg);
134
135 static const struct rte_pci_id pci_id_iavf_map[] = {
136         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
137         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF) },
138         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF_HV) },
139         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_VF) },
140         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_A0_VF) },
141         { .vendor_id = 0, /* sentinel */ },
142 };
143
144 struct rte_iavf_xstats_name_off {
145         char name[RTE_ETH_XSTATS_NAME_SIZE];
146         unsigned int offset;
147 };
148
149 #define _OFF_OF(a) offsetof(struct iavf_eth_xstats, a)
150 static const struct rte_iavf_xstats_name_off rte_iavf_stats_strings[] = {
151         {"rx_bytes", _OFF_OF(eth_stats.rx_bytes)},
152         {"rx_unicast_packets", _OFF_OF(eth_stats.rx_unicast)},
153         {"rx_multicast_packets", _OFF_OF(eth_stats.rx_multicast)},
154         {"rx_broadcast_packets", _OFF_OF(eth_stats.rx_broadcast)},
155         {"rx_dropped_packets", _OFF_OF(eth_stats.rx_discards)},
156         {"rx_unknown_protocol_packets", offsetof(struct iavf_eth_stats,
157                 rx_unknown_protocol)},
158         {"tx_bytes", _OFF_OF(eth_stats.tx_bytes)},
159         {"tx_unicast_packets", _OFF_OF(eth_stats.tx_unicast)},
160         {"tx_multicast_packets", _OFF_OF(eth_stats.tx_multicast)},
161         {"tx_broadcast_packets", _OFF_OF(eth_stats.tx_broadcast)},
162         {"tx_dropped_packets", _OFF_OF(eth_stats.tx_discards)},
163         {"tx_error_packets", _OFF_OF(eth_stats.tx_errors)},
164
165         {"inline_ipsec_crypto_ipackets", _OFF_OF(ips_stats.icount)},
166         {"inline_ipsec_crypto_ibytes", _OFF_OF(ips_stats.ibytes)},
167         {"inline_ipsec_crypto_ierrors", _OFF_OF(ips_stats.ierrors.count)},
168         {"inline_ipsec_crypto_ierrors_sad_lookup",
169                         _OFF_OF(ips_stats.ierrors.sad_miss)},
170         {"inline_ipsec_crypto_ierrors_not_processed",
171                         _OFF_OF(ips_stats.ierrors.not_processed)},
172         {"inline_ipsec_crypto_ierrors_icv_fail",
173                         _OFF_OF(ips_stats.ierrors.icv_check)},
174         {"inline_ipsec_crypto_ierrors_length",
175                         _OFF_OF(ips_stats.ierrors.ipsec_length)},
176         {"inline_ipsec_crypto_ierrors_misc",
177                         _OFF_OF(ips_stats.ierrors.misc)},
178 };
179 #undef _OFF_OF
180
181 #define IAVF_NB_XSTATS (sizeof(rte_iavf_stats_strings) / \
182                 sizeof(rte_iavf_stats_strings[0]))
183
184 static const struct eth_dev_ops iavf_eth_dev_ops = {
185         .dev_configure              = iavf_dev_configure,
186         .dev_start                  = iavf_dev_start,
187         .dev_stop                   = iavf_dev_stop,
188         .dev_close                  = iavf_dev_close,
189         .dev_reset                  = iavf_dev_reset,
190         .dev_infos_get              = iavf_dev_info_get,
191         .dev_supported_ptypes_get   = iavf_dev_supported_ptypes_get,
192         .link_update                = iavf_dev_link_update,
193         .stats_get                  = iavf_dev_stats_get,
194         .stats_reset                = iavf_dev_stats_reset,
195         .xstats_get                 = iavf_dev_xstats_get,
196         .xstats_get_names           = iavf_dev_xstats_get_names,
197         .xstats_reset               = iavf_dev_xstats_reset,
198         .promiscuous_enable         = iavf_dev_promiscuous_enable,
199         .promiscuous_disable        = iavf_dev_promiscuous_disable,
200         .allmulticast_enable        = iavf_dev_allmulticast_enable,
201         .allmulticast_disable       = iavf_dev_allmulticast_disable,
202         .mac_addr_add               = iavf_dev_add_mac_addr,
203         .mac_addr_remove            = iavf_dev_del_mac_addr,
204         .set_mc_addr_list                       = iavf_set_mc_addr_list,
205         .vlan_filter_set            = iavf_dev_vlan_filter_set,
206         .vlan_offload_set           = iavf_dev_vlan_offload_set,
207         .rx_queue_start             = iavf_dev_rx_queue_start,
208         .rx_queue_stop              = iavf_dev_rx_queue_stop,
209         .tx_queue_start             = iavf_dev_tx_queue_start,
210         .tx_queue_stop              = iavf_dev_tx_queue_stop,
211         .rx_queue_setup             = iavf_dev_rx_queue_setup,
212         .rx_queue_release           = iavf_dev_rx_queue_release,
213         .tx_queue_setup             = iavf_dev_tx_queue_setup,
214         .tx_queue_release           = iavf_dev_tx_queue_release,
215         .mac_addr_set               = iavf_dev_set_default_mac_addr,
216         .reta_update                = iavf_dev_rss_reta_update,
217         .reta_query                 = iavf_dev_rss_reta_query,
218         .rss_hash_update            = iavf_dev_rss_hash_update,
219         .rss_hash_conf_get          = iavf_dev_rss_hash_conf_get,
220         .rxq_info_get               = iavf_dev_rxq_info_get,
221         .txq_info_get               = iavf_dev_txq_info_get,
222         .mtu_set                    = iavf_dev_mtu_set,
223         .rx_queue_intr_enable       = iavf_dev_rx_queue_intr_enable,
224         .rx_queue_intr_disable      = iavf_dev_rx_queue_intr_disable,
225         .flow_ops_get               = iavf_dev_flow_ops_get,
226         .tx_done_cleanup            = iavf_dev_tx_done_cleanup,
227         .get_monitor_addr           = iavf_get_monitor_addr,
228         .tm_ops_get                 = iavf_tm_ops_get,
229 };
230
231 static int
232 iavf_tm_ops_get(struct rte_eth_dev *dev __rte_unused,
233                         void *arg)
234 {
235         if (!arg)
236                 return -EINVAL;
237
238         *(const void **)arg = &iavf_tm_ops;
239
240         return 0;
241 }
242
243 __rte_unused
244 static int
245 iavf_vfr_inprogress(struct iavf_hw *hw)
246 {
247         int inprogress = 0;
248
249         if ((IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) &
250                 IAVF_VFGEN_RSTAT_VFR_STATE_MASK) ==
251                 VIRTCHNL_VFR_INPROGRESS)
252                 inprogress = 1;
253
254         if (inprogress)
255                 PMD_DRV_LOG(INFO, "Watchdog detected VFR in progress");
256
257         return inprogress;
258 }
259
260 __rte_unused
261 static void
262 iavf_dev_watchdog(void *cb_arg)
263 {
264         struct iavf_adapter *adapter = cb_arg;
265         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
266         int vfr_inprogress = 0, rc = 0;
267
268         /* check if watchdog has been disabled since last call */
269         if (!adapter->vf.watchdog_enabled)
270                 return;
271
272         /* If in reset then poll vfr_inprogress register for completion */
273         if (adapter->vf.vf_reset) {
274                 vfr_inprogress = iavf_vfr_inprogress(hw);
275
276                 if (!vfr_inprogress) {
277                         PMD_DRV_LOG(INFO, "VF \"%s\" reset has completed",
278                                 adapter->vf.eth_dev->data->name);
279                         adapter->vf.vf_reset = false;
280                 }
281         /* If not in reset then poll vfr_inprogress register for VFLR event */
282         } else {
283                 vfr_inprogress = iavf_vfr_inprogress(hw);
284
285                 if (vfr_inprogress) {
286                         PMD_DRV_LOG(INFO,
287                                 "VF \"%s\" reset event detected by watchdog",
288                                 adapter->vf.eth_dev->data->name);
289
290                         /* enter reset state with VFLR event */
291                         adapter->vf.vf_reset = true;
292
293                         rte_eth_dev_callback_process(adapter->vf.eth_dev,
294                                 RTE_ETH_EVENT_INTR_RESET, NULL);
295                 }
296         }
297
298         /* re-alarm watchdog */
299         rc = rte_eal_alarm_set(IAVF_DEV_WATCHDOG_PERIOD,
300                         &iavf_dev_watchdog, cb_arg);
301
302         if (rc)
303                 PMD_DRV_LOG(ERR, "Failed \"%s\" to reset device watchdog alarm",
304                         adapter->vf.eth_dev->data->name);
305 }
306
307 static void
308 iavf_dev_watchdog_enable(struct iavf_adapter *adapter __rte_unused)
309 {
310 #if (IAVF_DEV_WATCHDOG_PERIOD > 0)
311         PMD_DRV_LOG(INFO, "Enabling device watchdog");
312         adapter->vf.watchdog_enabled = true;
313         if (rte_eal_alarm_set(IAVF_DEV_WATCHDOG_PERIOD,
314                         &iavf_dev_watchdog, (void *)adapter))
315                 PMD_DRV_LOG(ERR, "Failed to enabled device watchdog");
316 #endif
317 }
318
319 static void
320 iavf_dev_watchdog_disable(struct iavf_adapter *adapter __rte_unused)
321 {
322 #if (IAVF_DEV_WATCHDOG_PERIOD > 0)
323         PMD_DRV_LOG(INFO, "Disabling device watchdog");
324         adapter->vf.watchdog_enabled = false;
325 #endif
326 }
327
328 static int
329 iavf_set_mc_addr_list(struct rte_eth_dev *dev,
330                         struct rte_ether_addr *mc_addrs,
331                         uint32_t mc_addrs_num)
332 {
333         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
334         struct iavf_adapter *adapter =
335                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
336         int err, ret;
337
338         if (mc_addrs_num > IAVF_NUM_MACADDR_MAX) {
339                 PMD_DRV_LOG(ERR,
340                             "can't add more than a limited number (%u) of addresses.",
341                             (uint32_t)IAVF_NUM_MACADDR_MAX);
342                 return -EINVAL;
343         }
344
345         /* flush previous addresses */
346         err = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
347                                         false);
348         if (err)
349                 return err;
350
351         /* add new ones */
352         err = iavf_add_del_mc_addr_list(adapter, mc_addrs, mc_addrs_num, true);
353
354         if (err) {
355                 /* if adding mac address list fails, should add the previous
356                  * addresses back.
