crypto/mlx5: add maximum segments configuration
[dpdk.git] / lib / eventdev / rte_event_timer_adapter.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017-2018 Intel Corporation.
3  * All rights reserved.
4  */
5
6 #include <string.h>
7 #include <inttypes.h>
8 #include <stdbool.h>
9 #include <sys/queue.h>
10
11 #include <rte_memzone.h>
12 #include <rte_memory.h>
13 #include <rte_dev.h>
14 #include <rte_errno.h>
15 #include <rte_malloc.h>
16 #include <rte_ring.h>
17 #include <rte_mempool.h>
18 #include <rte_common.h>
19 #include <rte_timer.h>
20 #include <rte_service_component.h>
21 #include <rte_cycles.h>
22
23 #include "rte_eventdev.h"
24 #include "eventdev_pmd.h"
25 #include "rte_eventdev_trace.h"
26 #include "rte_event_timer_adapter.h"
27 #include "rte_event_timer_adapter_pmd.h"
28
29 #define DATA_MZ_NAME_MAX_LEN 64
30 #define DATA_MZ_NAME_FORMAT "rte_event_timer_adapter_data_%d"
31
32 RTE_LOG_REGISTER_SUFFIX(evtim_logtype, adapter.timer, NOTICE);
33 RTE_LOG_REGISTER_SUFFIX(evtim_buffer_logtype, adapter.timer, NOTICE);
34 RTE_LOG_REGISTER_SUFFIX(evtim_svc_logtype, adapter.timer.svc, NOTICE);
35
36 static struct rte_event_timer_adapter adapters[RTE_EVENT_TIMER_ADAPTER_NUM_MAX];
37
38 static const struct rte_event_timer_adapter_ops swtim_ops;
39
40 #define EVTIM_LOG(level, logtype, ...) \
41         rte_log(RTE_LOG_ ## level, logtype, \
42                 RTE_FMT("EVTIMER: %s() line %u: " RTE_FMT_HEAD(__VA_ARGS__,) \
43                         "\n", __func__, __LINE__, RTE_FMT_TAIL(__VA_ARGS__,)))
44
45 #define EVTIM_LOG_ERR(...) EVTIM_LOG(ERR, evtim_logtype, __VA_ARGS__)
46
47 #ifdef RTE_LIBRTE_EVENTDEV_DEBUG
48 #define EVTIM_LOG_DBG(...) \
49         EVTIM_LOG(DEBUG, evtim_logtype, __VA_ARGS__)
50 #define EVTIM_BUF_LOG_DBG(...) \
51         EVTIM_LOG(DEBUG, evtim_buffer_logtype, __VA_ARGS__)
52 #define EVTIM_SVC_LOG_DBG(...) \
53         EVTIM_LOG(DEBUG, evtim_svc_logtype, __VA_ARGS__)
54 #else
55 #define EVTIM_LOG_DBG(...) (void)0
56 #define EVTIM_BUF_LOG_DBG(...) (void)0
57 #define EVTIM_SVC_LOG_DBG(...) (void)0
58 #endif
59
60 static int
61 default_port_conf_cb(uint16_t id, uint8_t event_dev_id, uint8_t *event_port_id,
62                      void *conf_arg)
63 {
64         struct rte_event_timer_adapter *adapter;
65         struct rte_eventdev *dev;
66         struct rte_event_dev_config dev_conf;
67         struct rte_event_port_conf *port_conf, def_port_conf = {0};
68         int started;
69         uint8_t port_id;
70         uint8_t dev_id;
71         int ret;
72
73         RTE_SET_USED(event_dev_id);
74
75         adapter = &adapters[id];
76         dev = &rte_eventdevs[adapter->data->event_dev_id];
77         dev_id = dev->data->dev_id;
78         dev_conf = dev->data->dev_conf;
79
80         started = dev->data->dev_started;
81         if (started)
82                 rte_event_dev_stop(dev_id);
83
84         port_id = dev_conf.nb_event_ports;
85         dev_conf.nb_event_ports += 1;
86         ret = rte_event_dev_configure(dev_id, &dev_conf);
87         if (ret < 0) {
88                 EVTIM_LOG_ERR("failed to configure event dev %u\n", dev_id);
89                 if (started)
90                         if (rte_event_dev_start(dev_id))
91                                 return -EIO;
92
93                 return ret;
94         }
95
96         if (conf_arg != NULL)
97                 port_conf = conf_arg;
98         else {
99                 port_conf = &def_port_conf;
100                 ret = rte_event_port_default_conf_get(dev_id, port_id,
101                                                       port_conf);
102                 if (ret < 0)
103                         return ret;
104         }
105
106         ret = rte_event_port_setup(dev_id, port_id, port_conf);
107         if (ret < 0) {
108                 EVTIM_LOG_ERR("failed to setup event port %u on event dev %u\n",
109                               port_id, dev_id);
110                 return ret;
111         }
112
113         *event_port_id = port_id;
114
115         if (started)
116                 ret = rte_event_dev_start(dev_id);
117
118         return ret;
119 }
120
121 struct rte_event_timer_adapter *
122 rte_event_timer_adapter_create(const struct rte_event_timer_adapter_conf *conf)
123 {
124         return rte_event_timer_adapter_create_ext(conf, default_port_conf_cb,
125                                                   NULL);
126 }
127
128 struct rte_event_timer_adapter *
129 rte_event_timer_adapter_create_ext(
130                 const struct rte_event_timer_adapter_conf *conf,
131                 rte_event_timer_adapter_port_conf_cb_t conf_cb,
132                 void *conf_arg)
133 {
134         uint16_t adapter_id;
135         struct rte_event_timer_adapter *adapter;
136         const struct rte_memzone *mz;
137         char mz_name[DATA_MZ_NAME_MAX_LEN];
138         int n, ret;
139         struct rte_eventdev *dev;
140
141         if (conf == NULL) {
142                 rte_errno = EINVAL;
143                 return NULL;
144         }
145
146         /* Check eventdev ID */
147         if (!rte_event_pmd_is_valid_dev(conf->event_dev_id)) {
148                 rte_errno = EINVAL;
149                 return NULL;
150         }
151         dev = &rte_eventdevs[conf->event_dev_id];
152
153         adapter_id = conf->timer_adapter_id;
154
155         /* Check that adapter_id is in range */
156         if (adapter_id >= RTE_EVENT_TIMER_ADAPTER_NUM_MAX) {
157                 rte_errno = EINVAL;
158                 return NULL;
159         }
160
161         /* Check adapter ID not already allocated */
162         adapter = &adapters[adapter_id];
163         if (adapter->allocated) {
164                 rte_errno = EEXIST;
165                 return NULL;
166         }
167
168         /* Create shared data area. */
169         n = snprintf(mz_name, sizeof(mz_name), DATA_MZ_NAME_FORMAT, adapter_id);
170         if (n >= (int)sizeof(mz_name)) {
171                 rte_errno = EINVAL;
172                 return NULL;
173         }
174         mz = rte_memzone_reserve(mz_name,
175                                  sizeof(struct rte_event_timer_adapter_data),
176                                  conf->socket_id, 0);
