4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5 * Copyright 2014 6WIND S.A.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 * The mbuf library provides the ability to create and destroy buffers
43 * that may be used by the RTE application to store message
44 * buffers. The message buffers are stored in a mempool, using the
45 * RTE mempool library.
47 * The preferred way to create a mbuf pool is to use
48 * rte_pktmbuf_pool_create(). However, in some situations, an
49 * application may want to have more control (ex: populate the pool with
50 * specific memory), in this case it is possible to use functions from
51 * rte_mempool. See how rte_pktmbuf_pool_create() is implemented for
54 * This library provides an API to allocate/free packet mbufs, which are
55 * used to carry network packets.
57 * To understand the concepts of packet buffers or mbufs, you
58 * should read "TCP/IP Illustrated, Volume 2: The Implementation,
59 * Addison-Wesley, 1995, ISBN 0-201-63354-X from Richard Stevens"
60 * http://www.kohala.com/start/tcpipiv2.html
64 #include <rte_common.h>
65 #include <rte_mempool.h>
66 #include <rte_memory.h>
67 #include <rte_atomic.h>
68 #include <rte_prefetch.h>
69 #include <rte_branch_prediction.h>
70 #include <rte_mbuf_ptype.h>
77 * Packet Offload Features Flags. It also carry packet type information.
78 * Critical resources. Both rx/tx shared these bits. Be cautious on any change
80 * - RX flags start at bit position zero, and get added to the left of previous
82 * - The most-significant 3 bits are reserved for generic mbuf flags
83 * - TX flags therefore start at bit position 60 (i.e. 63-3), and new flags get
84 * added to the right of the previously defined flags i.e. they should count
85 * downwards, not upwards.
87 * Keep these flags synchronized with rte_get_rx_ol_flag_name() and
88 * rte_get_tx_ol_flag_name().
92 * RX packet is a 802.1q VLAN packet. This flag was set by PMDs when
93 * the packet is recognized as a VLAN, but the behavior between PMDs
94 * was not the same. This flag is kept for some time to avoid breaking
95 * applications and should be replaced by PKT_RX_VLAN_STRIPPED.
97 #define PKT_RX_VLAN_PKT (1ULL << 0)
99 #define PKT_RX_RSS_HASH (1ULL << 1) /**< RX packet with RSS hash result. */
100 #define PKT_RX_FDIR (1ULL << 2) /**< RX packet with FDIR match indicate. */
104 * Checking this flag alone is deprecated: check the 2 bits of
105 * PKT_RX_L4_CKSUM_MASK.
106 * This flag was set when the L4 checksum of a packet was detected as
107 * wrong by the hardware.
109 #define PKT_RX_L4_CKSUM_BAD (1ULL << 3)
113 * Checking this flag alone is deprecated: check the 2 bits of
114 * PKT_RX_IP_CKSUM_MASK.
115 * This flag was set when the IP checksum of a packet was detected as
116 * wrong by the hardware.
118 #define PKT_RX_IP_CKSUM_BAD (1ULL << 4)
120 #define PKT_RX_EIP_CKSUM_BAD (1ULL << 5) /**< External IP header checksum error. */
123 * A vlan has been stripped by the hardware and its tci is saved in
124 * mbuf->vlan_tci. This can only happen if vlan stripping is enabled
125 * in the RX configuration of the PMD.
127 #define PKT_RX_VLAN_STRIPPED (1ULL << 6)
130 * Mask of bits used to determine the status of RX IP checksum.
131 * - PKT_RX_IP_CKSUM_UNKNOWN: no information about the RX IP checksum
132 * - PKT_RX_IP_CKSUM_BAD: the IP checksum in the packet is wrong
133 * - PKT_RX_IP_CKSUM_GOOD: the IP checksum in the packet is valid
134 * - PKT_RX_IP_CKSUM_NONE: the IP checksum is not correct in the packet
135 * data, but the integrity of the IP header is verified.
137 #define PKT_RX_IP_CKSUM_MASK ((1ULL << 4) | (1ULL << 7))
139 #define PKT_RX_IP_CKSUM_UNKNOWN 0
140 #define PKT_RX_IP_CKSUM_BAD (1ULL << 4)
141 #define PKT_RX_IP_CKSUM_GOOD (1ULL << 7)
142 #define PKT_RX_IP_CKSUM_NONE ((1ULL << 4) | (1ULL << 7))
145 * Mask of bits used to determine the status of RX L4 checksum.
