vhost: fix packed ring descriptor update in async enqueue
[dpdk.git] / lib / distributor / rte_distributor_single.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <sys/queue.h>
7 #include <string.h>
8 #include <rte_mbuf.h>
9 #include <rte_memory.h>
10 #include <rte_memzone.h>
11 #include <rte_errno.h>
12 #include <rte_string_fns.h>
13 #include <rte_eal_memconfig.h>
14 #include <rte_pause.h>
15 #include <rte_tailq.h>
16
17 #include "rte_distributor_single.h"
18 #include "distributor_private.h"
19
20 TAILQ_HEAD(rte_distributor_list, rte_distributor_single);
21
22 static struct rte_tailq_elem rte_distributor_tailq = {
23         .name = "RTE_DISTRIBUTOR",
24 };
25 EAL_REGISTER_TAILQ(rte_distributor_tailq)
26
27 /**** APIs called by workers ****/
28
29 void
30 rte_distributor_request_pkt_single(struct rte_distributor_single *d,
31                 unsigned worker_id, struct rte_mbuf *oldpkt)
32 {
33         union rte_distributor_buffer_single *buf = &d->bufs[worker_id];
34         int64_t req = (((int64_t)(uintptr_t)oldpkt) << RTE_DISTRIB_FLAG_BITS)
35                         | RTE_DISTRIB_GET_BUF;
36         RTE_WAIT_UNTIL_MASKED(&buf->bufptr64, RTE_DISTRIB_FLAGS_MASK,
37                 ==, 0, __ATOMIC_RELAXED);
38
39         /* Sync with distributor on GET_BUF flag. */
40         __atomic_store_n(&(buf->bufptr64), req, __ATOMIC_RELEASE);
41 }
42
43 struct rte_mbuf *
44 rte_distributor_poll_pkt_single(struct rte_distributor_single *d,
45                 unsigned worker_id)
46 {
47         union rte_distributor_buffer_single *buf = &d->bufs[worker_id];
48         /* Sync with distributor. Acquire bufptr64. */
49         if (__atomic_load_n(&buf->bufptr64, __ATOMIC_ACQUIRE)
50                 & RTE_DISTRIB_GET_BUF)
51                 return NULL;
52
53         /* since bufptr64 is signed, this should be an arithmetic shift */
54         int64_t ret = buf->bufptr64 >> RTE_DISTRIB_FLAG_BITS;
55         return (struct rte_mbuf *)((uintptr_t)ret);
56 }
57
58 struct rte_mbuf *
59 rte_distributor_get_pkt_single(struct rte_distributor_single *d,
60                 unsigned worker_id, struct rte_mbuf *oldpkt)
61 {
62         struct rte_mbuf *ret;
63         rte_distributor_request_pkt_single(d, worker_id, oldpkt);
64         while ((ret = rte_distributor_poll_pkt_single(d, worker_id)) == NULL)
65                 rte_pause();
66         return ret;
67 }
68
69 int
70 rte_distributor_return_pkt_single(struct rte_distributor_single *d,
71                 unsigned worker_id, struct rte_mbuf *oldpkt)
72 {
73         union rte_distributor_buffer_single *buf = &d->bufs[worker_id];
74         uint64_t req = (((int64_t)(uintptr_t)oldpkt) << RTE_DISTRIB_FLAG_BITS)
75                         | RTE_DISTRIB_RETURN_BUF;
76         RTE_WAIT_UNTIL_MASKED(&buf->bufptr64, RTE_DISTRIB_FLAGS_MASK,
77                 ==, 0, __ATOMIC_RELAXED);
78
79         /* Sync with distributor on RETURN_BUF flag. */
80         __atomic_store_n(&(buf->bufptr64), req, __ATOMIC_RELEASE);
81         return 0;
82 }
83
84 /**** APIs called on distributor core ***/
85
86 /* as name suggests, adds a packet to the backlog for a particular worker */
87 static int
88 add_to_backlog(struct rte_distributor_backlog *bl, int64_t item)
89 {
90         if (bl->count == RTE_DISTRIB_BACKLOG_SIZE)
91                 return -1;
92
93         bl->pkts[(bl->start + bl->count++) & (RTE_DISTRIB_BACKLOG_MASK)]
94                         = item;
95         return 0;
96 }
97
98 /* takes the next packet for a worker off the backlog */
99 static int64_t
100 backlog_pop(struct rte_distributor_backlog *bl)
101 {
102         bl->count--;
103         return bl->pkts[bl->start++ & RTE_DISTRIB_BACKLOG_MASK];
104 }
105
106 /* stores a packet returned from a worker inside the returns array */
107 static inline void
108 store_return(uintptr_t oldbuf, struct rte_distributor_single *d,
109                 unsigned *ret_start, unsigned *ret_count)
110 {
111         /* store returns in a circular buffer - code is branch-free */
112         d->returns.mbufs[(*ret_start + *ret_count) & RTE_DISTRIB_RETURNS_MASK]
113                         = (void *)oldbuf;
114         *ret_start += (*ret_count == RTE_DISTRIB_RETURNS_MASK) & !!(oldbuf);
115         *ret_count += (*ret_count != RTE_DISTRIB_RETURNS_MASK) & !!(oldbuf);
116 }
117
118 static inline void
119 handle_worker_shutdown(struct rte_distributor_single *d, unsigned int wkr)
120 {
121         d->in_flight_tags[wkr] = 0;
122         d->in_flight_bitmask &= ~(1UL << wkr);
123         /* Sync with worker. Release bufptr64. */
124         __atomic_store_n(&(d->bufs[wkr].bufptr64), 0, __ATOMIC_RELEASE);
125         if (unlikely(d->backlog[wkr].count != 0)) {
126                 /* On return of a packet, we need to move the
