1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2016 Intel Corporation
3 * Copyright(c) 2018 Arm Limited
11 #include <sys/queue.h>
13 #include <rte_common.h>
14 #include <rte_memory.h> /* for definition of RTE_CACHE_LINE_SIZE */
16 #include <rte_prefetch.h>
17 #include <rte_branch_prediction.h>
18 #include <rte_malloc.h>
20 #include <rte_eal_memconfig.h>
21 #include <rte_per_lcore.h>
22 #include <rte_errno.h>
23 #include <rte_string_fns.h>
24 #include <rte_cpuflags.h>
25 #include <rte_rwlock.h>
26 #include <rte_spinlock.h>
27 #include <rte_ring_elem.h>
28 #include <rte_compat.h>
30 #include <rte_tailq.h>
33 #include "rte_cuckoo_hash.h"
35 #define FOR_EACH_BUCKET(CURRENT_BKT, START_BUCKET) \
36 for (CURRENT_BKT = START_BUCKET; \
37 CURRENT_BKT != NULL; \
38 CURRENT_BKT = CURRENT_BKT->next)
40 TAILQ_HEAD(rte_hash_list, rte_tailq_entry);
42 static struct rte_tailq_elem rte_hash_tailq = {
45 EAL_REGISTER_TAILQ(rte_hash_tailq)
48 rte_hash_find_existing(const char *name)
50 struct rte_hash *h = NULL;
51 struct rte_tailq_entry *te;
52 struct rte_hash_list *hash_list;
54 hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
56 rte_mcfg_tailq_read_lock();
57 TAILQ_FOREACH(te, hash_list, next) {
58 h = (struct rte_hash *) te->data;
59 if (strncmp(name, h->name, RTE_HASH_NAMESIZE) == 0)
62 rte_mcfg_tailq_read_unlock();
71 static inline struct rte_hash_bucket *
72 rte_hash_get_last_bkt(struct rte_hash_bucket *lst_bkt)
74 while (lst_bkt->next != NULL)
75 lst_bkt = lst_bkt->next;
79 void rte_hash_set_cmp_func(struct rte_hash *h, rte_hash_cmp_eq_t func)
81 h->cmp_jump_table_idx = KEY_CUSTOM;
82 h->rte_hash_custom_cmp_eq = func;
86 rte_hash_cmp_eq(const void *key1, const void *key2, const struct rte_hash *h)
88 if (h->cmp_jump_table_idx == KEY_CUSTOM)
89 return h->rte_hash_custom_cmp_eq(key1, key2, h->key_len);
91 return cmp_jump_table[h->cmp_jump_table_idx](key1, key2, h->key_len);
95 * We use higher 16 bits of hash as the signature value stored in table.
96 * We use the lower bits for the primary bucket
97 * location. Then we XOR primary bucket location and the signature
98 * to get the secondary bucket location. This is same as
99 * proposed in Bin Fan, et al's paper
100 * "MemC3: Compact and Concurrent MemCache with Dumber Caching and
101 * Smarter Hashing". The benefit to use
102 * XOR is that one could derive the alternative bucket location
103 * by only using the current bucket location and the signature.
105 static inline uint16_t
106 get_short_sig(const hash_sig_t hash)
111 static inline uint32_t
112 get_prim_bucket_index(const struct rte_hash *h, const hash_sig_t hash)
114 return hash & h->bucket_bitmask;
117 static inline uint32_t
118 get_alt_bucket_index(const struct rte_hash *h,
119 uint32_t cur_bkt_idx, uint16_t sig)
121 return (cur_bkt_idx ^ sig) & h->bucket_bitmask;
125 rte_hash_create(const struct rte_hash_parameters *params)
127 struct rte_hash *h = NULL;
128 struct rte_tailq_entry *te = NULL;
129 struct rte_hash_list *hash_list;
130 struct rte_ring *r = NULL;
131 struct rte_ring *r_ext = NULL;
132 char hash_name[RTE_HASH_NAMESIZE];
134 void *buckets = NULL;
135 void *buckets_ext = NULL;
136 char ring_name[RTE_RING_NAMESIZE];
137 char ext_ring_name[RTE_RING_NAMESIZE];
138 unsigned num_key_slots;
139 unsigned int hw_trans_mem_support = 0, use_local_cache = 0;
140 unsigned int ext_table_support = 0;
141 unsigned int readwrite_concur_support = 0;
142 unsigned int writer_takes_lock = 0;
143 unsigned int no_free_on_del = 0;
144 uint32_t *ext_bkt_to_free = NULL;
145 uint32_t *tbl_chng_cnt = NULL;
146 unsigned int readwrite_concur_lf_support = 0;
149 rte_hash_function default_hash_func = (rte_hash_function)rte_jhash;
151 hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
153 if (params == NULL) {
154 RTE_LOG(ERR, HASH, "rte_hash_create has no parameters\n");
158 /* Check for valid parameters */
159 if ((params->entries > RTE_HASH_ENTRIES_MAX) ||
160 (params->entries < RTE_HASH_BUCKET_ENTRIES) ||
161 (params->key_len == 0)) {
163 RTE_LOG(ERR, HASH, "rte_hash_create has invalid parameters\n");
167 /* Validate correct usage of extra options */
168 if ((params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY) &&
169 (params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY_LF)) {
171 RTE_LOG(ERR, HASH, "rte_hash_create: choose rw concurrency or "
172 "rw concurrency lock free\n");
176 /* Check extra flags field to check extra options. */
177 if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT)
178 hw_trans_mem_support = 1;
180 if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD) {
182 writer_takes_lock = 1;
185 if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY) {
186 readwrite_concur_support = 1;
187 writer_takes_lock = 1;
190 if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_EXT_TABLE)
191 ext_table_support = 1;
193 if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_NO_FREE_ON_DEL)
196 if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY_LF) {
197 readwrite_concur_lf_support = 1;
198 /* Enable not freeing internal memory/index on delete */
202 /* Store all keys and leave the first entry as a dummy entry for lookup_bulk */
205 * Increase number of slots by total number of indices
206 * that can be stored in the lcore caches
207 * except for the first cache
209 num_key_slots = params->entries + (RTE_MAX_LCORE - 1) *
210 (LCORE_CACHE_SIZE - 1) + 1;
212 num_key_slots = params->entries + 1;
214 snprintf(ring_name, sizeof(ring_name), "HT_%s", params->name);
215 /* Create ring (Dummy slot index is not enqueued) */
216 r = rte_ring_create_elem(ring_name, sizeof(uint32_t),
217 rte_align32pow2(num_key_slots), params->socket_id, 0);
219 RTE_LOG(ERR, HASH, "memory allocation failed\n");
223 const uint32_t num_buckets = rte_align32pow2(params->entries) /
224 RTE_HASH_BUCKET_ENTRIES;
226 /* Create ring for extendable buckets. */
227 if (ext_table_support) {
228 snprintf(ext_ring_name, sizeof(ext_ring_name), "HT_EXT_%s",
230 r_ext = rte_ring_create_elem(ext_ring_name, sizeof(uint32_t),
231 rte_align32pow2(num_buckets + 1),
232 params->socket_id, 0);
235 RTE_LOG(ERR, HASH, "ext buckets memory allocation "
241 snprintf(hash_name, sizeof(hash_name), "HT_%s", params->name);
243 rte_mcfg_tailq_write_lock();
245 /* guarantee there's no existing: this is normally already checked
246 * by ring creation above */
247 TAILQ_FOREACH(te, hash_list, next) {
248 h = (struct rte_hash *) te->data;
249 if (strncmp(params->name, h->name, RTE_HASH_NAMESIZE) == 0)
259 te = rte_zmalloc("HASH_TAILQ_ENTRY", sizeof(*te), 0);
261 RTE_LOG(ERR, HASH, "tailq entry allocation failed\n");
265 h = (struct rte_hash *)rte_zmalloc_socket(hash_name, sizeof(struct rte_hash),
266 RTE_CACHE_LINE_SIZE, params->socket_id);
269 RTE_LOG(ERR, HASH, "memory allocation failed\n");
273 buckets = rte_zmalloc_socket(NULL,
274 num_buckets * sizeof(struct rte_hash_bucket),
275 RTE_CACHE_LINE_SIZE, params->socket_id);
277 if (buckets == NULL) {
278 RTE_LOG(ERR, HASH, "buckets memory allocation failed\n");
282 /* Allocate same number of extendable buckets */
283 if (ext_table_support) {
284 buckets_ext = rte_zmalloc_socket(NULL,
285 num_buckets * sizeof(struct rte_hash_bucket),
286 RTE_CACHE_LINE_SIZE, params->socket_id);
287 if (buckets_ext == NULL) {
288 RTE_LOG(ERR, HASH, "ext buckets memory allocation "
292 /* Populate ext bkt ring. We reserve 0 similar to the
293 * key-data slot, just in case in future we want to
294 * use bucket index for the linked list and 0 means NULL
297 for (i = 1; i <= num_buckets; i++)
298 rte_ring_sp_enqueue_elem(r_ext, &i, sizeof(uint32_t));
300 if (readwrite_concur_lf_support) {
301 ext_bkt_to_free = rte_zmalloc(NULL, sizeof(uint32_t) *
303 if (ext_bkt_to_free == NULL) {
304 RTE_LOG(ERR, HASH, "ext bkt to free memory allocation "
311 const uint32_t key_entry_size =