177         if (mz == NULL)
178                 /* rte_errno set by rte_memzone_reserve */
179                 return NULL;
180
181         adapter->data = mz->addr;
182         memset(adapter->data, 0, sizeof(struct rte_event_timer_adapter_data));
183
184         adapter->data->mz = mz;
185         adapter->data->event_dev_id = conf->event_dev_id;
186         adapter->data->id = adapter_id;
187         adapter->data->socket_id = conf->socket_id;
188         adapter->data->conf = *conf;  /* copy conf structure */
189
190         /* Query eventdev PMD for timer adapter capabilities and ops */
191         ret = dev->dev_ops->timer_adapter_caps_get(dev,
192                                                    adapter->data->conf.flags,
193                                                    &adapter->data->caps,
194                                                    &adapter->ops);
195         if (ret < 0) {
196                 rte_errno = -ret;
197                 goto free_memzone;
198         }
199
200         if (!(adapter->data->caps &
201               RTE_EVENT_TIMER_ADAPTER_CAP_INTERNAL_PORT)) {
202                 FUNC_PTR_OR_NULL_RET_WITH_ERRNO(conf_cb, EINVAL);
203                 ret = conf_cb(adapter->data->id, adapter->data->event_dev_id,
204                               &adapter->data->event_port_id, conf_arg);
205                 if (ret < 0) {
206                         rte_errno = -ret;
207                         goto free_memzone;
208                 }
209         }
210
211         /* If eventdev PMD did not provide ops, use default software
212          * implementation.
213          */
214         if (adapter->ops == NULL)
215                 adapter->ops = &swtim_ops;
216
217         /* Allow driver to do some setup */
218         FUNC_PTR_OR_NULL_RET_WITH_ERRNO(adapter->ops->init, ENOTSUP);
219         ret = adapter->ops->init(adapter);
220         if (ret < 0) {
221                 rte_errno = -ret;
222                 goto free_memzone;
223         }
224
225         /* Set fast-path function pointers */
226         adapter->arm_burst = adapter->ops->arm_burst;
227         adapter->arm_tmo_tick_burst = adapter->ops->arm_tmo_tick_burst;
228         adapter->cancel_burst = adapter->ops->cancel_burst;
229
230         adapter->allocated = 1;
231
232         rte_eventdev_trace_timer_adapter_create(adapter_id, adapter, conf,
233                 conf_cb);
234         return adapter;
235
236 free_memzone:
237         rte_memzone_free(adapter->data->mz);
238         return NULL;
239 }
240
241 int
242 rte_event_timer_adapter_get_info(const struct rte_event_timer_adapter *adapter,
243                 struct rte_event_timer_adapter_info *adapter_info)
244 {
245         ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL);
246
247         if (adapter->ops->get_info)
248                 /* let driver set values it knows */
249                 adapter->ops->get_info(adapter, adapter_info);
250
251         /* Set common values */
252         adapter_info->conf = adapter->data->conf;
253         adapter_info->event_dev_port_id = adapter->data->event_port_id;
254         adapter_info->caps = adapter->data->caps;
255
256         return 0;
257 }
258
259 int
260 rte_event_timer_adapter_start(const struct rte_event_timer_adapter *adapter)
261 {
262         int ret;
263
264         ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL);
265         FUNC_PTR_OR_ERR_RET(adapter->ops->start, -EINVAL);
266
267         if (adapter->data->started) {
268                 EVTIM_LOG_ERR("event timer adapter %"PRIu8" already started",
269                               adapter->data->id);
270                 return -EALREADY;
271         }
272
273         ret = adapter->ops->start(adapter);
274         if (ret < 0)
275                 return ret;
276
277         adapter->data->started = 1;
278         rte_eventdev_trace_timer_adapter_start(adapter);
279         return 0;
280 }
281
282 int
283 rte_event_timer_adapter_stop(const struct rte_event_timer_adapter *adapter)
284 {
285         int ret;
286
287         ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL);
288         FUNC_PTR_OR_ERR_RET(adapter->ops->stop, -EINVAL);
289
290         if (adapter->data->started == 0) {
291                 EVTIM_LOG_ERR("event timer adapter %"PRIu8" already stopped",
292                               adapter->data->id);
293                 return 0;
294         }
295
296         ret = adapter->ops->stop(adapter);
297         if (ret < 0)
298                 return ret;
299
300         adapter->data->started = 0;
301         rte_eventdev_trace_timer_adapter_stop(adapter);
302         return 0;
303 }
304
305 struct rte_event_timer_adapter *
306 rte_event_timer_adapter_lookup(uint16_t adapter_id)
307 {
308         char name[DATA_MZ_NAME_MAX_LEN];
309         const struct rte_memzone *mz;
310         struct rte_event_timer_adapter_data *data;
311         struct rte_event_timer_adapter *adapter;
312         int ret;
313         struct rte_eventdev *dev;
314
315         if (adapters[adapter_id].allocated)
316                 return &adapters[adapter_id]; /* Adapter is already loaded */
317
318         snprintf(name, DATA_MZ_NAME_MAX_LEN, DATA_MZ_NAME_FORMAT, adapter_id);
319         mz = rte_memzone_lookup(name);
320         if (mz == NULL) {
321                 rte_errno = ENOENT;
322                 return NULL;
323         }
324
325         data = mz->addr;
326
327         adapter = &adapters[data->id];
328         adapter->data = data;
329
330         dev = &rte_eventdevs[adapter->data->event_dev_id];
331
332         /* Query eventdev PMD for timer adapter capabilities and ops */
333         ret = dev->dev_ops->timer_adapter_caps_get(dev,
334                                                    adapter->data->conf.flags,
335                                                    &adapter->data->caps,
336                                                    &adapter->ops);
337         if (ret < 0) {
338                 rte_errno = EINVAL;
339                 return NULL;
340         }
341
342         /* If eventdev PMD did not provide ops, use default software
343          * implementation.
