eal: deduplicate memory initialization
[dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 /*   BSD LICENSE
34  *
35  *   Copyright(c) 2013 6WIND.
36  *
37  *   Redistribution and use in source and binary forms, with or without
38  *   modification, are permitted provided that the following conditions
39  *   are met:
40  *
41  *     * Redistributions of source code must retain the above copyright
42  *       notice, this list of conditions and the following disclaimer.
43  *     * Redistributions in binary form must reproduce the above copyright
44  *       notice, this list of conditions and the following disclaimer in
45  *       the documentation and/or other materials provided with the
46  *       distribution.
47  *     * Neither the name of 6WIND S.A. nor the names of its
48  *       contributors may be used to endorse or promote products derived
49  *       from this software without specific prior written permission.
50  *
51  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63
64 #define _FILE_OFFSET_BITS 64
65 #include <errno.h>
66 #include <stdarg.h>
67 #include <stdlib.h>
68 #include <stdio.h>
69 #include <stdint.h>
70 #include <inttypes.h>
71 #include <string.h>
72 #include <stdarg.h>
73 #include <sys/mman.h>
74 #include <sys/types.h>
75 #include <sys/stat.h>
76 #include <sys/queue.h>
77 #include <sys/file.h>
78 #include <unistd.h>
79 #include <limits.h>
80 #include <errno.h>
81 #include <sys/ioctl.h>
82 #include <sys/time.h>
83
84 #include <rte_log.h>
85 #include <rte_memory.h>
86 #include <rte_memzone.h>
87 #include <rte_launch.h>
88 #include <rte_eal.h>
89 #include <rte_eal_memconfig.h>
90 #include <rte_per_lcore.h>
91 #include <rte_lcore.h>
92 #include <rte_common.h>
93 #include <rte_string_fns.h>
94
95 #include "eal_private.h"
96 #include "eal_internal_cfg.h"
97 #include "eal_filesystem.h"
98 #include "eal_hugepages.h"
99
100 /**
101  * @file
102  * Huge page mapping under linux
103  *
104  * To reserve a big contiguous amount of memory, we use the hugepage
105  * feature of linux. For that, we need to have hugetlbfs mounted. This
106  * code will create many files in this directory (one per page) and
107  * map them in virtual memory. For each page, we will retrieve its
108  * physical address and remap it in order to have a virtual contiguous
109  * zone as well as a physical contiguous zone.
110  */
111
112 static uint64_t baseaddr_offset;
113
114 static unsigned proc_pagemap_readable;
115
116 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
117
118 static void
119 test_proc_pagemap_readable(void)
120 {
121         int fd = open("/proc/self/pagemap", O_RDONLY);
122
123         if (fd < 0) {
124                 RTE_LOG(ERR, EAL,
125                         "Cannot open /proc/self/pagemap: %s. "
126                         "virt2phys address translation will not work\n",
127                         strerror(errno));
128                 return;
129         }
130
131         /* Is readable */
132         close(fd);
133         proc_pagemap_readable = 1;
134 }
135
136 /* Lock page in physical memory and prevent from swapping. */
137 int
138 rte_mem_lock_page(const void *virt)
139 {
140         unsigned long virtual = (unsigned long)virt;
141         int page_size = getpagesize();
142         unsigned long aligned = (virtual & ~ (page_size - 1));
143         return mlock((void*)aligned, page_size);
144 }
145
146 /*
147  * Get physical address of any mapped virtual address in the current process.
148  */
149 phys_addr_t
150 rte_mem_virt2phy(const void *virtaddr)
151 {
152         int fd;
153         uint64_t page, physaddr;
154         unsigned long virt_pfn;
155         int page_size;
156         off_t offset;
157
158         /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
159         if (!proc_pagemap_readable)
160                 return RTE_BAD_PHYS_ADDR;
161
162         /* standard page size */
163         page_size = getpagesize();
164
165         fd = open("/proc/self/pagemap", O_RDONLY);
166         if (fd < 0) {
167                 RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
168                         __func__, strerror(errno));
169                 return RTE_BAD_PHYS_ADDR;
170         }
171
172         virt_pfn = (unsigned long)virtaddr / page_size;
173         offset = sizeof(uint64_t) * virt_pfn;
174         if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
175                 RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
176                                 __func__, strerror(errno));
177                 close(fd);
178                 return RTE_BAD_PHYS_ADDR;
179         }
180         if (read(fd, &page, sizeof(uint64_t)) < 0) {
181                 RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
182                                 __func__, strerror(errno));
183                 close(fd);
184                 return RTE_BAD_PHYS_ADDR;
185         }
186
187         /*
188          * the pfn (page frame number) are bits 0-54 (see
189          * pagemap.txt in linux Documentation)
190          */
191         physaddr = ((page & 0x7fffffffffffffULL) * page_size)
192                 + ((unsigned long)virtaddr % page_size);
193         close(fd);
194         return physaddr;
195 }
196
197 /*
198  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
199  * it by browsing the /proc/self/pagemap special file.
200  */
201 static int
202 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
203 {
204         unsigned i;
205         phys_addr_t addr;
206
207         for (i = 0; i < hpi->num_pages[0]; i++) {
208                 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
209                 if (addr == RTE_BAD_PHYS_ADDR)
210                         return -1;
211                 hugepg_tbl[i].physaddr = addr;
212         }
213         return 0;
214 }
215
216 /*
217  * Check whether address-space layout randomization is enabled in
218  * the kernel. This is important for multi-process as it can prevent
219  * two processes mapping data to the same virtual address
220  * Returns:
221  *    0 - address space randomization disabled
222  *    1/2 - address space randomization enabled
223  *    negative error code on error
224  */
225 static int
226 aslr_enabled(void)
227 {
228         char c;
229         int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
230         if (fd < 0)
231                 return -errno;
232         retval = read(fd, &c, 1);
233         close(fd);
234         if (retval < 0)
235                 return -errno;
236         if (retval == 0)
237                 return -EIO;
238         switch (c) {
239                 case '0' : return 0;
240                 case '1' : return 1;
241                 case '2' : return 2;
242                 default: return -EINVAL;
243         }
244 }
245
246 /*
247  * Try to mmap *size bytes in /dev/zero. If it is successful, return the
248  * pointer to the mmap'd area and keep *size unmodified. Else, retry
249  * with a smaller zone: decrease *size by hugepage_sz until it reaches
250  * 0. In this case, return NULL. Note: this function returns an address
251  * which is a multiple of hugepage size.