312 RTE_ALIGN(sizeof(struct rte_hash_key) + params->key_len,
314 const uint64_t key_tbl_size = (uint64_t) key_entry_size * num_key_slots;
316 k = rte_zmalloc_socket(NULL, key_tbl_size,
317 RTE_CACHE_LINE_SIZE, params->socket_id);
320 RTE_LOG(ERR, HASH, "memory allocation failed\n");
324 tbl_chng_cnt = rte_zmalloc_socket(NULL, sizeof(uint32_t),
325 RTE_CACHE_LINE_SIZE, params->socket_id);
327 if (tbl_chng_cnt == NULL) {
328 RTE_LOG(ERR, HASH, "memory allocation failed\n");
333 * If x86 architecture is used, select appropriate compare function,
334 * which may use x86 intrinsics, otherwise use memcmp
336 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
337 /* Select function to compare keys */
338 switch (params->key_len) {
340 h->cmp_jump_table_idx = KEY_16_BYTES;
343 h->cmp_jump_table_idx = KEY_32_BYTES;
346 h->cmp_jump_table_idx = KEY_48_BYTES;
349 h->cmp_jump_table_idx = KEY_64_BYTES;
352 h->cmp_jump_table_idx = KEY_80_BYTES;
355 h->cmp_jump_table_idx = KEY_96_BYTES;
358 h->cmp_jump_table_idx = KEY_112_BYTES;
361 h->cmp_jump_table_idx = KEY_128_BYTES;
364 /* If key is not multiple of 16, use generic memcmp */
365 h->cmp_jump_table_idx = KEY_OTHER_BYTES;
368 h->cmp_jump_table_idx = KEY_OTHER_BYTES;
371 if (use_local_cache) {
372 h->local_free_slots = rte_zmalloc_socket(NULL,
373 sizeof(struct lcore_cache) * RTE_MAX_LCORE,
374 RTE_CACHE_LINE_SIZE, params->socket_id);
377 /* Default hash function */
378 #if defined(RTE_ARCH_X86)
379 default_hash_func = (rte_hash_function)rte_hash_crc;
380 #elif defined(RTE_ARCH_ARM64)
381 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_CRC32))
382 default_hash_func = (rte_hash_function)rte_hash_crc;
384 /* Setup hash context */
385 strlcpy(h->name, params->name, sizeof(h->name));
386 h->entries = params->entries;
387 h->key_len = params->key_len;
388 h->key_entry_size = key_entry_size;
389 h->hash_func_init_val = params->hash_func_init_val;
391 h->num_buckets = num_buckets;
392 h->bucket_bitmask = h->num_buckets - 1;
393 h->buckets = buckets;
394 h->buckets_ext = buckets_ext;
395 h->free_ext_bkts = r_ext;
396 h->hash_func = (params->hash_func == NULL) ?
397 default_hash_func : params->hash_func;
400 h->ext_bkt_to_free = ext_bkt_to_free;
401 h->tbl_chng_cnt = tbl_chng_cnt;
402 *h->tbl_chng_cnt = 0;
403 h->hw_trans_mem_support = hw_trans_mem_support;
404 h->use_local_cache = use_local_cache;
405 h->readwrite_concur_support = readwrite_concur_support;
406 h->ext_table_support = ext_table_support;
407 h->writer_takes_lock = writer_takes_lock;
408 h->no_free_on_del = no_free_on_del;
409 h->readwrite_concur_lf_support = readwrite_concur_lf_support;
411 #if defined(RTE_ARCH_X86)
412 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE2))
413 h->sig_cmp_fn = RTE_HASH_COMPARE_SSE;
415 #elif defined(RTE_ARCH_ARM64)
416 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON))
417 h->sig_cmp_fn = RTE_HASH_COMPARE_NEON;
420 h->sig_cmp_fn = RTE_HASH_COMPARE_SCALAR;
422 /* Writer threads need to take the lock when:
423 * 1) RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY is enabled OR
424 * 2) RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD is enabled
426 if (h->writer_takes_lock) {
427 h->readwrite_lock = rte_malloc(NULL, sizeof(rte_rwlock_t),
428 RTE_CACHE_LINE_SIZE);
429 if (h->readwrite_lock == NULL)
432 rte_rwlock_init(h->readwrite_lock);
435 /* Populate free slots ring. Entry zero is reserved for key misses. */
436 for (i = 1; i < num_key_slots; i++)
437 rte_ring_sp_enqueue_elem(r, &i, sizeof(uint32_t));
439 te->data = (void *) h;
440 TAILQ_INSERT_TAIL(hash_list, te, next);
441 rte_mcfg_tailq_write_unlock();
445 rte_mcfg_tailq_write_unlock();
448 rte_ring_free(r_ext);
452 rte_free(buckets_ext);
454 rte_free(tbl_chng_cnt);
455 rte_free(ext_bkt_to_free);
460 rte_hash_free(struct rte_hash *h)
462 struct rte_tailq_entry *te;
463 struct rte_hash_list *hash_list;
468 hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
470 rte_mcfg_tailq_write_lock();
472 /* find out tailq entry */
473 TAILQ_FOREACH(te, hash_list, next) {
474 if (te->data == (void *) h)
479 rte_mcfg_tailq_write_unlock();
483 TAILQ_REMOVE(hash_list, te, next);
485 rte_mcfg_tailq_write_unlock();
487 if (h->use_local_cache)
488 rte_free(h->local_free_slots);
489 if (h->writer_takes_lock)
490 rte_free(h->readwrite_lock);
491 rte_ring_free(h->free_slots);
492 rte_ring_free(h->free_ext_bkts);
493 rte_free(h->key_store);
494 rte_free(h->buckets);
495 rte_free(h->buckets_ext);
496 rte_free(h->tbl_chng_cnt);
497 rte_free(h->ext_bkt_to_free);
503 rte_hash_hash(const struct rte_hash *h, const void *key)
505 /* calc hash result by key */
506 return h->hash_func(key, h->key_len, h->hash_func_init_val);
510 rte_hash_max_key_id(const struct rte_hash *h)
512 RETURN_IF_TRUE((h == NULL), -EINVAL);
513 if (h->use_local_cache)
515 * Increase number of slots by total number of indices
516 * that can be stored in the lcore caches
518 return (h->entries + ((RTE_MAX_LCORE - 1) *
519 (LCORE_CACHE_SIZE - 1)));
525 rte_hash_count(const struct rte_hash *h)
527 uint32_t tot_ring_cnt, cached_cnt = 0;
533 if (h->use_local_cache) {
534 tot_ring_cnt = h->entries + (RTE_MAX_LCORE - 1) *
535 (LCORE_CACHE_SIZE - 1);
536 for (i = 0; i < RTE_MAX_LCORE; i++)
537 cached_cnt += h->local_free_slots[i].len;
539 ret = tot_ring_cnt - rte_ring_count(h->free_slots) -
542 tot_ring_cnt = h->entries;
543 ret = tot_ring_cnt - rte_ring_count(h->free_slots);
548 /* Read write locks implemented using rte_rwlock */
550 __hash_rw_writer_lock(const struct rte_hash *h)
552 if (h->writer_takes_lock && h->hw_trans_mem_support)
553 rte_rwlock_write_lock_tm(h->readwrite_lock);
554 else if (h->writer_takes_lock)
555 rte_rwlock_write_lock(h->readwrite_lock);
559 __hash_rw_reader_lock(const struct rte_hash *h)
561 if (h->readwrite_concur_support && h->hw_trans_mem_support)
562 rte_rwlock_read_lock_tm(h->readwrite_lock);
563 else if (h->readwrite_concur_support)
564 rte_rwlock_read_lock(h->readwrite_lock);
568 __hash_rw_writer_unlock(const struct rte_hash *h)
570 if (h->writer_takes_lock && h->hw_trans_mem_support)
571 rte_rwlock_write_unlock_tm(h->readwrite_lock);
572 else if (h->writer_takes_lock)
573 rte_rwlock_write_unlock(h->readwrite_lock);
577 __hash_rw_reader_unlock(const struct rte_hash *h)
579 if (h->readwrite_concur_support && h->hw_trans_mem_support)
580 rte_rwlock_read_unlock_tm(h->readwrite_lock);
581 else if (h->readwrite_concur_support)
582 rte_rwlock_read_unlock(h->readwrite_lock);
586 rte_hash_reset(struct rte_hash *h)
588 uint32_t tot_ring_cnt, i;
593 __hash_rw_writer_lock(h);
594 memset(h->buckets, 0, h->num_buckets * sizeof(struct rte_hash_bucket));
595 memset(h->key_store, 0, h->key_entry_size * (h->entries + 1));
596 *h->tbl_chng_cnt = 0;
598 /* reset the free ring */
599 rte_ring_reset(h->free_slots);
601 /* flush free extendable bucket ring and memory */
602 if (h->ext_table_support) {
603 memset(h->buckets_ext, 0, h->num_buckets *
604 sizeof(struct rte_hash_bucket));
605 rte_ring_reset(h->free_ext_bkts);
608 /* Repopulate the free slots ring. Entry zero is reserved for key misses */
609 if (h->use_local_cache)
610 tot_ring_cnt = h->entries + (RTE_MAX_LCORE - 1) *
611 (LCORE_CACHE_SIZE - 1);
613 tot_ring_cnt = h->entries;
615 for (i = 1; i < tot_ring_cnt + 1; i++)
616 rte_ring_sp_enqueue_elem(h->free_slots, &i, sizeof(uint32_t));
618 /* Repopulate the free ext bkt ring. */
619 if (h->ext_table_support) {
620 for (i = 1; i <= h->num_buckets; i++)
621 rte_ring_sp_enqueue_elem(h->free_ext_bkts, &i,
625 if (h->use_local_cache) {
626 /* Reset local caches per lcore */
627 for (i = 0; i < RTE_MAX_LCORE; i++)
628 h->local_free_slots[i].len = 0;
630 __hash_rw_writer_unlock(h);
634 * Function called to enqueue back an index in the cache/ring,
635 * as slot has not being used and it can be used in the
636 * next addition attempt.