146 * - PKT_RX_L4_CKSUM_UNKNOWN: no information about the RX L4 checksum
147 * - PKT_RX_L4_CKSUM_BAD: the L4 checksum in the packet is wrong
148 * - PKT_RX_L4_CKSUM_GOOD: the L4 checksum in the packet is valid
149 * - PKT_RX_L4_CKSUM_NONE: the L4 checksum is not correct in the packet
150 * data, but the integrity of the L4 data is verified.
152 #define PKT_RX_L4_CKSUM_MASK ((1ULL << 3) | (1ULL << 8))
154 #define PKT_RX_L4_CKSUM_UNKNOWN 0
155 #define PKT_RX_L4_CKSUM_BAD (1ULL << 3)
156 #define PKT_RX_L4_CKSUM_GOOD (1ULL << 8)
157 #define PKT_RX_L4_CKSUM_NONE ((1ULL << 3) | (1ULL << 8))
159 #define PKT_RX_IEEE1588_PTP (1ULL << 9) /**< RX IEEE1588 L2 Ethernet PT Packet. */
160 #define PKT_RX_IEEE1588_TMST (1ULL << 10) /**< RX IEEE1588 L2/L4 timestamped packet.*/
161 #define PKT_RX_FDIR_ID (1ULL << 13) /**< FD id reported if FDIR match. */
162 #define PKT_RX_FDIR_FLX (1ULL << 14) /**< Flexible bytes reported if FDIR match. */
165 * The 2 vlans have been stripped by the hardware and their tci are
166 * saved in mbuf->vlan_tci (inner) and mbuf->vlan_tci_outer (outer).
167 * This can only happen if vlan stripping is enabled in the RX
168 * configuration of the PMD. If this flag is set, PKT_RX_VLAN_STRIPPED
171 #define PKT_RX_QINQ_STRIPPED (1ULL << 15)
175 * RX packet with double VLAN stripped.
176 * This flag is replaced by PKT_RX_QINQ_STRIPPED.
178 #define PKT_RX_QINQ_PKT PKT_RX_QINQ_STRIPPED
181 * When packets are coalesced by a hardware or virtual driver, this flag
182 * can be set in the RX mbuf, meaning that the m->tso_segsz field is
183 * valid and is set to the segment size of original packets.
185 #define PKT_RX_LRO (1ULL << 16)
188 * Indicate that the timestamp field in the mbuf is valid.
190 #define PKT_RX_TIMESTAMP (1ULL << 17)
192 /* add new RX flags here */
194 /* add new TX flags here */
197 * Offload the MACsec. This flag must be set by the application to enable
198 * this offload feature for a packet to be transmitted.
200 #define PKT_TX_MACSEC (1ULL << 44)
203 * Bits 45:48 used for the tunnel type.
204 * When doing Tx offload like TSO or checksum, the HW needs to configure the
205 * tunnel type into the HW descriptors.
207 #define PKT_TX_TUNNEL_VXLAN (0x1ULL << 45)
208 #define PKT_TX_TUNNEL_GRE (0x2ULL << 45)
209 #define PKT_TX_TUNNEL_IPIP (0x3ULL << 45)
210 #define PKT_TX_TUNNEL_GENEVE (0x4ULL << 45)
211 /**< TX packet with MPLS-in-UDP RFC 7510 header. */
212 #define PKT_TX_TUNNEL_MPLSINUDP (0x5ULL << 45)
213 /* add new TX TUNNEL type here */
214 #define PKT_TX_TUNNEL_MASK (0xFULL << 45)
217 * Second VLAN insertion (QinQ) flag.
219 #define PKT_TX_QINQ_PKT (1ULL << 49) /**< TX packet with double VLAN inserted. */
222 * TCP segmentation offload. To enable this offload feature for a
223 * packet to be transmitted on hardware supporting TSO:
224 * - set the PKT_TX_TCP_SEG flag in mbuf->ol_flags (this flag implies
226 * - set the flag PKT_TX_IPV4 or PKT_TX_IPV6
227 * - if it's IPv4, set the PKT_TX_IP_CKSUM flag and write the IP checksum
229 * - fill the mbuf offload information: l2_len, l3_len, l4_len, tso_segsz
230 * - calculate the pseudo header checksum without taking ip_len in account,
231 * and set it in the TCP header. Refer to rte_ipv4_phdr_cksum() and
232 * rte_ipv6_phdr_cksum() that can be used as helpers.
