4 * Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 #include <sys/queue.h>
41 #include <rte_common.h>
42 #include <rte_memory.h> /* for definition of RTE_CACHE_LINE_SIZE */
44 #include <rte_memcpy.h>
45 #include <rte_prefetch.h>
46 #include <rte_branch_prediction.h>
47 #include <rte_memzone.h>
48 #include <rte_malloc.h>
50 #include <rte_eal_memconfig.h>
51 #include <rte_per_lcore.h>
52 #include <rte_errno.h>
53 #include <rte_string_fns.h>
54 #include <rte_cpuflags.h>
56 #include <rte_rwlock.h>
57 #include <rte_spinlock.h>
59 #include <rte_compat.h>
62 #include "rte_cuckoo_hash.h"
64 #if defined(RTE_ARCH_X86)
65 #include "rte_cuckoo_hash_x86.h"
68 TAILQ_HEAD(rte_hash_list, rte_tailq_entry);
70 static struct rte_tailq_elem rte_hash_tailq = {
73 EAL_REGISTER_TAILQ(rte_hash_tailq)
76 rte_hash_find_existing(const char *name)
78 struct rte_hash *h = NULL;
79 struct rte_tailq_entry *te;
80 struct rte_hash_list *hash_list;
82 hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
84 rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
85 TAILQ_FOREACH(te, hash_list, next) {
86 h = (struct rte_hash *) te->data;
87 if (strncmp(name, h->name, RTE_HASH_NAMESIZE) == 0)
90 rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);
99 void rte_hash_set_cmp_func(struct rte_hash *h, rte_hash_cmp_eq_t func)
101 h->cmp_jump_table_idx = KEY_CUSTOM;
102 h->rte_hash_custom_cmp_eq = func;
106 rte_hash_cmp_eq(const void *key1, const void *key2, const struct rte_hash *h)
108 if (h->cmp_jump_table_idx == KEY_CUSTOM)
109 return h->rte_hash_custom_cmp_eq(key1, key2, h->key_len);
111 return cmp_jump_table[h->cmp_jump_table_idx](key1, key2, h->key_len);
115 rte_hash_create(const struct rte_hash_parameters *params)
117 struct rte_hash *h = NULL;
118 struct rte_tailq_entry *te = NULL;
119 struct rte_hash_list *hash_list;
120 struct rte_ring *r = NULL;
121 char hash_name[RTE_HASH_NAMESIZE];
123 void *buckets = NULL;
124 char ring_name[RTE_RING_NAMESIZE];
125 unsigned num_key_slots;
126 unsigned hw_trans_mem_support = 0;
129 hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
131 if (params == NULL) {
132 RTE_LOG(ERR, HASH, "rte_hash_create has no parameters\n");
136 /* Check for valid parameters */
137 if ((params->entries > RTE_HASH_ENTRIES_MAX) ||
138 (params->entries < RTE_HASH_BUCKET_ENTRIES) ||
139 !rte_is_power_of_2(RTE_HASH_BUCKET_ENTRIES) ||
140 (params->key_len == 0)) {
142 RTE_LOG(ERR, HASH, "rte_hash_create has invalid parameters\n");
146 /* Check extra flags field to check extra options. */
147 if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT)
148 hw_trans_mem_support = 1;
150 /* Store all keys and leave the first entry as a dummy entry for lookup_bulk */
151 if (hw_trans_mem_support)
153 * Increase number of slots by total number of indices
154 * that can be stored in the lcore caches
155 * except for the first cache
157 num_key_slots = params->entries + (RTE_MAX_LCORE - 1) *
158 LCORE_CACHE_SIZE + 1;