252  */
253 static void *
254 get_virtual_area(size_t *size, size_t hugepage_sz)
255 {
256         void *addr;
257         int fd;
258         long aligned_addr;
259
260         if (internal_config.base_virtaddr != 0) {
261                 addr = (void*) (uintptr_t) (internal_config.base_virtaddr +
262                                 baseaddr_offset);
263         }
264         else addr = NULL;
265
266         RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
267
268         fd = open("/dev/zero", O_RDONLY);
269         if (fd < 0){
270                 RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
271                 return NULL;
272         }
273         do {
274                 addr = mmap(addr,
275                                 (*size) + hugepage_sz, PROT_READ, MAP_PRIVATE, fd, 0);
276                 if (addr == MAP_FAILED)
277                         *size -= hugepage_sz;
278         } while (addr == MAP_FAILED && *size > 0);
279
280         if (addr == MAP_FAILED) {
281                 close(fd);
282                 RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
283                         strerror(errno));
284                 return NULL;
285         }
286
287         munmap(addr, (*size) + hugepage_sz);
288         close(fd);
289
290         /* align addr to a huge page size boundary */
291         aligned_addr = (long)addr;
292         aligned_addr += (hugepage_sz - 1);
293         aligned_addr &= (~(hugepage_sz - 1));
294         addr = (void *)(aligned_addr);
295
296         RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
297                 addr, *size);
298
299         /* increment offset */
300         baseaddr_offset += *size;
301
302         return addr;
303 }
304
305 /*
306  * Mmap all hugepages of hugepage table: it first open a file in
307  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
308  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
309  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
310  * map continguous physical blocks in contiguous virtual blocks.
311  */
312 static int
313 map_all_hugepages(struct hugepage_file *hugepg_tbl,
314                 struct hugepage_info *hpi, int orig)
315 {
316         int fd;
317         unsigned i;
318         void *virtaddr;
319         void *vma_addr = NULL;
320         size_t vma_len = 0;
321
322 #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
323         RTE_SET_USED(vma_len);
324 #endif
325
326         for (i = 0; i < hpi->num_pages[0]; i++) {
327                 uint64_t hugepage_sz = hpi->hugepage_sz;
328
329                 if (orig) {
330                         hugepg_tbl[i].file_id = i;
331                         hugepg_tbl[i].size = hugepage_sz;
332 #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
333                         eal_get_hugefile_temp_path(hugepg_tbl[i].filepath,
334                                         sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
335                                         hugepg_tbl[i].file_id);
336 #else
337                         eal_get_hugefile_path(hugepg_tbl[i].filepath,
338                                         sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
339                                         hugepg_tbl[i].file_id);
340 #endif
341                         hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
342                 }
343 #ifndef RTE_ARCH_64
344                 /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
345                  * original map address as final map address.
346                  */
347                 else if ((hugepage_sz == RTE_PGSIZE_1G)
348                         || (hugepage_sz == RTE_PGSIZE_16G)) {
349                         hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
350                         hugepg_tbl[i].orig_va = NULL;
351                         continue;
352                 }
353 #endif
354
355 #ifndef RTE_EAL_SINGLE_FILE_SEGMENTS
356                 else if (vma_len == 0) {
357                         unsigned j, num_pages;
358
359                         /* reserve a virtual area for next contiguous
360                          * physical block: count the number of
361                          * contiguous physical pages. */
362                         for (j = i+1; j < hpi->num_pages[0] ; j++) {
363 #ifdef RTE_ARCH_PPC_64
364                                 /* The physical addresses are sorted in
365                                  * descending order on PPC64 */
366                                 if (hugepg_tbl[j].physaddr !=
367                                     hugepg_tbl[j-1].physaddr - hugepage_sz)
368                                         break;
369 #else
370                                 if (hugepg_tbl[j].physaddr !=
371                                     hugepg_tbl[j-1].physaddr + hugepage_sz)
372                                         break;
373 #endif
374                         }
375                         num_pages = j - i;
376                         vma_len = num_pages * hugepage_sz;
377
378                         /* get the biggest virtual memory area up to
379                          * vma_len. If it fails, vma_addr is NULL, so
380                          * let the kernel provide the address. */
381                         vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
382                         if (vma_addr == NULL)
383                                 vma_len = hugepage_sz;
384                 }
385 #endif
386
387                 /* try to create hugepage file */
388                 fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0755);
389                 if (fd < 0) {
390                         RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__,
391                                         strerror(errno));
392                         return -1;
393                 }
394
395                 virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
396                                 MAP_SHARED, fd, 0);
397                 if (virtaddr == MAP_FAILED) {
398                         RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__,
399                                         strerror(errno));
400                         close(fd);
401                         return -1;
402                 }
403
404                 if (orig) {
405                         hugepg_tbl[i].orig_va = virtaddr;
406                         memset(virtaddr, 0, hugepage_sz);
407                 }
408                 else {
409                         hugepg_tbl[i].final_va = virtaddr;
410                 }
411
412                 /* set shared flock on the file. */
413                 if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
414                         RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n",
415                                 __func__, strerror(errno));
416                         close(fd);
417                         return -1;
418                 }
419
420                 close(fd);
421
422                 vma_addr = (char *)vma_addr + hugepage_sz;
423                 vma_len -= hugepage_sz;
424         }
425         return 0;
426 }
427
428 #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
429
430 /*
431  * Remaps all hugepages into single file segments
432  */
433 static int
434 remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
435 {
436         int fd;
437         unsigned i = 0, j, num_pages, page_idx = 0;
438         void *vma_addr = NULL, *old_addr = NULL, *page_addr = NULL;
439         size_t vma_len = 0;
440         size_t hugepage_sz = hpi->hugepage_sz;
441         size_t total_size, offset;
442         char filepath[MAX_HUGEPAGE_PATH];
443         phys_addr_t physaddr;
444         int socket;
445
446         while (i < hpi->num_pages[0]) {
447
448 #ifndef RTE_ARCH_64
449                 /* for 32-bit systems, don't remap 1G pages and 16G pages,
450                  * just reuse original map address as final map address.