357                  */
358                 ret = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs,
359                                                 vf->mc_addrs_num, true);
360                 if (ret)
361                         return ret;
362         } else {
363                 vf->mc_addrs_num = mc_addrs_num;
364                 memcpy(vf->mc_addrs,
365                        mc_addrs, mc_addrs_num * sizeof(*mc_addrs));
366         }
367
368         return err;
369 }
370
371 static void
372 iavf_config_rss_hf(struct iavf_adapter *adapter, uint64_t rss_hf)
373 {
374         static const uint64_t map_hena_rss[] = {
375                 /* IPv4 */
376                 [IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP] =
377                                 RTE_ETH_RSS_NONFRAG_IPV4_UDP,
378                 [IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP] =
379                                 RTE_ETH_RSS_NONFRAG_IPV4_UDP,
380                 [IAVF_FILTER_PCTYPE_NONF_IPV4_UDP] =
381                                 RTE_ETH_RSS_NONFRAG_IPV4_UDP,
382                 [IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK] =
383                                 RTE_ETH_RSS_NONFRAG_IPV4_TCP,
384                 [IAVF_FILTER_PCTYPE_NONF_IPV4_TCP] =
385                                 RTE_ETH_RSS_NONFRAG_IPV4_TCP,
386                 [IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP] =
387                                 RTE_ETH_RSS_NONFRAG_IPV4_SCTP,
388                 [IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER] =
389                                 RTE_ETH_RSS_NONFRAG_IPV4_OTHER,
390                 [IAVF_FILTER_PCTYPE_FRAG_IPV4] = RTE_ETH_RSS_FRAG_IPV4,
391
392                 /* IPv6 */
393                 [IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP] =
394                                 RTE_ETH_RSS_NONFRAG_IPV6_UDP,
395                 [IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP] =
396                                 RTE_ETH_RSS_NONFRAG_IPV6_UDP,
397                 [IAVF_FILTER_PCTYPE_NONF_IPV6_UDP] =
398                                 RTE_ETH_RSS_NONFRAG_IPV6_UDP,
399                 [IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK] =
400                                 RTE_ETH_RSS_NONFRAG_IPV6_TCP,
401                 [IAVF_FILTER_PCTYPE_NONF_IPV6_TCP] =
402                                 RTE_ETH_RSS_NONFRAG_IPV6_TCP,
403                 [IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP] =
404                                 RTE_ETH_RSS_NONFRAG_IPV6_SCTP,
405                 [IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER] =
406                                 RTE_ETH_RSS_NONFRAG_IPV6_OTHER,
407                 [IAVF_FILTER_PCTYPE_FRAG_IPV6] = RTE_ETH_RSS_FRAG_IPV6,
408
409                 /* L2 Payload */
410                 [IAVF_FILTER_PCTYPE_L2_PAYLOAD] = RTE_ETH_RSS_L2_PAYLOAD
411         };
412
413         const uint64_t ipv4_rss = RTE_ETH_RSS_NONFRAG_IPV4_UDP |
414                                   RTE_ETH_RSS_NONFRAG_IPV4_TCP |
415                                   RTE_ETH_RSS_NONFRAG_IPV4_SCTP |
416                                   RTE_ETH_RSS_NONFRAG_IPV4_OTHER |
417                                   RTE_ETH_RSS_FRAG_IPV4;
418
419         const uint64_t ipv6_rss = RTE_ETH_RSS_NONFRAG_IPV6_UDP |
420                                   RTE_ETH_RSS_NONFRAG_IPV6_TCP |
421                                   RTE_ETH_RSS_NONFRAG_IPV6_SCTP |
422                                   RTE_ETH_RSS_NONFRAG_IPV6_OTHER |
423                                   RTE_ETH_RSS_FRAG_IPV6;
424
425         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
426         uint64_t caps = 0, hena = 0, valid_rss_hf = 0;
427         uint32_t i;
428         int ret;
429
430         ret = iavf_get_hena_caps(adapter, &caps);
431         if (ret) {
432                 /**
433                  * RSS offload type configuration is not a necessary feature
434                  * for VF, so here just print a warning and return.
435                  */
436                 PMD_DRV_LOG(WARNING,
437                             "fail to get RSS offload type caps, ret: %d", ret);
438                 return;
439         }
440
441         /**
442          * RTE_ETH_RSS_IPV4 and RTE_ETH_RSS_IPV6 can be considered as 2
443          * generalizations of all other IPv4 and IPv6 RSS types.
444          */
445         if (rss_hf & RTE_ETH_RSS_IPV4)
446                 rss_hf |= ipv4_rss;
447
448         if (rss_hf & RTE_ETH_RSS_IPV6)
449                 rss_hf |= ipv6_rss;
450
451         RTE_BUILD_BUG_ON(RTE_DIM(map_hena_rss) > sizeof(uint64_t) * CHAR_BIT);
452
453         for (i = 0; i < RTE_DIM(map_hena_rss); i++) {
454                 uint64_t bit = BIT_ULL(i);
455
456                 if ((caps & bit) && (map_hena_rss[i] & rss_hf)) {
457                         valid_rss_hf |= map_hena_rss[i];
458                         hena |= bit;
459                 }
460         }
461
462         ret = iavf_set_hena(adapter, hena);
463         if (ret) {
464                 /**
465                  * RSS offload type configuration is not a necessary feature
466                  * for VF, so here just print a warning and return.
467                  */
468                 PMD_DRV_LOG(WARNING,
469                             "fail to set RSS offload types, ret: %d", ret);
470                 return;
471         }
472
473         if (valid_rss_hf & ipv4_rss)
474                 valid_rss_hf |= rss_hf & RTE_ETH_RSS_IPV4;
475
476         if (valid_rss_hf & ipv6_rss)
477                 valid_rss_hf |= rss_hf & RTE_ETH_RSS_IPV6;
478
479         if (rss_hf & ~valid_rss_hf)
480                 PMD_DRV_LOG(WARNING, "Unsupported rss_hf 0x%" PRIx64,
481                             rss_hf & ~valid_rss_hf);
482
483         vf->rss_hf = valid_rss_hf;
484 }
485
486 static int
487 iavf_init_rss(struct iavf_adapter *adapter)
488 {
489         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
490         struct rte_eth_rss_conf *rss_conf;
491         uint16_t i, j, nb_q;
492         int ret;
493
494         rss_conf = &adapter->dev_data->dev_conf.rx_adv_conf.rss_conf;
495         nb_q = RTE_MIN(adapter->dev_data->nb_rx_queues,
496                        vf->max_rss_qregion);
497
498         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
499                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
500                 return -ENOTSUP;
501         }
502
503         /* configure RSS key */
504         if (!rss_conf->rss_key) {
505                 /* Calculate the default hash key */
506                 for (i = 0; i < vf->vf_res->rss_key_size; i++)
507                         vf->rss_key[i] = (uint8_t)rte_rand();
508         } else
509                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
510                            RTE_MIN(rss_conf->rss_key_len,
511                                    vf->vf_res->rss_key_size));
512
513         /* init RSS LUT table */
514         for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
515                 if (j >= nb_q)
516                         j = 0;
517                 vf->rss_lut[i] = j;
518         }
519         /* send virtchnnl ops to configure rss*/
520         ret = iavf_configure_rss_lut(adapter);
521         if (ret)
522                 return ret;
523         ret = iavf_configure_rss_key(adapter);
524         if (ret)
525                 return ret;
526
527         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
528                 /* Set RSS hash configuration based on rss_conf->rss_hf. */
529                 ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
530                 if (ret) {
531                         PMD_DRV_LOG(ERR, "fail to set default RSS");
532                         return ret;
533                 }
534         } else {
535                 iavf_config_rss_hf(adapter, rss_conf->rss_hf);
536         }
537
538         return 0;
539 }
540
541 static int
542 iavf_queues_req_reset(struct rte_eth_dev *dev, uint16_t num)
543 {
544         struct iavf_adapter *ad =
545                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
546         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
547         int ret;
548
549         ret = iavf_request_queues(dev, num);
550         if (ret) {
551                 PMD_DRV_LOG(ERR, "request queues from PF failed");
552                 return ret;
553         }
554         PMD_DRV_LOG(INFO, "change queue pairs from %u to %u",
555                         vf->vsi_res->num_queue_pairs, num);
556
557         ret = iavf_dev_reset(dev);
558         if (ret) {
559                 PMD_DRV_LOG(ERR, "vf reset failed");
560                 return ret;
561         }
562
563         return 0;
564 }
565
566 static int
567 iavf_dev_vlan_insert_set(struct rte_eth_dev *dev)
568 {
569         struct iavf_adapter *adapter =
570                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
571         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
572         bool enable;
573
574         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2))
575                 return 0;
576
577         enable = !!(dev->data->dev_conf.txmode.offloads &
578                     RTE_ETH_TX_OFFLOAD_VLAN_INSERT);
579         iavf_config_vlan_insert_v2(adapter, enable);
580
581         return 0;
582 }
583
584 static int
585 iavf_dev_init_vlan(struct rte_eth_dev *dev)
586 {
587         int err;
588
589         err = iavf_dev_vlan_offload_set(dev,
590                                         RTE_ETH_VLAN_STRIP_MASK |
591                                         RTE_ETH_QINQ_STRIP_MASK |
592                                         RTE_ETH_VLAN_FILTER_MASK |
593                                         RTE_ETH_VLAN_EXTEND_MASK);
594         if (err) {
595                 PMD_DRV_LOG(ERR, "Failed to update vlan offload");
596                 return err;
597         }
598
599         err = iavf_dev_vlan_insert_set(dev);
600         if (err)
601                 PMD_DRV_LOG(ERR, "Failed to update vlan insertion");
602
603         return err;
604 }
605
606 static int
607 iavf_dev_configure(struct rte_eth_dev *dev)
608 {
609         struct iavf_adapter *ad =
610                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
611         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
612         uint16_t num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
613                 dev->data->nb_tx_queues);
614         int ret;
615
616         ad->rx_bulk_alloc_allowed = true;
617         /* Initialize to TRUE. If any of Rx queues doesn't meet the
618          * vector Rx/Tx preconditions, it will be reset.
619          */
620         ad->rx_vec_allowed = true;
621         ad->tx_vec_allowed = true;
622
623         if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
624                 dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
625
626         /* Large VF setting */
627         if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_DFLT) {
628                 if (!(vf->vf_res->vf_cap_flags &
629                                 VIRTCHNL_VF_LARGE_NUM_QPAIRS)) {
630                         PMD_DRV_LOG(ERR, "large VF is not supported");
631                         return -1;
632                 }
633
634                 if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_LV) {
635                         PMD_DRV_LOG(ERR, "queue pairs number cannot be larger than %u",
636                                 IAVF_MAX_NUM_QUEUES_LV);
637                         return -1;
638                 }
639
640                 ret = iavf_queues_req_reset(dev, num_queue_pairs);
641                 if (ret)
642                         return ret;
643
644                 ret = iavf_get_max_rss_queue_region(ad);
645                 if (ret) {
646                         PMD_INIT_LOG(ERR, "get max rss queue region failed");
647                         return ret;
648                 }
649
650                 vf->lv_enabled = true;
651         } else {
652                 /* Check if large VF is already enabled. If so, disable and
653                  * release redundant queue resource.
654                  * Or check if enough queue pairs. If not, request them from PF.