160 num_key_slots = params->entries + 1;
162 snprintf(ring_name, sizeof(ring_name), "HT_%s", params->name);
163 /* Create ring (Dummy slot index is not enqueued) */
164 r = rte_ring_create(ring_name, rte_align32pow2(num_key_slots - 1),
165 params->socket_id, 0);
167 RTE_LOG(ERR, HASH, "memory allocation failed\n");
171 snprintf(hash_name, sizeof(hash_name), "HT_%s", params->name);
173 rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
175 /* guarantee there's no existing: this is normally already checked
176 * by ring creation above */
177 TAILQ_FOREACH(te, hash_list, next) {
178 h = (struct rte_hash *) te->data;
179 if (strncmp(params->name, h->name, RTE_HASH_NAMESIZE) == 0)
189 te = rte_zmalloc("HASH_TAILQ_ENTRY", sizeof(*te), 0);
191 RTE_LOG(ERR, HASH, "tailq entry allocation failed\n");
195 h = (struct rte_hash *)rte_zmalloc_socket(hash_name, sizeof(struct rte_hash),
196 RTE_CACHE_LINE_SIZE, params->socket_id);
199 RTE_LOG(ERR, HASH, "memory allocation failed\n");
203 const uint32_t num_buckets = rte_align32pow2(params->entries)
204 / RTE_HASH_BUCKET_ENTRIES;
206 buckets = rte_zmalloc_socket(NULL,
207 num_buckets * sizeof(struct rte_hash_bucket),
208 RTE_CACHE_LINE_SIZE, params->socket_id);
210 if (buckets == NULL) {
211 RTE_LOG(ERR, HASH, "memory allocation failed\n");
215 const uint32_t key_entry_size = sizeof(struct rte_hash_key) + params->key_len;
216 const uint64_t key_tbl_size = (uint64_t) key_entry_size * num_key_slots;
218 k = rte_zmalloc_socket(NULL, key_tbl_size,
219 RTE_CACHE_LINE_SIZE, params->socket_id);
222 RTE_LOG(ERR, HASH, "memory allocation failed\n");
227 * If x86 architecture is used, select appropriate compare function,
228 * which may use x86 intrinsics, otherwise use memcmp
230 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
231 /* Select function to compare keys */
232 switch (params->key_len) {
234 h->cmp_jump_table_idx = KEY_16_BYTES;
237 h->cmp_jump_table_idx = KEY_32_BYTES;
240 h->cmp_jump_table_idx = KEY_48_BYTES;
243 h->cmp_jump_table_idx = KEY_64_BYTES;
246 h->cmp_jump_table_idx = KEY_80_BYTES;
249 h->cmp_jump_table_idx = KEY_96_BYTES;
252 h->cmp_jump_table_idx = KEY_112_BYTES;
255 h->cmp_jump_table_idx = KEY_128_BYTES;
258 /* If key is not multiple of 16, use generic memcmp */
259 h->cmp_jump_table_idx = KEY_OTHER_BYTES;
262 h->cmp_jump_table_idx = KEY_OTHER_BYTES;
265 if (hw_trans_mem_support) {
266 h->local_free_slots = rte_zmalloc_socket(NULL,
267 sizeof(struct lcore_cache) * RTE_MAX_LCORE,
268 RTE_CACHE_LINE_SIZE, params->socket_id);
271 /* Setup hash context */
272 snprintf(h->name, sizeof(h->name), "%s", params->name);
273 h->entries = params->entries;
274 h->key_len = params->key_len;
275 h->key_entry_size = key_entry_size;
276 h->hash_func_init_val = params->hash_func_init_val;
278 h->num_buckets = num_buckets;
279 h->bucket_bitmask = h->num_buckets - 1;
280 h->buckets = buckets;
281 h->hash_func = (params->hash_func == NULL) ?