451                  */
452                 if ((hugepage_sz == RTE_PGSIZE_1G)
453                         || (hugepage_sz == RTE_PGSIZE_16G)) {
454                         hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
455                         hugepg_tbl[i].orig_va = NULL;
456                         i++;
457                         continue;
458                 }
459 #endif
460
461                 /* reserve a virtual area for next contiguous
462                  * physical block: count the number of
463                  * contiguous physical pages. */
464                 for (j = i+1; j < hpi->num_pages[0] ; j++) {
465 #ifdef RTE_ARCH_PPC_64
466                         /* The physical addresses are sorted in descending
467                          * order on PPC64 */
468                         if (hugepg_tbl[j].physaddr !=
469                                 hugepg_tbl[j-1].physaddr - hugepage_sz)
470                                 break;
471 #else
472                         if (hugepg_tbl[j].physaddr !=
473                                 hugepg_tbl[j-1].physaddr + hugepage_sz)
474                                 break;
475 #endif
476                 }
477                 num_pages = j - i;
478                 vma_len = num_pages * hugepage_sz;
479
480                 socket = hugepg_tbl[i].socket_id;
481
482                 /* get the biggest virtual memory area up to
483                  * vma_len. If it fails, vma_addr is NULL, so
484                  * let the kernel provide the address. */
485                 vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
486
487                 /* If we can't find a big enough virtual area, work out how many pages
488                  * we are going to get */
489                 if (vma_addr == NULL)
490                         j = i + 1;
491                 else if (vma_len != num_pages * hugepage_sz) {
492                         num_pages = vma_len / hugepage_sz;
493                         j = i + num_pages;
494
495                 }
496
497                 hugepg_tbl[page_idx].file_id = page_idx;
498                 eal_get_hugefile_path(filepath,
499                                 sizeof(filepath),
500                                 hpi->hugedir,
501                                 hugepg_tbl[page_idx].file_id);
502
503                 /* try to create hugepage file */
504                 fd = open(filepath, O_CREAT | O_RDWR, 0755);
505                 if (fd < 0) {
506                         RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__, strerror(errno));
507                         return -1;
508                 }
509
510                 total_size = 0;
511                 for (;i < j; i++) {
512
513                         /* unmap current segment */
514                         if (total_size > 0)
515                                 munmap(vma_addr, total_size);
516
517                         /* unmap original page */
518                         munmap(hugepg_tbl[i].orig_va, hugepage_sz);
519                         unlink(hugepg_tbl[i].filepath);
520
521                         total_size += hugepage_sz;
522
523                         old_addr = vma_addr;
524
525                         /* map new, bigger segment */
526                         vma_addr = mmap(vma_addr, total_size,
527                                         PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
528
529                         if (vma_addr == MAP_FAILED || vma_addr != old_addr) {
530                                 RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__, strerror(errno));
531                                 close(fd);
532                                 return -1;
533                         }
534
535                         /* touch the page. this is needed because kernel postpones mapping
536                          * creation until the first page fault. with this, we pin down
537                          * the page and it is marked as used and gets into process' pagemap.
538                          */
539                         for (offset = 0; offset < total_size; offset += hugepage_sz)
540                                 *((volatile uint8_t*) RTE_PTR_ADD(vma_addr, offset));
541                 }
542
543                 /* set shared flock on the file. */
544                 if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
545                         RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n",
546                                 __func__, strerror(errno));
547                         close(fd);
548                         return -1;
549                 }
550
551                 snprintf(hugepg_tbl[page_idx].filepath, MAX_HUGEPAGE_PATH, "%s",
552                                 filepath);
553
554                 physaddr = rte_mem_virt2phy(vma_addr);
555
556                 if (physaddr == RTE_BAD_PHYS_ADDR)
557                         return -1;
558
559                 hugepg_tbl[page_idx].final_va = vma_addr;
560
561                 hugepg_tbl[page_idx].physaddr = physaddr;
562
563                 hugepg_tbl[page_idx].repeated = num_pages;
564
565                 hugepg_tbl[page_idx].socket_id = socket;
566
567                 close(fd);
568
569                 /* verify the memory segment - that is, check that every VA corresponds
570                  * to the physical address we expect to see
571                  */
572                 for (offset = 0; offset < vma_len; offset += hugepage_sz) {
573                         uint64_t expected_physaddr;
574
575                         expected_physaddr = hugepg_tbl[page_idx].physaddr + offset;
576                         page_addr = RTE_PTR_ADD(vma_addr, offset);
577                         physaddr = rte_mem_virt2phy(page_addr);
578
579                         if (physaddr != expected_physaddr) {
580                                 RTE_LOG(ERR, EAL, "Segment sanity check failed: wrong physaddr "
581                                                 "at %p (offset 0x%" PRIx64 ": 0x%" PRIx64
582                                                 " (expected 0x%" PRIx64 ")\n",
583                                                 page_addr, offset, physaddr, expected_physaddr);
584                                 return -1;
585                         }
586                 }
587
588                 /* zero out the whole segment */
589                 memset(hugepg_tbl[page_idx].final_va, 0, total_size);
590
591                 page_idx++;
592         }
593
594         /* zero out the rest */
595         memset(&hugepg_tbl[page_idx], 0, (hpi->num_pages[0] - page_idx) * sizeof(struct hugepage_file));
596         return page_idx;
597 }
598 #else/* RTE_EAL_SINGLE_FILE_SEGMENTS=n */
599
600 /* Unmap all hugepages from original mapping */
601 static int
602 unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
603 {
604         unsigned i;
605         for (i = 0; i < hpi->num_pages[0]; i++) {
606                 if (hugepg_tbl[i].orig_va) {
607                         munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
608                         hugepg_tbl[i].orig_va = NULL;
609                 }
610         }
611         return 0;
612 }
613 #endif /* RTE_EAL_SINGLE_FILE_SEGMENTS */
614
615 /*
616  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
617  * page.
