4 * Copyright (C) Cavium networks Ltd. 2015.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
10 * * Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * * Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
16 * * Neither the name of Cavium networks nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 struct _neon_acl_const {
37 rte_xmm_t xmm_shuffle_input;
38 rte_xmm_t xmm_index_mask;
40 } neon_acl_const __attribute__((aligned(RTE_CACHE_LINE_SIZE))) = {
42 .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c}
45 .u32 = {RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX,
46 RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX}
49 .u32 = {0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c}
54 * Resolve priority for multiple results (neon version).
55 * This consists comparing the priority of the current traversal with the
56 * running set of results for the packet.
57 * For each result, keep a running array of the result (rule number) and
58 * its priority for each category.
61 resolve_priority_neon(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
63 const struct rte_acl_match_results *p,
67 int32x4_t results, priority, results1, priority1;
69 int32_t *saved_results, *saved_priority;
71 for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
72 saved_results = (int32_t *)(&parms[n].cmplt->results[x]);
73 saved_priority = (int32_t *)(&parms[n].cmplt->priority[x]);
75 /* get results and priorities for completed trie */
77 (const int32_t *)&p[transition].results[x]);
79 (const int32_t *)&p[transition].priority[x]);
81 /* if this is not the first completed trie */
82 if (parms[n].cmplt->count != ctx->num_tries) {
83 /* get running best results and their priorities */
84 results1 = vld1q_s32(saved_results);
85 priority1 = vld1q_s32(saved_priority);
87 /* select results that are highest priority */
88 selector = vcgtq_s32(priority1, priority);
89 results = vbslq_s32(selector, results1, results);
90 priority = vbslq_s32(selector, priority1, priority);
93 /* save running best results and their priorities */
94 vst1q_s32(saved_results, results);
95 vst1q_s32(saved_priority, priority);
100 * Check for any match in 4 transitions
102 static inline __attribute__((always_inline)) uint32_t
103 check_any_match_x4(uint64_t val[])
105 return (val[0] | val[1] | val[2] | val[3]) & RTE_ACL_NODE_MATCH;
108 static inline __attribute__((always_inline)) void
109 acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
110 struct acl_flow_data *flows, uint64_t transitions[])
112 while (check_any_match_x4(transitions)) {
113 transitions[0] = acl_match_check(transitions[0], slot, ctx,
114 parms, flows, resolve_priority_neon);
115 transitions[1] = acl_match_check(transitions[1], slot + 1, ctx,
116 parms, flows, resolve_priority_neon);
117 transitions[2] = acl_match_check(transitions[2], slot + 2, ctx,
118 parms, flows, resolve_priority_neon);
119 transitions[3] = acl_match_check(transitions[3], slot + 3, ctx,
120 parms, flows, resolve_priority_neon);
125 * Process 4 transitions (in 2 NEON Q registers) in parallel
127 static inline __attribute__((always_inline)) int32x4_t
128 transition4(int32x4_t next_input, const uint64_t *trans, uint64_t transitions[])
130 int32x4x2_t tr_hi_lo;
132 uint32x4_t index_msk, node_type, addr;
133 uint32x4_t dfa_msk, mask, quad_ofs, dfa_ofs;
135 /* Move low 32 into tr_hi_lo.val[0] and high 32 into tr_hi_lo.val[1] */
136 tr_hi_lo = vld2q_s32((const int32_t *)transitions);
138 /* Calculate the address (array index) for all 4 transitions. */
140 index_msk = vld1q_u32((const uint32_t *)&neon_acl_const.xmm_index_mask);
142 /* Calc node type and node addr */
143 node_type = vbicq_s32(tr_hi_lo.val[0], index_msk);
144 addr = vandq_s32(tr_hi_lo.val[0], index_msk);
147 t = veorq_s32(node_type, node_type);
149 /* mask for DFA type(0) nodes */
150 dfa_msk = vceqq_u32(node_type, t);
152 mask = vld1q_s32((const int32_t *)&neon_acl_const.xmm_shuffle_input);
153 in = vqtbl1q_u8((uint8x16_t)next_input, (uint8x16_t)mask);
155 /* DFA calculations. */
156 r = vshrq_n_u32(in, 30); /* div by 64 */
157 mask = vld1q_s32((const int32_t *)&neon_acl_const.range_base);
158 r = vaddq_u8(r, mask);
159 t = vshrq_n_u32(in, 24);