655                  */
656                 if (vf->lv_enabled ||
657                     num_queue_pairs > vf->vsi_res->num_queue_pairs) {
658                         ret = iavf_queues_req_reset(dev, num_queue_pairs);
659                         if (ret)
660                                 return ret;
661
662                         vf->lv_enabled = false;
663                 }
664                 /* if large VF is not required, use default rss queue region */
665                 vf->max_rss_qregion = IAVF_MAX_NUM_QUEUES_DFLT;
666         }
667
668         ret = iavf_dev_init_vlan(dev);
669         if (ret)
670                 PMD_DRV_LOG(ERR, "configure VLAN failed: %d", ret);
671
672         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
673                 if (iavf_init_rss(ad) != 0) {
674                         PMD_DRV_LOG(ERR, "configure rss failed");
675                         return -1;
676                 }
677         }
678         return 0;
679 }
680
681 static int
682 iavf_init_rxq(struct rte_eth_dev *dev, struct iavf_rx_queue *rxq)
683 {
684         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
685         struct rte_eth_dev_data *dev_data = dev->data;
686         uint16_t buf_size, max_pkt_len;
687         uint32_t frame_size = dev->data->mtu + IAVF_ETH_OVERHEAD;
688
689         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
690
691         /* Calculate the maximum packet length allowed */
692         max_pkt_len = RTE_MIN((uint32_t)
693                         rxq->rx_buf_len * IAVF_MAX_CHAINED_RX_BUFFERS,
694                         frame_size);
695
696         /* Check if maximum packet length is set correctly.  */
697         if (max_pkt_len <= RTE_ETHER_MIN_LEN ||
698             max_pkt_len > IAVF_FRAME_SIZE_MAX) {
699                 PMD_DRV_LOG(ERR, "maximum packet length must be "
700                             "larger than %u and smaller than %u",
701                             (uint32_t)IAVF_ETH_MAX_LEN,
702                             (uint32_t)IAVF_FRAME_SIZE_MAX);
703                 return -EINVAL;
704         }
705
706         rxq->max_pkt_len = max_pkt_len;
707         if ((dev_data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_SCATTER) ||
708             rxq->max_pkt_len > buf_size) {
709                 dev_data->scattered_rx = 1;
710         }
711         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
712         IAVF_WRITE_FLUSH(hw);
713
714         return 0;
715 }
716
717 static int
718 iavf_init_queues(struct rte_eth_dev *dev)
719 {
720         struct iavf_rx_queue **rxq =
721                 (struct iavf_rx_queue **)dev->data->rx_queues;
722         int i, ret = IAVF_SUCCESS;
723
724         for (i = 0; i < dev->data->nb_rx_queues; i++) {
725                 if (!rxq[i] || !rxq[i]->q_set)
726                         continue;
727                 ret = iavf_init_rxq(dev, rxq[i]);
728                 if (ret != IAVF_SUCCESS)
729                         break;
730         }
731         /* set rx/tx function to vector/scatter/single-segment
732          * according to parameters
733          */
734         iavf_set_rx_function(dev);
735         iavf_set_tx_function(dev);
736
737         return ret;
738 }
739
740 static int iavf_config_rx_queues_irqs(struct rte_eth_dev *dev,
741                                      struct rte_intr_handle *intr_handle)
742 {
743         struct iavf_adapter *adapter =
744                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
745         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
746         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
747         struct iavf_qv_map *qv_map;
748         uint16_t interval, i;
749         int vec;
750
751         if (rte_intr_cap_multiple(intr_handle) &&
752             dev->data->dev_conf.intr_conf.rxq) {
753                 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
754                         return -1;
755         }
756
757         if (rte_intr_dp_is_en(intr_handle)) {
758                 if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
759                                                     dev->data->nb_rx_queues)) {
760                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
761                                     dev->data->nb_rx_queues);
762                         return -1;
763                 }
764         }
765
766
767         qv_map = rte_zmalloc("qv_map",
768                 dev->data->nb_rx_queues * sizeof(struct iavf_qv_map), 0);
769         if (!qv_map) {
770                 PMD_DRV_LOG(ERR, "Failed to allocate %d queue-vector map",
771                                 dev->data->nb_rx_queues);
772                 goto qv_map_alloc_err;
773         }
774
775         if (!dev->data->dev_conf.intr_conf.rxq ||
776             !rte_intr_dp_is_en(intr_handle)) {
777                 /* Rx interrupt disabled, Map interrupt only for writeback */
778                 vf->nb_msix = 1;
779                 if (vf->vf_res->vf_cap_flags &
780                     VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
781                         /* If WB_ON_ITR supports, enable it */
782                         vf->msix_base = IAVF_RX_VEC_START;
783                         /* Set the ITR for index zero, to 2us to make sure that
784                          * we leave time for aggregation to occur, but don't
785                          * increase latency dramatically.
786                          */
787                         IAVF_WRITE_REG(hw,
788                                        IAVF_VFINT_DYN_CTLN1(vf->msix_base - 1),
789                                        (0 << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
790                                        IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
791                                        (2UL << IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT));
792                         /* debug - check for success! the return value
793                          * should be 2, offset is 0x2800
794                          */
795                         /* IAVF_READ_REG(hw, IAVF_VFINT_ITRN1(0, 0)); */
796                 } else {
797                         /* If no WB_ON_ITR offload flags, need to set
798                          * interrupt for descriptor write back.
799                          */
800                         vf->msix_base = IAVF_MISC_VEC_ID;
801
802                         /* set ITR to default */
803                         interval = iavf_calc_itr_interval(
804                                         IAVF_QUEUE_ITR_INTERVAL_DEFAULT);
805                         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
806                                        IAVF_VFINT_DYN_CTL01_INTENA_MASK |
807                                        (IAVF_ITR_INDEX_DEFAULT <<
808                                         IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
809                                        (interval <<
810                                         IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT));
811                 }
812                 IAVF_WRITE_FLUSH(hw);
813                 /* map all queues to the same interrupt */
814                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
815                         qv_map[i].queue_id = i;
816                         qv_map[i].vector_id = vf->msix_base;
817                 }
818                 vf->qv_map = qv_map;
819         } else {
820                 if (!rte_intr_allow_others(intr_handle)) {
821                         vf->nb_msix = 1;
822                         vf->msix_base = IAVF_MISC_VEC_ID;
823                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
824                                 qv_map[i].queue_id = i;
825                                 qv_map[i].vector_id = vf->msix_base;
826                                 rte_intr_vec_list_index_set(intr_handle,
827                                                         i, IAVF_MISC_VEC_ID);
828                         }
829                         vf->qv_map = qv_map;
830                         PMD_DRV_LOG(DEBUG,
831                                     "vector %u are mapping to all Rx queues",
832                                     vf->msix_base);
833                 } else {
834                         /* If Rx interrupt is reuquired, and we can use
835                          * multi interrupts, then the vec is from 1
836                          */
837                         vf->nb_msix =
838                                 RTE_MIN(rte_intr_nb_efd_get(intr_handle),
839                                 (uint16_t)(vf->vf_res->max_vectors - 1));
840                         vf->msix_base = IAVF_RX_VEC_START;
841                         vec = IAVF_RX_VEC_START;
842                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
843                                 qv_map[i].queue_id = i;
844                                 qv_map[i].vector_id = vec;
845                                 rte_intr_vec_list_index_set(intr_handle,
846                                                                    i, vec++);
847                                 if (vec >= vf->nb_msix + IAVF_RX_VEC_START)
848                                         vec = IAVF_RX_VEC_START;
849                         }
850                         vf->qv_map = qv_map;
851                         PMD_DRV_LOG(DEBUG,
852                                     "%u vectors are mapping to %u Rx queues",
853                                     vf->nb_msix, dev->data->nb_rx_queues);
854                 }
855         }
856
857         if (!vf->lv_enabled) {
858                 if (iavf_config_irq_map(adapter)) {
859                         PMD_DRV_LOG(ERR, "config interrupt mapping failed");
860                         goto config_irq_map_err;
861                 }
862         } else {
863                 uint16_t num_qv_maps = dev->data->nb_rx_queues;
864                 uint16_t index = 0;
865
866                 while (num_qv_maps > IAVF_IRQ_MAP_NUM_PER_BUF) {
867                         if (iavf_config_irq_map_lv(adapter,
868                                         IAVF_IRQ_MAP_NUM_PER_BUF, index)) {
869                                 PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
870                                 goto config_irq_map_err;
871                         }
872                         num_qv_maps -= IAVF_IRQ_MAP_NUM_PER_BUF;
873                         index += IAVF_IRQ_MAP_NUM_PER_BUF;
874                 }
875
876                 if (iavf_config_irq_map_lv(adapter, num_qv_maps, index)) {
877                         PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
878                         goto config_irq_map_err;
879                 }
880         }
881         return 0;
882
883 config_irq_map_err:
884         rte_free(vf->qv_map);
885         vf->qv_map = NULL;
886
887 qv_map_alloc_err:
888         rte_intr_vec_list_free(intr_handle);
889
890         return -1;
891 }
892
893 static int
894 iavf_start_queues(struct rte_eth_dev *dev)
895 {
896         struct iavf_rx_queue *rxq;
897         struct iavf_tx_queue *txq;
898         int i;
899
900         for (i = 0; i < dev->data->nb_tx_queues; i++) {
901                 txq = dev->data->tx_queues[i];
902                 if (txq->tx_deferred_start)
903                         continue;
904                 if (iavf_dev_tx_queue_start(dev, i) != 0) {
905                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
906                         return -1;
907                 }
908         }
909
910         for (i = 0; i < dev->data->nb_rx_queues; i++) {
911                 rxq = dev->data->rx_queues[i];
912                 if (rxq->rx_deferred_start)
913                         continue;
914                 if (iavf_dev_rx_queue_start(dev, i) != 0) {
915                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
916                         return -1;
917                 }
918         }
919
920         return 0;
921 }
922
923 static int
924 iavf_dev_start(struct rte_eth_dev *dev)
925 {
926         struct iavf_adapter *adapter =
927                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
928         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
929         struct rte_intr_handle *intr_handle = dev->intr_handle;
930         uint16_t num_queue_pairs;
931         uint16_t index = 0;
932
933         PMD_INIT_FUNC_TRACE();
934
935         adapter->stopped = 0;
936
937         vf->max_pkt_len = dev->data->mtu + IAVF_ETH_OVERHEAD;
938         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
939                                       dev->data->nb_tx_queues);
940         num_queue_pairs = vf->num_queue_pairs;
941
942         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS)
943                 if (iavf_get_qos_cap(adapter)) {
944                         PMD_INIT_LOG(ERR, "Failed to get qos capability");
945                         return -1;
946                 }
947
948         if (iavf_init_queues(dev) != 0) {
949                 PMD_DRV_LOG(ERR, "failed to do Queue init");
950                 return -1;
951         }
952
953         /* If needed, send configure queues msg multiple times to make the
954          * adminq buffer length smaller than the 4K limitation.