344          */
345         if (adapter->ops == NULL)
346                 adapter->ops = &swtim_ops;
347
348         /* Set fast-path function pointers */
349         adapter->arm_burst = adapter->ops->arm_burst;
350         adapter->arm_tmo_tick_burst = adapter->ops->arm_tmo_tick_burst;
351         adapter->cancel_burst = adapter->ops->cancel_burst;
352
353         adapter->allocated = 1;
354
355         return adapter;
356 }
357
358 int
359 rte_event_timer_adapter_free(struct rte_event_timer_adapter *adapter)
360 {
361         int ret;
362
363         ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL);
364         FUNC_PTR_OR_ERR_RET(adapter->ops->uninit, -EINVAL);
365
366         if (adapter->data->started == 1) {
367                 EVTIM_LOG_ERR("event timer adapter %"PRIu8" must be stopped "
368                               "before freeing", adapter->data->id);
369                 return -EBUSY;
370         }
371
372         /* free impl priv data */
373         ret = adapter->ops->uninit(adapter);
374         if (ret < 0)
375                 return ret;
376
377         /* free shared data area */
378         ret = rte_memzone_free(adapter->data->mz);
379         if (ret < 0)
380                 return ret;
381
382         adapter->data = NULL;
383         adapter->allocated = 0;
384
385         rte_eventdev_trace_timer_adapter_free(adapter);
386         return 0;
387 }
388
389 int
390 rte_event_timer_adapter_service_id_get(struct rte_event_timer_adapter *adapter,
391                                        uint32_t *service_id)
392 {
393         ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL);
394
395         if (adapter->data->service_inited && service_id != NULL)
396                 *service_id = adapter->data->service_id;
397
398         return adapter->data->service_inited ? 0 : -ESRCH;
399 }
400
401 int
402 rte_event_timer_adapter_stats_get(struct rte_event_timer_adapter *adapter,
403                                   struct rte_event_timer_adapter_stats *stats)
404 {
405         ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL);
406         FUNC_PTR_OR_ERR_RET(adapter->ops->stats_get, -EINVAL);
407         if (stats == NULL)
408                 return -EINVAL;
409
410         return adapter->ops->stats_get(adapter, stats);
411 }
412
413 int
414 rte_event_timer_adapter_stats_reset(struct rte_event_timer_adapter *adapter)
415 {
416         ADAPTER_VALID_OR_ERR_RET(adapter, -EINVAL);
417         FUNC_PTR_OR_ERR_RET(adapter->ops->stats_reset, -EINVAL);
418         return adapter->ops->stats_reset(adapter);
419 }
420
421 /*
422  * Software event timer adapter buffer helper functions
423  */
424
425 #define NSECPERSEC 1E9
426
427 /* Optimizations used to index into the buffer require that the buffer size
428  * be a power of 2.
429  */
430 #define EVENT_BUFFER_SZ 4096
431 #define EVENT_BUFFER_BATCHSZ 32
432 #define EVENT_BUFFER_MASK (EVENT_BUFFER_SZ - 1)
433
434 #define EXP_TIM_BUF_SZ 128
435
436 struct event_buffer {
437         size_t head;
438         size_t tail;
439         struct rte_event events[EVENT_BUFFER_SZ];
440 } __rte_cache_aligned;
441
442 static inline bool
443 event_buffer_full(struct event_buffer *bufp)
444 {
445         return (bufp->head - bufp->tail) == EVENT_BUFFER_SZ;
446 }
447
448 static inline bool
449 event_buffer_batch_ready(struct event_buffer *bufp)
450 {
451         return (bufp->head - bufp->tail) >= EVENT_BUFFER_BATCHSZ;
452 }
453
454 static void
455 event_buffer_init(struct event_buffer *bufp)
456 {
457         bufp->head = bufp->tail = 0;
458         memset(&bufp->events, 0, sizeof(struct rte_event) * EVENT_BUFFER_SZ);
459 }
460
461 static int
462 event_buffer_add(struct event_buffer *bufp, struct rte_event *eventp)
463 {
464         size_t head_idx;
465         struct rte_event *buf_eventp;
466
467         if (event_buffer_full(bufp))
468                 return -1;
469
470         /* Instead of modulus, bitwise AND with mask to get head_idx. */
471         head_idx = bufp->head & EVENT_BUFFER_MASK;
472         buf_eventp = &bufp->events[head_idx];
473         rte_memcpy(buf_eventp, eventp, sizeof(struct rte_event));
474
475         /* Wrap automatically when overflow occurs. */
476         bufp->head++;
477
478         return 0;
479 }
480
481 static void
482 event_buffer_flush(struct event_buffer *bufp, uint8_t dev_id, uint8_t port_id,
483                    uint16_t *nb_events_flushed,
484                    uint16_t *nb_events_inv)
485 {
486         struct rte_event *events = bufp->events;
487         size_t head_idx, tail_idx;
488         uint16_t n = 0;
489
490         /* Instead of modulus, bitwise AND with mask to get index. */
491         head_idx = bufp->head & EVENT_BUFFER_MASK;
492         tail_idx = bufp->tail & EVENT_BUFFER_MASK;
493
494         RTE_ASSERT(head_idx < EVENT_BUFFER_SZ && tail_idx < EVENT_BUFFER_SZ);
495
496         /* Determine the largest contigous run we can attempt to enqueue to the
497          * event device.