639 enqueue_slot_back(const struct rte_hash *h,
640 struct lcore_cache *cached_free_slots,
643 if (h->use_local_cache) {
644 cached_free_slots->objs[cached_free_slots->len] = slot_id;
645 cached_free_slots->len++;
647 rte_ring_sp_enqueue_elem(h->free_slots, &slot_id,
651 /* Search a key from bucket and update its data.
652 * Writer holds the lock before calling this.
654 static inline int32_t
655 search_and_update(const struct rte_hash *h, void *data, const void *key,
656 struct rte_hash_bucket *bkt, uint16_t sig)
659 struct rte_hash_key *k, *keys = h->key_store;
661 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
662 if (bkt->sig_current[i] == sig) {
663 k = (struct rte_hash_key *) ((char *)keys +
664 bkt->key_idx[i] * h->key_entry_size);
665 if (rte_hash_cmp_eq(key, k->key, h) == 0) {
666 /* The store to application data at *data
667 * should not leak after the store to pdata
668 * in the key store. i.e. pdata is the guard
669 * variable. Release the application data
672 __atomic_store_n(&k->pdata,
676 * Return index where key is stored,
677 * subtracting the first dummy index
679 return bkt->key_idx[i] - 1;
686 /* Only tries to insert at one bucket (@prim_bkt) without trying to push
688 * return 1 if matching existing key, return 0 if succeeds, return -1 for no
691 static inline int32_t
692 rte_hash_cuckoo_insert_mw(const struct rte_hash *h,
693 struct rte_hash_bucket *prim_bkt,
694 struct rte_hash_bucket *sec_bkt,
695 const struct rte_hash_key *key, void *data,
696 uint16_t sig, uint32_t new_idx,
700 struct rte_hash_bucket *cur_bkt;
703 __hash_rw_writer_lock(h);
704 /* Check if key was inserted after last check but before this
705 * protected region in case of inserting duplicated keys.
707 ret = search_and_update(h, data, key, prim_bkt, sig);
709 __hash_rw_writer_unlock(h);
714 FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
715 ret = search_and_update(h, data, key, cur_bkt, sig);
717 __hash_rw_writer_unlock(h);
723 /* Insert new entry if there is room in the primary
726 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
727 /* Check if slot is available */
728 if (likely(prim_bkt->key_idx[i] == EMPTY_SLOT)) {
729 prim_bkt->sig_current[i] = sig;
730 /* Store to signature and key should not
731 * leak after the store to key_idx. i.e.
732 * key_idx is the guard variable for signature
735 __atomic_store_n(&prim_bkt->key_idx[i],
741 __hash_rw_writer_unlock(h);
743 if (i != RTE_HASH_BUCKET_ENTRIES)
750 /* Shift buckets along provided cuckoo_path (@leaf and @leaf_slot) and fill
751 * the path head with new entry (sig, alt_hash, new_idx)
752 * return 1 if matched key found, return -1 if cuckoo path invalided and fail,
753 * return 0 if succeeds.
756 rte_hash_cuckoo_move_insert_mw(const struct rte_hash *h,
757 struct rte_hash_bucket *bkt,
758 struct rte_hash_bucket *alt_bkt,
759 const struct rte_hash_key *key, void *data,
760 struct queue_node *leaf, uint32_t leaf_slot,
761 uint16_t sig, uint32_t new_idx,
764 uint32_t prev_alt_bkt_idx;
765 struct rte_hash_bucket *cur_bkt;
766 struct queue_node *prev_node, *curr_node = leaf;
767 struct rte_hash_bucket *prev_bkt, *curr_bkt = leaf->bkt;
768 uint32_t prev_slot, curr_slot = leaf_slot;
771 __hash_rw_writer_lock(h);
773 /* In case empty slot was gone before entering protected region */
774 if (curr_bkt->key_idx[curr_slot] != EMPTY_SLOT) {
775 __hash_rw_writer_unlock(h);
779 /* Check if key was inserted after last check but before this
782 ret = search_and_update(h, data, key, bkt, sig);
784 __hash_rw_writer_unlock(h);
789 FOR_EACH_BUCKET(cur_bkt, alt_bkt) {
790 ret = search_and_update(h, data, key, cur_bkt, sig);
792 __hash_rw_writer_unlock(h);
798 while (likely(curr_node->prev != NULL)) {
799 prev_node = curr_node->prev;
800 prev_bkt = prev_node->bkt;
801 prev_slot = curr_node->prev_slot;
803 prev_alt_bkt_idx = get_alt_bucket_index(h,
804 prev_node->cur_bkt_idx,
805 prev_bkt->sig_current[prev_slot]);
807 if (unlikely(&h->buckets[prev_alt_bkt_idx]
809 /* revert it to empty, otherwise duplicated keys */
810 __atomic_store_n(&curr_bkt->key_idx[curr_slot],
813 __hash_rw_writer_unlock(h);
817 if (h->readwrite_concur_lf_support) {
818 /* Inform the previous move. The current move need
819 * not be informed now as the current bucket entry
820 * is present in both primary and secondary.
821 * Since there is one writer, load acquires on
822 * tbl_chng_cnt are not required.
824 __atomic_store_n(h->tbl_chng_cnt,
825 *h->tbl_chng_cnt + 1,
827 /* The store to sig_current should not
828 * move above the store to tbl_chng_cnt.
830 __atomic_thread_fence(__ATOMIC_RELEASE);
833 /* Need to swap current/alt sig to allow later
834 * Cuckoo insert to move elements back to its
835 * primary bucket if available
837 curr_bkt->sig_current[curr_slot] =
838 prev_bkt->sig_current[prev_slot];
839 /* Release the updated bucket entry */
840 __atomic_store_n(&curr_bkt->key_idx[curr_slot],
841 prev_bkt->key_idx[prev_slot],
844 curr_slot = prev_slot;
845 curr_node = prev_node;
846 curr_bkt = curr_node->bkt;
849 if (h->readwrite_concur_lf_support) {
850 /* Inform the previous move. The current move need
851 * not be informed now as the current bucket entry
852 * is present in both primary and secondary.
853 * Since there is one writer, load acquires on
854 * tbl_chng_cnt are not required.
856 __atomic_store_n(h->tbl_chng_cnt,
857 *h->tbl_chng_cnt + 1,
859 /* The store to sig_current should not
860 * move above the store to tbl_chng_cnt.
