crypto/mlx5: add maximum segments configuration
[dpdk.git] / lib / latencystats / rte_latencystats.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Intel Corporation
3  */
4
5 #include <unistd.h>
6 #include <sys/types.h>
7 #include <stdbool.h>
8 #include <math.h>
9
10 #include <rte_string_fns.h>
11 #include <rte_mbuf.h>
12 #include <rte_mbuf_dyn.h>
13 #include <rte_log.h>
14 #include <rte_cycles.h>
15 #include <rte_ethdev.h>
16 #include <rte_metrics.h>
17 #include <rte_memzone.h>
18 #include <rte_lcore.h>
19
20 #include "rte_latencystats.h"
21
22 /** Nano seconds per second */
23 #define NS_PER_SEC 1E9
24
25 /** Clock cycles per nano second */
26 static uint64_t
27 latencystat_cycles_per_ns(void)
28 {
29         return rte_get_timer_hz() / NS_PER_SEC;
30 }
31
32 /* Macros for printing using RTE_LOG */
33 #define RTE_LOGTYPE_LATENCY_STATS RTE_LOGTYPE_USER1
34
35 static uint64_t timestamp_dynflag;
36 static int timestamp_dynfield_offset = -1;
37
38 static inline rte_mbuf_timestamp_t *
39 timestamp_dynfield(struct rte_mbuf *mbuf)
40 {
41         return RTE_MBUF_DYNFIELD(mbuf,
42                         timestamp_dynfield_offset, rte_mbuf_timestamp_t *);
43 }
44
45 static const char *MZ_RTE_LATENCY_STATS = "rte_latencystats";
46 static int latency_stats_index;
47 static uint64_t samp_intvl;
48 static uint64_t timer_tsc;
49 static uint64_t prev_tsc;
50
51 struct rte_latency_stats {
52         float min_latency; /**< Minimum latency in nano seconds */
53         float avg_latency; /**< Average latency in nano seconds */
54         float max_latency; /**< Maximum latency in nano seconds */
55         float jitter; /** Latency variation */
56         rte_spinlock_t lock; /** Latency calculation lock */
57 };
58
59 static struct rte_latency_stats *glob_stats;
60
61 struct rxtx_cbs {
62         const struct rte_eth_rxtx_callback *cb;
63 };
64
65 static struct rxtx_cbs rx_cbs[RTE_MAX_ETHPORTS][RTE_MAX_QUEUES_PER_PORT];
66 static struct rxtx_cbs tx_cbs[RTE_MAX_ETHPORTS][RTE_MAX_QUEUES_PER_PORT];
67
68 struct latency_stats_nameoff {
69         char name[RTE_ETH_XSTATS_NAME_SIZE];
70         unsigned int offset;
71 };
72
73 static const struct latency_stats_nameoff lat_stats_strings[] = {
74         {"min_latency_ns", offsetof(struct rte_latency_stats, min_latency)},
75         {"avg_latency_ns", offsetof(struct rte_latency_stats, avg_latency)},
76         {"max_latency_ns", offsetof(struct rte_latency_stats, max_latency)},
77         {"jitter_ns", offsetof(struct rte_latency_stats, jitter)},
78 };
79
80 #define NUM_LATENCY_STATS (sizeof(lat_stats_strings) / \
81                                 sizeof(lat_stats_strings[0]))
82
83 int32_t
84 rte_latencystats_update(void)
85 {
86         unsigned int i;
87         float *stats_ptr = NULL;
88         uint64_t values[NUM_LATENCY_STATS] = {0};
89         int ret;
90
91         for (i = 0; i < NUM_LATENCY_STATS; i++) {
92                 stats_ptr = RTE_PTR_ADD(glob_stats,
93                                 lat_stats_strings[i].offset);
94                 values[i] = (uint64_t)floor((*stats_ptr)/
95                                 latencystat_cycles_per_ns());
96         }
97
98         ret = rte_metrics_update_values(RTE_METRICS_GLOBAL,
99                                         latency_stats_index,
100                                         values, NUM_LATENCY_STATS);
101         if (ret < 0)
102                 RTE_LOG(INFO, LATENCY_STATS, "Failed to push the stats\n");
103
104         return ret;
105 }
106
107 static void
108 rte_latencystats_fill_values(struct rte_metric_value *values)
109 {
110         unsigned int i;
111         float *stats_ptr = NULL;
112
113         for (i = 0; i < NUM_LATENCY_STATS; i++) {
114                 stats_ptr = RTE_PTR_ADD(glob_stats,
115                                 lat_stats_strings[i].offset);
116                 values[i].key = i;
117                 values[i].value = (uint64_t)floor((*stats_ptr)/
118                                                 latencystat_cycles_per_ns());
119         }
120 }
121
122 static uint16_t
123 add_time_stamps(uint16_t pid __rte_unused,
124                 uint16_t qid __rte_unused,
125                 struct rte_mbuf **pkts,
126                 uint16_t nb_pkts,
127                 uint16_t max_pkts __rte_unused,
128                 void *user_cb __rte_unused)
129 {
130         unsigned int i;
131         uint64_t diff_tsc, now;
132
133         /*
134          * For every sample interval,
135          * time stamp is marked on one received packet.