498          */
499         if (head_idx > tail_idx)
500                 n = head_idx - tail_idx;
501         else if (head_idx < tail_idx)
502                 n = EVENT_BUFFER_SZ - tail_idx;
503         else if (event_buffer_full(bufp))
504                 n = EVENT_BUFFER_SZ - tail_idx;
505         else {
506                 *nb_events_flushed = 0;
507                 return;
508         }
509
510         n = RTE_MIN(EVENT_BUFFER_BATCHSZ, n);
511         *nb_events_inv = 0;
512
513         *nb_events_flushed = rte_event_enqueue_burst(dev_id, port_id,
514                                                      &events[tail_idx], n);
515         if (*nb_events_flushed != n) {
516                 if (rte_errno == EINVAL) {
517                         EVTIM_LOG_ERR("failed to enqueue invalid event - "
518                                       "dropping it");
519                         (*nb_events_inv)++;
520                 } else if (rte_errno == ENOSPC)
521                         rte_pause();
522         }
523
524         if (*nb_events_flushed > 0)
525                 EVTIM_BUF_LOG_DBG("enqueued %"PRIu16" timer events to event "
526                                   "device", *nb_events_flushed);
527
528         bufp->tail = bufp->tail + *nb_events_flushed + *nb_events_inv;
529 }
530
531 /*
532  * Software event timer adapter implementation
533  */
534 struct swtim {
535         /* Identifier of service executing timer management logic. */
536         uint32_t service_id;
537         /* The cycle count at which the adapter should next tick */
538         uint64_t next_tick_cycles;
539         /* The tick resolution used by adapter instance. May have been
540          * adjusted from what user requested
541          */
542         uint64_t timer_tick_ns;
543         /* Maximum timeout in nanoseconds allowed by adapter instance. */
544         uint64_t max_tmo_ns;
545         /* Buffered timer expiry events to be enqueued to an event device. */
546         struct event_buffer buffer;
547         /* Statistics */
548         struct rte_event_timer_adapter_stats stats;
549         /* Mempool of timer objects */
550         struct rte_mempool *tim_pool;
551         /* Back pointer for convenience */
552         struct rte_event_timer_adapter *adapter;
553         /* Identifier of timer data instance */
554         uint32_t timer_data_id;
555         /* Track which cores have actually armed a timer */
556         struct {
557                 uint16_t v;
558         } __rte_cache_aligned in_use[RTE_MAX_LCORE];
559         /* Track which cores' timer lists should be polled */
560         unsigned int poll_lcores[RTE_MAX_LCORE];
561         /* The number of lists that should be polled */
562         int n_poll_lcores;
563         /* Timers which have expired and can be returned to a mempool */
564         struct rte_timer *expired_timers[EXP_TIM_BUF_SZ];
565         /* The number of timers that can be returned to a mempool */
566         size_t n_expired_timers;
567 };
568
569 static inline struct swtim *
570 swtim_pmd_priv(const struct rte_event_timer_adapter *adapter)
571 {
572         return adapter->data->adapter_priv;
573 }
574
575 static void
576 swtim_callback(struct rte_timer *tim)
577 {
578         struct rte_event_timer *evtim = tim->arg;
579         struct rte_event_timer_adapter *adapter;
580         unsigned int lcore = rte_lcore_id();
581         struct swtim *sw;
582         uint16_t nb_evs_flushed = 0;
583         uint16_t nb_evs_invalid = 0;
584         uint64_t opaque;
585         int ret;
586         int n_lcores;
587
588         opaque = evtim->impl_opaque[1];
589         adapter = (struct rte_event_timer_adapter *)(uintptr_t)opaque;
590         sw = swtim_pmd_priv(adapter);
591
592         ret = event_buffer_add(&sw->buffer, &evtim->ev);
593         if (ret < 0) {
594                 /* If event buffer is full, put timer back in list with
595                  * immediate expiry value, so that we process it again on the
596                  * next iteration.