618  */
619 static int
620 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
621 {
622         int socket_id;
623         char *end, *nodestr;
624         unsigned i, hp_count = 0;
625         uint64_t virt_addr;
626         char buf[BUFSIZ];
627         char hugedir_str[PATH_MAX];
628         FILE *f;
629
630         f = fopen("/proc/self/numa_maps", "r");
631         if (f == NULL) {
632                 RTE_LOG(NOTICE, EAL, "cannot open /proc/self/numa_maps,"
633                                 " consider that all memory is in socket_id 0\n");
634                 return 0;
635         }
636
637         snprintf(hugedir_str, sizeof(hugedir_str),
638                         "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
639
640         /* parse numa map */
641         while (fgets(buf, sizeof(buf), f) != NULL) {
642
643                 /* ignore non huge page */
644                 if (strstr(buf, " huge ") == NULL &&
645                                 strstr(buf, hugedir_str) == NULL)
646                         continue;
647
648                 /* get zone addr */
649                 virt_addr = strtoull(buf, &end, 16);
650                 if (virt_addr == 0 || end == buf) {
651                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
652                         goto error;
653                 }
654
655                 /* get node id (socket id) */
656                 nodestr = strstr(buf, " N");
657                 if (nodestr == NULL) {
658                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
659                         goto error;
660                 }
661                 nodestr += 2;
662                 end = strstr(nodestr, "=");
663                 if (end == NULL) {
664                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
665                         goto error;
666                 }
667                 end[0] = '\0';
668                 end = NULL;
669
670                 socket_id = strtoul(nodestr, &end, 0);
671                 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
672                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
673                         goto error;
674                 }
675
676                 /* if we find this page in our mappings, set socket_id */
677                 for (i = 0; i < hpi->num_pages[0]; i++) {
678                         void *va = (void *)(unsigned long)virt_addr;
679                         if (hugepg_tbl[i].orig_va == va) {
680                                 hugepg_tbl[i].socket_id = socket_id;
681                                 hp_count++;
682                         }
683                 }
684         }
685
686         if (hp_count < hpi->num_pages[0])
687                 goto error;
688
689         fclose(f);
690         return 0;
691
692 error:
693         fclose(f);
694         return -1;
695 }
696
697 /*
698  * Sort the hugepg_tbl by physical address (lower addresses first on x86,
699  * higher address first on powerpc). We use a slow algorithm, but we won't
700  * have millions of pages, and this is only done at init time.
701  */
702 static int
703 sort_by_physaddr(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
704 {
705         unsigned i, j;
706         int compare_idx;
707         uint64_t compare_addr;
708         struct hugepage_file tmp;
709
710         for (i = 0; i < hpi->num_pages[0]; i++) {
711                 compare_addr = 0;
712                 compare_idx = -1;
713
714                 /*
715                  * browse all entries starting at 'i', and find the
716                  * entry with the smallest addr
717                  */
718                 for (j=i; j< hpi->num_pages[0]; j++) {
719
720                         if (compare_addr == 0 ||
721 #ifdef RTE_ARCH_PPC_64
722                                 hugepg_tbl[j].physaddr > compare_addr) {
723 #else
724                                 hugepg_tbl[j].physaddr < compare_addr) {
725 #endif
726                                 compare_addr = hugepg_tbl[j].physaddr;
727                                 compare_idx = j;
728                         }
729                 }
730
731                 /* should not happen */
732                 if (compare_idx == -1) {
733                         RTE_LOG(ERR, EAL, "%s(): error in physaddr sorting\n", __func__);
734                         return -1;
735                 }
736
737                 /* swap the 2 entries in the table */
738                 memcpy(&tmp, &hugepg_tbl[compare_idx],
739                         sizeof(struct hugepage_file));
740                 memcpy(&hugepg_tbl[compare_idx], &hugepg_tbl[i],
741                         sizeof(struct hugepage_file));
742                 memcpy(&hugepg_tbl[i], &tmp, sizeof(struct hugepage_file));
743         }
744         return 0;
745 }
746
747 /*
748  * Uses mmap to create a shared memory area for storage of data
749  * Used in this file to store the hugepage file map on disk
750  */
751 static void *
752 create_shared_memory(const char *filename, const size_t mem_size)
753 {
754         void *retval;
755         int fd = open(filename, O_CREAT | O_RDWR, 0666);
756         if (fd < 0)
757                 return NULL;
758         if (ftruncate(fd, mem_size) < 0) {
759                 close(fd);
760                 return NULL;
761         }
762         retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
763         close(fd);
764         return retval;
765 }
766
767 /*
768  * this copies *active* hugepages from one hugepage table to another.
769  * destination is typically the shared memory.
770  */
771 static int
772 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
773                 const struct hugepage_file * src, int src_size)
774 {
775         int src_pos, dst_pos = 0;
776
777         for (src_pos = 0; src_pos < src_size; src_pos++) {
778                 if (src[src_pos].final_va != NULL) {
779                         /* error on overflow attempt */
780                         if (dst_pos == dest_size)
781                                 return -1;
782                         memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
783                         dst_pos++;
784                 }
785         }
786         return 0;
787 }
788
789 /*
790  * unmaps hugepages that are not going to be used. since we originally allocate
791  * ALL hugepages (not just those we need), additional unmapping needs to be done.