127                  * queued packets for this core elsewhere.
128                  * Easiest solution is to set things up for
129                  * a recursive call. That will cause those
130                  * packets to be queued up for the next free
131                  * core, i.e. it will return as soon as a
132                  * core becomes free to accept the first
133                  * packet, as subsequent ones will be added to
134                  * the backlog for that core.
135                  */
136                 struct rte_mbuf *pkts[RTE_DISTRIB_BACKLOG_SIZE];
137                 unsigned i;
138                 struct rte_distributor_backlog *bl = &d->backlog[wkr];
139
140                 for (i = 0; i < bl->count; i++) {
141                         unsigned idx = (bl->start + i) &
142                                         RTE_DISTRIB_BACKLOG_MASK;
143                         pkts[i] = (void *)((uintptr_t)(bl->pkts[idx] >>
144                                         RTE_DISTRIB_FLAG_BITS));
145                 }
146                 /* recursive call.
147                  * Note that the tags were set before first level call
148                  * to rte_distributor_process.
149                  */
150                 rte_distributor_process_single(d, pkts, i);
151                 bl->count = bl->start = 0;
152         }
153 }
154
155 /* this function is called when process() fn is called without any new
156  * packets. It goes through all the workers and clears any returned packets
157  * to do a partial flush.
158  */
159 static int
160 process_returns(struct rte_distributor_single *d)
161 {
162         unsigned wkr;
163         unsigned flushed = 0;
164         unsigned ret_start = d->returns.start,
165                         ret_count = d->returns.count;
166
167         for (wkr = 0; wkr < d->num_workers; wkr++) {
168                 uintptr_t oldbuf = 0;
169                 /* Sync with worker. Acquire bufptr64. */
170                 const int64_t data = __atomic_load_n(&(d->bufs[wkr].bufptr64),
171                                                         __ATOMIC_ACQUIRE);
172
173                 if (data & RTE_DISTRIB_GET_BUF) {
174                         flushed++;
175                         if (d->backlog[wkr].count)
176                                 /* Sync with worker. Release bufptr64. */
177                                 __atomic_store_n(&(d->bufs[wkr].bufptr64),
178                                         backlog_pop(&d->backlog[wkr]),
179                                         __ATOMIC_RELEASE);
180                         else {
181                                 /* Sync with worker on GET_BUF flag. */
182                                 __atomic_store_n(&(d->bufs[wkr].bufptr64),
183                                         RTE_DISTRIB_GET_BUF,
184                                         __ATOMIC_RELEASE);
185                                 d->in_flight_tags[wkr] = 0;
186                                 d->in_flight_bitmask &= ~(1UL << wkr);
187                         }
188                         oldbuf = data >> RTE_DISTRIB_FLAG_BITS;
189                 } else if (data & RTE_DISTRIB_RETURN_BUF) {
190                         handle_worker_shutdown(d, wkr);
191                         oldbuf = data >> RTE_DISTRIB_FLAG_BITS;
192                 }
193
194                 store_return(oldbuf, d, &ret_start, &ret_count);
195         }
196
197         d->returns.start = ret_start;
198         d->returns.count = ret_count;
199
200         return flushed;
201 }
202
203 /* process a set of packets to distribute them to workers */
204 int
205 rte_distributor_process_single(struct rte_distributor_single *d,
206                 struct rte_mbuf **mbufs, unsigned num_mbufs)
207 {
208         unsigned next_idx = 0;
209         unsigned wkr = 0;
210         struct rte_mbuf *next_mb = NULL;
211         int64_t next_value = 0;
212         uint32_t new_tag = 0;
213         unsigned ret_start = d->returns.start,
214                         ret_count = d->returns.count;
215
216         if (unlikely(num_mbufs == 0))
217                 return process_returns(d);
218
219         while (next_idx < num_mbufs || next_mb != NULL) {
220                 uintptr_t oldbuf = 0;
221                 /* Sync with worker. Acquire bufptr64. */
222                 int64_t data = __atomic_load_n(&(d->bufs[wkr].bufptr64),
223                                                 __ATOMIC_ACQUIRE);
224
225                 if (!next_mb) {
226                         next_mb = mbufs[next_idx++];
227                         next_value = (((int64_t)(uintptr_t)next_mb)
228                                         << RTE_DISTRIB_FLAG_BITS);
229                         /*
230                          * User is advocated to set tag value for each