597                  */
598                 ret = rte_timer_alt_reset(sw->timer_data_id, tim, 0, SINGLE,
599                                           lcore, NULL, evtim);
600                 if (ret < 0) {
601                         EVTIM_LOG_DBG("event buffer full, failed to reset "
602                                       "timer with immediate expiry value");
603                 } else {
604                         sw->stats.evtim_retry_count++;
605                         EVTIM_LOG_DBG("event buffer full, resetting rte_timer "
606                                       "with immediate expiry value");
607                 }
608
609                 if (unlikely(sw->in_use[lcore].v == 0)) {
610                         sw->in_use[lcore].v = 1;
611                         n_lcores = __atomic_fetch_add(&sw->n_poll_lcores, 1,
612                                                      __ATOMIC_RELAXED);
613                         __atomic_store_n(&sw->poll_lcores[n_lcores], lcore,
614                                         __ATOMIC_RELAXED);
615                 }
616         } else {
617                 EVTIM_BUF_LOG_DBG("buffered an event timer expiry event");
618
619                 /* Empty the buffer here, if necessary, to free older expired
620                  * timers only
621                  */
622                 if (unlikely(sw->n_expired_timers == EXP_TIM_BUF_SZ)) {
623                         rte_mempool_put_bulk(sw->tim_pool,
624                                              (void **)sw->expired_timers,
625                                              sw->n_expired_timers);
626                         sw->n_expired_timers = 0;
627                 }
628
629                 sw->expired_timers[sw->n_expired_timers++] = tim;
630                 sw->stats.evtim_exp_count++;
631
632                 __atomic_store_n(&evtim->state, RTE_EVENT_TIMER_NOT_ARMED,
633                                 __ATOMIC_RELEASE);
634         }
635
636         if (event_buffer_batch_ready(&sw->buffer)) {
637                 event_buffer_flush(&sw->buffer,
638                                    adapter->data->event_dev_id,
639                                    adapter->data->event_port_id,
640                                    &nb_evs_flushed,
641                                    &nb_evs_invalid);
642
643                 sw->stats.ev_enq_count += nb_evs_flushed;
644                 sw->stats.ev_inv_count += nb_evs_invalid;
645         }
646 }
647
648 static __rte_always_inline uint64_t
649 get_timeout_cycles(struct rte_event_timer *evtim,
650                    const struct rte_event_timer_adapter *adapter)
651 {
652         struct swtim *sw = swtim_pmd_priv(adapter);
653         uint64_t timeout_ns = evtim->timeout_ticks * sw->timer_tick_ns;
654         return timeout_ns * rte_get_timer_hz() / NSECPERSEC;
655 }
656
657 /* This function returns true if one or more (adapter) ticks have occurred since
658  * the last time it was called.
659  */
660 static inline bool
661 swtim_did_tick(struct swtim *sw)
662 {
663         uint64_t cycles_per_adapter_tick, start_cycles;
664         uint64_t *next_tick_cyclesp;
665
666         next_tick_cyclesp = &sw->next_tick_cycles;
667         cycles_per_adapter_tick = sw->timer_tick_ns *
668                         (rte_get_timer_hz() / NSECPERSEC);
669         start_cycles = rte_get_timer_cycles();
670
671         /* Note: initially, *next_tick_cyclesp == 0, so the clause below will
672          * execute, and set things going.
673          */
674
675         if (start_cycles >= *next_tick_cyclesp) {
676                 /* Snap the current cycle count to the preceding adapter tick
677                  * boundary.
678                  */
679                 start_cycles -= start_cycles % cycles_per_adapter_tick;
680                 *next_tick_cyclesp = start_cycles + cycles_per_adapter_tick;
681
682                 return true;
683         }
684
685         return false;
686 }
687
688 /* Check that event timer timeout value is in range */
689 static __rte_always_inline int
690 check_timeout(struct rte_event_timer *evtim,
691               const struct rte_event_timer_adapter *adapter)
692 {
693         uint64_t tmo_nsec;
694         struct swtim *sw = swtim_pmd_priv(adapter);
695
696         tmo_nsec = evtim->timeout_ticks * sw->timer_tick_ns;
697         if (tmo_nsec > sw->max_tmo_ns)
698                 return -1;
699         if (tmo_nsec < sw->timer_tick_ns)
700                 return -2;
701
702         return 0;
703 }
704
705 /* Check that event timer event queue sched type matches destination event queue
706  * sched type
707  */
708 static __rte_always_inline int
709 check_destination_event_queue(struct rte_event_timer *evtim,
710                               const struct rte_event_timer_adapter *adapter)
711 {
712         int ret;
713         uint32_t sched_type;
714
715         ret = rte_event_queue_attr_get(adapter->data->event_dev_id,
716                                        evtim->ev.queue_id,
717                                        RTE_EVENT_QUEUE_ATTR_SCHEDULE_TYPE,
718                                        &sched_type);
719
720         if ((ret == 0 && evtim->ev.sched_type == sched_type) ||
721             ret == -EOVERFLOW)
722                 return 0;
723
724         return -1;
725 }
726
727 static int
728 swtim_service_func(void *arg)
729 {
730         struct rte_event_timer_adapter *adapter = arg;
731         struct swtim *sw = swtim_pmd_priv(adapter);
732         uint16_t nb_evs_flushed = 0;
733         uint16_t nb_evs_invalid = 0;
734
735         if (swtim_did_tick(sw)) {
736                 rte_timer_alt_manage(sw->timer_data_id,
737                                      sw->poll_lcores,
738                                      sw->n_poll_lcores,
739                                      swtim_callback);
740
741                 /* Return expired timer objects back to mempool */
742                 rte_mempool_put_bulk(sw->tim_pool, (void **)sw->expired_timers,
743                                      sw->n_expired_timers);
744                 sw->n_expired_timers = 0;
745
746                 event_buffer_flush(&sw->buffer,
747                                    adapter->data->event_dev_id,
748                                    adapter->data->event_port_id,
749                                    &nb_evs_flushed,
750                                    &nb_evs_invalid);
751
752                 sw->stats.ev_enq_count += nb_evs_flushed;
753                 sw->stats.ev_inv_count += nb_evs_invalid;
754                 sw->stats.adapter_tick_count++;
755         }
756
757         return 0;
758 }
759
760 /* The adapter initialization function rounds the mempool size up to the next
761  * power of 2, so we can take the difference between that value and what the
762  * user requested, and use the space for caches.  This avoids a scenario where a
763  * user can't arm the number of timers the adapter was configured with because
764  * mempool objects have been lost to caches.
765  *
766  * nb_actual should always be a power of 2, so we can iterate over the powers
767  * of 2 to see what the largest cache size we can use is.