955          */
956         while (num_queue_pairs > IAVF_CFG_Q_NUM_PER_BUF) {
957                 if (iavf_configure_queues(adapter,
958                                 IAVF_CFG_Q_NUM_PER_BUF, index) != 0) {
959                         PMD_DRV_LOG(ERR, "configure queues failed");
960                         goto err_queue;
961                 }
962                 num_queue_pairs -= IAVF_CFG_Q_NUM_PER_BUF;
963                 index += IAVF_CFG_Q_NUM_PER_BUF;
964         }
965
966         if (iavf_configure_queues(adapter, num_queue_pairs, index) != 0) {
967                 PMD_DRV_LOG(ERR, "configure queues failed");
968                 goto err_queue;
969         }
970
971         if (iavf_config_rx_queues_irqs(dev, intr_handle) != 0) {
972                 PMD_DRV_LOG(ERR, "configure irq failed");
973                 goto err_queue;
974         }
975         /* re-enable intr again, because efd assign may change */
976         if (dev->data->dev_conf.intr_conf.rxq != 0) {
977                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
978                         rte_intr_disable(intr_handle);
979                 rte_intr_enable(intr_handle);
980         }
981
982         /* Set all mac addrs */
983         iavf_add_del_all_mac_addr(adapter, true);
984
985         /* Set all multicast addresses */
986         iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
987                                   true);
988
989         if (iavf_start_queues(dev) != 0) {
990                 PMD_DRV_LOG(ERR, "enable queues failed");
991                 goto err_mac;
992         }
993
994         return 0;
995
996 err_mac:
997         iavf_add_del_all_mac_addr(adapter, false);
998 err_queue:
999         return -1;
1000 }
1001
1002 static int
1003 iavf_dev_stop(struct rte_eth_dev *dev)
1004 {
1005         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1006         struct iavf_adapter *adapter =
1007                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1008         struct rte_intr_handle *intr_handle = dev->intr_handle;
1009
1010         PMD_INIT_FUNC_TRACE();
1011
1012         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) &&
1013             dev->data->dev_conf.intr_conf.rxq != 0)
1014                 rte_intr_disable(intr_handle);
1015
1016         if (adapter->stopped == 1)
1017                 return 0;
1018
1019         iavf_stop_queues(dev);
1020
1021         /* Disable the interrupt for Rx */
1022         rte_intr_efd_disable(intr_handle);
1023         /* Rx interrupt vector mapping free */
1024         rte_intr_vec_list_free(intr_handle);
1025
1026         /* remove all mac addrs */
1027         iavf_add_del_all_mac_addr(adapter, false);
1028
1029         /* remove all multicast addresses */
1030         iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
1031                                   false);
1032
1033         /* free iAVF security device context all related resources */
1034         iavf_security_ctx_destroy(adapter);
1035
1036         adapter->stopped = 1;
1037         dev->data->dev_started = 0;
1038
1039         return 0;
1040 }
1041
1042 static int
1043 iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1044 {
1045         struct iavf_adapter *adapter =
1046                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1047         struct iavf_info *vf = &adapter->vf;
1048
1049         dev_info->max_rx_queues = IAVF_MAX_NUM_QUEUES_LV;
1050         dev_info->max_tx_queues = IAVF_MAX_NUM_QUEUES_LV;
1051         dev_info->min_rx_bufsize = IAVF_BUF_SIZE_MIN;
1052         dev_info->max_rx_pktlen = IAVF_FRAME_SIZE_MAX;
1053         dev_info->max_mtu = dev_info->max_rx_pktlen - IAVF_ETH_OVERHEAD;
1054         dev_info->min_mtu = RTE_ETHER_MIN_MTU;
1055         dev_info->hash_key_size = vf->vf_res->rss_key_size;
1056         dev_info->reta_size = vf->vf_res->rss_lut_size;
1057         dev_info->flow_type_rss_offloads = IAVF_RSS_OFFLOAD_ALL;
1058         dev_info->max_mac_addrs = IAVF_NUM_MACADDR_MAX;
1059         dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
1060         dev_info->rx_offload_capa =
1061                 RTE_ETH_RX_OFFLOAD_VLAN_STRIP |
1062                 RTE_ETH_RX_OFFLOAD_QINQ_STRIP |
1063                 RTE_ETH_RX_OFFLOAD_IPV4_CKSUM |
1064                 RTE_ETH_RX_OFFLOAD_UDP_CKSUM |
1065                 RTE_ETH_RX_OFFLOAD_TCP_CKSUM |
1066                 RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM |
1067                 RTE_ETH_RX_OFFLOAD_SCATTER |
1068                 RTE_ETH_RX_OFFLOAD_VLAN_FILTER |
1069                 RTE_ETH_RX_OFFLOAD_RSS_HASH;
1070
1071         dev_info->tx_offload_capa =
1072                 RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
1073                 RTE_ETH_TX_OFFLOAD_QINQ_INSERT |
1074                 RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
1075                 RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
1076                 RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
1077                 RTE_ETH_TX_OFFLOAD_SCTP_CKSUM |
1078                 RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM |
1079                 RTE_ETH_TX_OFFLOAD_TCP_TSO |
1080                 RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
1081                 RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO |
1082                 RTE_ETH_TX_OFFLOAD_IPIP_TNL_TSO |
1083                 RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO |
1084                 RTE_ETH_TX_OFFLOAD_MULTI_SEGS |
1085                 RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
1086
1087         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_CRC)
1088                 dev_info->rx_offload_capa |= RTE_ETH_RX_OFFLOAD_KEEP_CRC;
1089
1090         if (iavf_ipsec_crypto_supported(adapter)) {
1091                 dev_info->rx_offload_capa |= RTE_ETH_RX_OFFLOAD_SECURITY;
1092                 dev_info->tx_offload_capa |= RTE_ETH_TX_OFFLOAD_SECURITY;
1093         }
1094
1095         dev_info->default_rxconf = (struct rte_eth_rxconf) {
1096                 .rx_free_thresh = IAVF_DEFAULT_RX_FREE_THRESH,
1097                 .rx_drop_en = 0,
1098                 .offloads = 0,
1099         };
1100
1101         dev_info->default_txconf = (struct rte_eth_txconf) {
1102                 .tx_free_thresh = IAVF_DEFAULT_TX_FREE_THRESH,
1103                 .tx_rs_thresh = IAVF_DEFAULT_TX_RS_THRESH,
1104                 .offloads = 0,
1105         };
1106
1107         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1108                 .nb_max = IAVF_MAX_RING_DESC,
1109                 .nb_min = IAVF_MIN_RING_DESC,
1110                 .nb_align = IAVF_ALIGN_RING_DESC,
1111         };
1112
1113         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1114                 .nb_max = IAVF_MAX_RING_DESC,
1115                 .nb_min = IAVF_MIN_RING_DESC,
1116                 .nb_align = IAVF_ALIGN_RING_DESC,
1117         };
1118
1119         return 0;
1120 }
1121
1122 static const uint32_t *
1123 iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1124 {
1125         static const uint32_t ptypes[] = {
1126                 RTE_PTYPE_L2_ETHER,
1127                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1128                 RTE_PTYPE_L4_FRAG,
1129                 RTE_PTYPE_L4_ICMP,
1130                 RTE_PTYPE_L4_NONFRAG,
1131                 RTE_PTYPE_L4_SCTP,
1132                 RTE_PTYPE_L4_TCP,
1133                 RTE_PTYPE_L4_UDP,
1134                 RTE_PTYPE_UNKNOWN
1135         };
1136         return ptypes;
1137 }
1138
1139 int
1140 iavf_dev_link_update(struct rte_eth_dev *dev,
1141                     __rte_unused int wait_to_complete)
1142 {
1143         struct rte_eth_link new_link;
1144         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1145
1146         memset(&new_link, 0, sizeof(new_link));
1147
1148         /* Only read status info stored in VF, and the info is updated
1149          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
1150          */
1151         switch (vf->link_speed) {
1152         case 10:
1153                 new_link.link_speed = RTE_ETH_SPEED_NUM_10M;
1154                 break;
1155         case 100:
1156                 new_link.link_speed = RTE_ETH_SPEED_NUM_100M;
1157                 break;
1158         case 1000:
1159                 new_link.link_speed = RTE_ETH_SPEED_NUM_1G;
1160                 break;
1161         case 10000:
1162                 new_link.link_speed = RTE_ETH_SPEED_NUM_10G;
1163                 break;
1164         case 20000:
1165                 new_link.link_speed = RTE_ETH_SPEED_NUM_20G;
1166                 break;
1167         case 25000:
1168                 new_link.link_speed = RTE_ETH_SPEED_NUM_25G;
1169                 break;
1170         case 40000:
1171                 new_link.link_speed = RTE_ETH_SPEED_NUM_40G;
1172                 break;
1173         case 50000:
1174                 new_link.link_speed = RTE_ETH_SPEED_NUM_50G;
1175                 break;
1176         case 100000:
1177                 new_link.link_speed = RTE_ETH_SPEED_NUM_100G;
1178                 break;
1179         default:
1180                 new_link.link_speed = RTE_ETH_SPEED_NUM_NONE;
1181                 break;
1182         }
1183
1184         new_link.link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
1185         new_link.link_status = vf->link_up ? RTE_ETH_LINK_UP :
1186                                              RTE_ETH_LINK_DOWN;
1187         new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1188                                 RTE_ETH_LINK_SPEED_FIXED);
1189
1190         return rte_eth_linkstatus_set(dev, &new_link);
1191 }
1192
1193 static int
1194 iavf_dev_promiscuous_enable(struct rte_eth_dev *dev)
1195 {
1196         struct iavf_adapter *adapter =
1197                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1198         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1199
1200         return iavf_config_promisc(adapter,
1201                                   true, vf->promisc_multicast_enabled);
1202 }
1203
1204 static int
1205 iavf_dev_promiscuous_disable(struct rte_eth_dev *dev)
1206 {
1207         struct iavf_adapter *adapter =
1208                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1209         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1210
1211         return iavf_config_promisc(adapter,
1212                                   false, vf->promisc_multicast_enabled);
1213 }
1214
1215 static int
1216 iavf_dev_allmulticast_enable(struct rte_eth_dev *dev)
1217 {
1218         struct iavf_adapter *adapter =
1219                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1220         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1221
1222         return iavf_config_promisc(adapter,
1223                                   vf->promisc_unicast_enabled, true);
1224 }
1225
1226 static int
1227 iavf_dev_allmulticast_disable(struct rte_eth_dev *dev)
1228 {
1229         struct iavf_adapter *adapter =
1230                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1231         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1232
1233         return iavf_config_promisc(adapter,
1234                                   vf->promisc_unicast_enabled, false);
1235 }
1236
1237 static int
1238 iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr,
1239                      __rte_unused uint32_t index,
1240                      __rte_unused uint32_t pool)
1241 {
1242         struct iavf_adapter *adapter =
1243                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1244         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1245         int err;
1246
1247         if (rte_is_zero_ether_addr(addr)) {
1248                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
1249                 return -EINVAL;
1250         }
1251
1252         err = iavf_add_del_eth_addr(adapter, addr, true, VIRTCHNL_ETHER_ADDR_EXTRA);
1253         if (err) {
1254                 PMD_DRV_LOG(ERR, "fail to add MAC address");
1255                 return -EIO;
1256         }
1257
1258         vf->mac_num++;
1259
1260         return 0;
1261 }
1262
1263 static void
1264 iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
1265 {
1266         struct iavf_adapter *adapter =
1267                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1268         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1269         struct rte_ether_addr *addr;
1270         int err;
1271
1272         addr = &dev->data->mac_addrs[index];
1273
1274         err = iavf_add_del_eth_addr(adapter, addr, false, VIRTCHNL_ETHER_ADDR_EXTRA);
1275         if (err)
1276                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
1277
1278         vf->mac_num--;
1279 }
1280
1281 static int
1282 iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1283 {
1284         struct iavf_adapter *adapter =
1285                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1286         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1287         int err;
1288
1289         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
1290                 err = iavf_add_del_vlan_v2(adapter, vlan_id, on);
1291                 if (err)
1292                         return -EIO;
1293                 return 0;
1294         }
1295
1296         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1297                 return -ENOTSUP;
1298
1299         err = iavf_add_del_vlan(adapter, vlan_id, on);
1300         if (err)
1301                 return -EIO;
1302         return 0;
1303 }
1304
1305 static void
1306 iavf_iterate_vlan_filters_v2(struct rte_eth_dev *dev, bool enable)
1307 {
1308         struct rte_vlan_filter_conf *vfc = &dev->data->vlan_filter_conf;
1309         struct iavf_adapter *adapter =
1310                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1311         uint32_t i, j;
1312         uint64_t ids;
1313
1314         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1315                 if (vfc->ids[i] == 0)
1316                         continue;
1317
1318                 ids = vfc->ids[i];
1319                 for (j = 0; ids != 0 && j < 64; j++, ids >>= 1) {
1320                         if (ids & 1)
1321                                 iavf_add_del_vlan_v2(adapter,
1322                                                      64 * i + j, enable);
1323                 }
1324         }
1325 }
1326
1327 static int
1328 iavf_dev_vlan_offload_set_v2(struct rte_eth_dev *dev, int mask)
1329 {
1330         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1331         struct iavf_adapter *adapter =
1332                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1333         bool enable;
1334         int err;
1335
1336         if (mask & RTE_ETH_VLAN_FILTER_MASK) {
1337                 enable = !!(rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER);
1338
1339                 iavf_iterate_vlan_filters_v2(dev, enable);
1340         }
1341
1342         if (mask & RTE_ETH_VLAN_STRIP_MASK) {
1343                 enable = !!(rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP);
1344
1345                 err = iavf_config_vlan_strip_v2(adapter, enable);
1346                 /* If not support, the stripping is already disabled by PF */