862 __atomic_thread_fence(__ATOMIC_RELEASE);
865 curr_bkt->sig_current[curr_slot] = sig;
866 /* Release the new bucket entry */
867 __atomic_store_n(&curr_bkt->key_idx[curr_slot],
871 __hash_rw_writer_unlock(h);
878 * Make space for new key, using bfs Cuckoo Search and Multi-Writer safe
882 rte_hash_cuckoo_make_space_mw(const struct rte_hash *h,
883 struct rte_hash_bucket *bkt,
884 struct rte_hash_bucket *sec_bkt,
885 const struct rte_hash_key *key, void *data,
886 uint16_t sig, uint32_t bucket_idx,
887 uint32_t new_idx, int32_t *ret_val)
890 struct queue_node queue[RTE_HASH_BFS_QUEUE_MAX_LEN];
891 struct queue_node *tail, *head;
892 struct rte_hash_bucket *curr_bkt, *alt_bkt;
893 uint32_t cur_idx, alt_idx;
899 tail->prev_slot = -1;
900 tail->cur_bkt_idx = bucket_idx;
902 /* Cuckoo bfs Search */
903 while (likely(tail != head && head <
904 queue + RTE_HASH_BFS_QUEUE_MAX_LEN -
905 RTE_HASH_BUCKET_ENTRIES)) {
906 curr_bkt = tail->bkt;
907 cur_idx = tail->cur_bkt_idx;
908 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
909 if (curr_bkt->key_idx[i] == EMPTY_SLOT) {
910 int32_t ret = rte_hash_cuckoo_move_insert_mw(h,
911 bkt, sec_bkt, key, data,
914 if (likely(ret != -1))
918 /* Enqueue new node and keep prev node info */
919 alt_idx = get_alt_bucket_index(h, cur_idx,
920 curr_bkt->sig_current[i]);
921 alt_bkt = &(h->buckets[alt_idx]);
923 head->cur_bkt_idx = alt_idx;
934 static inline int32_t
935 __rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key,
936 hash_sig_t sig, void *data)
939 uint32_t prim_bucket_idx, sec_bucket_idx;
940 struct rte_hash_bucket *prim_bkt, *sec_bkt, *cur_bkt;
941 struct rte_hash_key *new_k, *keys = h->key_store;
948 struct lcore_cache *cached_free_slots = NULL;
950 struct rte_hash_bucket *last;
952 short_sig = get_short_sig(sig);
953 prim_bucket_idx = get_prim_bucket_index(h, sig);
954 sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig);
955 prim_bkt = &h->buckets[prim_bucket_idx];
956 sec_bkt = &h->buckets[sec_bucket_idx];
957 rte_prefetch0(prim_bkt);
958 rte_prefetch0(sec_bkt);
960 /* Check if key is already inserted in primary location */
961 __hash_rw_writer_lock(h);
962 ret = search_and_update(h, data, key, prim_bkt, short_sig);
964 __hash_rw_writer_unlock(h);
968 /* Check if key is already inserted in secondary location */
969 FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
970 ret = search_and_update(h, data, key, cur_bkt, short_sig);
972 __hash_rw_writer_unlock(h);
977 __hash_rw_writer_unlock(h);
979 /* Did not find a match, so get a new slot for storing the new key */
980 if (h->use_local_cache) {
981 lcore_id = rte_lcore_id();
982 cached_free_slots = &h->local_free_slots[lcore_id];
983 /* Try to get a free slot from the local cache */
984 if (cached_free_slots->len == 0) {
985 /* Need to get another burst of free slots from global ring */
986 n_slots = rte_ring_mc_dequeue_burst_elem(h->free_slots,
987 cached_free_slots->objs,
989 LCORE_CACHE_SIZE, NULL);
994 cached_free_slots->len += n_slots;
997 /* Get a free slot from the local cache */
998 cached_free_slots->len--;
999 slot_id = cached_free_slots->objs[cached_free_slots->len];
1001 if (rte_ring_sc_dequeue_elem(h->free_slots, &slot_id,
1002 sizeof(uint32_t)) != 0) {
1007 new_k = RTE_PTR_ADD(keys, slot_id * h->key_entry_size);
1008 /* The store to application data (by the application) at *data should
1009 * not leak after the store of pdata in the key store. i.e. pdata is
1010 * the guard variable. Release the application data to the readers.
1012 __atomic_store_n(&new_k->pdata,
1016 memcpy(new_k->key, key, h->key_len);
1018 /* Find an empty slot and insert */
1019 ret = rte_hash_cuckoo_insert_mw(h, prim_bkt, sec_bkt, key, data,
1020 short_sig, slot_id, &ret_val);
1023 else if (ret == 1) {
1024 enqueue_slot_back(h, cached_free_slots, slot_id);
1028 /* Primary bucket full, need to make space for new entry */
1029 ret = rte_hash_cuckoo_make_space_mw(h, prim_bkt, sec_bkt, key, data,
1030 short_sig, prim_bucket_idx, slot_id, &ret_val);
1033 else if (ret == 1) {
1034 enqueue_slot_back(h, cached_free_slots, slot_id);
1038 /* Also search secondary bucket to get better occupancy */
1039 ret = rte_hash_cuckoo_make_space_mw(h, sec_bkt, prim_bkt, key, data,
1040 short_sig, sec_bucket_idx, slot_id, &ret_val);
1044 else if (ret == 1) {
1045 enqueue_slot_back(h, cached_free_slots, slot_id);
1049 /* if ext table not enabled, we failed the insertion */
1050 if (!h->ext_table_support) {
1051 enqueue_slot_back(h, cached_free_slots, slot_id);
1055 /* Now we need to go through the extendable bucket. Protection is needed
1056 * to protect all extendable bucket processes.
1058 __hash_rw_writer_lock(h);
1059 /* We check for duplicates again since could be inserted before the lock */
1060 ret = search_and_update(h, data, key, prim_bkt, short_sig);
1062 enqueue_slot_back(h, cached_free_slots, slot_id);
1066 FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
1067 ret = search_and_update(h, data, key, cur_bkt, short_sig);
1069 enqueue_slot_back(h, cached_free_slots, slot_id);
1074 /* Search sec and ext buckets to find an empty entry to insert. */
1075 FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
1076 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
1077 /* Check if slot is available */
1078 if (likely(cur_bkt->key_idx[i] == EMPTY_SLOT)) {
1079 cur_bkt->sig_current[i] = short_sig;
1080 /* Store to signature and key should not
1081 * leak after the store to key_idx. i.e.
1082 * key_idx is the guard variable for signature
1085 __atomic_store_n(&cur_bkt->key_idx[i],
1088 __hash_rw_writer_unlock(h);
1094 /* Failed to get an empty entry from extendable buckets. Link a new
1095 * extendable bucket. We first get a free bucket from ring.
1097 if (rte_ring_sc_dequeue_elem(h->free_ext_bkts, &ext_bkt_id,
1098 sizeof(uint32_t)) != 0) {
1103 /* Use the first location of the new bucket */
1104 (h->buckets_ext[ext_bkt_id - 1]).sig_current[0] = short_sig;
1105 /* Store to signature and key should not leak after
1106 * the store to key_idx. i.e. key_idx is the guard variable
1107 * for signature and key.
1109 __atomic_store_n(&(h->buckets_ext[ext_bkt_id - 1]).key_idx[0],
1112 /* Link the new bucket to sec bucket linked list */
1113 last = rte_hash_get_last_bkt(sec_bkt);
1114 last->next = &h->buckets_ext[ext_bkt_id - 1];
1115 __hash_rw_writer_unlock(h);
1119 __hash_rw_writer_unlock(h);
1125 rte_hash_add_key_with_hash(const struct rte_hash *h,
1126 const void *key, hash_sig_t sig)
1128 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
1129 return __rte_hash_add_key_with_hash(h, key, sig, 0);
1133 rte_hash_add_key(const struct rte_hash *h, const void *key)
1135 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
1136 return __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), 0);
1140 rte_hash_add_key_with_hash_data(const struct rte_hash *h,
1141 const void *key, hash_sig_t sig, void *data)
1145 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
1146 ret = __rte_hash_add_key_with_hash(h, key, sig, data);
1154 rte_hash_add_key_data(const struct rte_hash *h, const void *key, void *data)
1158 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
1160 ret = __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), data);
1167 /* Search one bucket to find the match key - uses rw lock */
1168 static inline int32_t
1169 search_one_bucket_l(const struct rte_hash *h, const void *key,
1170 uint16_t sig, void **data,
1171 const struct rte_hash_bucket *bkt)
1174 struct rte_hash_key *k, *keys = h->key_store;
1176 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
1177 if (bkt->sig_current[i] == sig &&
1178 bkt->key_idx[i] != EMPTY_SLOT) {
1179 k = (struct rte_hash_key *) ((char *)keys +
1180 bkt->key_idx[i] * h->key_entry_size);
1182 if (rte_hash_cmp_eq(key, k->key, h) == 0) {
1186 * Return index where key is stored,
1187 * subtracting the first dummy index
1189 return bkt->key_idx[i] - 1;
1196 /* Search one bucket to find the match key */
1197 static inline int32_t
1198 search_one_bucket_lf(const struct rte_hash *h, const void *key, uint16_t sig,
1199 void **data, const struct rte_hash_bucket *bkt)
1203 struct rte_hash_key *k, *keys = h->key_store;
1205 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
1206 /* Signature comparison is done before the acquire-load
1207 * of the key index to achieve better performance.
1208 * This can result in the reader loading old signature
1209 * (which matches), while the key_idx is updated to a
1210 * value that belongs to a new key. However, the full
1211 * key comparison will ensure that the lookup fails.