768  */
769 static int
770 compute_msg_mempool_cache_size(uint64_t nb_requested, uint64_t nb_actual)
771 {
772         int i;
773         int size;
774         int cache_size = 0;
775
776         for (i = 0;; i++) {
777                 size = 1 << i;
778
779                 if (RTE_MAX_LCORE * size < (int)(nb_actual - nb_requested) &&
780                     size < RTE_MEMPOOL_CACHE_MAX_SIZE &&
781                     size <= nb_actual / 1.5)
782                         cache_size = size;
783                 else
784                         break;
785         }
786
787         return cache_size;
788 }
789
790 static int
791 swtim_init(struct rte_event_timer_adapter *adapter)
792 {
793         int i, ret;
794         struct swtim *sw;
795         unsigned int flags;
796         struct rte_service_spec service;
797
798         /* Allocate storage for private data area */
799 #define SWTIM_NAMESIZE 32
800         char swtim_name[SWTIM_NAMESIZE];
801         snprintf(swtim_name, SWTIM_NAMESIZE, "swtim_%"PRIu8,
802                         adapter->data->id);
803         sw = rte_zmalloc_socket(swtim_name, sizeof(*sw), RTE_CACHE_LINE_SIZE,
804                         adapter->data->socket_id);
805         if (sw == NULL) {
806                 EVTIM_LOG_ERR("failed to allocate space for private data");
807                 rte_errno = ENOMEM;
808                 return -1;
809         }
810
811         /* Connect storage to adapter instance */
812         adapter->data->adapter_priv = sw;
813         sw->adapter = adapter;
814
815         sw->timer_tick_ns = adapter->data->conf.timer_tick_ns;
816         sw->max_tmo_ns = adapter->data->conf.max_tmo_ns;
817
818         /* Create a timer pool */
819         char pool_name[SWTIM_NAMESIZE];
820         snprintf(pool_name, SWTIM_NAMESIZE, "swtim_pool_%"PRIu8,
821                  adapter->data->id);
822         /* Optimal mempool size is a power of 2 minus one */
823         uint64_t nb_timers = rte_align64pow2(adapter->data->conf.nb_timers);
824         int pool_size = nb_timers - 1;
825         int cache_size = compute_msg_mempool_cache_size(
826                                 adapter->data->conf.nb_timers, nb_timers);
827         flags = 0; /* pool is multi-producer, multi-consumer */
828         sw->tim_pool = rte_mempool_create(pool_name, pool_size,
829                         sizeof(struct rte_timer), cache_size, 0, NULL, NULL,
830                         NULL, NULL, adapter->data->socket_id, flags);
831         if (sw->tim_pool == NULL) {
832                 EVTIM_LOG_ERR("failed to create timer object mempool");
833                 rte_errno = ENOMEM;
834                 goto free_alloc;
835         }
836
837         /* Initialize the variables that track in-use timer lists */
838         for (i = 0; i < RTE_MAX_LCORE; i++)
839                 sw->in_use[i].v = 0;
840
841         /* Initialize the timer subsystem and allocate timer data instance */
842         ret = rte_timer_subsystem_init();
843         if (ret < 0) {
844                 if (ret != -EALREADY) {
845                         EVTIM_LOG_ERR("failed to initialize timer subsystem");
846                         rte_errno = -ret;
847                         goto free_mempool;
848                 }
849         }
850
851         ret = rte_timer_data_alloc(&sw->timer_data_id);
852         if (ret < 0) {
853                 EVTIM_LOG_ERR("failed to allocate timer data instance");
854                 rte_errno = -ret;
855                 goto free_mempool;
856         }
857
858         /* Initialize timer event buffer */
859         event_buffer_init(&sw->buffer);
860
861         sw->adapter = adapter;
862
863         /* Register a service component to run adapter logic */
864         memset(&service, 0, sizeof(service));
865         snprintf(service.name, RTE_SERVICE_NAME_MAX,
866                  "swtim_svc_%"PRIu8, adapter->data->id);
867         service.socket_id = adapter->data->socket_id;
868         service.callback = swtim_service_func;
869         service.callback_userdata = adapter;
870         service.capabilities &= ~(RTE_SERVICE_CAP_MT_SAFE);
871         ret = rte_service_component_register(&service, &sw->service_id);
872         if (ret < 0) {
873                 EVTIM_LOG_ERR("failed to register service %s with id %"PRIu32
874                               ": err = %d", service.name, sw->service_id,
875                               ret);
876
877                 rte_errno = ENOSPC;
878                 goto free_mempool;
879         }
880
881         EVTIM_LOG_DBG("registered service %s with id %"PRIu32, service.name,
882                       sw->service_id);
883
884         adapter->data->service_id = sw->service_id;
885         adapter->data->service_inited = 1;
886
887         return 0;
888 free_mempool:
889         rte_mempool_free(sw->tim_pool);
890 free_alloc:
891         rte_free(sw);
892         return -1;
893 }
894
895 static void
896 swtim_free_tim(struct rte_timer *tim, void *arg)
897 {
898         struct swtim *sw = arg;
899
900         rte_mempool_put(sw->tim_pool, tim);
901 }
902
903 /* Traverse the list of outstanding timers and put them back in the mempool
904  * before freeing the adapter to avoid leaking the memory.
905  */
906 static int
907 swtim_uninit(struct rte_event_timer_adapter *adapter)
908 {
909         int ret;
910         struct swtim *sw = swtim_pmd_priv(adapter);
911
912         /* Free outstanding timers */
913         rte_timer_stop_all(sw->timer_data_id,
914                            sw->poll_lcores,
915                            sw->n_poll_lcores,
916                            swtim_free_tim,
917                            sw);
918
919         ret = rte_service_component_unregister(sw->service_id);
920         if (ret < 0) {
921                 EVTIM_LOG_ERR("failed to unregister service component");
922                 return ret;
923         }
924
925         rte_mempool_free(sw->tim_pool);
926         rte_free(sw);
927         adapter->data->adapter_priv = NULL;
928
929         return 0;
930 }
931
932 static inline int32_t
933 get_mapped_count_for_service(uint32_t service_id)
934 {
935         int32_t core_count, i, mapped_count = 0;
936         uint32_t lcore_arr[RTE_MAX_LCORE];
937
938         core_count = rte_service_lcore_list(lcore_arr, RTE_MAX_LCORE);
939
940         for (i = 0; i < core_count; i++)
941                 if (rte_service_map_lcore_get(service_id, lcore_arr[i]) == 1)
942                         mapped_count++;
943
944         return mapped_count;
945 }
946
947 static int
948 swtim_start(const struct rte_event_timer_adapter *adapter)
949 {
950         int mapped_count;
951         struct swtim *sw = swtim_pmd_priv(adapter);
952
953         /* Mapping the service to more than one service core can introduce
954          * delays while one thread is waiting to acquire a lock, so only allow
955          * one core to be mapped to the service.