1347                 if (err == -ENOTSUP && !enable)
1348                         err = 0;
1349                 if (err)
1350                         return -EIO;
1351         }
1352
1353         return 0;
1354 }
1355
1356 static int
1357 iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1358 {
1359         struct iavf_adapter *adapter =
1360                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1361         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1362         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1363         int err;
1364
1365         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2)
1366                 return iavf_dev_vlan_offload_set_v2(dev, mask);
1367
1368         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1369                 return -ENOTSUP;
1370
1371         /* Vlan stripping setting */
1372         if (mask & RTE_ETH_VLAN_STRIP_MASK) {
1373                 /* Enable or disable VLAN stripping */
1374                 if (dev_conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
1375                         err = iavf_enable_vlan_strip(adapter);
1376                 else
1377                         err = iavf_disable_vlan_strip(adapter);
1378
1379                 if (err)
1380                         return -EIO;
1381         }
1382         return 0;
1383 }
1384
1385 static int
1386 iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
1387                         struct rte_eth_rss_reta_entry64 *reta_conf,
1388                         uint16_t reta_size)
1389 {
1390         struct iavf_adapter *adapter =
1391                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1392         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1393         uint8_t *lut;
1394         uint16_t i, idx, shift;
1395         int ret;
1396
1397         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1398                 return -ENOTSUP;
1399
1400         if (reta_size != vf->vf_res->rss_lut_size) {
1401                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1402                         "(%d) doesn't match the number of hardware can "
1403                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1404                 return -EINVAL;
1405         }
1406
1407         lut = rte_zmalloc("rss_lut", reta_size, 0);
1408         if (!lut) {
1409                 PMD_DRV_LOG(ERR, "No memory can be allocated");
1410                 return -ENOMEM;
1411         }
1412         /* store the old lut table temporarily */
1413         rte_memcpy(lut, vf->rss_lut, reta_size);
1414
1415         for (i = 0; i < reta_size; i++) {
1416                 idx = i / RTE_ETH_RETA_GROUP_SIZE;
1417                 shift = i % RTE_ETH_RETA_GROUP_SIZE;
1418                 if (reta_conf[idx].mask & (1ULL << shift))
1419                         lut[i] = reta_conf[idx].reta[shift];
1420         }
1421
1422         rte_memcpy(vf->rss_lut, lut, reta_size);
1423         /* send virtchnnl ops to configure rss*/
1424         ret = iavf_configure_rss_lut(adapter);
1425         if (ret) /* revert back */
1426                 rte_memcpy(vf->rss_lut, lut, reta_size);
1427         rte_free(lut);
1428
1429         return ret;
1430 }
1431
1432 static int
1433 iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
1434                        struct rte_eth_rss_reta_entry64 *reta_conf,
1435                        uint16_t reta_size)
1436 {
1437         struct iavf_adapter *adapter =
1438                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1439         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1440         uint16_t i, idx, shift;
1441
1442         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1443                 return -ENOTSUP;
1444
1445         if (reta_size != vf->vf_res->rss_lut_size) {
1446                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1447                         "(%d) doesn't match the number of hardware can "
1448                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1449                 return -EINVAL;
1450         }
1451
1452         for (i = 0; i < reta_size; i++) {
1453                 idx = i / RTE_ETH_RETA_GROUP_SIZE;
1454                 shift = i % RTE_ETH_RETA_GROUP_SIZE;
1455                 if (reta_conf[idx].mask & (1ULL << shift))
1456                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
1457         }
1458
1459         return 0;
1460 }
1461
1462 static int
1463 iavf_set_rss_key(struct iavf_adapter *adapter, uint8_t *key, uint8_t key_len)
1464 {
1465         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1466
1467         /* HENA setting, it is enabled by default, no change */
1468         if (!key || key_len == 0) {
1469                 PMD_DRV_LOG(DEBUG, "No key to be configured");
1470                 return 0;
1471         } else if (key_len != vf->vf_res->rss_key_size) {
1472                 PMD_DRV_LOG(ERR, "The size of hash key configured "
1473                         "(%d) doesn't match the size of hardware can "
1474                         "support (%d)", key_len,
1475                         vf->vf_res->rss_key_size);
1476                 return -EINVAL;
1477         }
1478
1479         rte_memcpy(vf->rss_key, key, key_len);
1480
1481         return iavf_configure_rss_key(adapter);
1482 }
1483
1484 static int
1485 iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
1486                         struct rte_eth_rss_conf *rss_conf)
1487 {
1488         struct iavf_adapter *adapter =
1489                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1490         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1491         int ret;
1492
1493         adapter->dev_data->dev_conf.rx_adv_conf.rss_conf = *rss_conf;
1494
1495         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1496                 return -ENOTSUP;
1497
1498         /* Set hash key. */
1499         ret = iavf_set_rss_key(adapter, rss_conf->rss_key,
1500                                rss_conf->rss_key_len);
1501         if (ret)
1502                 return ret;
1503
1504         if (rss_conf->rss_hf == 0) {
1505                 vf->rss_hf = 0;
1506                 ret = iavf_set_hena(adapter, 0);
1507
1508                 /* It is a workaround, temporarily allow error to be returned
1509                  * due to possible lack of PF handling for hena = 0.
1510                  */
1511                 if (ret)
1512                         PMD_DRV_LOG(WARNING, "fail to clean existing RSS, lack PF support");
1513                 return 0;
1514         }
1515
1516         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
1517                 /* Clear existing RSS. */
1518                 ret = iavf_set_hena(adapter, 0);
1519
1520                 /* It is a workaround, temporarily allow error to be returned
1521                  * due to possible lack of PF handling for hena = 0.
1522                  */
1523                 if (ret)
1524                         PMD_DRV_LOG(WARNING, "fail to clean existing RSS,"
1525                                     "lack PF support");
1526
1527                 /* Set new RSS configuration. */
1528                 ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
1529                 if (ret) {
1530                         PMD_DRV_LOG(ERR, "fail to set new RSS");
1531                         return ret;
1532                 }
1533         } else {
1534                 iavf_config_rss_hf(adapter, rss_conf->rss_hf);
1535         }
1536
1537         return 0;
1538 }
1539
1540 static int
1541 iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1542                           struct rte_eth_rss_conf *rss_conf)
1543 {
1544         struct iavf_adapter *adapter =
1545                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1546         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1547
1548         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1549                 return -ENOTSUP;
1550
1551         rss_conf->rss_hf = vf->rss_hf;
1552
1553         if (!rss_conf->rss_key)
1554                 return 0;
1555
1556         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
1557         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
1558
1559         return 0;
1560 }
1561
1562 static int
1563 iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu __rte_unused)
1564 {
1565         /* mtu setting is forbidden if port is start */
1566         if (dev->data->dev_started) {
1567                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
1568                 return -EBUSY;
1569         }
1570
1571         return 0;
1572 }
1573
1574 static int
1575 iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
1576                              struct rte_ether_addr *mac_addr)
1577 {
1578         struct iavf_adapter *adapter =
1579                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1580         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1581         struct rte_ether_addr *old_addr;
1582         int ret;
1583
1584         old_addr = (struct rte_ether_addr *)hw->mac.addr;
1585
1586         if (rte_is_same_ether_addr(old_addr, mac_addr))
1587                 return 0;
1588
1589         ret = iavf_add_del_eth_addr(adapter, old_addr, false, VIRTCHNL_ETHER_ADDR_PRIMARY);
1590         if (ret)
1591                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
1592                             RTE_ETHER_ADDR_PRT_FMT,
1593                                 RTE_ETHER_ADDR_BYTES(old_addr));
1594
1595         ret = iavf_add_del_eth_addr(adapter, mac_addr, true, VIRTCHNL_ETHER_ADDR_PRIMARY);
1596         if (ret)
1597                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
1598                             RTE_ETHER_ADDR_PRT_FMT,
1599                                 RTE_ETHER_ADDR_BYTES(mac_addr));
1600
1601         if (ret)
1602                 return -EIO;
1603
1604         rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr);
1605         return 0;
1606 }
1607
1608 static void
1609 iavf_stat_update_48(uint64_t *offset, uint64_t *stat)
1610 {
1611         if (*stat >= *offset)
1612                 *stat = *stat - *offset;
1613         else
1614                 *stat = (uint64_t)((*stat +
1615                         ((uint64_t)1 << IAVF_48_BIT_WIDTH)) - *offset);
1616
1617         *stat &= IAVF_48_BIT_MASK;
1618 }
1619
1620 static void
1621 iavf_stat_update_32(uint64_t *offset, uint64_t *stat)
1622 {
1623         if (*stat >= *offset)
1624                 *stat = (uint64_t)(*stat - *offset);
1625         else
1626                 *stat = (uint64_t)((*stat +
1627                         ((uint64_t)1 << IAVF_32_BIT_WIDTH)) - *offset);
1628 }
1629
1630 static void
1631 iavf_update_stats(struct iavf_vsi *vsi, struct virtchnl_eth_stats *nes)
1632 {
1633         struct virtchnl_eth_stats *oes = &vsi->eth_stats_offset.eth_stats;
1634
1635         iavf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
1636         iavf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
1637         iavf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
1638         iavf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
1639         iavf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
1640         iavf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
1641         iavf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
1642         iavf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
1643         iavf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
1644         iavf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
1645         iavf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
1646 }
1647
1648 static int
1649 iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
1650 {
1651         struct iavf_adapter *adapter =
1652                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1653         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1654         struct iavf_vsi *vsi = &vf->vsi;
1655         struct virtchnl_eth_stats *pstats = NULL;
1656         int ret;
1657
1658         ret = iavf_query_stats(adapter, &pstats);
1659         if (ret == 0) {
1660                 uint8_t crc_stats_len = (dev->data->dev_conf.rxmode.offloads &
1661                                          RTE_ETH_RX_OFFLOAD_KEEP_CRC) ? 0 :
1662                                          RTE_ETHER_CRC_LEN;
1663                 iavf_update_stats(vsi, pstats);
1664                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1665                                 pstats->rx_broadcast - pstats->rx_discards;
1666                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1667                                                 pstats->tx_unicast;
1668                 stats->imissed = pstats->rx_discards;
1669                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1670                 stats->ibytes = pstats->rx_bytes;
1671                 stats->ibytes -= stats->ipackets * crc_stats_len;
1672                 stats->obytes = pstats->tx_bytes;
1673         } else {
1674                 PMD_DRV_LOG(ERR, "Get statistics failed");
1675         }
1676         return ret;
1677 }
1678
1679 static int
1680 iavf_dev_stats_reset(struct rte_eth_dev *dev)
1681 {
1682         int ret;
1683         struct iavf_adapter *adapter =
1684                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1685         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1686         struct iavf_vsi *vsi = &vf->vsi;
1687         struct virtchnl_eth_stats *pstats = NULL;
1688
1689         /* read stat values to clear hardware registers */
1690         ret = iavf_query_stats(adapter, &pstats);
1691         if (ret != 0)
1692                 return ret;
1693
1694         /* set stats offset base on current values */
1695         vsi->eth_stats_offset.eth_stats = *pstats;
1696
1697         return 0;
1698 }
1699
1700 static int
1701 iavf_dev_xstats_reset(struct rte_eth_dev *dev)
1702 {
1703         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1704
1705         iavf_dev_stats_reset(dev);
1706         memset(&vf->vsi.eth_stats_offset, 0, sizeof(struct iavf_eth_xstats));
1707
1708         return 0;
1709 }
1710
1711 static int iavf_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1712                                       struct rte_eth_xstat_name *xstats_names,
1713                                       __rte_unused unsigned int limit)
1714 {
1715         unsigned int i;
1716
1717         if (xstats_names != NULL)
1718                 for (i = 0; i < IAVF_NB_XSTATS; i++) {
1719                         snprintf(xstats_names[i].name,
1720                                 sizeof(xstats_names[i].name),
1721                                 "%s", rte_iavf_stats_strings[i].name);
1722                 }
1723         return IAVF_NB_XSTATS;
1724 }
1725
1726 static void
1727 iavf_dev_update_ipsec_xstats(struct rte_eth_dev *ethdev,
1728                 struct iavf_ipsec_crypto_stats *ips)
1729 {
1730         uint16_t idx;
1731         for (idx = 0; idx < ethdev->data->nb_rx_queues; idx++) {
1732                 struct iavf_rx_queue *rxq;
1733                 struct iavf_ipsec_crypto_stats *stats;
1734                 rxq = (struct iavf_rx_queue *)ethdev->data->rx_queues[idx];
1735                 stats = &rxq->stats.ipsec_crypto;