792  */
793 static int
794 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
795                 struct hugepage_info *hpi,
796                 unsigned num_hp_info)
797 {
798         unsigned socket, size;
799         int page, nrpages = 0;
800
801         /* get total number of hugepages */
802         for (size = 0; size < num_hp_info; size++)
803                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
804                         nrpages += internal_config.hugepage_info[size].num_pages[socket];
805
806         for (size = 0; size < num_hp_info; size++) {
807                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
808                         unsigned pages_found = 0;
809
810                         /* traverse until we have unmapped all the unused pages */
811                         for (page = 0; page < nrpages; page++) {
812                                 struct hugepage_file *hp = &hugepg_tbl[page];
813
814 #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
815                                 /* if this page was already cleared */
816                                 if (hp->final_va == NULL)
817                                         continue;
818 #endif
819
820                                 /* find a page that matches the criteria */
821                                 if ((hp->size == hpi[size].hugepage_sz) &&
822                                                 (hp->socket_id == (int) socket)) {
823
824                                         /* if we skipped enough pages, unmap the rest */
825                                         if (pages_found == hpi[size].num_pages[socket]) {
826                                                 uint64_t unmap_len;
827
828 #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
829                                                 unmap_len = hp->size * hp->repeated;
830 #else
831                                                 unmap_len = hp->size;
832 #endif
833
834                                                 /* get start addr and len of the remaining segment */
835                                                 munmap(hp->final_va, (size_t) unmap_len);
836
837                                                 hp->final_va = NULL;
838                                                 if (unlink(hp->filepath) == -1) {
839                                                         RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
840                                                                         __func__, hp->filepath, strerror(errno));
841                                                         return -1;
842                                                 }
843                                         }
844 #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
845                                         /* else, check how much do we need to map */
846                                         else {
847                                                 int nr_pg_left =
848                                                                 hpi[size].num_pages[socket] - pages_found;
849
850                                                 /* if we need enough memory to fit into the segment */
851                                                 if (hp->repeated <= nr_pg_left) {
852                                                         pages_found += hp->repeated;
853                                                 }
854                                                 /* truncate the segment */
855                                                 else {
856                                                         uint64_t final_size = nr_pg_left * hp->size;
857                                                         uint64_t seg_size = hp->repeated * hp->size;
858
859                                                         void * unmap_va = RTE_PTR_ADD(hp->final_va,
860                                                                         final_size);
861                                                         int fd;
862
863                                                         munmap(unmap_va, seg_size - final_size);
864
865                                                         fd = open(hp->filepath, O_RDWR);
866                                                         if (fd < 0) {
867                                                                 RTE_LOG(ERR, EAL, "Cannot open %s: %s\n",
868                                                                                 hp->filepath, strerror(errno));
869                                                                 return -1;
870                                                         }
871                                                         if (ftruncate(fd, final_size) < 0) {
872                                                                 RTE_LOG(ERR, EAL, "Cannot truncate %s: %s\n",
873                                                                                 hp->filepath, strerror(errno));
874                                                                 return -1;
875                                                         }
876                                                         close(fd);
877
878                                                         pages_found += nr_pg_left;
879                                                         hp->repeated = nr_pg_left;
880                                                 }
881                                         }
882 #else
883                                         /* else, lock the page and skip */
884                                         else
885                                                 pages_found++;
886 #endif
887
888                                 } /* match page */
889                         } /* foreach page */
890                 } /* foreach socket */
891         } /* foreach pagesize */
892
893         return 0;
894 }
895
896 static inline uint64_t
897 get_socket_mem_size(int socket)
898 {
899         uint64_t size = 0;
900         unsigned i;
901
902         for (i = 0; i < internal_config.num_hugepage_sizes; i++){
903                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
904                 if (hpi->hugedir != NULL)
905                         size += hpi->hugepage_sz * hpi->num_pages[socket];
906         }
907
908         return size;
909 }
910
911 /*
912  * This function is a NUMA-aware equivalent of calc_num_pages.
913  * It takes in the list of hugepage sizes and the
914  * number of pages thereof, and calculates the best number of
915  * pages of each size to fulfill the request for <memory> ram
916  */
917 static int
918 calc_num_pages_per_socket(uint64_t * memory,
919                 struct hugepage_info *hp_info,
920                 struct hugepage_info *hp_used,
921                 unsigned num_hp_info)
922 {
923         unsigned socket, j, i = 0;
924         unsigned requested, available;
925         int total_num_pages = 0;
926         uint64_t remaining_mem, cur_mem;
927         uint64_t total_mem = internal_config.memory;
928
929         if (num_hp_info == 0)
930                 return -1;
931
932         /* if specific memory amounts per socket weren't requested */
933         if (internal_config.force_sockets == 0) {
934                 int cpu_per_socket[RTE_MAX_NUMA_NODES];
935                 size_t default_size, total_size;
936                 unsigned lcore_id;
937
938                 /* Compute number of cores per socket */
939                 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
940                 RTE_LCORE_FOREACH(lcore_id) {
941                         cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
942                 }
943
944                 /*
945                  * Automatically spread requested memory amongst detected sockets according
946                  * to number of cores from cpu mask present on each socket
947                  */
948                 total_size = internal_config.memory;
949                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
950
951                         /* Set memory amount per socket */
952                         default_size = (internal_config.memory * cpu_per_socket[socket])
953                                         / rte_lcore_count();
954
955                         /* Limit to maximum available memory on socket */
956                         default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
957
958                         /* Update sizes */
959                         memory[socket] = default_size;
960                         total_size -= default_size;
961                 }
962
963                 /*
964                  * If some memory is remaining, try to allocate it by getting all
965                  * available memory from sockets, one after the other
966                  */
967                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
968                         /* take whatever is available */
969                         default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
970                                                total_size);
971
972                         /* Update sizes */
973                         memory[socket] += default_size;
974                         total_size -= default_size;
975                 }
976         }
977
978         for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
979                 /* skips if the memory on specific socket wasn't requested */
980                 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
981                         hp_used[i].hugedir = hp_info[i].hugedir;
982                         hp_used[i].num_pages[socket] = RTE_MIN(
983                                         memory[socket] / hp_info[i].hugepage_sz,
984                                         hp_info[i].num_pages[socket]);
985
986                         cur_mem = hp_used[i].num_pages[socket] *
987                                         hp_used[i].hugepage_sz;
988
989                         memory[socket] -= cur_mem;
990                         total_mem -= cur_mem;
991
992                         total_num_pages += hp_used[i].num_pages[socket];
993
994                         /* check if we have met all memory requests */
995                         if (memory[socket] == 0)
996                                 break;
997
998                         /* check if we have any more pages left at this size, if so
999                          * move on to next size */
1000                         if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
1001                                 continue;
1002                         /* At this point we know that there are more pages available that are
1003                          * bigger than the memory we want, so lets see if we can get enough
1004                          * from other page sizes.