234 #define PKT_TX_TCP_SEG (1ULL << 50)
236 #define PKT_TX_IEEE1588_TMST (1ULL << 51) /**< TX IEEE1588 packet to timestamp. */
239 * Bits 52+53 used for L4 packet type with checksum enabled: 00: Reserved,
240 * 01: TCP checksum, 10: SCTP checksum, 11: UDP checksum. To use hardware
241 * L4 checksum offload, the user needs to:
242 * - fill l2_len and l3_len in mbuf
243 * - set the flags PKT_TX_TCP_CKSUM, PKT_TX_SCTP_CKSUM or PKT_TX_UDP_CKSUM
244 * - set the flag PKT_TX_IPV4 or PKT_TX_IPV6
245 * - calculate the pseudo header checksum and set it in the L4 header (only
246 * for TCP or UDP). See rte_ipv4_phdr_cksum() and rte_ipv6_phdr_cksum().
247 * For SCTP, set the crc field to 0.
249 #define PKT_TX_L4_NO_CKSUM (0ULL << 52) /**< Disable L4 cksum of TX pkt. */
250 #define PKT_TX_TCP_CKSUM (1ULL << 52) /**< TCP cksum of TX pkt. computed by NIC. */
251 #define PKT_TX_SCTP_CKSUM (2ULL << 52) /**< SCTP cksum of TX pkt. computed by NIC. */
252 #define PKT_TX_UDP_CKSUM (3ULL << 52) /**< UDP cksum of TX pkt. computed by NIC. */
253 #define PKT_TX_L4_MASK (3ULL << 52) /**< Mask for L4 cksum offload request. */
256 * Offload the IP checksum in the hardware. The flag PKT_TX_IPV4 should
257 * also be set by the application, although a PMD will only check
259 * - set the IP checksum field in the packet to 0
260 * - fill the mbuf offload information: l2_len, l3_len
262 #define PKT_TX_IP_CKSUM (1ULL << 54)
265 * Packet is IPv4. This flag must be set when using any offload feature
266 * (TSO, L3 or L4 checksum) to tell the NIC that the packet is an IPv4
267 * packet. If the packet is a tunneled packet, this flag is related to
270 #define PKT_TX_IPV4 (1ULL << 55)
273 * Packet is IPv6. This flag must be set when using an offload feature
274 * (TSO or L4 checksum) to tell the NIC that the packet is an IPv6
275 * packet. If the packet is a tunneled packet, this flag is related to
278 #define PKT_TX_IPV6 (1ULL << 56)
280 #define PKT_TX_VLAN_PKT (1ULL << 57) /**< TX packet is a 802.1q VLAN packet. */
283 * Offload the IP checksum of an external header in the hardware. The
284 * flag PKT_TX_OUTER_IPV4 should also be set by the application, alto ugh
285 * a PMD will only check PKT_TX_IP_CKSUM. The IP checksum field in the
286 * packet must be set to 0.
287 * - set the outer IP checksum field in the packet to 0
288 * - fill the mbuf offload information: outer_l2_len, outer_l3_len
290 #define PKT_TX_OUTER_IP_CKSUM (1ULL << 58)
293 * Packet outer header is IPv4. This flag must be set when using any
294 * outer offload feature (L3 or L4 checksum) to tell the NIC that the
295 * outer header of the tunneled packet is an IPv4 packet.
297 #define PKT_TX_OUTER_IPV4 (1ULL << 59)
300 * Packet outer header is IPv6. This flag must be set when using any
301 * outer offload feature (L4 checksum) to tell the NIC that the outer
302 * header of the tunneled packet is an IPv6 packet.
304 #define PKT_TX_OUTER_IPV6 (1ULL << 60)
307 * Bitmask of all supported packet Tx offload features flags,
308 * which can be set for packet.
310 #define PKT_TX_OFFLOAD_MASK ( \
313 PKT_TX_OUTER_IP_CKSUM | \
315 PKT_TX_IEEE1588_TMST | \
318 PKT_TX_TUNNEL_MASK | \
321 #define __RESERVED (1ULL << 61) /**< reserved for future mbuf use */
323 #define IND_ATTACHED_MBUF (1ULL << 62) /**< Indirect attached mbuf */
325 /* Use final bit of flags to indicate a control mbuf */
326 #define CTRL_MBUF_FLAG (1ULL << 63) /**< Mbuf contains control data */
328 /** Alignment constraint of mbuf private area. */
329 #define RTE_MBUF_PRIV_ALIGN 8
332 * Get the name of a RX offload flag
335 * The mask describing the flag.