282 DEFAULT_HASH_FUNC : params->hash_func;
285 h->hw_trans_mem_support = hw_trans_mem_support;
287 #if defined(RTE_ARCH_X86)
288 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
289 h->sig_cmp_fn = RTE_HASH_COMPARE_AVX2;
290 else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE2))
291 h->sig_cmp_fn = RTE_HASH_COMPARE_SSE;
294 h->sig_cmp_fn = RTE_HASH_COMPARE_SCALAR;
296 /* Turn on multi-writer only with explicit flat from user and TM
299 if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD) {
300 if (h->hw_trans_mem_support) {
301 h->add_key = ADD_KEY_MULTIWRITER_TM;
303 h->add_key = ADD_KEY_MULTIWRITER;
304 h->multiwriter_lock = rte_malloc(NULL,
305 sizeof(rte_spinlock_t),
307 rte_spinlock_init(h->multiwriter_lock);
310 h->add_key = ADD_KEY_SINGLEWRITER;
312 /* Populate free slots ring. Entry zero is reserved for key misses. */
313 for (i = 1; i < params->entries + 1; i++)
314 rte_ring_sp_enqueue(r, (void *)((uintptr_t) i));
316 te->data = (void *) h;
317 TAILQ_INSERT_TAIL(hash_list, te, next);
318 rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
322 rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
333 rte_hash_free(struct rte_hash *h)
335 struct rte_tailq_entry *te;
336 struct rte_hash_list *hash_list;
341 hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
343 rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
345 /* find out tailq entry */
346 TAILQ_FOREACH(te, hash_list, next) {
347 if (te->data == (void *) h)
352 rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
356 TAILQ_REMOVE(hash_list, te, next);
358 rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
360 if (h->hw_trans_mem_support)
361 rte_free(h->local_free_slots);
363 if (h->add_key == ADD_KEY_MULTIWRITER)
364 rte_free(h->multiwriter_lock);
365 rte_ring_free(h->free_slots);
366 rte_free(h->key_store);
367 rte_free(h->buckets);
373 rte_hash_hash(const struct rte_hash *h, const void *key)
375 /* calc hash result by key */
376 return h->hash_func(key, h->key_len, h->hash_func_init_val);
379 /* Calc the secondary hash value from the primary hash value of a given key */
380 static inline hash_sig_t
381 rte_hash_secondary_hash(const hash_sig_t primary_hash)
383 static const unsigned all_bits_shift = 12;
384 static const unsigned alt_bits_xor = 0x5bd1e995;
386 uint32_t tag = primary_hash >> all_bits_shift;
388 return primary_hash ^ ((tag + 1) * alt_bits_xor);
392 rte_hash_reset(struct rte_hash *h)
400 memset(h->buckets, 0, h->num_buckets * sizeof(struct rte_hash_bucket));
401 memset(h->key_store, 0, h->key_entry_size * (h->entries + 1));
403 /* clear the free ring */
404 while (rte_ring_dequeue(h->free_slots, &ptr) == 0)
407 /* Repopulate the free slots ring. Entry zero is reserved for key misses */
408 for (i = 1; i < h->entries + 1; i++)
409 rte_ring_sp_enqueue(h->free_slots, (void *)((uintptr_t) i));
411 if (h->hw_trans_mem_support) {
412 /* Reset local caches per lcore */
413 for (i = 0; i < RTE_MAX_LCORE; i++)
414 h->local_free_slots[i].len = 0;
418 /* Search for an entry that can be pushed to its alternative location */
420 make_space_bucket(const struct rte_hash *h, struct rte_hash_bucket *bkt)
422 static unsigned int nr_pushes;
425 uint32_t next_bucket_idx;
426 struct rte_hash_bucket *next_bkt[RTE_HASH_BUCKET_ENTRIES];
429 * Push existing item (search for bucket with space in
430 * alternative locations) to its alternative location
432 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
433 /* Search for space in alternative locations */
434 next_bucket_idx = bkt->sig_alt[i] & h->bucket_bitmask;
435 next_bkt[i] = &h->buckets[next_bucket_idx];
436 for (j = 0; j < RTE_HASH_BUCKET_ENTRIES; j++) {
437 if (next_bkt[i]->key_idx[j] == EMPTY_SLOT)
441 if (j != RTE_HASH_BUCKET_ENTRIES)
445 /* Alternative location has spare room (end of recursive function) */
446 if (i != RTE_HASH_BUCKET_ENTRIES) {
447 next_bkt[i]->sig_alt[j] = bkt->sig_current[i];
448 next_bkt[i]->sig_current[j] = bkt->sig_alt[i];
449 next_bkt[i]->key_idx[j] = bkt->key_idx[i];
453 /* Pick entry that has not been pushed yet */
454 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++)
455 if (bkt->flag[i] == 0)
458 /* All entries have been pushed, so entry cannot be added */
459 if (i == RTE_HASH_BUCKET_ENTRIES || nr_pushes > RTE_HASH_MAX_PUSHES)
462 /* Set flag to indicate that this entry is going to be pushed */
466 /* Need room in alternative bucket to insert the pushed entry */
467 ret = make_space_bucket(h, next_bkt[i]);
469 * After recursive function.
470 * Clear flags and insert the pushed entry
471 * in its alternative location if successful,
477 next_bkt[i]->sig_alt[ret] = bkt->sig_current[i];
478 next_bkt[i]->sig_current[ret] = bkt->sig_alt[i];
479 next_bkt[i]->key_idx[ret] = bkt->key_idx[i];
487 * Function called to enqueue back an index in the cache/ring,
488 * as slot has not being used and it can be used in the
489 * next addition attempt.