1005                          */
1006                         remaining_mem = 0;
1007                         for (j = i+1; j < num_hp_info; j++)
1008                                 remaining_mem += hp_info[j].hugepage_sz *
1009                                 hp_info[j].num_pages[socket];
1010
1011                         /* is there enough other memory, if not allocate another page and quit */
1012                         if (remaining_mem < memory[socket]){
1013                                 cur_mem = RTE_MIN(memory[socket],
1014                                                 hp_info[i].hugepage_sz);
1015                                 memory[socket] -= cur_mem;
1016                                 total_mem -= cur_mem;
1017                                 hp_used[i].num_pages[socket]++;
1018                                 total_num_pages++;
1019                                 break; /* we are done with this socket*/
1020                         }
1021                 }
1022                 /* if we didn't satisfy all memory requirements per socket */
1023                 if (memory[socket] > 0) {
1024                         /* to prevent icc errors */
1025                         requested = (unsigned) (internal_config.socket_mem[socket] /
1026                                         0x100000);
1027                         available = requested -
1028                                         ((unsigned) (memory[socket] / 0x100000));
1029                         RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
1030                                         "Requested: %uMB, available: %uMB\n", socket,
1031                                         requested, available);
1032                         return -1;
1033                 }
1034         }
1035
1036         /* if we didn't satisfy total memory requirements */
1037         if (total_mem > 0) {
1038                 requested = (unsigned) (internal_config.memory / 0x100000);
1039                 available = requested - (unsigned) (total_mem / 0x100000);
1040                 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
1041                                 " available: %uMB\n", requested, available);
1042                 return -1;
1043         }
1044         return total_num_pages;
1045 }
1046
1047 /*
1048  * Prepare physical memory mapping: fill configuration structure with
1049  * these infos, return 0 on success.
1050  *  1. map N huge pages in separate files in hugetlbfs
1051  *  2. find associated physical addr
1052  *  3. find associated NUMA socket ID
1053  *  4. sort all huge pages by physical address
1054  *  5. remap these N huge pages in the correct order
1055  *  6. unmap the first mapping
1056  *  7. fill memsegs in configuration with contiguous zones
1057  */
1058 int
1059 rte_eal_hugepage_init(void)
1060 {
1061         struct rte_mem_config *mcfg;
1062         struct hugepage_file *hugepage, *tmp_hp = NULL;
1063         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
1064
1065         uint64_t memory[RTE_MAX_NUMA_NODES];
1066
1067         unsigned hp_offset;
1068         int i, j, new_memseg;
1069         int nr_hugefiles, nr_hugepages = 0;
1070         void *addr;
1071 #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
1072         int new_pages_count[MAX_HUGEPAGE_SIZES];
1073 #endif
1074
1075         test_proc_pagemap_readable();
1076
1077         memset(used_hp, 0, sizeof(used_hp));
1078
1079         /* get pointer to global configuration */
1080         mcfg = rte_eal_get_configuration()->mem_config;
1081
1082         /* hugetlbfs can be disabled */
1083         if (internal_config.no_hugetlbfs) {
1084                 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
1085                                 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
1086                 if (addr == MAP_FAILED) {
1087                         RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
1088                                         strerror(errno));
1089                         return -1;
1090                 }
1091                 mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr;
1092                 mcfg->memseg[0].addr = addr;
1093                 mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
1094                 mcfg->memseg[0].len = internal_config.memory;
1095                 mcfg->memseg[0].socket_id = 0;
1096                 return 0;
1097         }
1098
1099 /* check if app runs on Xen Dom0 */
1100         if (internal_config.xen_dom0_support) {
1101 #ifdef RTE_LIBRTE_XEN_DOM0
1102                 /* use dom0_mm kernel driver to init memory */
1103                 if (rte_xen_dom0_memory_init() < 0)
1104                         return -1;
1105                 else
1106                         return 0;
1107 #endif
1108         }
1109
1110         /* calculate total number of hugepages available. at this point we haven't
1111          * yet started sorting them so they all are on socket 0 */
1112         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1113                 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1114                 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
1115
1116                 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
1117         }
1118
1119         /*
1120          * allocate a memory area for hugepage table.
1121          * this isn't shared memory yet. due to the fact that we need some
1122          * processing done on these pages, shared memory will be created
1123          * at a later stage.
1124          */
1125         tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1126         if (tmp_hp == NULL)
1127                 goto fail;
1128
1129         memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1130
1131         hp_offset = 0; /* where we start the current page size entries */
1132
1133         /* map all hugepages and sort them */
1134         for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1135                 struct hugepage_info *hpi;
1136
1137                 /*
1138                  * we don't yet mark hugepages as used at this stage, so
1139                  * we just map all hugepages available to the system
1140                  * all hugepages are still located on socket 0
1141                  */
1142                 hpi = &internal_config.hugepage_info[i];
1143
1144                 if (hpi->num_pages[0] == 0)
1145                         continue;
1146
1147                 /* map all hugepages available */
1148                 if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 1) < 0){
1149                         RTE_LOG(DEBUG, EAL, "Failed to mmap %u MB hugepages\n",
1150                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1151                         goto fail;
1152                 }
1153
1154                 /* find physical addresses and sockets for each hugepage */
1155                 if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0){
1156                         RTE_LOG(DEBUG, EAL, "Failed to find phys addr for %u MB pages\n",
1157                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1158                         goto fail;
1159                 }
1160
1161                 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1162                         RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1163                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1164                         goto fail;
1165                 }
1166
1167                 if (sort_by_physaddr(&tmp_hp[hp_offset], hpi) < 0)
1168                         goto fail;
1169
1170 #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
1171                 /* remap all hugepages into single file segments */
1172                 new_pages_count[i] = remap_all_hugepages(&tmp_hp[hp_offset], hpi);
1173                 if (new_pages_count[i] < 0){
1174                         RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n",
1175                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1176                         goto fail;
1177                 }
1178
1179                 /* we have processed a num of hugepages of this size, so inc offset */
1180                 hp_offset += new_pages_count[i];
1181 #else
1182                 /* remap all hugepages */
1183                 if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) < 0){
1184                         RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n",