136          */
137         now = rte_rdtsc();
138         for (i = 0; i < nb_pkts; i++) {
139                 diff_tsc = now - prev_tsc;
140                 timer_tsc += diff_tsc;
141
142                 if ((pkts[i]->ol_flags & timestamp_dynflag) == 0
143                                 && (timer_tsc >= samp_intvl)) {
144                         *timestamp_dynfield(pkts[i]) = now;
145                         pkts[i]->ol_flags |= timestamp_dynflag;
146                         timer_tsc = 0;
147                 }
148                 prev_tsc = now;
149                 now = rte_rdtsc();
150         }
151
152         return nb_pkts;
153 }
154
155 static uint16_t
156 calc_latency(uint16_t pid __rte_unused,
157                 uint16_t qid __rte_unused,
158                 struct rte_mbuf **pkts,
159                 uint16_t nb_pkts,
160                 void *_ __rte_unused)
161 {
162         unsigned int i, cnt = 0;
163         uint64_t now;
164         float latency[nb_pkts];
165         static float prev_latency;
166         /*
167          * Alpha represents degree of weighting decrease in EWMA,
168          * a constant smoothing factor between 0 and 1. The value
169          * is used below for measuring average latency.
170          */
171         const float alpha = 0.2;
172
173         now = rte_rdtsc();
174         for (i = 0; i < nb_pkts; i++) {
175                 if (pkts[i]->ol_flags & timestamp_dynflag)
176                         latency[cnt++] = now - *timestamp_dynfield(pkts[i]);
177         }
178
179         rte_spinlock_lock(&glob_stats->lock);
180         for (i = 0; i < cnt; i++) {
181                 /*
182                  * The jitter is calculated as statistical mean of interpacket
183                  * delay variation. The "jitter estimate" is computed by taking
184                  * the absolute values of the ipdv sequence and applying an
185                  * exponential filter with parameter 1/16 to generate the
186                  * estimate. i.e J=J+(|D(i-1,i)|-J)/16. Where J is jitter,
187                  * D(i-1,i) is difference in latency of two consecutive packets
188                  * i-1 and i.
189                  * Reference: Calculated as per RFC 5481, sec 4.1,
190                  * RFC 3393 sec 4.5, RFC 1889 sec.
191                  */
192                 glob_stats->jitter +=  (fabsf(prev_latency - latency[i])
193                                         - glob_stats->jitter)/16;
194                 if (glob_stats->min_latency == 0)
195                         glob_stats->min_latency = latency[i];
196                 else if (latency[i] < glob_stats->min_latency)
197                         glob_stats->min_latency = latency[i];
198                 else if (latency[i] > glob_stats->max_latency)
199                         glob_stats->max_latency = latency[i];
200                 /*
201                  * The average latency is measured using exponential moving
202                  * average, i.e. using EWMA
203                  * https://en.wikipedia.org/wiki/Moving_average
204                  */
205                 glob_stats->avg_latency +=
206                         alpha * (latency[i] - glob_stats->avg_latency);
207                 prev_latency = latency[i];
208         }
209         rte_spinlock_unlock(&glob_stats->lock);
210
211         return nb_pkts;
212 }
213
214 int
215 rte_latencystats_init(uint64_t app_samp_intvl,
216                 rte_latency_stats_flow_type_fn user_cb)
217 {
218         unsigned int i;
219         uint16_t pid;
220         uint16_t qid;
221         struct rxtx_cbs *cbs = NULL;
222         const char *ptr_strings[NUM_LATENCY_STATS] = {0};
223         const struct rte_memzone *mz = NULL;
224         const unsigned int flags = 0;
225         int ret;
226
227         if (rte_memzone_lookup(MZ_RTE_LATENCY_STATS))
228                 return -EEXIST;
229
230         /** Allocate stats in shared memory fo multi process support */
231         mz = rte_memzone_reserve(MZ_RTE_LATENCY_STATS, sizeof(*glob_stats),
232                                         rte_socket_id(), flags);
233         if (mz == NULL) {
234                 RTE_LOG(ERR, LATENCY_STATS, "Cannot reserve memory: %s:%d\n",
235                         __func__, __LINE__);
236                 return -ENOMEM;
237         }
238
239         glob_stats = mz->addr;
240         rte_spinlock_init(&glob_stats->lock);
241         samp_intvl = app_samp_intvl * latencystat_cycles_per_ns();
242
243         /** Register latency stats with stats library */
244         for (i = 0; i < NUM_LATENCY_STATS; i++)
245                 ptr_strings[i] = lat_stats_strings[i].name;
246
247         latency_stats_index = rte_metrics_reg_names(ptr_strings,
248                                                         NUM_LATENCY_STATS);
249         if (latency_stats_index < 0) {
250                 RTE_LOG(DEBUG, LATENCY_STATS,
251                         "Failed to register latency stats names\n");
252                 return -1;
253         }
254
255         /* Register mbuf field and flag for Rx timestamp */
256         ret = rte_mbuf_dyn_rx_timestamp_register(&timestamp_dynfield_offset,