492 enqueue_slot_back(const struct rte_hash *h,
493 struct lcore_cache *cached_free_slots,
496 if (h->hw_trans_mem_support) {
497 cached_free_slots->objs[cached_free_slots->len] = slot_id;
498 cached_free_slots->len++;
500 rte_ring_sp_enqueue(h->free_slots, slot_id);
503 static inline int32_t
504 __rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key,
505 hash_sig_t sig, void *data)
508 uint32_t prim_bucket_idx, sec_bucket_idx;
510 struct rte_hash_bucket *prim_bkt, *sec_bkt;
511 struct rte_hash_key *new_k, *k, *keys = h->key_store;
512 void *slot_id = NULL;
517 struct lcore_cache *cached_free_slots = NULL;
519 if (h->add_key == ADD_KEY_MULTIWRITER)
520 rte_spinlock_lock(h->multiwriter_lock);
522 prim_bucket_idx = sig & h->bucket_bitmask;
523 prim_bkt = &h->buckets[prim_bucket_idx];
524 rte_prefetch0(prim_bkt);
526 alt_hash = rte_hash_secondary_hash(sig);
527 sec_bucket_idx = alt_hash & h->bucket_bitmask;
528 sec_bkt = &h->buckets[sec_bucket_idx];
529 rte_prefetch0(sec_bkt);
531 /* Get a new slot for storing the new key */
532 if (h->hw_trans_mem_support) {
533 lcore_id = rte_lcore_id();
534 cached_free_slots = &h->local_free_slots[lcore_id];
535 /* Try to get a free slot from the local cache */
536 if (cached_free_slots->len == 0) {
537 /* Need to get another burst of free slots from global ring */
538 n_slots = rte_ring_mc_dequeue_burst(h->free_slots,
539 cached_free_slots->objs,
540 LCORE_CACHE_SIZE, NULL);
544 cached_free_slots->len += n_slots;
547 /* Get a free slot from the local cache */
548 cached_free_slots->len--;
549 slot_id = cached_free_slots->objs[cached_free_slots->len];
551 if (rte_ring_sc_dequeue(h->free_slots, &slot_id) != 0)
555 new_k = RTE_PTR_ADD(keys, (uintptr_t)slot_id * h->key_entry_size);
556 rte_prefetch0(new_k);
557 new_idx = (uint32_t)((uintptr_t) slot_id);
559 /* Check if key is already inserted in primary location */
560 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
561 if (prim_bkt->sig_current[i] == sig &&
562 prim_bkt->sig_alt[i] == alt_hash) {
563 k = (struct rte_hash_key *) ((char *)keys +
564 prim_bkt->key_idx[i] * h->key_entry_size);
565 if (rte_hash_cmp_eq(key, k->key, h) == 0) {
566 /* Enqueue index of free slot back in the ring. */
567 enqueue_slot_back(h, cached_free_slots, slot_id);
571 * Return index where key is stored,
572 * substracting the first dummy index
574 return prim_bkt->key_idx[i] - 1;
579 /* Check if key is already inserted in secondary location */
580 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
581 if (sec_bkt->sig_alt[i] == sig &&
582 sec_bkt->sig_current[i] == alt_hash) {
583 k = (struct rte_hash_key *) ((char *)keys +
584 sec_bkt->key_idx[i] * h->key_entry_size);
585 if (rte_hash_cmp_eq(key, k->key, h) == 0) {
586 /* Enqueue index of free slot back in the ring. */
587 enqueue_slot_back(h, cached_free_slots, slot_id);
591 * Return index where key is stored,
592 * substracting the first dummy index
594 return sec_bkt->key_idx[i] - 1;
600 rte_memcpy(new_k->key, key, h->key_len);
603 #if defined(RTE_ARCH_X86) /* currently only x86 support HTM */
604 if (h->add_key == ADD_KEY_MULTIWRITER_TM) {
605 ret = rte_hash_cuckoo_insert_mw_tm(prim_bkt,
606 sig, alt_hash, new_idx);
610 /* Primary bucket full, need to make space for new entry */
611 ret = rte_hash_cuckoo_make_space_mw_tm(h, prim_bkt, sig,
617 /* Also search secondary bucket to get better occupancy */
618 ret = rte_hash_cuckoo_make_space_mw_tm(h, sec_bkt, sig,
625 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
626 /* Check if slot is available */
627 if (likely(prim_bkt->key_idx[i] == EMPTY_SLOT)) {
628 prim_bkt->sig_current[i] = sig;
629 prim_bkt->sig_alt[i] = alt_hash;
630 prim_bkt->key_idx[i] = new_idx;
635 if (i != RTE_HASH_BUCKET_ENTRIES) {
636 if (h->add_key == ADD_KEY_MULTIWRITER)
637 rte_spinlock_unlock(h->multiwriter_lock);
641 /* Primary bucket full, need to make space for new entry
642 * After recursive function.