956          *
957          * Note: the service could be modified such that it spreads cores to
958          * poll over multiple service instances.
959          */
960         mapped_count = get_mapped_count_for_service(sw->service_id);
961
962         if (mapped_count != 1)
963                 return mapped_count < 1 ? -ENOENT : -ENOTSUP;
964
965         return rte_service_component_runstate_set(sw->service_id, 1);
966 }
967
968 static int
969 swtim_stop(const struct rte_event_timer_adapter *adapter)
970 {
971         int ret;
972         struct swtim *sw = swtim_pmd_priv(adapter);
973
974         ret = rte_service_component_runstate_set(sw->service_id, 0);
975         if (ret < 0)
976                 return ret;
977
978         /* Wait for the service to complete its final iteration */
979         while (rte_service_may_be_active(sw->service_id))
980                 rte_pause();
981
982         return 0;
983 }
984
985 static void
986 swtim_get_info(const struct rte_event_timer_adapter *adapter,
987                 struct rte_event_timer_adapter_info *adapter_info)
988 {
989         struct swtim *sw = swtim_pmd_priv(adapter);
990         adapter_info->min_resolution_ns = sw->timer_tick_ns;
991         adapter_info->max_tmo_ns = sw->max_tmo_ns;
992 }
993
994 static int
995 swtim_stats_get(const struct rte_event_timer_adapter *adapter,
996                 struct rte_event_timer_adapter_stats *stats)
997 {
998         struct swtim *sw = swtim_pmd_priv(adapter);
999         *stats = sw->stats; /* structure copy */
1000         return 0;
1001 }
1002
1003 static int
1004 swtim_stats_reset(const struct rte_event_timer_adapter *adapter)
1005 {
1006         struct swtim *sw = swtim_pmd_priv(adapter);
1007         memset(&sw->stats, 0, sizeof(sw->stats));
1008         return 0;
1009 }
1010
1011 static uint16_t
1012 __swtim_arm_burst(const struct rte_event_timer_adapter *adapter,
1013                 struct rte_event_timer **evtims,
1014                 uint16_t nb_evtims)
1015 {
1016         int i, ret;
1017         struct swtim *sw = swtim_pmd_priv(adapter);
1018         uint32_t lcore_id = rte_lcore_id();
1019         struct rte_timer *tim, *tims[nb_evtims];
1020         uint64_t cycles;
1021         int n_lcores;
1022         /* Timer list for this lcore is not in use. */
1023         uint16_t exp_state = 0;
1024         enum rte_event_timer_state n_state;
1025
1026 #ifdef RTE_LIBRTE_EVENTDEV_DEBUG
1027         /* Check that the service is running. */
1028         if (rte_service_runstate_get(adapter->data->service_id) != 1) {
1029                 rte_errno = EINVAL;
1030                 return 0;
1031         }
1032 #endif
1033
1034         /* Adjust lcore_id if non-EAL thread. Arbitrarily pick the timer list of
1035          * the highest lcore to insert such timers into
1036          */
1037         if (lcore_id == LCORE_ID_ANY)
1038                 lcore_id = RTE_MAX_LCORE - 1;
1039
1040         /* If this is the first time we're arming an event timer on this lcore,
1041          * mark this lcore as "in use"; this will cause the service
1042          * function to process the timer list that corresponds to this lcore.
1043          * The atomic compare-and-swap operation can prevent the race condition
1044          * on in_use flag between multiple non-EAL threads.
1045          */
1046         if (unlikely(__atomic_compare_exchange_n(&sw->in_use[lcore_id].v,
1047                         &exp_state, 1, 0,
1048                         __ATOMIC_RELAXED, __ATOMIC_RELAXED))) {
1049                 EVTIM_LOG_DBG("Adding lcore id = %u to list of lcores to poll",
1050                               lcore_id);
1051                 n_lcores = __atomic_fetch_add(&sw->n_poll_lcores, 1,
1052                                              __ATOMIC_RELAXED);
1053                 __atomic_store_n(&sw->poll_lcores[n_lcores], lcore_id,
1054                                 __ATOMIC_RELAXED);
1055         }
1056
1057         ret = rte_mempool_get_bulk(sw->tim_pool, (void **)tims,
1058                                    nb_evtims);
1059         if (ret < 0) {
1060                 rte_errno = ENOSPC;
1061                 return 0;
1062         }
1063
1064         for (i = 0; i < nb_evtims; i++) {
1065                 n_state = __atomic_load_n(&evtims[i]->state, __ATOMIC_ACQUIRE);
1066                 if (n_state == RTE_EVENT_TIMER_ARMED) {
1067                         rte_errno = EALREADY;
1068                         break;
1069                 } else if (!(n_state == RTE_EVENT_TIMER_NOT_ARMED ||
1070                              n_state == RTE_EVENT_TIMER_CANCELED)) {
1071                         rte_errno = EINVAL;
1072                         break;
1073                 }
1074
1075                 ret = check_timeout(evtims[i], adapter);
1076                 if (unlikely(ret == -1)) {
1077                         __atomic_store_n(&evtims[i]->state,
1078                                         RTE_EVENT_TIMER_ERROR_TOOLATE,
1079                                         __ATOMIC_RELAXED);
1080                         rte_errno = EINVAL;
1081                         break;
1082                 } else if (unlikely(ret == -2)) {
1083                         __atomic_store_n(&evtims[i]->state,
1084                                         RTE_EVENT_TIMER_ERROR_TOOEARLY,
1085                                         __ATOMIC_RELAXED);
1086                         rte_errno = EINVAL;
1087                         break;
1088                 }
1089
1090                 if (unlikely(check_destination_event_queue(evtims[i],
1091                                                            adapter) < 0)) {
1092                         __atomic_store_n(&evtims[i]->state,
1093                                         RTE_EVENT_TIMER_ERROR,
1094                                         __ATOMIC_RELAXED);
1095                         rte_errno = EINVAL;
1096                         break;
1097                 }
1098
1099                 tim = tims[i];
1100                 rte_timer_init(tim);
1101
1102                 evtims[i]->impl_opaque[0] = (uintptr_t)tim;
1103                 evtims[i]->impl_opaque[1] = (uintptr_t)adapter;
1104
1105                 cycles = get_timeout_cycles(evtims[i], adapter);
1106                 ret = rte_timer_alt_reset(sw->timer_data_id, tim, cycles,
1107                                           SINGLE, lcore_id, NULL, evtims[i]);
1108                 if (ret < 0) {
1109                         /* tim was in RUNNING or CONFIG state */
1110                         __atomic_store_n(&evtims[i]->state,
1111                                         RTE_EVENT_TIMER_ERROR,
1112                                         __ATOMIC_RELEASE);
1113                         break;
1114                 }
1115
1116                 EVTIM_LOG_DBG("armed an event timer");
1117                 /* RELEASE ordering guarantees the adapter specific value
1118                  * changes observed before the update of state.