1736                 ips->icount += stats->icount;
1737                 ips->ibytes += stats->ibytes;
1738                 ips->ierrors.count += stats->ierrors.count;
1739                 ips->ierrors.sad_miss += stats->ierrors.sad_miss;
1740                 ips->ierrors.not_processed += stats->ierrors.not_processed;
1741                 ips->ierrors.icv_check += stats->ierrors.icv_check;
1742                 ips->ierrors.ipsec_length += stats->ierrors.ipsec_length;
1743                 ips->ierrors.misc += stats->ierrors.misc;
1744         }
1745 }
1746
1747 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
1748                                  struct rte_eth_xstat *xstats, unsigned int n)
1749 {
1750         int ret;
1751         unsigned int i;
1752         struct iavf_adapter *adapter =
1753                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1754         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1755         struct iavf_vsi *vsi = &vf->vsi;
1756         struct virtchnl_eth_stats *pstats = NULL;
1757         struct iavf_eth_xstats iavf_xtats = {{0}};
1758
1759         if (n < IAVF_NB_XSTATS)
1760                 return IAVF_NB_XSTATS;
1761
1762         ret = iavf_query_stats(adapter, &pstats);
1763         if (ret != 0)
1764                 return 0;
1765
1766         if (!xstats)
1767                 return 0;
1768
1769         iavf_update_stats(vsi, pstats);
1770         iavf_xtats.eth_stats = *pstats;
1771
1772         if (iavf_ipsec_crypto_supported(adapter))
1773                 iavf_dev_update_ipsec_xstats(dev, &iavf_xtats.ips_stats);
1774
1775         /* loop over xstats array and values from pstats */
1776         for (i = 0; i < IAVF_NB_XSTATS; i++) {
1777                 xstats[i].id = i;
1778                 xstats[i].value = *(uint64_t *)(((char *)&iavf_xtats) +
1779                         rte_iavf_stats_strings[i].offset);
1780         }
1781
1782         return IAVF_NB_XSTATS;
1783 }
1784
1785
1786 static int
1787 iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1788 {
1789         struct iavf_adapter *adapter =
1790                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1791         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1792         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1793         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1794         uint16_t msix_intr;
1795
1796         msix_intr = rte_intr_vec_list_index_get(pci_dev->intr_handle,
1797                                                        queue_id);
1798         if (msix_intr == IAVF_MISC_VEC_ID) {
1799                 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1800                 IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1801                                IAVF_VFINT_DYN_CTL01_INTENA_MASK |
1802                                IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1803                                IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1804         } else {
1805                 IAVF_WRITE_REG(hw,
1806                                IAVF_VFINT_DYN_CTLN1
1807                                 (msix_intr - IAVF_RX_VEC_START),
1808                                IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1809                                IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1810                                IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
1811         }
1812
1813         IAVF_WRITE_FLUSH(hw);
1814
1815         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1816                 rte_intr_ack(pci_dev->intr_handle);
1817
1818         return 0;
1819 }
1820
1821 static int
1822 iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1823 {
1824         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1825         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1826         uint16_t msix_intr;
1827
1828         msix_intr = rte_intr_vec_list_index_get(pci_dev->intr_handle,
1829                                                        queue_id);
1830         if (msix_intr == IAVF_MISC_VEC_ID) {
1831                 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1832                 return -EIO;
1833         }
1834
1835         IAVF_WRITE_REG(hw,
1836                       IAVF_VFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1837                       0);
1838
1839         IAVF_WRITE_FLUSH(hw);
1840         return 0;
1841 }
1842
1843 static int
1844 iavf_check_vf_reset_done(struct iavf_hw *hw)
1845 {
1846         int i, reset;
1847
1848         for (i = 0; i < IAVF_RESET_WAIT_CNT; i++) {
1849                 reset = IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) &
1850                         IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1851                 reset = reset >> IAVF_VFGEN_RSTAT_VFR_STATE_SHIFT;
1852                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1853                     reset == VIRTCHNL_VFR_COMPLETED)
1854                         break;
1855                 rte_delay_ms(20);
1856         }
1857
1858         if (i >= IAVF_RESET_WAIT_CNT)
1859                 return -1;
1860
1861         return 0;
1862 }
1863
1864 static int
1865 iavf_lookup_proto_xtr_type(const char *flex_name)
1866 {
1867         static struct {
1868                 const char *name;
1869                 enum iavf_proto_xtr_type type;
1870         } xtr_type_map[] = {
1871                 { "vlan",      IAVF_PROTO_XTR_VLAN      },
1872                 { "ipv4",      IAVF_PROTO_XTR_IPV4      },
1873                 { "ipv6",      IAVF_PROTO_XTR_IPV6      },
1874                 { "ipv6_flow", IAVF_PROTO_XTR_IPV6_FLOW },
1875                 { "tcp",       IAVF_PROTO_XTR_TCP       },
1876                 { "ip_offset", IAVF_PROTO_XTR_IP_OFFSET },
1877                 { "ipsec_crypto_said", IAVF_PROTO_XTR_IPSEC_CRYPTO_SAID },
1878         };
1879         uint32_t i;
1880
1881         for (i = 0; i < RTE_DIM(xtr_type_map); i++) {
1882                 if (strcmp(flex_name, xtr_type_map[i].name) == 0)
1883                         return xtr_type_map[i].type;
1884         }
1885
1886         PMD_DRV_LOG(ERR, "wrong proto_xtr type, it should be: "
1887                         "vlan|ipv4|ipv6|ipv6_flow|tcp|ip_offset|ipsec_crypto_said");
1888
1889         return -1;
1890 }
1891
1892 /**
1893  * Parse elem, the elem could be single number/range or '(' ')' group
1894  * 1) A single number elem, it's just a simple digit. e.g. 9
1895  * 2) A single range elem, two digits with a '-' between. e.g. 2-6
1896  * 3) A group elem, combines multiple 1) or 2) with '( )'. e.g (0,2-4,6)
1897  *    Within group elem, '-' used for a range separator;
1898  *                       ',' used for a single number.
1899  */
1900 static int
1901 iavf_parse_queue_set(const char *input, int xtr_type,
1902                      struct iavf_devargs *devargs)
1903 {
1904         const char *str = input;
1905         char *end = NULL;
1906         uint32_t min, max;
1907         uint32_t idx;
1908
1909         while (isblank(*str))
1910                 str++;
1911
1912         if (!isdigit(*str) && *str != '(')
1913                 return -1;
1914
1915         /* process single number or single range of number */
1916         if (*str != '(') {
1917                 errno = 0;
1918                 idx = strtoul(str, &end, 10);
1919                 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1920                         return -1;
1921
1922                 while (isblank(*end))
1923                         end++;
1924
1925                 min = idx;
1926                 max = idx;
1927
1928                 /* process single <number>-<number> */
1929                 if (*end == '-') {
1930                         end++;
1931                         while (isblank(*end))
1932                                 end++;
1933                         if (!isdigit(*end))
1934                                 return -1;
1935
1936                         errno = 0;
1937                         idx = strtoul(end, &end, 10);
1938                         if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1939                                 return -1;
1940
1941                         max = idx;
1942                         while (isblank(*end))
1943                                 end++;
1944                 }
1945
1946                 if (*end != ':')
1947                         return -1;
1948
1949                 for (idx = RTE_MIN(min, max);
1950                      idx <= RTE_MAX(min, max); idx++)
1951                         devargs->proto_xtr[idx] = xtr_type;
1952
1953                 return 0;
1954         }
1955
1956         /* process set within bracket */
1957         str++;
1958         while (isblank(*str))
1959                 str++;
1960         if (*str == '\0')
1961                 return -1;
1962
1963         min = IAVF_MAX_QUEUE_NUM;
1964         do {
1965                 /* go ahead to the first digit */
1966                 while (isblank(*str))
1967                         str++;
1968                 if (!isdigit(*str))
1969                         return -1;
1970
1971                 /* get the digit value */
1972                 errno = 0;
1973                 idx = strtoul(str, &end, 10);
1974                 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1975                         return -1;
1976
1977                 /* go ahead to separator '-',',' and ')' */
1978                 while (isblank(*end))
1979                         end++;
1980                 if (*end == '-') {
1981                         if (min == IAVF_MAX_QUEUE_NUM)
1982                                 min = idx;
1983                         else /* avoid continuous '-' */
1984                                 return -1;
1985                 } else if (*end == ',' || *end == ')') {
1986                         max = idx;
1987                         if (min == IAVF_MAX_QUEUE_NUM)
1988                                 min = idx;
1989
1990                         for (idx = RTE_MIN(min, max);
1991                              idx <= RTE_MAX(min, max); idx++)
1992                                 devargs->proto_xtr[idx] = xtr_type;
1993
1994                         min = IAVF_MAX_QUEUE_NUM;
1995                 } else {
1996                         return -1;
1997                 }
1998
1999                 str = end + 1;
2000         } while (*end != ')' && *end != '\0');
2001
2002         return 0;
2003 }
2004
2005 static int
2006 iavf_parse_queue_proto_xtr(const char *queues, struct iavf_devargs *devargs)
2007 {
2008         const char *queue_start;
2009         uint32_t idx;
2010         int xtr_type;
2011         char flex_name[32];
2012
2013         while (isblank(*queues))
2014                 queues++;
2015
2016         if (*queues != '[') {
2017                 xtr_type = iavf_lookup_proto_xtr_type(queues);
2018                 if (xtr_type < 0)
2019                         return -1;
2020
2021                 devargs->proto_xtr_dflt = xtr_type;
2022
2023                 return 0;
2024         }
2025
2026         queues++;
2027         do {
2028                 while (isblank(*queues))
2029                         queues++;
2030                 if (*queues == '\0')
2031                         return -1;
2032
2033                 queue_start = queues;
2034
2035                 /* go across a complete bracket */
2036                 if (*queue_start == '(') {
2037                         queues += strcspn(queues, ")");
2038                         if (*queues != ')')
2039                                 return -1;
2040                 }
2041
2042                 /* scan the separator ':' */
2043                 queues += strcspn(queues, ":");
2044                 if (*queues++ != ':')
2045                         return -1;
2046                 while (isblank(*queues))
2047                         queues++;
2048
2049                 for (idx = 0; ; idx++) {
2050                         if (isblank(queues[idx]) ||
2051                             queues[idx] == ',' ||
2052                             queues[idx] == ']' ||
2053                             queues[idx] == '\0')
2054                                 break;
2055
2056                         if (idx > sizeof(flex_name) - 2)
2057                                 return -1;
2058
2059                         flex_name[idx] = queues[idx];
2060                 }
2061                 flex_name[idx] = '\0';
2062                 xtr_type = iavf_lookup_proto_xtr_type(flex_name);
2063                 if (xtr_type < 0)
2064                         return -1;
2065
2066                 queues += idx;
2067
2068                 while (isblank(*queues) || *queues == ',' || *queues == ']')
2069                         queues++;
2070
2071                 if (iavf_parse_queue_set(queue_start, xtr_type, devargs) < 0)
2072                         return -1;
2073         } while (*queues != '\0');
2074
2075         return 0;
2076 }
2077
2078 static int
2079 iavf_handle_proto_xtr_arg(__rte_unused const char *key, const char *value,
2080                           void *extra_args)
2081 {
2082         struct iavf_devargs *devargs = extra_args;
2083
2084         if (!value || !extra_args)
2085                 return -EINVAL;
2086
2087         if (iavf_parse_queue_proto_xtr(value, devargs) < 0) {
2088                 PMD_DRV_LOG(ERR, "the proto_xtr's parameter is wrong : '%s'",
2089                             value);
2090                 return -1;
2091         }
2092
2093         return 0;
2094 }
2095
2096 static int iavf_parse_devargs(struct rte_eth_dev *dev)
2097 {
2098         struct iavf_adapter *ad =
2099                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2100         struct rte_devargs *devargs = dev->device->devargs;
2101         struct rte_kvargs *kvlist;
2102         int ret;
2103
2104         if (!devargs)
2105                 return 0;
2106
2107         kvlist = rte_kvargs_parse(devargs->args, iavf_valid_args);
2108         if (!kvlist) {
2109                 PMD_INIT_LOG(ERR, "invalid kvargs key\n");
2110                 return -EINVAL;
2111         }
2112
2113         ad->devargs.proto_xtr_dflt = IAVF_PROTO_XTR_NONE;
2114         memset(ad->devargs.proto_xtr, IAVF_PROTO_XTR_NONE,
2115                sizeof(ad->devargs.proto_xtr));
2116
2117         ret = rte_kvargs_process(kvlist, IAVF_PROTO_XTR_ARG,
2118                                  &iavf_handle_proto_xtr_arg, &ad->devargs);
2119         if (ret)
2120                 goto bail;
2121
2122 bail:
2123         rte_kvargs_free(kvlist);
2124         return ret;
2125 }
2126
2127 static void
2128 iavf_init_proto_xtr(struct rte_eth_dev *dev)
2129 {
2130         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2131         struct iavf_adapter *ad =
2132                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2133         const struct iavf_proto_xtr_ol *xtr_ol;
2134         bool proto_xtr_enable = false;
2135         int offset;
2136         uint16_t i;
2137
2138         vf->proto_xtr = rte_zmalloc("vf proto xtr",
2139                                     vf->vsi_res->num_queue_pairs, 0);
2140         if (unlikely(!(vf->proto_xtr))) {
2141                 PMD_DRV_LOG(ERR, "no memory for setting up proto_xtr's table");
2142                 return;