643 * Insert the new entry in the position of the pushed entry
644 * if successful or return error and
645 * store the new slot back in the ring
647 ret = make_space_bucket(h, prim_bkt);
649 prim_bkt->sig_current[ret] = sig;
650 prim_bkt->sig_alt[ret] = alt_hash;
651 prim_bkt->key_idx[ret] = new_idx;
652 if (h->add_key == ADD_KEY_MULTIWRITER)
653 rte_spinlock_unlock(h->multiwriter_lock);
656 #if defined(RTE_ARCH_X86)
659 /* Error in addition, store new slot back in the ring and return error */
660 enqueue_slot_back(h, cached_free_slots, (void *)((uintptr_t) new_idx));
662 if (h->add_key == ADD_KEY_MULTIWRITER)
663 rte_spinlock_unlock(h->multiwriter_lock);
668 rte_hash_add_key_with_hash(const struct rte_hash *h,
669 const void *key, hash_sig_t sig)
671 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
672 return __rte_hash_add_key_with_hash(h, key, sig, 0);
676 rte_hash_add_key(const struct rte_hash *h, const void *key)
678 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
679 return __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), 0);
683 rte_hash_add_key_with_hash_data(const struct rte_hash *h,
684 const void *key, hash_sig_t sig, void *data)
688 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
689 ret = __rte_hash_add_key_with_hash(h, key, sig, data);
697 rte_hash_add_key_data(const struct rte_hash *h, const void *key, void *data)
701 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
703 ret = __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), data);
709 static inline int32_t
710 __rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key,
711 hash_sig_t sig, void **data)
716 struct rte_hash_bucket *bkt;
717 struct rte_hash_key *k, *keys = h->key_store;
719 bucket_idx = sig & h->bucket_bitmask;
720 bkt = &h->buckets[bucket_idx];
722 /* Check if key is in primary location */
723 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
724 if (bkt->sig_current[i] == sig &&
725 bkt->key_idx[i] != EMPTY_SLOT) {
726 k = (struct rte_hash_key *) ((char *)keys +
727 bkt->key_idx[i] * h->key_entry_size);
728 if (rte_hash_cmp_eq(key, k->key, h) == 0) {
732 * Return index where key is stored,
733 * substracting the first dummy index
735 return bkt->key_idx[i] - 1;
740 /* Calculate secondary hash */
741 alt_hash = rte_hash_secondary_hash(sig);
742 bucket_idx = alt_hash & h->bucket_bitmask;
743 bkt = &h->buckets[bucket_idx];
745 /* Check if key is in secondary location */
746 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
747 if (bkt->sig_current[i] == alt_hash &&
748 bkt->sig_alt[i] == sig) {
749 k = (struct rte_hash_key *) ((char *)keys +
750 bkt->key_idx[i] * h->key_entry_size);
751 if (rte_hash_cmp_eq(key, k->key, h) == 0) {
755 * Return index where key is stored,
756 * substracting the first dummy index
758 return bkt->key_idx[i] - 1;
767 rte_hash_lookup_with_hash(const struct rte_hash *h,
768 const void *key, hash_sig_t sig)
770 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
771 return __rte_hash_lookup_with_hash(h, key, sig, NULL);
775 rte_hash_lookup(const struct rte_hash *h, const void *key)
777 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
778 return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), NULL);
782 rte_hash_lookup_with_hash_data(const struct rte_hash *h,
783 const void *key, hash_sig_t sig, void **data)
785 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
786 return __rte_hash_lookup_with_hash(h, key, sig, data);
790 rte_hash_lookup_data(const struct rte_hash *h, const void *key, void **data)