1213 if (bkt->sig_current[i] == sig) {
1214 key_idx = __atomic_load_n(&bkt->key_idx[i],
1216 if (key_idx != EMPTY_SLOT) {
1217 k = (struct rte_hash_key *) ((char *)keys +
1218 key_idx * h->key_entry_size);
1220 if (rte_hash_cmp_eq(key, k->key, h) == 0) {
1222 *data = __atomic_load_n(
1227 * Return index where key is stored,
1228 * subtracting the first dummy index
1238 static inline int32_t
1239 __rte_hash_lookup_with_hash_l(const struct rte_hash *h, const void *key,
1240 hash_sig_t sig, void **data)
1242 uint32_t prim_bucket_idx, sec_bucket_idx;
1243 struct rte_hash_bucket *bkt, *cur_bkt;
1247 short_sig = get_short_sig(sig);
1248 prim_bucket_idx = get_prim_bucket_index(h, sig);
1249 sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig);
1251 bkt = &h->buckets[prim_bucket_idx];
1253 __hash_rw_reader_lock(h);
1255 /* Check if key is in primary location */
1256 ret = search_one_bucket_l(h, key, short_sig, data, bkt);
1258 __hash_rw_reader_unlock(h);
1261 /* Calculate secondary hash */
1262 bkt = &h->buckets[sec_bucket_idx];
1264 /* Check if key is in secondary location */
1265 FOR_EACH_BUCKET(cur_bkt, bkt) {
1266 ret = search_one_bucket_l(h, key, short_sig,
1269 __hash_rw_reader_unlock(h);
1274 __hash_rw_reader_unlock(h);
1279 static inline int32_t
1280 __rte_hash_lookup_with_hash_lf(const struct rte_hash *h, const void *key,
1281 hash_sig_t sig, void **data)
1283 uint32_t prim_bucket_idx, sec_bucket_idx;
1284 struct rte_hash_bucket *bkt, *cur_bkt;
1285 uint32_t cnt_b, cnt_a;
1289 short_sig = get_short_sig(sig);
1290 prim_bucket_idx = get_prim_bucket_index(h, sig);
1291 sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig);
1294 /* Load the table change counter before the lookup
1295 * starts. Acquire semantics will make sure that
1296 * loads in search_one_bucket are not hoisted.
1298 cnt_b = __atomic_load_n(h->tbl_chng_cnt,
1301 /* Check if key is in primary location */
1302 bkt = &h->buckets[prim_bucket_idx];
1303 ret = search_one_bucket_lf(h, key, short_sig, data, bkt);
1306 /* Calculate secondary hash */
1307 bkt = &h->buckets[sec_bucket_idx];
1309 /* Check if key is in secondary location */
1310 FOR_EACH_BUCKET(cur_bkt, bkt) {
1311 ret = search_one_bucket_lf(h, key, short_sig,
1317 /* The loads of sig_current in search_one_bucket
1318 * should not move below the load from tbl_chng_cnt.
1320 __atomic_thread_fence(__ATOMIC_ACQUIRE);
1321 /* Re-read the table change counter to check if the
1322 * table has changed during search. If yes, re-do
1324 * This load should not get hoisted. The load
1325 * acquires on cnt_b, key index in primary bucket
1326 * and key index in secondary bucket will make sure
1327 * that it does not get hoisted.
1329 cnt_a = __atomic_load_n(h->tbl_chng_cnt,
1331 } while (cnt_b != cnt_a);
1336 static inline int32_t
1337 __rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key,
1338 hash_sig_t sig, void **data)
1340 if (h->readwrite_concur_lf_support)
1341 return __rte_hash_lookup_with_hash_lf(h, key, sig, data);
1343 return __rte_hash_lookup_with_hash_l(h, key, sig, data);
1347 rte_hash_lookup_with_hash(const struct rte_hash *h,
1348 const void *key, hash_sig_t sig)
1350 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
1351 return __rte_hash_lookup_with_hash(h, key, sig, NULL);
1355 rte_hash_lookup(const struct rte_hash *h, const void *key)
1357 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
1358 return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), NULL);
1362 rte_hash_lookup_with_hash_data(const struct rte_hash *h,
1363 const void *key, hash_sig_t sig, void **data)
1365 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
1366 return __rte_hash_lookup_with_hash(h, key, sig, data);
1370 rte_hash_lookup_data(const struct rte_hash *h, const void *key, void **data)
1372 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
1373 return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), data);
1377 remove_entry(const struct rte_hash *h, struct rte_hash_bucket *bkt, unsigned i)
1379 unsigned lcore_id, n_slots;
1380 struct lcore_cache *cached_free_slots;
1382 if (h->use_local_cache) {
1383 lcore_id = rte_lcore_id();
1384 cached_free_slots = &h->local_free_slots[lcore_id];
1385 /* Cache full, need to free it. */
1386 if (cached_free_slots->len == LCORE_CACHE_SIZE) {
1387 /* Need to enqueue the free slots in global ring. */
1388 n_slots = rte_ring_mp_enqueue_burst_elem(h->free_slots,
1389 cached_free_slots->objs,
1391 LCORE_CACHE_SIZE, NULL);
1392 ERR_IF_TRUE((n_slots == 0),
1393 "%s: could not enqueue free slots in global ring\n",
1395 cached_free_slots->len -= n_slots;
1397 /* Put index of new free slot in cache. */
1398 cached_free_slots->objs[cached_free_slots->len] =
1400 cached_free_slots->len++;
1402 rte_ring_sp_enqueue_elem(h->free_slots,
1403 &bkt->key_idx[i], sizeof(uint32_t));
1407 /* Compact the linked list by moving key from last entry in linked list to the
1411 __rte_hash_compact_ll(const struct rte_hash *h,
1412 struct rte_hash_bucket *cur_bkt, int pos) {
1414 struct rte_hash_bucket *last_bkt;
1419 last_bkt = rte_hash_get_last_bkt(cur_bkt);
1421 for (i = RTE_HASH_BUCKET_ENTRIES - 1; i >= 0; i--) {
1422 if (last_bkt->key_idx[i] != EMPTY_SLOT) {
1423 cur_bkt->sig_current[pos] = last_bkt->sig_current[i];
1424 __atomic_store_n(&cur_bkt->key_idx[pos],
1425 last_bkt->key_idx[i],
1427 if (h->readwrite_concur_lf_support) {
1428 /* Inform the readers that the table has changed
1429 * Since there is one writer, load acquire on
1430 * tbl_chng_cnt is not required.
1432 __atomic_store_n(h->tbl_chng_cnt,
1433 *h->tbl_chng_cnt + 1,
1435 /* The store to sig_current should
1436 * not move above the store to tbl_chng_cnt.
1438 __atomic_thread_fence(__ATOMIC_RELEASE);
1440 last_bkt->sig_current[i] = NULL_SIGNATURE;
1441 __atomic_store_n(&last_bkt->key_idx[i],
1449 /* Search one bucket and remove the matched key.
1450 * Writer is expected to hold the lock while calling this
1453 static inline int32_t
1454 search_and_remove(const struct rte_hash *h, const void *key,
1455 struct rte_hash_bucket *bkt, uint16_t sig, int *pos)
1457 struct rte_hash_key *k, *keys = h->key_store;
1461 /* Check if key is in bucket */
1462 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
1463 key_idx = __atomic_load_n(&bkt->key_idx[i],
1465 if (bkt->sig_current[i] == sig && key_idx != EMPTY_SLOT) {
1466 k = (struct rte_hash_key *) ((char *)keys +
1467 key_idx * h->key_entry_size);
1468 if (rte_hash_cmp_eq(key, k->key, h) == 0) {
1469 bkt->sig_current[i] = NULL_SIGNATURE;
1470 /* Free the key store index if
1471 * no_free_on_del is disabled.
1473 if (!h->no_free_on_del)
1474 remove_entry(h, bkt, i);
1476 __atomic_store_n(&bkt->key_idx[i],
1482 * Return index where key is stored,
1483 * subtracting the first dummy index
1492 static inline int32_t
1493 __rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key,
1496 uint32_t prim_bucket_idx, sec_bucket_idx;
1497 struct rte_hash_bucket *prim_bkt, *sec_bkt, *prev_bkt, *last_bkt;
1498 struct rte_hash_bucket *cur_bkt;
1503 short_sig = get_short_sig(sig);
1504 prim_bucket_idx = get_prim_bucket_index(h, sig);
1505 sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig);
1506 prim_bkt = &h->buckets[prim_bucket_idx];
1508 __hash_rw_writer_lock(h);
1509 /* look for key in primary bucket */
1510 ret = search_and_remove(h, key, prim_bkt, short_sig, &pos);
1512 __rte_hash_compact_ll(h, prim_bkt, pos);
1513 last_bkt = prim_bkt->next;
1514 prev_bkt = prim_bkt;
1518 /* Calculate secondary hash */
1519 sec_bkt = &h->buckets[sec_bucket_idx];
1521 FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
1522 ret = search_and_remove(h, key, cur_bkt, short_sig, &pos);
1524 __rte_hash_compact_ll(h, cur_bkt, pos);
1525 last_bkt = sec_bkt->next;
1531 __hash_rw_writer_unlock(h);
1534 /* Search last bucket to see if empty to be recycled */
1537 __hash_rw_writer_unlock(h);
1540 while (last_bkt->next) {
1541 prev_bkt = last_bkt;
1542 last_bkt = last_bkt->next;
1545 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
1546 if (last_bkt->key_idx[i] != EMPTY_SLOT)
1549 /* found empty bucket and recycle */
1550 if (i == RTE_HASH_BUCKET_ENTRIES) {
1551 prev_bkt->next = NULL;
1552 uint32_t index = last_bkt - h->buckets_ext + 1;
1553 /* Recycle the empty bkt if
1554 * no_free_on_del is disabled.