160 r = vqtbl1q_u8((uint8x16_t)tr_hi_lo.val[1], (uint8x16_t)r);
161 dfa_ofs = vsubq_s32(t, r);
163 /* QUAD/SINGLE calculations. */
164 t = vcgtq_s8(in, tr_hi_lo.val[1]);
167 quad_ofs = vpaddlq_u16(t);
169 /* blend DFA and QUAD/SINGLE. */
170 t = vbslq_u8(dfa_msk, dfa_ofs, quad_ofs);
172 /* calculate address for next transitions */
173 addr = vaddq_u32(addr, t);
175 /* Fill next transitions */
176 transitions[0] = trans[vgetq_lane_u32(addr, 0)];
177 transitions[1] = trans[vgetq_lane_u32(addr, 1)];
178 transitions[2] = trans[vgetq_lane_u32(addr, 2)];
179 transitions[3] = trans[vgetq_lane_u32(addr, 3)];
181 return vshrq_n_u32(next_input, CHAR_BIT);
185 * Execute trie traversal with 8 traversals in parallel
188 search_neon_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
189 uint32_t *results, uint32_t total_packets, uint32_t categories)
192 struct acl_flow_data flows;
193 uint64_t index_array[8];
194 struct completion cmplt[8];
195 struct parms parms[8];
196 int32x4_t input0, input1;
198 acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
199 total_packets, categories, ctx->trans_table);
201 for (n = 0; n < 8; n++) {
203 index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
206 /* Check for any matches. */
207 acl_match_check_x4(0, ctx, parms, &flows, &index_array[0]);
208 acl_match_check_x4(4, ctx, parms, &flows, &index_array[4]);
210 while (flows.started > 0) {
211 /* Gather 4 bytes of input data for each stream. */
212 input0 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 0), input0, 0);
213 input1 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 4), input1, 0);
215 input0 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 1), input0, 1);
216 input1 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 5), input1, 1);
218 input0 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 2), input0, 2);
219 input1 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 6), input1, 2);
221 input0 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 3), input0, 3);
222 input1 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 7), input1, 3);
224 /* Process the 4 bytes of input on each stream. */
226 input0 = transition4(input0, flows.trans, &index_array[0]);
227 input1 = transition4(input1, flows.trans, &index_array[4]);
229 input0 = transition4(input0, flows.trans, &index_array[0]);
230 input1 = transition4(input1, flows.trans, &index_array[4]);
232 input0 = transition4(input0, flows.trans, &index_array[0]);
233 input1 = transition4(input1, flows.trans, &index_array[4]);
235 input0 = transition4(input0, flows.trans, &index_array[0]);
236 input1 = transition4(input1, flows.trans, &index_array[4]);
238 /* Check for any matches. */
239 acl_match_check_x4(0, ctx, parms, &flows, &index_array[0]);
240 acl_match_check_x4(4, ctx, parms, &flows, &index_array[4]);
247 * Execute trie traversal with 4 traversals in parallel
250 search_neon_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
251 uint32_t *results, int total_packets, uint32_t categories)
254 struct acl_flow_data flows;
255 uint64_t index_array[4];
256 struct completion cmplt[4];
257 struct parms parms[4];
260 acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
261 total_packets, categories, ctx->trans_table);
263 for (n = 0; n < 4; n++) {
265 index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
268 /* Check for any matches. */
269 acl_match_check_x4(0, ctx, parms, &flows, index_array);
271 while (flows.started > 0) {
272 /* Gather 4 bytes of input data for each stream. */
273 input = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 0), input, 0);
274 input = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 1), input, 1);
275 input = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 2), input, 2);
276 input = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 3), input, 3);
278 /* Process the 4 bytes of input on each stream. */
279 input = transition4(input, flows.trans, index_array);
280 input = transition4(input, flows.trans, index_array);
281 input = transition4(input, flows.trans, index_array);
282 input = transition4(input, flows.trans, index_array);
284 /* Check for any matches. */
285 acl_match_check_x4(0, ctx, parms, &flows, index_array);