792 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
793 return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), data);
797 remove_entry(const struct rte_hash *h, struct rte_hash_bucket *bkt, unsigned i)
799 unsigned lcore_id, n_slots;
800 struct lcore_cache *cached_free_slots;
802 bkt->sig_current[i] = NULL_SIGNATURE;
803 bkt->sig_alt[i] = NULL_SIGNATURE;
804 if (h->hw_trans_mem_support) {
805 lcore_id = rte_lcore_id();
806 cached_free_slots = &h->local_free_slots[lcore_id];
807 /* Cache full, need to free it. */
808 if (cached_free_slots->len == LCORE_CACHE_SIZE) {
809 /* Need to enqueue the free slots in global ring. */
810 n_slots = rte_ring_mp_enqueue_burst(h->free_slots,
811 cached_free_slots->objs,
812 LCORE_CACHE_SIZE, NULL);
813 cached_free_slots->len -= n_slots;
815 /* Put index of new free slot in cache. */
816 cached_free_slots->objs[cached_free_slots->len] =
817 (void *)((uintptr_t)bkt->key_idx[i]);
818 cached_free_slots->len++;
820 rte_ring_sp_enqueue(h->free_slots,
821 (void *)((uintptr_t)bkt->key_idx[i]));
825 static inline int32_t
826 __rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key,
832 struct rte_hash_bucket *bkt;
833 struct rte_hash_key *k, *keys = h->key_store;
836 bucket_idx = sig & h->bucket_bitmask;
837 bkt = &h->buckets[bucket_idx];
839 /* Check if key is in primary location */
840 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
841 if (bkt->sig_current[i] == sig &&
842 bkt->key_idx[i] != EMPTY_SLOT) {
843 k = (struct rte_hash_key *) ((char *)keys +
844 bkt->key_idx[i] * h->key_entry_size);
845 if (rte_hash_cmp_eq(key, k->key, h) == 0) {
846 remove_entry(h, bkt, i);
849 * Return index where key is stored,
850 * substracting the first dummy index
852 ret = bkt->key_idx[i] - 1;
853 bkt->key_idx[i] = EMPTY_SLOT;
859 /* Calculate secondary hash */
860 alt_hash = rte_hash_secondary_hash(sig);
861 bucket_idx = alt_hash & h->bucket_bitmask;
862 bkt = &h->buckets[bucket_idx];
864 /* Check if key is in secondary location */
865 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
866 if (bkt->sig_current[i] == alt_hash &&
867 bkt->key_idx[i] != EMPTY_SLOT) {
868 k = (struct rte_hash_key *) ((char *)keys +
869 bkt->key_idx[i] * h->key_entry_size);
870 if (rte_hash_cmp_eq(key, k->key, h) == 0) {
871 remove_entry(h, bkt, i);
874 * Return index where key is stored,
875 * substracting the first dummy index
877 ret = bkt->key_idx[i] - 1;
878 bkt->key_idx[i] = EMPTY_SLOT;
888 rte_hash_del_key_with_hash(const struct rte_hash *h,
889 const void *key, hash_sig_t sig)
891 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
892 return __rte_hash_del_key_with_hash(h, key, sig);
896 rte_hash_del_key(const struct rte_hash *h, const void *key)
898 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
899 return __rte_hash_del_key_with_hash(h, key, rte_hash_hash(h, key));
903 rte_hash_get_key_with_position(const struct rte_hash *h, const int32_t position,
906 RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
908 struct rte_hash_key *k, *keys = h->key_store;
909 k = (struct rte_hash_key *) ((char *) keys + (position + 1) *
914 __rte_hash_lookup_with_hash(h, *key, rte_hash_hash(h, *key),
923 compare_signatures(uint32_t *prim_hash_matches, uint32_t *sec_hash_matches,
924 const struct rte_hash_bucket *prim_bkt,
925 const struct rte_hash_bucket *sec_bkt,
926 hash_sig_t prim_hash, hash_sig_t sec_hash,
927 enum rte_hash_sig_compare_function sig_cmp_fn)
931 switch (sig_cmp_fn) {