337 * The name of this flag, or NULL if it's not a valid RX flag.
339 const char *rte_get_rx_ol_flag_name(uint64_t mask);
342 * Dump the list of RX offload flags in a buffer
345 * The mask describing the RX flags.
349 * The length of the buffer.
351 * 0 on success, (-1) on error.
353 int rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
356 * Get the name of a TX offload flag
359 * The mask describing the flag. Usually only one bit must be set.
360 * Several bits can be given if they belong to the same mask.
361 * Ex: PKT_TX_L4_MASK.
363 * The name of this flag, or NULL if it's not a valid TX flag.
365 const char *rte_get_tx_ol_flag_name(uint64_t mask);
368 * Dump the list of TX offload flags in a buffer
371 * The mask describing the TX flags.
375 * The length of the buffer.
377 * 0 on success, (-1) on error.
379 int rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
382 * Some NICs need at least 2KB buffer to RX standard Ethernet frame without
383 * splitting it into multiple segments.
384 * So, for mbufs that planned to be involved into RX/TX, the recommended
385 * minimal buffer length is 2KB + RTE_PKTMBUF_HEADROOM.
387 #define RTE_MBUF_DEFAULT_DATAROOM 2048
388 #define RTE_MBUF_DEFAULT_BUF_SIZE \
389 (RTE_MBUF_DEFAULT_DATAROOM + RTE_PKTMBUF_HEADROOM)
391 /* define a set of marker types that can be used to refer to set points in the
394 typedef void *MARKER[0]; /**< generic marker for a point in a structure */
396 typedef uint8_t MARKER8[0]; /**< generic marker with 1B alignment */
398 typedef uint64_t MARKER64[0]; /**< marker that allows us to overwrite 8 bytes
399 * with a single assignment */
402 * The generic rte_mbuf, containing a packet mbuf.
407 void *buf_addr; /**< Virtual address of segment buffer. */
409 * Physical address of segment buffer.
410 * Force alignment to 8-bytes, so as to ensure we have the exact
411 * same mbuf cacheline0 layout for 32-bit and 64-bit. This makes
412 * working on vector drivers easier.
414 phys_addr_t buf_physaddr __rte_aligned(sizeof(phys_addr_t));
416 /* next 8 bytes are initialised on RX descriptor rearm */
421 * Reference counter. Its size should at least equal to the size
422 * of port field (16 bits), to support zero-copy broadcast.
423 * It should only be accessed using the following functions:
424 * rte_mbuf_refcnt_update(), rte_mbuf_refcnt_read(), and
425 * rte_mbuf_refcnt_set(). The functionality of these functions (atomic,
426 * or non-atomic) is controlled by the CONFIG_RTE_MBUF_REFCNT_ATOMIC
431 rte_atomic16_t refcnt_atomic; /**< Atomically accessed refcnt */
432 uint16_t refcnt; /**< Non-atomically accessed refcnt */
434 uint16_t nb_segs; /**< Number of segments. */
436 /** Input port (16 bits to support more than 256 virtual ports). */
439 uint64_t ol_flags; /**< Offload features. */
441 /* remaining bytes are set on RX when pulling packet from descriptor */
442 MARKER rx_descriptor_fields1;
445 * The packet type, which is the combination of outer/inner L2, L3, L4
446 * and tunnel types. The packet_type is about data really present in the
447 * mbuf. Example: if vlan stripping is enabled, a received vlan packet
448 * would have RTE_PTYPE_L2_ETHER and not RTE_PTYPE_L2_VLAN because the
449 * vlan is stripped from the data.
453 uint32_t packet_type; /**< L2/L3/L4 and tunnel information. */
455 uint32_t l2_type:4; /**< (Outer) L2 type. */
456 uint32_t l3_type:4; /**< (Outer) L3 type. */
457 uint32_t l4_type:4; /**< (Outer) L4 type. */
458 uint32_t tun_type:4; /**< Tunnel type. */
459 uint32_t inner_l2_type:4; /**< Inner L2 type. */
460 uint32_t inner_l3_type:4; /**< Inner L3 type. */
461 uint32_t inner_l4_type:4; /**< Inner L4 type. */
465 uint32_t pkt_len; /**< Total pkt len: sum of all segments. */
466 uint16_t data_len; /**< Amount of data in segment buffer. */
467 /** VLAN TCI (CPU order), valid if PKT_RX_VLAN_STRIPPED is set. */
471 uint32_t rss; /**< RSS hash result if RSS enabled */
480 /**< Second 4 flexible bytes */
483 /**< First 4 flexible bytes or FD ID, dependent on
484 PKT_RX_FDIR_* flag in ol_flags. */
485 } fdir; /**< Filter identifier if FDIR enabled */
489 } sched; /**< Hierarchical scheduler */
490 uint32_t usr; /**< User defined tags. See rte_distributor_process() */
491 } hash; /**< hash information */
493 /** Outer VLAN TCI (CPU order), valid if PKT_RX_QINQ_STRIPPED is set. */
494 uint16_t vlan_tci_outer;
496 uint16_t buf_len; /**< Length of segment buffer. */
498 /** Valid if PKT_RX_TIMESTAMP is set. The unit and time reference
499 * are not normalized but are always the same for a given port.