1556 if (h->no_free_on_del)
1557 /* Store index of an empty ext bkt to be recycled
1558 * on calling rte_hash_del_xxx APIs.
1559 * When lock free read-write concurrency is enabled,
1560 * an empty ext bkt cannot be put into free list
1561 * immediately (as readers might be using it still).
1562 * Hence freeing of the ext bkt is piggy-backed to
1563 * freeing of the key index.
1565 h->ext_bkt_to_free[ret] = index;
1567 rte_ring_sp_enqueue_elem(h->free_ext_bkts, &index,
1570 __hash_rw_writer_unlock(h);
1575 rte_hash_del_key_with_hash(const struct rte_hash *h,
1576 const void *key, hash_sig_t sig)
1578 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
1579 return __rte_hash_del_key_with_hash(h, key, sig);
1583 rte_hash_del_key(const struct rte_hash *h, const void *key)
1585 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
1586 return __rte_hash_del_key_with_hash(h, key, rte_hash_hash(h, key));
1590 rte_hash_get_key_with_position(const struct rte_hash *h, const int32_t position,
1593 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
1595 struct rte_hash_key *k, *keys = h->key_store;
1596 k = (struct rte_hash_key *) ((char *) keys + (position + 1) *
1601 __rte_hash_lookup_with_hash(h, *key, rte_hash_hash(h, *key),
1610 rte_hash_free_key_with_position(const struct rte_hash *h,
1611 const int32_t position)
1613 /* Key index where key is stored, adding the first dummy index */
1614 uint32_t key_idx = position + 1;
1616 RETURN_IF_TRUE(((h == NULL) || (key_idx == EMPTY_SLOT)), -EINVAL);
1618 unsigned int lcore_id, n_slots;
1619 struct lcore_cache *cached_free_slots;
1620 const uint32_t total_entries = h->use_local_cache ?
1621 h->entries + (RTE_MAX_LCORE - 1) * (LCORE_CACHE_SIZE - 1) + 1
1625 if (key_idx >= total_entries)
1627 if (h->ext_table_support && h->readwrite_concur_lf_support) {
1628 uint32_t index = h->ext_bkt_to_free[position];
1630 /* Recycle empty ext bkt to free list. */
1631 rte_ring_sp_enqueue_elem(h->free_ext_bkts, &index,
1633 h->ext_bkt_to_free[position] = 0;
1637 if (h->use_local_cache) {
1638 lcore_id = rte_lcore_id();
1639 cached_free_slots = &h->local_free_slots[lcore_id];
1640 /* Cache full, need to free it. */
1641 if (cached_free_slots->len == LCORE_CACHE_SIZE) {
1642 /* Need to enqueue the free slots in global ring. */
1643 n_slots = rte_ring_mp_enqueue_burst_elem(h->free_slots,
1644 cached_free_slots->objs,
1646 LCORE_CACHE_SIZE, NULL);
1647 RETURN_IF_TRUE((n_slots == 0), -EFAULT);
1648 cached_free_slots->len -= n_slots;
1650 /* Put index of new free slot in cache. */
1651 cached_free_slots->objs[cached_free_slots->len] = key_idx;
1652 cached_free_slots->len++;
1654 rte_ring_sp_enqueue_elem(h->free_slots, &key_idx,
1662 compare_signatures(uint32_t *prim_hash_matches, uint32_t *sec_hash_matches,
1663 const struct rte_hash_bucket *prim_bkt,
1664 const struct rte_hash_bucket *sec_bkt,
1666 enum rte_hash_sig_compare_function sig_cmp_fn)
1670 /* For match mask the first bit of every two bits indicates the match */
1671 switch (sig_cmp_fn) {
1672 #if defined(RTE_MACHINE_CPUFLAG_SSE2)
1673 case RTE_HASH_COMPARE_SSE:
1674 /* Compare all signatures in the bucket */
1675 *prim_hash_matches = _mm_movemask_epi8(_mm_cmpeq_epi16(
1677 (__m128i const *)prim_bkt->sig_current),
1678 _mm_set1_epi16(sig)));
1679 /* Compare all signatures in the bucket */
1680 *sec_hash_matches = _mm_movemask_epi8(_mm_cmpeq_epi16(
1682 (__m128i const *)sec_bkt->sig_current),
1683 _mm_set1_epi16(sig)));
1685 #elif defined(RTE_MACHINE_CPUFLAG_NEON)
1686 case RTE_HASH_COMPARE_NEON: {
1687 uint16x8_t vmat, vsig, x;
1688 int16x8_t shift = {-15, -13, -11, -9, -7, -5, -3, -1};
1690 vsig = vld1q_dup_u16((uint16_t const *)&sig);
1691 /* Compare all signatures in the primary bucket */
1692 vmat = vceqq_u16(vsig,
1693 vld1q_u16((uint16_t const *)prim_bkt->sig_current));
1694 x = vshlq_u16(vandq_u16(vmat, vdupq_n_u16(0x8000)), shift);
1695 *prim_hash_matches = (uint32_t)(vaddvq_u16(x));
1696 /* Compare all signatures in the secondary bucket */
1697 vmat = vceqq_u16(vsig,
1698 vld1q_u16((uint16_t const *)sec_bkt->sig_current));
1699 x = vshlq_u16(vandq_u16(vmat, vdupq_n_u16(0x8000)), shift);
1700 *sec_hash_matches = (uint32_t)(vaddvq_u16(x));
1705 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
1706 *prim_hash_matches |=
1707 ((sig == prim_bkt->sig_current[i]) << (i << 1));
1708 *sec_hash_matches |=
1709 ((sig == sec_bkt->sig_current[i]) << (i << 1));
1715 __bulk_lookup_l(const struct rte_hash *h, const void **keys,
1716 const struct rte_hash_bucket **primary_bkt,
1717 const struct rte_hash_bucket **secondary_bkt,
1718 uint16_t *sig, int32_t num_keys, int32_t *positions,
1719 uint64_t *hit_mask, void *data[])
1724 uint32_t prim_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
1725 uint32_t sec_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
1726 struct rte_hash_bucket *cur_bkt, *next_bkt;
1728 __hash_rw_reader_lock(h);
1730 /* Compare signatures and prefetch key slot of first hit */
1731 for (i = 0; i < num_keys; i++) {
1732 compare_signatures(&prim_hitmask[i], &sec_hitmask[i],
1733 primary_bkt[i], secondary_bkt[i],
1734 sig[i], h->sig_cmp_fn);
1736 if (prim_hitmask[i]) {
1737 uint32_t first_hit =
1738 __builtin_ctzl(prim_hitmask[i])
1741 primary_bkt[i]->key_idx[first_hit];
1742 const struct rte_hash_key *key_slot =
1743 (const struct rte_hash_key *)(
1744 (const char *)h->key_store +
1745 key_idx * h->key_entry_size);
1746 rte_prefetch0(key_slot);
1750 if (sec_hitmask[i]) {
1751 uint32_t first_hit =
1752 __builtin_ctzl(sec_hitmask[i])
1755 secondary_bkt[i]->key_idx[first_hit];
1756 const struct rte_hash_key *key_slot =
1757 (const struct rte_hash_key *)(
1758 (const char *)h->key_store +
1759 key_idx * h->key_entry_size);
1760 rte_prefetch0(key_slot);
1764 /* Compare keys, first hits in primary first */
1765 for (i = 0; i < num_keys; i++) {
1766 positions[i] = -ENOENT;
1767 while (prim_hitmask[i]) {
1768 uint32_t hit_index =
1769 __builtin_ctzl(prim_hitmask[i])
1772 primary_bkt[i]->key_idx[hit_index];
1773 const struct rte_hash_key *key_slot =
1774 (const struct rte_hash_key *)(
1775 (const char *)h->key_store +
1776 key_idx * h->key_entry_size);
1779 * If key index is 0, do not compare key,
1780 * as it is checking the dummy slot
1784 key_slot->key, keys[i], h)) {
1786 data[i] = key_slot->pdata;
1789 positions[i] = key_idx - 1;
1792 prim_hitmask[i] &= ~(3ULL << (hit_index << 1));
1795 while (sec_hitmask[i]) {
1796 uint32_t hit_index =
1797 __builtin_ctzl(sec_hitmask[i])
1800 secondary_bkt[i]->key_idx[hit_index];
1801 const struct rte_hash_key *key_slot =
1802 (const struct rte_hash_key *)(
1803 (const char *)h->key_store +
1804 key_idx * h->key_entry_size);
1807 * If key index is 0, do not compare key,
1808 * as it is checking the dummy slot
1813 key_slot->key, keys[i], h)) {
1815 data[i] = key_slot->pdata;
1818 positions[i] = key_idx - 1;
1821 sec_hitmask[i] &= ~(3ULL << (hit_index << 1));
1827 /* all found, do not need to go through ext bkt */
1828 if ((hits == ((1ULL << num_keys) - 1)) || !h->ext_table_support) {
1829 if (hit_mask != NULL)
1831 __hash_rw_reader_unlock(h);
1835 /* need to check ext buckets for match */
1836 for (i = 0; i < num_keys; i++) {
1837 if ((hits & (1ULL << i)) != 0)
1839 next_bkt = secondary_bkt[i]->next;
1840 FOR_EACH_BUCKET(cur_bkt, next_bkt) {
1842 ret = search_one_bucket_l(h, keys[i],
1843 sig[i], &data[i], cur_bkt);
1845 ret = search_one_bucket_l(h, keys[i],
1846 sig[i], NULL, cur_bkt);
1855 __hash_rw_reader_unlock(h);
1857 if (hit_mask != NULL)
1862 __bulk_lookup_lf(const struct rte_hash *h, const void **keys,
1863 const struct rte_hash_bucket **primary_bkt,
1864 const struct rte_hash_bucket **secondary_bkt,
1865 uint16_t *sig, int32_t num_keys, int32_t *positions,
1866 uint64_t *hit_mask, void *data[])
1871 uint32_t prim_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
1872 uint32_t sec_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
1873 struct rte_hash_bucket *cur_bkt, *next_bkt;
1874 uint32_t cnt_b, cnt_a;
1876 for (i = 0; i < num_keys; i++)
1877 positions[i] = -ENOENT;
1880 /* Load the table change counter before the lookup
1881 * starts. Acquire semantics will make sure that
1882 * loads in compare_signatures are not hoisted.