231                          * mbuf before calling rte_distributor_process.
232                          * User defined tags are used to identify flows,
233                          * or sessions.
234                          */
235                         new_tag = next_mb->hash.usr;
236
237                         /*
238                          * Note that if RTE_DISTRIB_MAX_WORKERS is larger than 64
239                          * then the size of match has to be expanded.
240                          */
241                         uint64_t match = 0;
242                         unsigned i;
243                         /*
244                          * to scan for a match use "xor" and "not" to get a 0/1
245                          * value, then use shifting to merge to single "match"
246                          * variable, where a one-bit indicates a match for the
247                          * worker given by the bit-position
248                          */
249                         for (i = 0; i < d->num_workers; i++)
250                                 match |= (!(d->in_flight_tags[i] ^ new_tag)
251                                         << i);
252
253                         /* Only turned-on bits are considered as match */
254                         match &= d->in_flight_bitmask;
255
256                         if (match) {
257                                 next_mb = NULL;
258                                 unsigned worker = __builtin_ctzl(match);
259                                 if (add_to_backlog(&d->backlog[worker],
260                                                 next_value) < 0)
261                                         next_idx--;
262                         }
263                 }
264
265                 if ((data & RTE_DISTRIB_GET_BUF) &&
266                                 (d->backlog[wkr].count || next_mb)) {
267
268                         if (d->backlog[wkr].count)
269                                 /* Sync with worker. Release bufptr64. */
270                                 __atomic_store_n(&(d->bufs[wkr].bufptr64),
271                                                 backlog_pop(&d->backlog[wkr]),
272                                                 __ATOMIC_RELEASE);
273
274                         else {
275                                 /* Sync with worker. Release bufptr64.  */
276                                 __atomic_store_n(&(d->bufs[wkr].bufptr64),
277                                                 next_value,
278                                                 __ATOMIC_RELEASE);
279                                 d->in_flight_tags[wkr] = new_tag;
280                                 d->in_flight_bitmask |= (1UL << wkr);
281                                 next_mb = NULL;
282                         }
283                         oldbuf = data >> RTE_DISTRIB_FLAG_BITS;
284                 } else if (data & RTE_DISTRIB_RETURN_BUF) {
285                         handle_worker_shutdown(d, wkr);
286                         oldbuf = data >> RTE_DISTRIB_FLAG_BITS;
287                 }
288
289                 /* store returns in a circular buffer */
290                 store_return(oldbuf, d, &ret_start, &ret_count);
291
292                 if (++wkr == d->num_workers)
293                         wkr = 0;
294         }
295         /* to finish, check all workers for backlog and schedule work for them
296          * if they are ready */
297         for (wkr = 0; wkr < d->num_workers; wkr++)
298                 if (d->backlog[wkr].count &&
299                                 /* Sync with worker. Acquire bufptr64. */
300                                 (__atomic_load_n(&(d->bufs[wkr].bufptr64),
301                                 __ATOMIC_ACQUIRE) & RTE_DISTRIB_GET_BUF)) {
302
303                         int64_t oldbuf = d->bufs[wkr].bufptr64 >>
304                                         RTE_DISTRIB_FLAG_BITS;
305
306                         store_return(oldbuf, d, &ret_start, &ret_count);
307
308                         /* Sync with worker. Release bufptr64. */
309                         __atomic_store_n(&(d->bufs[wkr].bufptr64),
310                                 backlog_pop(&d->backlog[wkr]),
311                                 __ATOMIC_RELEASE);
312                 }
313
314         d->returns.start = ret_start;
315         d->returns.count = ret_count;
316         return num_mbufs;
317 }
318
319 /* return to the caller, packets returned from workers */
320 int
321 rte_distributor_returned_pkts_single(struct rte_distributor_single *d,
322                 struct rte_mbuf **mbufs, unsigned max_mbufs)
323 {
324         struct rte_distributor_returned_pkts *returns = &d->returns;
325         unsigned retval = (max_mbufs < returns->count) ?