503 /* second cache line - fields only used in slow path or on TX */
504 MARKER cacheline1 __rte_cache_min_aligned;
508 void *userdata; /**< Can be used for external metadata */
509 uint64_t udata64; /**< Allow 8-byte userdata on 32-bit */
512 struct rte_mempool *pool; /**< Pool from which mbuf was allocated. */
513 struct rte_mbuf *next; /**< Next segment of scattered packet. */
515 /* fields to support TX offloads */
518 uint64_t tx_offload; /**< combined for easy fetch */
522 /**< L2 (MAC) Header Length for non-tunneling pkt.
523 * Outer_L4_len + ... + Inner_L2_len for tunneling pkt.
525 uint64_t l3_len:9; /**< L3 (IP) Header Length. */
526 uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
527 uint64_t tso_segsz:16; /**< TCP TSO segment size */
529 /* fields for TX offloading of tunnels */
530 uint64_t outer_l3_len:9; /**< Outer L3 (IP) Hdr Length. */
531 uint64_t outer_l2_len:7; /**< Outer L2 (MAC) Hdr Length. */
533 /* uint64_t unused:8; */
537 /** Size of the application private data. In case of an indirect
538 * mbuf, it stores the direct mbuf private data size. */
541 /** Timesync flags for use with IEEE1588. */
544 /** Sequence number. See also rte_reorder_insert(). */
547 } __rte_cache_aligned;
550 * Prefetch the first part of the mbuf
552 * The first 64 bytes of the mbuf corresponds to fields that are used early
553 * in the receive path. If the cache line of the architecture is higher than
554 * 64B, the second part will also be prefetched.
557 * The pointer to the mbuf.
560 rte_mbuf_prefetch_part1(struct rte_mbuf *m)
562 rte_prefetch0(&m->cacheline0);
566 * Prefetch the second part of the mbuf
568 * The next 64 bytes of the mbuf corresponds to fields that are used in the
569 * transmit path. If the cache line of the architecture is higher than 64B,
570 * this function does nothing as it is expected that the full mbuf is
574 * The pointer to the mbuf.
577 rte_mbuf_prefetch_part2(struct rte_mbuf *m)
579 #if RTE_CACHE_LINE_SIZE == 64
580 rte_prefetch0(&m->cacheline1);
587 static inline uint16_t rte_pktmbuf_priv_size(struct rte_mempool *mp);
590 * Return the DMA address of the beginning of the mbuf data
593 * The pointer to the mbuf.
595 * The physical address of the beginning of the mbuf data
597 static inline phys_addr_t
598 rte_mbuf_data_dma_addr(const struct rte_mbuf *mb)
600 return mb->buf_physaddr + mb->data_off;
604 * Return the default DMA address of the beginning of the mbuf data
606 * This function is used by drivers in their receive function, as it
607 * returns the location where data should be written by the NIC, taking
608 * the default headroom in account.
611 * The pointer to the mbuf.
613 * The physical address of the beginning of the mbuf data
615 static inline phys_addr_t
616 rte_mbuf_data_dma_addr_default(const struct rte_mbuf *mb)
618 return mb->buf_physaddr + RTE_PKTMBUF_HEADROOM;
622 * Return the mbuf owning the data buffer address of an indirect mbuf.
625 * The pointer to the indirect mbuf.
627 * The address of the direct mbuf corresponding to buffer_addr.
629 static inline struct rte_mbuf *
630 rte_mbuf_from_indirect(struct rte_mbuf *mi)
632 return (struct rte_mbuf *)RTE_PTR_SUB(mi->buf_addr, sizeof(*mi) + mi->priv_size);
636 * Return the buffer address embedded in the given mbuf.
639 * The pointer to the mbuf.
641 * The address of the data buffer owned by the mbuf.