1884 cnt_b = __atomic_load_n(h->tbl_chng_cnt,
1887 /* Compare signatures and prefetch key slot of first hit */
1888 for (i = 0; i < num_keys; i++) {
1889 compare_signatures(&prim_hitmask[i], &sec_hitmask[i],
1890 primary_bkt[i], secondary_bkt[i],
1891 sig[i], h->sig_cmp_fn);
1893 if (prim_hitmask[i]) {
1894 uint32_t first_hit =
1895 __builtin_ctzl(prim_hitmask[i])
1898 primary_bkt[i]->key_idx[first_hit];
1899 const struct rte_hash_key *key_slot =
1900 (const struct rte_hash_key *)(
1901 (const char *)h->key_store +
1902 key_idx * h->key_entry_size);
1903 rte_prefetch0(key_slot);
1907 if (sec_hitmask[i]) {
1908 uint32_t first_hit =
1909 __builtin_ctzl(sec_hitmask[i])
1912 secondary_bkt[i]->key_idx[first_hit];
1913 const struct rte_hash_key *key_slot =
1914 (const struct rte_hash_key *)(
1915 (const char *)h->key_store +
1916 key_idx * h->key_entry_size);
1917 rte_prefetch0(key_slot);
1921 /* Compare keys, first hits in primary first */
1922 for (i = 0; i < num_keys; i++) {
1923 while (prim_hitmask[i]) {
1924 uint32_t hit_index =
1925 __builtin_ctzl(prim_hitmask[i])
1929 &primary_bkt[i]->key_idx[hit_index],
1931 const struct rte_hash_key *key_slot =
1932 (const struct rte_hash_key *)(
1933 (const char *)h->key_store +
1934 key_idx * h->key_entry_size);
1937 * If key index is 0, do not compare key,
1938 * as it is checking the dummy slot
1942 key_slot->key, keys[i], h)) {
1944 data[i] = __atomic_load_n(
1949 positions[i] = key_idx - 1;
1952 prim_hitmask[i] &= ~(3ULL << (hit_index << 1));
1955 while (sec_hitmask[i]) {
1956 uint32_t hit_index =
1957 __builtin_ctzl(sec_hitmask[i])
1961 &secondary_bkt[i]->key_idx[hit_index],
1963 const struct rte_hash_key *key_slot =
1964 (const struct rte_hash_key *)(
1965 (const char *)h->key_store +
1966 key_idx * h->key_entry_size);
1969 * If key index is 0, do not compare key,
1970 * as it is checking the dummy slot
1975 key_slot->key, keys[i], h)) {
1977 data[i] = __atomic_load_n(
1982 positions[i] = key_idx - 1;
1985 sec_hitmask[i] &= ~(3ULL << (hit_index << 1));
1991 /* all found, do not need to go through ext bkt */
1992 if (hits == ((1ULL << num_keys) - 1)) {
1993 if (hit_mask != NULL)
1997 /* need to check ext buckets for match */
1998 if (h->ext_table_support) {
1999 for (i = 0; i < num_keys; i++) {
2000 if ((hits & (1ULL << i)) != 0)
2002 next_bkt = secondary_bkt[i]->next;
2003 FOR_EACH_BUCKET(cur_bkt, next_bkt) {
2005 ret = search_one_bucket_lf(h,
2009 ret = search_one_bucket_lf(h,
2020 /* The loads of sig_current in compare_signatures
2021 * should not move below the load from tbl_chng_cnt.
2023 __atomic_thread_fence(__ATOMIC_ACQUIRE);
2024 /* Re-read the table change counter to check if the
2025 * table has changed during search. If yes, re-do
2027 * This load should not get hoisted. The load
2028 * acquires on cnt_b, primary key index and secondary
2029 * key index will make sure that it does not get
2032 cnt_a = __atomic_load_n(h->tbl_chng_cnt,
2034 } while (cnt_b != cnt_a);
2036 if (hit_mask != NULL)
2040 #define PREFETCH_OFFSET 4
2042 __bulk_lookup_prefetching_loop(const struct rte_hash *h,
2043 const void **keys, int32_t num_keys,
2045 const struct rte_hash_bucket **primary_bkt,
2046 const struct rte_hash_bucket **secondary_bkt)
2049 uint32_t prim_hash[RTE_HASH_LOOKUP_BULK_MAX];
2050 uint32_t prim_index[RTE_HASH_LOOKUP_BULK_MAX];
2051 uint32_t sec_index[RTE_HASH_LOOKUP_BULK_MAX];
2053 /* Prefetch first keys */
2054 for (i = 0; i < PREFETCH_OFFSET && i < num_keys; i++)
2055 rte_prefetch0(keys[i]);
2058 * Prefetch rest of the keys, calculate primary and
2059 * secondary bucket and prefetch them
2061 for (i = 0; i < (num_keys - PREFETCH_OFFSET); i++) {
2062 rte_prefetch0(keys[i + PREFETCH_OFFSET]);
2064 prim_hash[i] = rte_hash_hash(h, keys[i]);
2066 sig[i] = get_short_sig(prim_hash[i]);
2067 prim_index[i] = get_prim_bucket_index(h, prim_hash[i]);
2068 sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]);
2070 primary_bkt[i] = &h->buckets[prim_index[i]];
2071 secondary_bkt[i] = &h->buckets[sec_index[i]];
2073 rte_prefetch0(primary_bkt[i]);
2074 rte_prefetch0(secondary_bkt[i]);
2077 /* Calculate and prefetch rest of the buckets */
2078 for (; i < num_keys; i++) {
2079 prim_hash[i] = rte_hash_hash(h, keys[i]);
2081 sig[i] = get_short_sig(prim_hash[i]);
2082 prim_index[i] = get_prim_bucket_index(h, prim_hash[i]);
2083 sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]);
2085 primary_bkt[i] = &h->buckets[prim_index[i]];
2086 secondary_bkt[i] = &h->buckets[sec_index[i]];
2088 rte_prefetch0(primary_bkt[i]);
2089 rte_prefetch0(secondary_bkt[i]);
2095 __rte_hash_lookup_bulk_l(const struct rte_hash *h, const void **keys,
2096 int32_t num_keys, int32_t *positions,
2097 uint64_t *hit_mask, void *data[])
2099 uint16_t sig[RTE_HASH_LOOKUP_BULK_MAX];
2100 const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
2101 const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
2103 __bulk_lookup_prefetching_loop(h, keys, num_keys, sig,
2104 primary_bkt, secondary_bkt);
2106 __bulk_lookup_l(h, keys, primary_bkt, secondary_bkt, sig, num_keys,
2107 positions, hit_mask, data);
2111 __rte_hash_lookup_bulk_lf(const struct rte_hash *h, const void **keys,
2112 int32_t num_keys, int32_t *positions,
2113 uint64_t *hit_mask, void *data[])
2115 uint16_t sig[RTE_HASH_LOOKUP_BULK_MAX];
2116 const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
2117 const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
2119 __bulk_lookup_prefetching_loop(h, keys, num_keys, sig,
2120 primary_bkt, secondary_bkt);
2122 __bulk_lookup_lf(h, keys, primary_bkt, secondary_bkt, sig, num_keys,
2123 positions, hit_mask, data);
2127 __rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
2128 int32_t num_keys, int32_t *positions,
2129 uint64_t *hit_mask, void *data[])
2131 if (h->readwrite_concur_lf_support)
2132 __rte_hash_lookup_bulk_lf(h, keys, num_keys, positions,
2135 __rte_hash_lookup_bulk_l(h, keys, num_keys, positions,
2140 rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
2141 uint32_t num_keys, int32_t *positions)
2143 RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
2144 (num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
2145 (positions == NULL)), -EINVAL);
2147 __rte_hash_lookup_bulk(h, keys, num_keys, positions, NULL, NULL);