1185                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1186                         goto fail;
1187                 }
1188
1189                 /* unmap original mappings */
1190                 if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
1191                         goto fail;
1192
1193                 /* we have processed a num of hugepages of this size, so inc offset */
1194                 hp_offset += hpi->num_pages[0];
1195 #endif
1196         }
1197
1198 #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
1199         nr_hugefiles = 0;
1200         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1201                 nr_hugefiles += new_pages_count[i];
1202         }
1203 #else
1204         nr_hugefiles = nr_hugepages;
1205 #endif
1206
1207
1208         /* clean out the numbers of pages */
1209         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1210                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1211                         internal_config.hugepage_info[i].num_pages[j] = 0;
1212
1213         /* get hugepages for each socket */
1214         for (i = 0; i < nr_hugefiles; i++) {
1215                 int socket = tmp_hp[i].socket_id;
1216
1217                 /* find a hugepage info with right size and increment num_pages */
1218                 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1219                                 (int)internal_config.num_hugepage_sizes);
1220                 for (j = 0; j < nb_hpsizes; j++) {
1221                         if (tmp_hp[i].size ==
1222                                         internal_config.hugepage_info[j].hugepage_sz) {
1223 #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
1224                                         internal_config.hugepage_info[j].num_pages[socket] +=
1225                                                 tmp_hp[i].repeated;
1226 #else
1227                                 internal_config.hugepage_info[j].num_pages[socket]++;
1228 #endif
1229                         }
1230                 }
1231         }
1232
1233         /* make a copy of socket_mem, needed for number of pages calculation */
1234         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1235                 memory[i] = internal_config.socket_mem[i];
1236
1237         /* calculate final number of pages */
1238         nr_hugepages = calc_num_pages_per_socket(memory,
1239                         internal_config.hugepage_info, used_hp,
1240                         internal_config.num_hugepage_sizes);
1241
1242         /* error if not enough memory available */
1243         if (nr_hugepages < 0)
1244                 goto fail;
1245
1246         /* reporting in! */
1247         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1248                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1249                         if (used_hp[i].num_pages[j] > 0) {
1250                                 RTE_LOG(DEBUG, EAL,
1251                                         "Requesting %u pages of size %uMB"
1252                                         " from socket %i\n",
1253                                         used_hp[i].num_pages[j],
1254                                         (unsigned)
1255                                         (used_hp[i].hugepage_sz / 0x100000),
1256                                         j);
1257                         }
1258                 }
1259         }
1260
1261         /* create shared memory */
1262         hugepage = create_shared_memory(eal_hugepage_info_path(),
1263                         nr_hugefiles * sizeof(struct hugepage_file));
1264
1265         if (hugepage == NULL) {
1266                 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1267                 goto fail;
1268         }
1269         memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1270
1271         /*
1272          * unmap pages that we won't need (looks at used_hp).
1273          * also, sets final_va to NULL on pages that were unmapped.
1274          */
1275         if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1276                         internal_config.num_hugepage_sizes) < 0) {
1277                 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1278                 goto fail;
1279         }
1280
1281         /*
1282          * copy stuff from malloc'd hugepage* to the actual shared memory.
1283          * this procedure only copies those hugepages that have final_va
1284          * not NULL. has overflow protection.
1285          */
1286         if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1287                         tmp_hp, nr_hugefiles) < 0) {
1288                 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1289                 goto fail;
1290         }
1291
1292         /* free the temporary hugepage table */
1293         free(tmp_hp);
1294         tmp_hp = NULL;
1295
1296         /* find earliest free memseg - this is needed because in case of IVSHMEM,
1297          * segments might have already been initialized */
1298         for (j = 0; j < RTE_MAX_MEMSEG; j++)
1299                 if (mcfg->memseg[j].addr == NULL) {
1300                         /* move to previous segment and exit loop */
1301                         j--;
1302                         break;
1303                 }
1304
1305         for (i = 0; i < nr_hugefiles; i++) {
1306                 new_memseg = 0;
1307
1308                 /* if this is a new section, create a new memseg */
1309                 if (i == 0)
1310                         new_memseg = 1;
1311                 else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
1312                         new_memseg = 1;
1313                 else if (hugepage[i].size != hugepage[i-1].size)
1314                         new_memseg = 1;
1315
1316 #ifdef RTE_ARCH_PPC_64
1317                 /* On PPC64 architecture, the mmap always start from higher
1318                  * virtual address to lower address. Here, both the physical
1319                  * address and virtual address are in descending order */
1320                 else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
1321                     hugepage[i].size)
1322                         new_memseg = 1;
1323                 else if (((unsigned long)hugepage[i-1].final_va -
1324                     (unsigned long)hugepage[i].final_va) != hugepage[i].size)
1325                         new_memseg = 1;
1326 #else
1327                 else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
1328                     hugepage[i].size)
1329                         new_memseg = 1;
1330                 else if (((unsigned long)hugepage[i].final_va -
1331                     (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
1332                         new_memseg = 1;
1333 #endif
1334
1335                 if (new_memseg) {
1336                         j += 1;
1337                         if (j == RTE_MAX_MEMSEG)
1338                                 break;
1339
1340                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1341                         mcfg->memseg[j].addr = hugepage[i].final_va;
1342 #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
1343                         mcfg->memseg[j].len = hugepage[i].size * hugepage[i].repeated;
1344 #else
1345                         mcfg->memseg[j].len = hugepage[i].size;
1346 #endif
1347                         mcfg->memseg[j].socket_id = hugepage[i].socket_id;
1348                         mcfg->memseg[j].hugepage_sz = hugepage[i].size;
1349                 }
1350                 /* continuation of previous memseg */
1351                 else {
1352 #ifdef RTE_ARCH_PPC_64
1353                 /* Use the phy and virt address of the last page as segment
1354                  * address for IBM Power architecture */
1355                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1356                         mcfg->memseg[j].addr = hugepage[i].final_va;
1357 #endif
1358                         mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
1359                 }
1360                 hugepage[i].memseg_id = j;
1361         }
1362
1363         if (i < nr_hugefiles) {
1364                 RTE_LOG(ERR, EAL, "Can only reserve %d pages "
1365                         "from %d requested\n"
1366                         "Current %s=%d is not enough\n"
1367                         "Please either increase it or request less amount "