932 #ifdef RTE_MACHINE_CPUFLAG_AVX2
933 case RTE_HASH_COMPARE_AVX2:
934 *prim_hash_matches = _mm256_movemask_ps((__m256)_mm256_cmpeq_epi32(
936 (__m256i const *)prim_bkt->sig_current),
937 _mm256_set1_epi32(prim_hash)));
938 *sec_hash_matches = _mm256_movemask_ps((__m256)_mm256_cmpeq_epi32(
940 (__m256i const *)sec_bkt->sig_current),
941 _mm256_set1_epi32(sec_hash)));
944 #ifdef RTE_MACHINE_CPUFLAG_SSE2
945 case RTE_HASH_COMPARE_SSE:
946 /* Compare the first 4 signatures in the bucket */
947 *prim_hash_matches = _mm_movemask_ps((__m128)_mm_cmpeq_epi16(
949 (__m128i const *)prim_bkt->sig_current),
950 _mm_set1_epi32(prim_hash)));
951 *prim_hash_matches |= (_mm_movemask_ps((__m128)_mm_cmpeq_epi16(
953 (__m128i const *)&prim_bkt->sig_current[4]),
954 _mm_set1_epi32(prim_hash)))) << 4;
955 /* Compare the first 4 signatures in the bucket */
956 *sec_hash_matches = _mm_movemask_ps((__m128)_mm_cmpeq_epi16(
958 (__m128i const *)sec_bkt->sig_current),
959 _mm_set1_epi32(sec_hash)));
960 *sec_hash_matches |= (_mm_movemask_ps((__m128)_mm_cmpeq_epi16(
962 (__m128i const *)&sec_bkt->sig_current[4]),
963 _mm_set1_epi32(sec_hash)))) << 4;
967 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
968 *prim_hash_matches |=
969 ((prim_hash == prim_bkt->sig_current[i]) << i);
971 ((sec_hash == sec_bkt->sig_current[i]) << i);
977 #define PREFETCH_OFFSET 4
979 __rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
980 int32_t num_keys, int32_t *positions,
981 uint64_t *hit_mask, void *data[])
985 uint32_t prim_hash[RTE_HASH_LOOKUP_BULK_MAX];
986 uint32_t sec_hash[RTE_HASH_LOOKUP_BULK_MAX];
987 const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
988 const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
989 uint32_t prim_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
990 uint32_t sec_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
992 /* Prefetch first keys */
993 for (i = 0; i < PREFETCH_OFFSET && i < num_keys; i++)
994 rte_prefetch0(keys[i]);
997 * Prefetch rest of the keys, calculate primary and
998 * secondary bucket and prefetch them
1000 for (i = 0; i < (num_keys - PREFETCH_OFFSET); i++) {
1001 rte_prefetch0(keys[i + PREFETCH_OFFSET]);
1003 prim_hash[i] = rte_hash_hash(h, keys[i]);
1004 sec_hash[i] = rte_hash_secondary_hash(prim_hash[i]);
1006 primary_bkt[i] = &h->buckets[prim_hash[i] & h->bucket_bitmask];
1007 secondary_bkt[i] = &h->buckets[sec_hash[i] & h->bucket_bitmask];
1009 rte_prefetch0(primary_bkt[i]);
1010 rte_prefetch0(secondary_bkt[i]);
1013 /* Calculate and prefetch rest of the buckets */
1014 for (; i < num_keys; i++) {
1015 prim_hash[i] = rte_hash_hash(h, keys[i]);
1016 sec_hash[i] = rte_hash_secondary_hash(prim_hash[i]);
1018 primary_bkt[i] = &h->buckets[prim_hash[i] & h->bucket_bitmask];
1019 secondary_bkt[i] = &h->buckets[sec_hash[i] & h->bucket_bitmask];
1021 rte_prefetch0(primary_bkt[i]);
1022 rte_prefetch0(secondary_bkt[i]);
1025 /* Compare signatures and prefetch key slot of first hit */
1026 for (i = 0; i < num_keys; i++) {
1027 compare_signatures(&prim_hitmask[i], &sec_hitmask[i],
1028 primary_bkt[i], secondary_bkt[i],
1029 prim_hash[i], sec_hash[i], h->sig_cmp_fn);
1031 if (prim_hitmask[i]) {
1032 uint32_t first_hit = __builtin_ctzl(prim_hitmask[i]);
1033 uint32_t key_idx = primary_bkt[i]->key_idx[first_hit];
1034 const struct rte_hash_key *key_slot =
1035 (const struct rte_hash_key *)(
1036 (const char *)h->key_store +
1037 key_idx * h->key_entry_size);
1038 rte_prefetch0(key_slot);
1042 if (sec_hitmask[i]) {