2152 rte_hash_lookup_bulk_data(const struct rte_hash *h, const void **keys,
2153 uint32_t num_keys, uint64_t *hit_mask, void *data[])
2155 RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
2156 (num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
2157 (hit_mask == NULL)), -EINVAL);
2159 int32_t positions[num_keys];
2161 __rte_hash_lookup_bulk(h, keys, num_keys, positions, hit_mask, data);
2163 /* Return number of hits */
2164 return __builtin_popcountl(*hit_mask);
2169 __rte_hash_lookup_with_hash_bulk_l(const struct rte_hash *h,
2170 const void **keys, hash_sig_t *prim_hash,
2171 int32_t num_keys, int32_t *positions,
2172 uint64_t *hit_mask, void *data[])
2175 uint32_t prim_index[RTE_HASH_LOOKUP_BULK_MAX];
2176 uint32_t sec_index[RTE_HASH_LOOKUP_BULK_MAX];
2177 uint16_t sig[RTE_HASH_LOOKUP_BULK_MAX];
2178 const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
2179 const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
2182 * Prefetch keys, calculate primary and
2183 * secondary bucket and prefetch them
2185 for (i = 0; i < num_keys; i++) {
2186 rte_prefetch0(keys[i]);
2188 sig[i] = get_short_sig(prim_hash[i]);
2189 prim_index[i] = get_prim_bucket_index(h, prim_hash[i]);
2190 sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]);
2192 primary_bkt[i] = &h->buckets[prim_index[i]];
2193 secondary_bkt[i] = &h->buckets[sec_index[i]];
2195 rte_prefetch0(primary_bkt[i]);
2196 rte_prefetch0(secondary_bkt[i]);
2199 __bulk_lookup_l(h, keys, primary_bkt, secondary_bkt, sig, num_keys,
2200 positions, hit_mask, data);
2204 __rte_hash_lookup_with_hash_bulk_lf(const struct rte_hash *h,
2205 const void **keys, hash_sig_t *prim_hash,
2206 int32_t num_keys, int32_t *positions,
2207 uint64_t *hit_mask, void *data[])
2210 uint32_t prim_index[RTE_HASH_LOOKUP_BULK_MAX];
2211 uint32_t sec_index[RTE_HASH_LOOKUP_BULK_MAX];
2212 uint16_t sig[RTE_HASH_LOOKUP_BULK_MAX];
2213 const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
2214 const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
2217 * Prefetch keys, calculate primary and
2218 * secondary bucket and prefetch them
2220 for (i = 0; i < num_keys; i++) {
2221 rte_prefetch0(keys[i]);
2223 sig[i] = get_short_sig(prim_hash[i]);
2224 prim_index[i] = get_prim_bucket_index(h, prim_hash[i]);
2225 sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]);
2227 primary_bkt[i] = &h->buckets[prim_index[i]];
2228 secondary_bkt[i] = &h->buckets[sec_index[i]];
2230 rte_prefetch0(primary_bkt[i]);
2231 rte_prefetch0(secondary_bkt[i]);
2234 __bulk_lookup_lf(h, keys, primary_bkt, secondary_bkt, sig, num_keys,
2235 positions, hit_mask, data);
2239 __rte_hash_lookup_with_hash_bulk(const struct rte_hash *h, const void **keys,
2240 hash_sig_t *prim_hash, int32_t num_keys,
2241 int32_t *positions, uint64_t *hit_mask, void *data[])
2243 if (h->readwrite_concur_lf_support)
2244 __rte_hash_lookup_with_hash_bulk_lf(h, keys, prim_hash,
2245 num_keys, positions, hit_mask, data);
2247 __rte_hash_lookup_with_hash_bulk_l(h, keys, prim_hash,
2248 num_keys, positions, hit_mask, data);
2252 rte_hash_lookup_with_hash_bulk(const struct rte_hash *h, const void **keys,
2253 hash_sig_t *sig, uint32_t num_keys, int32_t *positions)
2255 RETURN_IF_TRUE(((h == NULL) || (keys == NULL) ||
2256 (sig == NULL) || (num_keys == 0) ||
2257 (num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
2258 (positions == NULL)), -EINVAL);
2260 __rte_hash_lookup_with_hash_bulk(h, keys, sig, num_keys,
2261 positions, NULL, NULL);
2266 rte_hash_lookup_with_hash_bulk_data(const struct rte_hash *h,
2267 const void **keys, hash_sig_t *sig,
2268 uint32_t num_keys, uint64_t *hit_mask, void *data[])
2270 RETURN_IF_TRUE(((h == NULL) || (keys == NULL) ||
2271 (sig == NULL) || (num_keys == 0) ||
2272 (num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
2273 (hit_mask == NULL)), -EINVAL);
2275 int32_t positions[num_keys];
2277 __rte_hash_lookup_with_hash_bulk(h, keys, sig, num_keys,
2278 positions, hit_mask, data);
2280 /* Return number of hits */
2281 return __builtin_popcountl(*hit_mask);
2285 rte_hash_iterate(const struct rte_hash *h, const void **key, void **data, uint32_t *next)
2287 uint32_t bucket_idx, idx, position;
2288 struct rte_hash_key *next_key;
2290 RETURN_IF_TRUE(((h == NULL) || (next == NULL)), -EINVAL);
2292 const uint32_t total_entries_main = h->num_buckets *
2293 RTE_HASH_BUCKET_ENTRIES;
2294 const uint32_t total_entries = total_entries_main << 1;
2296 /* Out of bounds of all buckets (both main table and ext table) */
2297 if (*next >= total_entries_main)
2300 /* Calculate bucket and index of current iterator */
2301 bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
2302 idx = *next % RTE_HASH_BUCKET_ENTRIES;
2304 /* If current position is empty, go to the next one */
2305 while ((position = __atomic_load_n(&h->buckets[bucket_idx].key_idx[idx],
2306 __ATOMIC_ACQUIRE)) == EMPTY_SLOT) {
2309 if (*next == total_entries_main)
2311 bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
2312 idx = *next % RTE_HASH_BUCKET_ENTRIES;
2315 __hash_rw_reader_lock(h);
2316 next_key = (struct rte_hash_key *) ((char *)h->key_store +
2317 position * h->key_entry_size);
2318 /* Return key and data */
2319 *key = next_key->key;
2320 *data = next_key->pdata;
2322 __hash_rw_reader_unlock(h);
2324 /* Increment iterator */
2327 return position - 1;
2329 /* Begin to iterate extendable buckets */
2331 /* Out of total bound or if ext bucket feature is not enabled */
2332 if (*next >= total_entries || !h->ext_table_support)
2335 bucket_idx = (*next - total_entries_main) / RTE_HASH_BUCKET_ENTRIES;
2336 idx = (*next - total_entries_main) % RTE_HASH_BUCKET_ENTRIES;
2338 while ((position = h->buckets_ext[bucket_idx].key_idx[idx]) == EMPTY_SLOT) {
2340 if (*next == total_entries)
2342 bucket_idx = (*next - total_entries_main) /
2343 RTE_HASH_BUCKET_ENTRIES;
2344 idx = (*next - total_entries_main) % RTE_HASH_BUCKET_ENTRIES;
2346 __hash_rw_reader_lock(h);
2347 next_key = (struct rte_hash_key *) ((char *)h->key_store +
2348 position * h->key_entry_size);
2349 /* Return key and data */
2350 *key = next_key->key;
2351 *data = next_key->pdata;
2353 __hash_rw_reader_unlock(h);
2355 /* Increment iterator */
2357 return position - 1;