2143         }
2144
2145         for (i = 0; i < vf->vsi_res->num_queue_pairs; i++) {
2146                 vf->proto_xtr[i] = ad->devargs.proto_xtr[i] !=
2147                                         IAVF_PROTO_XTR_NONE ?
2148                                         ad->devargs.proto_xtr[i] :
2149                                         ad->devargs.proto_xtr_dflt;
2150
2151                 if (vf->proto_xtr[i] != IAVF_PROTO_XTR_NONE) {
2152                         uint8_t type = vf->proto_xtr[i];
2153
2154                         iavf_proto_xtr_params[type].required = true;
2155                         proto_xtr_enable = true;
2156                 }
2157         }
2158
2159         if (likely(!proto_xtr_enable))
2160                 return;
2161
2162         offset = rte_mbuf_dynfield_register(&iavf_proto_xtr_metadata_param);
2163         if (unlikely(offset == -1)) {
2164                 PMD_DRV_LOG(ERR,
2165                             "failed to extract protocol metadata, error %d",
2166                             -rte_errno);
2167                 return;
2168         }
2169
2170         PMD_DRV_LOG(DEBUG,
2171                     "proto_xtr metadata offset in mbuf is : %d",
2172                     offset);
2173         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = offset;
2174
2175         for (i = 0; i < RTE_DIM(iavf_proto_xtr_params); i++) {
2176                 xtr_ol = &iavf_proto_xtr_params[i];
2177
2178                 uint8_t rxdid = iavf_proto_xtr_type_to_rxdid((uint8_t)i);
2179
2180                 if (!xtr_ol->required)
2181                         continue;
2182
2183                 if (!(vf->supported_rxdid & BIT(rxdid))) {
2184                         PMD_DRV_LOG(ERR,
2185                                     "rxdid[%u] is not supported in hardware",
2186                                     rxdid);
2187                         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
2188                         break;
2189                 }
2190
2191                 offset = rte_mbuf_dynflag_register(&xtr_ol->param);
2192                 if (unlikely(offset == -1)) {
2193                         PMD_DRV_LOG(ERR,
2194                                     "failed to register proto_xtr offload '%s', error %d",
2195                                     xtr_ol->param.name, -rte_errno);
2196
2197                         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
2198                         break;
2199                 }
2200
2201                 PMD_DRV_LOG(DEBUG,
2202                             "proto_xtr offload '%s' offset in mbuf is : %d",
2203                             xtr_ol->param.name, offset);
2204                 *xtr_ol->ol_flag = 1ULL << offset;
2205         }
2206 }
2207
2208 static int
2209 iavf_init_vf(struct rte_eth_dev *dev)
2210 {
2211         int err, bufsz;
2212         struct iavf_adapter *adapter =
2213                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2214         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2215         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2216
2217         vf->eth_dev = dev;
2218
2219         err = iavf_parse_devargs(dev);
2220         if (err) {
2221                 PMD_INIT_LOG(ERR, "Failed to parse devargs");
2222                 goto err;
2223         }
2224
2225         err = iavf_set_mac_type(hw);
2226         if (err) {
2227                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
2228                 goto err;
2229         }
2230
2231         err = iavf_check_vf_reset_done(hw);
2232         if (err) {
2233                 PMD_INIT_LOG(ERR, "VF is still resetting");
2234                 goto err;
2235         }
2236
2237         iavf_init_adminq_parameter(hw);
2238         err = iavf_init_adminq(hw);
2239         if (err) {
2240                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
2241                 goto err;
2242         }
2243
2244         vf->aq_resp = rte_zmalloc("vf_aq_resp", IAVF_AQ_BUF_SZ, 0);
2245         if (!vf->aq_resp) {
2246                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
2247                 goto err_aq;
2248         }
2249         if (iavf_check_api_version(adapter) != 0) {
2250                 PMD_INIT_LOG(ERR, "check_api version failed");
2251                 goto err_api;
2252         }
2253
2254         bufsz = sizeof(struct virtchnl_vf_resource) +
2255                 (IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
2256         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
2257         if (!vf->vf_res) {
2258                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
2259                 goto err_api;
2260         }
2261
2262         if (iavf_get_vf_resource(adapter) != 0) {
2263                 PMD_INIT_LOG(ERR, "iavf_get_vf_config failed");
2264                 goto err_alloc;
2265         }
2266         /* Allocate memort for RSS info */
2267         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2268                 vf->rss_key = rte_zmalloc("rss_key",
2269                                           vf->vf_res->rss_key_size, 0);
2270                 if (!vf->rss_key) {
2271                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
2272                         goto err_rss;
2273                 }
2274                 vf->rss_lut = rte_zmalloc("rss_lut",
2275                                           vf->vf_res->rss_lut_size, 0);
2276                 if (!vf->rss_lut) {
2277                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
2278                         goto err_rss;
2279                 }
2280         }
2281
2282         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2283                 if (iavf_get_supported_rxdid(adapter) != 0) {
2284                         PMD_INIT_LOG(ERR, "failed to do get supported rxdid");
2285                         goto err_rss;
2286                 }
2287         }
2288
2289         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
2290                 if (iavf_get_vlan_offload_caps_v2(adapter) != 0) {
2291                         PMD_INIT_LOG(ERR, "failed to do get VLAN offload v2 capabilities");
2292                         goto err_rss;
2293                 }
2294         }
2295
2296         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS) {
2297                 bufsz = sizeof(struct virtchnl_qos_cap_list) +
2298                         IAVF_MAX_TRAFFIC_CLASS *
2299                         sizeof(struct virtchnl_qos_cap_elem);
2300                 vf->qos_cap = rte_zmalloc("qos_cap", bufsz, 0);
2301                 if (!vf->qos_cap) {
2302                         PMD_INIT_LOG(ERR, "unable to allocate qos_cap memory");
2303                         goto err_rss;
2304                 }
2305                 iavf_tm_conf_init(dev);
2306         }
2307
2308         iavf_init_proto_xtr(dev);
2309
2310         return 0;
2311 err_rss:
2312         rte_free(vf->rss_key);
2313         rte_free(vf->rss_lut);
2314 err_alloc:
2315         rte_free(vf->qos_cap);
2316         rte_free(vf->vf_res);
2317         vf->vsi_res = NULL;
2318 err_api:
2319         rte_free(vf->aq_resp);
2320 err_aq:
2321         iavf_shutdown_adminq(hw);
2322 err:
2323         return -1;
2324 }
2325
2326 static void
2327 iavf_uninit_vf(struct rte_eth_dev *dev)
2328 {
2329         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2330         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2331
2332         iavf_shutdown_adminq(hw);
2333
2334         rte_free(vf->vf_res);
2335         vf->vsi_res = NULL;
2336         vf->vf_res = NULL;
2337
2338         rte_free(vf->aq_resp);
2339         vf->aq_resp = NULL;
2340
2341         rte_free(vf->qos_cap);
2342         vf->qos_cap = NULL;
2343
2344         rte_free(vf->rss_lut);
2345         vf->rss_lut = NULL;
2346         rte_free(vf->rss_key);
2347         vf->rss_key = NULL;
2348 }
2349
2350 /* Enable default admin queue interrupt setting */
2351 static inline void
2352 iavf_enable_irq0(struct iavf_hw *hw)
2353 {
2354         /* Enable admin queue interrupt trigger */
2355         IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1,
2356                        IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
2357
2358         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2359                        IAVF_VFINT_DYN_CTL01_INTENA_MASK |
2360                        IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
2361                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2362
2363         IAVF_WRITE_FLUSH(hw);
2364 }
2365
2366 static inline void
2367 iavf_disable_irq0(struct iavf_hw *hw)
2368 {
2369         /* Disable all interrupt types */
2370         IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1, 0);
2371         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2372                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2373         IAVF_WRITE_FLUSH(hw);
2374 }
2375
2376 static void
2377 iavf_dev_interrupt_handler(void *param)
2378 {
2379         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2380         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2381
2382         iavf_disable_irq0(hw);
2383
2384         iavf_handle_virtchnl_msg(dev);
2385
2386         iavf_enable_irq0(hw);
2387 }
2388
2389 void
2390 iavf_dev_alarm_handler(void *param)
2391 {
2392         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2393         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2394         uint32_t icr0;
2395
2396         iavf_disable_irq0(hw);
2397
2398         /* read out interrupt causes */
2399         icr0 = IAVF_READ_REG(hw, IAVF_VFINT_ICR01);
2400
2401         if (icr0 & IAVF_VFINT_ICR01_ADMINQ_MASK) {
2402                 PMD_DRV_LOG(DEBUG, "ICR01_ADMINQ is reported");
2403                 iavf_handle_virtchnl_msg(dev);
2404         }
2405
2406         iavf_enable_irq0(hw);
2407
2408         rte_eal_alarm_set(IAVF_ALARM_INTERVAL,
2409                           iavf_dev_alarm_handler, dev);
2410 }
2411
2412 static int
2413 iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
2414                       const struct rte_flow_ops **ops)
2415 {
2416         if (!dev)
2417                 return -EINVAL;
2418
2419         *ops = &iavf_flow_ops;
2420         return 0;
2421 }
2422
2423 static void
2424 iavf_default_rss_disable(struct iavf_adapter *adapter)
2425 {
2426         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
2427         int ret = 0;
2428
2429         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2430                 /* Set hena = 0 to ask PF to cleanup all existing RSS. */
2431                 ret = iavf_set_hena(adapter, 0);
2432                 if (ret)
2433                         /* It is a workaround, temporarily allow error to be
2434                          * returned due to possible lack of PF handling for
2435                          * hena = 0.