257                         &timestamp_dynflag);
258         if (ret != 0) {
259                 RTE_LOG(ERR, LATENCY_STATS,
260                         "Cannot register mbuf field/flag for timestamp\n");
261                 return -rte_errno;
262         }
263
264         /** Register Rx/Tx callbacks */
265         RTE_ETH_FOREACH_DEV(pid) {
266                 struct rte_eth_dev_info dev_info;
267
268                 ret = rte_eth_dev_info_get(pid, &dev_info);
269                 if (ret != 0) {
270                         RTE_LOG(INFO, LATENCY_STATS,
271                                 "Error during getting device (port %u) info: %s\n",
272                                 pid, strerror(-ret));
273
274                         continue;
275                 }
276
277                 for (qid = 0; qid < dev_info.nb_rx_queues; qid++) {
278                         cbs = &rx_cbs[pid][qid];
279                         cbs->cb = rte_eth_add_first_rx_callback(pid, qid,
280                                         add_time_stamps, user_cb);
281                         if (!cbs->cb)
282                                 RTE_LOG(INFO, LATENCY_STATS, "Failed to "
283                                         "register Rx callback for pid=%d, "
284                                         "qid=%d\n", pid, qid);
285                 }
286                 for (qid = 0; qid < dev_info.nb_tx_queues; qid++) {
287                         cbs = &tx_cbs[pid][qid];
288                         cbs->cb =  rte_eth_add_tx_callback(pid, qid,
289                                         calc_latency, user_cb);
290                         if (!cbs->cb)
291                                 RTE_LOG(INFO, LATENCY_STATS, "Failed to "
292                                         "register Tx callback for pid=%d, "
293                                         "qid=%d\n", pid, qid);
294                 }
295         }
296         return 0;
297 }
298
299 int
300 rte_latencystats_uninit(void)
301 {
302         uint16_t pid;
303         uint16_t qid;
304         int ret = 0;
305         struct rxtx_cbs *cbs = NULL;
306         const struct rte_memzone *mz = NULL;
307
308         /** De register Rx/Tx callbacks */
309         RTE_ETH_FOREACH_DEV(pid) {
310                 struct rte_eth_dev_info dev_info;
311
312                 ret = rte_eth_dev_info_get(pid, &dev_info);
313                 if (ret != 0) {
314                         RTE_LOG(INFO, LATENCY_STATS,
315                                 "Error during getting device (port %u) info: %s\n",
316                                 pid, strerror(-ret));
317
318                         continue;
319                 }
320
321                 for (qid = 0; qid < dev_info.nb_rx_queues; qid++) {
322                         cbs = &rx_cbs[pid][qid];
323                         ret = rte_eth_remove_rx_callback(pid, qid, cbs->cb);
324                         if (ret)
325                                 RTE_LOG(INFO, LATENCY_STATS, "failed to "
326                                         "remove Rx callback for pid=%d, "
327                                         "qid=%d\n", pid, qid);
328                 }
329                 for (qid = 0; qid < dev_info.nb_tx_queues; qid++) {
330                         cbs = &tx_cbs[pid][qid];
331                         ret = rte_eth_remove_tx_callback(pid, qid, cbs->cb);
332                         if (ret)
333                                 RTE_LOG(INFO, LATENCY_STATS, "failed to "
334                                         "remove Tx callback for pid=%d, "
335                                         "qid=%d\n", pid, qid);
336                 }
337         }
338
339         /* free up the memzone */
340         mz = rte_memzone_lookup(MZ_RTE_LATENCY_STATS);
341         if (mz)
342                 rte_memzone_free(mz);
343
344         return 0;
345 }
346
347 int
348 rte_latencystats_get_names(struct rte_metric_name *names, uint16_t size)
349 {
350         unsigned int i;
351
352         if (names == NULL || size < NUM_LATENCY_STATS)
353                 return NUM_LATENCY_STATS;
354
355         for (i = 0; i < NUM_LATENCY_STATS; i++)
356                 strlcpy(names[i].name, lat_stats_strings[i].name,
357                         sizeof(names[i].name));
358
359         return NUM_LATENCY_STATS;
360 }
361
362 int
363 rte_latencystats_get(struct rte_metric_value *values, uint16_t size)
364 {
365         if (size < NUM_LATENCY_STATS || values == NULL)
366                 return NUM_LATENCY_STATS;
367
368         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
369                 const struct rte_memzone *mz;
370                 mz = rte_memzone_lookup(MZ_RTE_LATENCY_STATS);
371                 if (mz == NULL) {
372                         RTE_LOG(ERR, LATENCY_STATS,
373                                 "Latency stats memzone not found\n");
374                         return -ENOMEM;
375                 }
376                 glob_stats =  mz->addr;
377         }
378
379         /* Retrieve latency stats */
380         rte_latencystats_fill_values(values);
381
382         return NUM_LATENCY_STATS;
383 }