1043 uint32_t first_hit = __builtin_ctzl(sec_hitmask[i]);
1044 uint32_t key_idx = secondary_bkt[i]->key_idx[first_hit];
1045 const struct rte_hash_key *key_slot =
1046 (const struct rte_hash_key *)(
1047 (const char *)h->key_store +
1048 key_idx * h->key_entry_size);
1049 rte_prefetch0(key_slot);
1053 /* Compare keys, first hits in primary first */
1054 for (i = 0; i < num_keys; i++) {
1055 positions[i] = -ENOENT;
1056 while (prim_hitmask[i]) {
1057 uint32_t hit_index = __builtin_ctzl(prim_hitmask[i]);
1059 uint32_t key_idx = primary_bkt[i]->key_idx[hit_index];
1060 const struct rte_hash_key *key_slot =
1061 (const struct rte_hash_key *)(
1062 (const char *)h->key_store +
1063 key_idx * h->key_entry_size);
1065 * If key index is 0, do not compare key,
1066 * as it is checking the dummy slot
1068 if (!!key_idx & !rte_hash_cmp_eq(key_slot->key, keys[i], h)) {
1070 data[i] = key_slot->pdata;
1073 positions[i] = key_idx - 1;
1076 prim_hitmask[i] &= ~(1 << (hit_index));
1079 while (sec_hitmask[i]) {
1080 uint32_t hit_index = __builtin_ctzl(sec_hitmask[i]);
1082 uint32_t key_idx = secondary_bkt[i]->key_idx[hit_index];
1083 const struct rte_hash_key *key_slot =
1084 (const struct rte_hash_key *)(
1085 (const char *)h->key_store +
1086 key_idx * h->key_entry_size);
1088 * If key index is 0, do not compare key,
1089 * as it is checking the dummy slot
1092 if (!!key_idx & !rte_hash_cmp_eq(key_slot->key, keys[i], h)) {
1094 data[i] = key_slot->pdata;
1097 positions[i] = key_idx - 1;
1100 sec_hitmask[i] &= ~(1 << (hit_index));
1107 if (hit_mask != NULL)
1112 rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
1113 uint32_t num_keys, int32_t *positions)
1115 RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
1116 (num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
1117 (positions == NULL)), -EINVAL);
1119 __rte_hash_lookup_bulk(h, keys, num_keys, positions, NULL, NULL);
1124 rte_hash_lookup_bulk_data(const struct rte_hash *h, const void **keys,
1125 uint32_t num_keys, uint64_t *hit_mask, void *data[])
1127 RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
1128 (num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
1129 (hit_mask == NULL)), -EINVAL);
1131 int32_t positions[num_keys];
1133 __rte_hash_lookup_bulk(h, keys, num_keys, positions, hit_mask, data);
1135 /* Return number of hits */
1136 return __builtin_popcountl(*hit_mask);
1140 rte_hash_iterate(const struct rte_hash *h, const void **key, void **data, uint32_t *next)
1142 uint32_t bucket_idx, idx, position;
1143 struct rte_hash_key *next_key;
1145 RETURN_IF_TRUE(((h == NULL) || (next == NULL)), -EINVAL);
1147 const uint32_t total_entries = h->num_buckets * RTE_HASH_BUCKET_ENTRIES;
1149 if (*next >= total_entries)
1152 /* Calculate bucket and index of current iterator */
1153 bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
1154 idx = *next % RTE_HASH_BUCKET_ENTRIES;
1156 /* If current position is empty, go to the next one */
1157 while (h->buckets[bucket_idx].key_idx[idx] == EMPTY_SLOT) {
1160 if (*next == total_entries)
1162 bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
1163 idx = *next % RTE_HASH_BUCKET_ENTRIES;
1166 /* Get position of entry in key table */
1167 position = h->buckets[bucket_idx].key_idx[idx];
1168 next_key = (struct rte_hash_key *) ((char *)h->key_store +
1169 position * h->key_entry_size);
1170 /* Return key and data */
1171 *key = next_key->key;
1172 *data = next_key->pdata;
1174 /* Increment iterator */
1177 return position - 1;