2436                          */
2437                         PMD_INIT_LOG(WARNING, "fail to disable default RSS,"
2438                                     "lack PF support");
2439         }
2440 }
2441
2442 static int
2443 iavf_dev_init(struct rte_eth_dev *eth_dev)
2444 {
2445         struct iavf_adapter *adapter =
2446                 IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2447         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
2448         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
2449         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2450         int ret = 0;
2451
2452         PMD_INIT_FUNC_TRACE();
2453
2454         /* assign ops func pointer */
2455         eth_dev->dev_ops = &iavf_eth_dev_ops;
2456         eth_dev->rx_queue_count = iavf_dev_rxq_count;
2457         eth_dev->rx_descriptor_status = iavf_dev_rx_desc_status;
2458         eth_dev->tx_descriptor_status = iavf_dev_tx_desc_status;
2459         eth_dev->rx_pkt_burst = &iavf_recv_pkts;
2460         eth_dev->tx_pkt_burst = &iavf_xmit_pkts;
2461         eth_dev->tx_pkt_prepare = &iavf_prep_pkts;
2462
2463         /* For secondary processes, we don't initialise any further as primary
2464          * has already done this work. Only check if we need a different RX
2465          * and TX function.
2466          */
2467         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2468                 iavf_set_rx_function(eth_dev);
2469                 iavf_set_tx_function(eth_dev);
2470                 return 0;
2471         }
2472         rte_eth_copy_pci_info(eth_dev, pci_dev);
2473
2474         hw->vendor_id = pci_dev->id.vendor_id;
2475         hw->device_id = pci_dev->id.device_id;
2476         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
2477         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
2478         hw->bus.bus_id = pci_dev->addr.bus;
2479         hw->bus.device = pci_dev->addr.devid;
2480         hw->bus.func = pci_dev->addr.function;
2481         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
2482         hw->back = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2483         adapter->dev_data = eth_dev->data;
2484         adapter->stopped = 1;
2485
2486         if (iavf_init_vf(eth_dev) != 0) {
2487                 PMD_INIT_LOG(ERR, "Init vf failed");
2488                 return -1;
2489         }
2490
2491         /* set default ptype table */
2492         iavf_set_default_ptype_table(eth_dev);
2493
2494         /* copy mac addr */
2495         eth_dev->data->mac_addrs = rte_zmalloc(
2496                 "iavf_mac", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX, 0);
2497         if (!eth_dev->data->mac_addrs) {
2498                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
2499                              " store MAC addresses",
2500                              RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX);
2501                 ret = -ENOMEM;
2502                 goto init_vf_err;
2503         }
2504         /* If the MAC address is not configured by host,
2505          * generate a random one.
2506          */
2507         if (!rte_is_valid_assigned_ether_addr(
2508                         (struct rte_ether_addr *)hw->mac.addr))
2509                 rte_eth_random_addr(hw->mac.addr);
2510         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
2511                         &eth_dev->data->mac_addrs[0]);
2512
2513         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
2514                 /* register callback func to eal lib */
2515                 rte_intr_callback_register(pci_dev->intr_handle,
2516                                            iavf_dev_interrupt_handler,
2517                                            (void *)eth_dev);
2518
2519                 /* enable uio intr after callback register */
2520                 rte_intr_enable(pci_dev->intr_handle);
2521         } else {
2522                 rte_eal_alarm_set(IAVF_ALARM_INTERVAL,
2523                                   iavf_dev_alarm_handler, eth_dev);
2524         }
2525
2526         /* configure and enable device interrupt */
2527         iavf_enable_irq0(hw);
2528
2529         ret = iavf_flow_init(adapter);
2530         if (ret) {
2531                 PMD_INIT_LOG(ERR, "Failed to initialize flow");
2532                 goto flow_init_err;
2533         }
2534
2535         /** Check if the IPsec Crypto offload is supported and create
2536          *  security_ctx if it is.
2537          */
2538         if (iavf_ipsec_crypto_supported(adapter)) {
2539                 /* Initialize security_ctx only for primary process*/
2540                 ret = iavf_security_ctx_create(adapter);
2541                 if (ret) {
2542                         PMD_INIT_LOG(ERR, "failed to create ipsec crypto security instance");
2543                         return ret;
2544                 }
2545
2546                 ret = iavf_security_init(adapter);
2547                 if (ret) {
2548                         PMD_INIT_LOG(ERR, "failed to initialized ipsec crypto resources");
2549                         return ret;
2550                 }
2551         }
2552
2553         iavf_default_rss_disable(adapter);
2554
2555
2556         /* Start device watchdog */
2557         iavf_dev_watchdog_enable(adapter);
2558
2559
2560         return 0;
2561
2562 flow_init_err:
2563         rte_free(eth_dev->data->mac_addrs);
2564         eth_dev->data->mac_addrs = NULL;
2565
2566 init_vf_err:
2567         iavf_uninit_vf(eth_dev);
2568
2569         return ret;
2570 }
2571
2572 static int
2573 iavf_dev_close(struct rte_eth_dev *dev)
2574 {
2575         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2576         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2577         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
2578         struct iavf_adapter *adapter =
2579                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2580         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2581         int ret;
2582
2583         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2584                 return 0;
2585
2586         ret = iavf_dev_stop(dev);
2587
2588         iavf_flow_flush(dev, NULL);
2589         iavf_flow_uninit(adapter);
2590
2591         /*
2592          * disable promiscuous mode before reset vf
2593          * it is a workaround solution when work with kernel driver
2594          * and it is not the normal way
2595          */
2596         if (vf->promisc_unicast_enabled || vf->promisc_multicast_enabled)
2597                 iavf_config_promisc(adapter, false, false);
2598
2599         iavf_shutdown_adminq(hw);
2600         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
2601                 /* disable uio intr before callback unregister */
2602                 rte_intr_disable(intr_handle);
2603
2604                 /* unregister callback func from eal lib */
2605                 rte_intr_callback_unregister(intr_handle,
2606                                              iavf_dev_interrupt_handler, dev);
2607         } else {
2608                 rte_eal_alarm_cancel(iavf_dev_alarm_handler, dev);
2609         }
2610         iavf_disable_irq0(hw);
2611
2612         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS)
2613                 iavf_tm_conf_uninit(dev);
2614
2615         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2616                 if (vf->rss_lut) {
2617                         rte_free(vf->rss_lut);
2618                         vf->rss_lut = NULL;
2619                 }
2620                 if (vf->rss_key) {
2621                         rte_free(vf->rss_key);
2622                         vf->rss_key = NULL;
2623                 }
2624         }
2625
2626         rte_free(vf->vf_res);
2627         vf->vsi_res = NULL;
2628         vf->vf_res = NULL;
2629
2630         rte_free(vf->aq_resp);
2631         vf->aq_resp = NULL;
2632
2633         /*
2634          * If the VF is reset via VFLR, the device will be knocked out of bus
2635          * master mode, and the driver will fail to recover from the reset. Fix
2636          * this by enabling bus mastering after every reset. In a non-VFLR case,
2637          * the bus master bit will not be disabled, and this call will have no
2638          * effect.
2639          */
2640         if (vf->vf_reset && !rte_pci_set_bus_master(pci_dev, true))
2641                 vf->vf_reset = false;
2642
2643         /* disable watchdog */
2644         iavf_dev_watchdog_disable(adapter);
2645
2646         return ret;
2647 }
2648
2649 static int
2650 iavf_dev_uninit(struct rte_eth_dev *dev)
2651 {
2652         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2653                 return -EPERM;
2654
2655         iavf_dev_close(dev);
2656
2657         return 0;
2658 }
2659
2660 /*
2661  * Reset VF device only to re-initialize resources in PMD layer
2662  */
2663 static int
2664 iavf_dev_reset(struct rte_eth_dev *dev)
2665 {
2666         int ret;
2667
2668         ret = iavf_dev_uninit(dev);
2669         if (ret)
2670                 return ret;
2671
2672         return iavf_dev_init(dev);
2673 }
2674
2675 static int
2676 iavf_dcf_cap_check_handler(__rte_unused const char *key,
2677                            const char *value, __rte_unused void *opaque)
2678 {
2679         if (strcmp(value, "dcf"))
2680                 return -1;
2681
2682         return 0;
2683 }
2684
2685 static int
2686 iavf_dcf_cap_selected(struct rte_devargs *devargs)
2687 {
2688         struct rte_kvargs *kvlist;
2689         const char *key = "cap";
2690         int ret = 0;
2691
2692         if (devargs == NULL)
2693                 return 0;
2694
2695         kvlist = rte_kvargs_parse(devargs->args, NULL);
2696         if (kvlist == NULL)
2697                 return 0;
2698
2699         if (!rte_kvargs_count(kvlist, key))
2700                 goto exit;
2701
2702         /* dcf capability selected when there's a key-value pair: cap=dcf */
2703         if (rte_kvargs_process(kvlist, key,
2704                                iavf_dcf_cap_check_handler, NULL) < 0)
2705                 goto exit;
2706
2707         ret = 1;
2708
2709 exit:
2710         rte_kvargs_free(kvlist);
2711         return ret;
2712 }
2713
2714 static int eth_iavf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2715                              struct rte_pci_device *pci_dev)
2716 {
2717         if (iavf_dcf_cap_selected(pci_dev->device.devargs))
2718                 return 1;
2719
2720         return rte_eth_dev_pci_generic_probe(pci_dev,
2721                 sizeof(struct iavf_adapter), iavf_dev_init);
2722 }
2723
2724 static int eth_iavf_pci_remove(struct rte_pci_device *pci_dev)
2725 {
2726         return rte_eth_dev_pci_generic_remove(pci_dev, iavf_dev_uninit);
2727 }
2728
2729 /* Adaptive virtual function driver struct */
2730 static struct rte_pci_driver rte_iavf_pmd = {
2731         .id_table = pci_id_iavf_map,
2732         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
2733         .probe = eth_iavf_pci_probe,
2734         .remove = eth_iavf_pci_remove,
2735 };
2736
2737 RTE_PMD_REGISTER_PCI(net_iavf, rte_iavf_pmd);
2738 RTE_PMD_REGISTER_PCI_TABLE(net_iavf, pci_id_iavf_map);
2739 RTE_PMD_REGISTER_KMOD_DEP(net_iavf, "* igb_uio | vfio-pci");
2740 RTE_PMD_REGISTER_PARAM_STRING(net_iavf, "cap=dcf");
2741 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_init, init, NOTICE);
2742 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_driver, driver, NOTICE);
2743 #ifdef RTE_ETHDEV_DEBUG_RX
2744 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_rx, rx, DEBUG);
2745 #endif
2746 #ifdef RTE_ETHDEV_DEBUG_TX
2747 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_tx, tx, DEBUG);
2748 #endif