4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 * Resolve priority for multiple results (scalar version).
38 * This consists comparing the priority of the current traversal with the
39 * running set of results for the packet.
40 * For each result, keep a running array of the result (rule number) and
41 * its priority for each category.
44 resolve_priority_scalar(uint64_t transition, int n,
45 const struct rte_acl_ctx *ctx, struct parms *parms,
46 const struct rte_acl_match_results *p, uint32_t categories)
49 int32_t *saved_priority;
50 uint32_t *saved_results;
51 const int32_t *priority;
52 const uint32_t *results;
54 saved_results = parms[n].cmplt->results;
55 saved_priority = parms[n].cmplt->priority;
57 /* results and priorities for completed trie */
58 results = p[transition].results;
59 priority = p[transition].priority;
61 /* if this is not the first completed trie */
62 if (parms[n].cmplt->count != ctx->num_tries) {
63 for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
65 if (saved_priority[i] <= priority[i]) {
66 saved_priority[i] = priority[i];
67 saved_results[i] = results[i];
69 if (saved_priority[i + 1] <= priority[i + 1]) {
70 saved_priority[i + 1] = priority[i + 1];
71 saved_results[i + 1] = results[i + 1];
73 if (saved_priority[i + 2] <= priority[i + 2]) {
74 saved_priority[i + 2] = priority[i + 2];
75 saved_results[i + 2] = results[i + 2];
77 if (saved_priority[i + 3] <= priority[i + 3]) {
78 saved_priority[i + 3] = priority[i + 3];
79 saved_results[i + 3] = results[i + 3];
83 for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
84 saved_priority[i] = priority[i];
85 saved_priority[i + 1] = priority[i + 1];
86 saved_priority[i + 2] = priority[i + 2];
87 saved_priority[i + 3] = priority[i + 3];
89 saved_results[i] = results[i];
90 saved_results[i + 1] = results[i + 1];
91 saved_results[i + 2] = results[i + 2];
92 saved_results[i + 3] = results[i + 3];
97 static inline uint32_t
98 scan_forward(uint32_t input, uint32_t max)
100 return (input == 0) ? max : rte_bsf32(input);
103 static inline uint64_t
104 scalar_transition(const uint64_t *trans_table, uint64_t transition,
107 uint32_t addr, index, ranges, x, a, b, c;
109 /* break transition into component parts */
110 ranges = transition >> (sizeof(index) * CHAR_BIT);
111 index = transition & ~RTE_ACL_NODE_INDEX;
112 addr = transition ^ index;
114 if (index != RTE_ACL_NODE_DFA) {
115 /* calc address for a QRANGE/SINGLE node */
116 c = (uint32_t)input * SCALAR_QRANGE_MULT;
117 a = ranges | SCALAR_QRANGE_MIN;
118 a -= (c & SCALAR_QRANGE_MASK);
119 b = c & SCALAR_QRANGE_MIN;
120 a &= SCALAR_QRANGE_MIN;
121 a ^= (ranges ^ b) & (a ^ b);
122 x = scan_forward(a, 32) >> 3;
124 /* calc address for a DFA node */
125 x = ranges >> (input /
126 RTE_ACL_DFA_GR64_SIZE * RTE_ACL_DFA_GR64_BIT);
133 /* pickup next transition */
134 transition = *(trans_table + addr);
139 rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
140 uint32_t *results, uint32_t num, uint32_t categories)
143 uint64_t transition0, transition1;
144 uint32_t input0, input1;
145 struct acl_flow_data flows;
146 uint64_t index_array[MAX_SEARCHES_SCALAR];
147 struct completion cmplt[MAX_SEARCHES_SCALAR];
148 struct parms parms[MAX_SEARCHES_SCALAR];
150 acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, num,
151 categories, ctx->trans_table);
153 for (n = 0; n < MAX_SEARCHES_SCALAR; n++) {
155 index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
158 transition0 = index_array[0];
159 transition1 = index_array[1];
161 while ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
162 transition0 = acl_match_check(transition0,
163 0, ctx, parms, &flows, resolve_priority_scalar);
164 transition1 = acl_match_check(transition1,
165 1, ctx, parms, &flows, resolve_priority_scalar);
168 while (flows.started > 0) {
170 input0 = GET_NEXT_4BYTES(parms, 0);
171 input1 = GET_NEXT_4BYTES(parms, 1);
173 for (n = 0; n < 4; n++) {
175 transition0 = scalar_transition(flows.trans,
176 transition0, (uint8_t)input0);
179 transition1 = scalar_transition(flows.trans,
180 transition1, (uint8_t)input1);
184 while ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
185 transition0 = acl_match_check(transition0,
186 0, ctx, parms, &flows, resolve_priority_scalar);
187 transition1 = acl_match_check(transition1,
188 1, ctx, parms, &flows, resolve_priority_scalar);