1119                  */
1120                 __atomic_store_n(&evtims[i]->state, RTE_EVENT_TIMER_ARMED,
1121                                 __ATOMIC_RELEASE);
1122         }
1123
1124         if (i < nb_evtims)
1125                 rte_mempool_put_bulk(sw->tim_pool,
1126                                      (void **)&tims[i], nb_evtims - i);
1127
1128         return i;
1129 }
1130
1131 static uint16_t
1132 swtim_arm_burst(const struct rte_event_timer_adapter *adapter,
1133                 struct rte_event_timer **evtims,
1134                 uint16_t nb_evtims)
1135 {
1136         return __swtim_arm_burst(adapter, evtims, nb_evtims);
1137 }
1138
1139 static uint16_t
1140 swtim_cancel_burst(const struct rte_event_timer_adapter *adapter,
1141                    struct rte_event_timer **evtims,
1142                    uint16_t nb_evtims)
1143 {
1144         int i, ret;
1145         struct rte_timer *timp;
1146         uint64_t opaque;
1147         struct swtim *sw = swtim_pmd_priv(adapter);
1148         enum rte_event_timer_state n_state;
1149
1150 #ifdef RTE_LIBRTE_EVENTDEV_DEBUG
1151         /* Check that the service is running. */
1152         if (rte_service_runstate_get(adapter->data->service_id) != 1) {
1153                 rte_errno = EINVAL;
1154                 return 0;
1155         }
1156 #endif
1157
1158         for (i = 0; i < nb_evtims; i++) {
1159                 /* Don't modify the event timer state in these cases */
1160                 /* ACQUIRE ordering guarantees the access of implementation
1161                  * specific opaque data under the correct state.
1162                  */
1163                 n_state = __atomic_load_n(&evtims[i]->state, __ATOMIC_ACQUIRE);
1164                 if (n_state == RTE_EVENT_TIMER_CANCELED) {
1165                         rte_errno = EALREADY;
1166                         break;
1167                 } else if (n_state != RTE_EVENT_TIMER_ARMED) {
1168                         rte_errno = EINVAL;
1169                         break;
1170                 }
1171
1172                 opaque = evtims[i]->impl_opaque[0];
1173                 timp = (struct rte_timer *)(uintptr_t)opaque;
1174                 RTE_ASSERT(timp != NULL);
1175
1176                 ret = rte_timer_alt_stop(sw->timer_data_id, timp);
1177                 if (ret < 0) {
1178                         /* Timer is running or being configured */
1179                         rte_errno = EAGAIN;
1180                         break;
1181                 }
1182
1183                 rte_mempool_put(sw->tim_pool, (void **)timp);
1184
1185                 /* The RELEASE ordering here pairs with atomic ordering
1186                  * to make sure the state update data observed between
1187                  * threads.
1188                  */
1189                 __atomic_store_n(&evtims[i]->state, RTE_EVENT_TIMER_CANCELED,
1190                                 __ATOMIC_RELEASE);
1191         }
1192
1193         return i;
1194 }
1195
1196 static uint16_t
1197 swtim_arm_tmo_tick_burst(const struct rte_event_timer_adapter *adapter,
1198                          struct rte_event_timer **evtims,
1199                          uint64_t timeout_ticks,
1200                          uint16_t nb_evtims)
1201 {
1202         int i;
1203
1204         for (i = 0; i < nb_evtims; i++)
1205                 evtims[i]->timeout_ticks = timeout_ticks;
1206
1207         return __swtim_arm_burst(adapter, evtims, nb_evtims);
1208 }
1209
1210 static const struct rte_event_timer_adapter_ops swtim_ops = {
1211         .init                   = swtim_init,
1212         .uninit                 = swtim_uninit,
1213         .start                  = swtim_start,
1214         .stop                   = swtim_stop,
1215         .get_info               = swtim_get_info,
1216         .stats_get              = swtim_stats_get,
1217         .stats_reset            = swtim_stats_reset,
1218         .arm_burst              = swtim_arm_burst,
1219         .arm_tmo_tick_burst     = swtim_arm_tmo_tick_burst,
1220         .cancel_burst           = swtim_cancel_burst,
1221 };