1368                         "of memory.\n",
1369                         i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
1370                         RTE_MAX_MEMSEG);
1371                 return -ENOMEM;
1372         }
1373
1374         return 0;
1375
1376 fail:
1377         if (tmp_hp)
1378                 free(tmp_hp);
1379         return -1;
1380 }
1381
1382 /*
1383  * uses fstat to report the size of a file on disk
1384  */
1385 static off_t
1386 getFileSize(int fd)
1387 {
1388         struct stat st;
1389         if (fstat(fd, &st) < 0)
1390                 return 0;
1391         return st.st_size;
1392 }
1393
1394 /*
1395  * This creates the memory mappings in the secondary process to match that of
1396  * the server process. It goes through each memory segment in the DPDK runtime
1397  * configuration and finds the hugepages which form that segment, mapping them
1398  * in order to form a contiguous block in the virtual memory space
1399  */
1400 int
1401 rte_eal_hugepage_attach(void)
1402 {
1403         const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1404         const struct hugepage_file *hp = NULL;
1405         unsigned num_hp = 0;
1406         unsigned i, s = 0; /* s used to track the segment number */
1407         off_t size;
1408         int fd, fd_zero = -1, fd_hugepage = -1;
1409
1410         if (aslr_enabled() > 0) {
1411                 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1412                                 "(ASLR) is enabled in the kernel.\n");
1413                 RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
1414                                 "into secondary processes\n");
1415         }
1416
1417         test_proc_pagemap_readable();
1418
1419         if (internal_config.xen_dom0_support) {
1420 #ifdef RTE_LIBRTE_XEN_DOM0
1421                 if (rte_xen_dom0_memory_attach() < 0) {
1422                         RTE_LOG(ERR, EAL,"Failed to attach memory setments of primay "
1423                                         "process\n");
1424                         return -1;
1425                 }
1426                 return 0;
1427 #endif
1428         }
1429
1430         fd_zero = open("/dev/zero", O_RDONLY);
1431         if (fd_zero < 0) {
1432                 RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
1433                 goto error;
1434         }
1435         fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
1436         if (fd_hugepage < 0) {
1437                 RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
1438                 goto error;
1439         }
1440
1441         /* map all segments into memory to make sure we get the addrs */
1442         for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
1443                 void *base_addr;
1444
1445                 /*
1446                  * the first memory segment with len==0 is the one that
1447                  * follows the last valid segment.
1448                  */
1449                 if (mcfg->memseg[s].len == 0)
1450                         break;
1451
1452 #ifdef RTE_LIBRTE_IVSHMEM
1453                 /*
1454                  * if segment has ioremap address set, it's an IVSHMEM segment and
1455                  * doesn't need mapping as it was already mapped earlier
1456                  */
1457                 if (mcfg->memseg[s].ioremap_addr != 0)
1458                         continue;
1459 #endif
1460
1461                 /*
1462                  * fdzero is mmapped to get a contiguous block of virtual
1463                  * addresses of the appropriate memseg size.
1464                  * use mmap to get identical addresses as the primary process.
1465                  */
1466                 base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
1467                                  PROT_READ, MAP_PRIVATE, fd_zero, 0);
1468                 if (base_addr == MAP_FAILED ||
1469                     base_addr != mcfg->memseg[s].addr) {
1470                         RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1471                                 "in /dev/zero to requested address [%p]: '%s'\n",
1472                                 (unsigned long long)mcfg->memseg[s].len,
1473                                 mcfg->memseg[s].addr, strerror(errno));
1474                         if (aslr_enabled() > 0) {
1475                                 RTE_LOG(ERR, EAL, "It is recommended to "
1476                                         "disable ASLR in the kernel "
1477                                         "and retry running both primary "
1478                                         "and secondary processes\n");
1479                         }
1480                         goto error;
1481                 }
1482         }
1483
1484         size = getFileSize(fd_hugepage);
1485         hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1486         if (hp == NULL) {
1487                 RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
1488                 goto error;
1489         }
1490
1491         num_hp = size / sizeof(struct hugepage_file);
1492         RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1493
1494         s = 0;
1495         while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
1496                 void *addr, *base_addr;
1497                 uintptr_t offset = 0;
1498                 size_t mapping_size;
1499 #ifdef RTE_LIBRTE_IVSHMEM
1500                 /*
1501                  * if segment has ioremap address set, it's an IVSHMEM segment and
1502                  * doesn't need mapping as it was already mapped earlier
1503                  */
1504                 if (mcfg->memseg[s].ioremap_addr != 0) {
1505                         s++;
1506                         continue;
1507                 }
1508 #endif
1509                 /*
1510                  * free previously mapped memory so we can map the
1511                  * hugepages into the space
1512                  */
1513                 base_addr = mcfg->memseg[s].addr;
1514                 munmap(base_addr, mcfg->memseg[s].len);
1515
1516                 /* find the hugepages for this segment and map them
1517                  * we don't need to worry about order, as the server sorted the
1518                  * entries before it did the second mmap of them */
1519                 for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
1520                         if (hp[i].memseg_id == (int)s){
1521                                 fd = open(hp[i].filepath, O_RDWR);
1522                                 if (fd < 0) {
1523                                         RTE_LOG(ERR, EAL, "Could not open %s\n",
1524                                                 hp[i].filepath);
1525                                         goto error;
1526                                 }
1527 #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
1528                                 mapping_size = hp[i].size * hp[i].repeated;
1529 #else
1530                                 mapping_size = hp[i].size;
1531 #endif
1532                                 addr = mmap(RTE_PTR_ADD(base_addr, offset),
1533                                                 mapping_size, PROT_READ | PROT_WRITE,
1534                                                 MAP_SHARED, fd, 0);
1535                                 close(fd); /* close file both on success and on failure */
1536                                 if (addr == MAP_FAILED ||
1537                                                 addr != RTE_PTR_ADD(base_addr, offset)) {
1538                                         RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1539                                                 hp[i].filepath);
1540                                         goto error;
1541                                 }
1542                                 offset+=mapping_size;
1543                         }
1544                 }
1545                 RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
1546                                 (unsigned long long)mcfg->memseg[s].len);
1547                 s++;
1548         }
1549         /* unmap the hugepage config file, since we are done using it */
1550         munmap((void *)(uintptr_t)hp, size);
1551         close(fd_zero);
1552         close(fd_hugepage);
1553         return 0;
1554
1555 error:
1556         if (fd_zero >= 0)
1557                 close(fd_zero);
1558         if (fd_hugepage >= 0)
1559                 close(fd_hugepage);
1560         return -1;
1561 }