326                         max_mbufs : returns->count;
327         unsigned i;
328
329         for (i = 0; i < retval; i++) {
330                 unsigned idx = (returns->start + i) & RTE_DISTRIB_RETURNS_MASK;
331                 mbufs[i] = returns->mbufs[idx];
332         }
333         returns->start += i;
334         returns->count -= i;
335
336         return retval;
337 }
338
339 /* return the number of packets in-flight in a distributor, i.e. packets
340  * being worked on or queued up in a backlog.
341  */
342 static inline unsigned
343 total_outstanding(const struct rte_distributor_single *d)
344 {
345         unsigned wkr, total_outstanding;
346
347         total_outstanding = __builtin_popcountl(d->in_flight_bitmask);
348
349         for (wkr = 0; wkr < d->num_workers; wkr++)
350                 total_outstanding += d->backlog[wkr].count;
351
352         return total_outstanding;
353 }
354
355 /* flush the distributor, so that there are no outstanding packets in flight or
356  * queued up. */
357 int
358 rte_distributor_flush_single(struct rte_distributor_single *d)
359 {
360         const unsigned flushed = total_outstanding(d);
361
362         while (total_outstanding(d) > 0)
363                 rte_distributor_process_single(d, NULL, 0);
364
365         return flushed;
366 }
367
368 /* clears the internal returns array in the distributor */
369 void
370 rte_distributor_clear_returns_single(struct rte_distributor_single *d)
371 {
372         d->returns.start = d->returns.count = 0;
373 #ifndef __OPTIMIZE__
374         memset(d->returns.mbufs, 0, sizeof(d->returns.mbufs));
375 #endif
376 }
377
378 /* creates a distributor instance */
379 struct rte_distributor_single *
380 rte_distributor_create_single(const char *name,
381                 unsigned socket_id,
382                 unsigned num_workers)
383 {
384         struct rte_distributor_single *d;
385         struct rte_distributor_list *distributor_list;
386         char mz_name[RTE_MEMZONE_NAMESIZE];
387         const struct rte_memzone *mz;
388
389         /* compilation-time checks */
390         RTE_BUILD_BUG_ON((sizeof(*d) & RTE_CACHE_LINE_MASK) != 0);
391         RTE_BUILD_BUG_ON((RTE_DISTRIB_MAX_WORKERS & 7) != 0);
392         RTE_BUILD_BUG_ON(RTE_DISTRIB_MAX_WORKERS >
393                                 sizeof(d->in_flight_bitmask) * CHAR_BIT);
394
395         if (name == NULL || num_workers >= RTE_DISTRIB_MAX_WORKERS) {
396                 rte_errno = EINVAL;
397                 return NULL;
398         }
399
400         snprintf(mz_name, sizeof(mz_name), RTE_DISTRIB_PREFIX"%s", name);
401         mz = rte_memzone_reserve(mz_name, sizeof(*d), socket_id, NO_FLAGS);
402         if (mz == NULL) {
403                 rte_errno = ENOMEM;
404                 return NULL;
405         }
406
407         d = mz->addr;
408         strlcpy(d->name, name, sizeof(d->name));
409         d->num_workers = num_workers;
410
411         distributor_list = RTE_TAILQ_CAST(rte_distributor_tailq.head,
412                                           rte_distributor_list);
413
414         rte_mcfg_tailq_write_lock();
415         TAILQ_INSERT_TAIL(distributor_list, d, next);
416         rte_mcfg_tailq_write_unlock();
417
418         return d;
419 }