644 rte_mbuf_to_baddr(struct rte_mbuf *md)
647 buffer_addr = (char *)md + sizeof(*md) + rte_pktmbuf_priv_size(md->pool);
652 * Returns TRUE if given mbuf is indirect, or FALSE otherwise.
654 #define RTE_MBUF_INDIRECT(mb) ((mb)->ol_flags & IND_ATTACHED_MBUF)
657 * Returns TRUE if given mbuf is direct, or FALSE otherwise.
659 #define RTE_MBUF_DIRECT(mb) (!RTE_MBUF_INDIRECT(mb))
662 * Private data in case of pktmbuf pool.
664 * A structure that contains some pktmbuf_pool-specific data that are
665 * appended after the mempool structure (in private data).
667 struct rte_pktmbuf_pool_private {
668 uint16_t mbuf_data_room_size; /**< Size of data space in each mbuf. */
669 uint16_t mbuf_priv_size; /**< Size of private area in each mbuf. */
672 #ifdef RTE_LIBRTE_MBUF_DEBUG
674 /** check mbuf type in debug mode */
675 #define __rte_mbuf_sanity_check(m, is_h) rte_mbuf_sanity_check(m, is_h)
677 #else /* RTE_LIBRTE_MBUF_DEBUG */
679 /** check mbuf type in debug mode */
680 #define __rte_mbuf_sanity_check(m, is_h) do { } while (0)
682 #endif /* RTE_LIBRTE_MBUF_DEBUG */
684 #ifdef RTE_MBUF_REFCNT_ATOMIC
687 * Reads the value of an mbuf's refcnt.
691 * Reference count number.
693 static inline uint16_t
694 rte_mbuf_refcnt_read(const struct rte_mbuf *m)
696 return (uint16_t)(rte_atomic16_read(&m->refcnt_atomic));
700 * Sets an mbuf's refcnt to a defined value.
707 rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
709 rte_atomic16_set(&m->refcnt_atomic, new_value);
713 * Adds given value to an mbuf's refcnt and returns its new value.
717 * Value to add/subtract
721 static inline uint16_t
722 rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
725 * The atomic_add is an expensive operation, so we don't want to
726 * call it in the case where we know we are the uniq holder of
727 * this mbuf (i.e. ref_cnt == 1). Otherwise, an atomic
728 * operation has to be used because concurrent accesses on the
729 * reference counter can occur.
731 if (likely(rte_mbuf_refcnt_read(m) == 1)) {
732 rte_mbuf_refcnt_set(m, 1 + value);
736 return (uint16_t)(rte_atomic16_add_return(&m->refcnt_atomic, value));
739 #else /* ! RTE_MBUF_REFCNT_ATOMIC */
742 * Adds given value to an mbuf's refcnt and returns its new value.
744 static inline uint16_t
745 rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
747 m->refcnt = (uint16_t)(m->refcnt + value);
752 * Reads the value of an mbuf's refcnt.
754 static inline uint16_t
755 rte_mbuf_refcnt_read(const struct rte_mbuf *m)
761 * Sets an mbuf's refcnt to the defined value.
764 rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
766 m->refcnt = new_value;
769 #endif /* RTE_MBUF_REFCNT_ATOMIC */
772 #define RTE_MBUF_PREFETCH_TO_FREE(m) do { \
779 * Sanity checks on an mbuf.
781 * Check the consistency of the given mbuf. The function will cause a
782 * panic if corruption is detected.
785 * The mbuf to be checked.
787 * True if the mbuf is a packet header, false if it is a sub-segment
788 * of a packet (in this case, some fields like nb_segs are not checked)
791 rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header);
793 #define MBUF_RAW_ALLOC_CHECK(m) do { \
794 RTE_ASSERT(rte_mbuf_refcnt_read(m) == 1); \
795 RTE_ASSERT((m)->next == NULL); \
796 RTE_ASSERT((m)->nb_segs == 1); \
797 __rte_mbuf_sanity_check(m, 0); \
801 * Allocate an unitialized mbuf from mempool *mp*.
803 * This function can be used by PMDs (especially in RX functions) to
804 * allocate an unitialized mbuf. The driver is responsible of
805 * initializing all the required fields. See rte_pktmbuf_reset().
806 * For standard needs, prefer rte_pktmbuf_alloc().
808 * The caller can expect that the following fields of the mbuf structure
809 * are initialized: buf_addr, buf_physaddr, buf_len, refcnt=1, nb_segs=1,
810 * next=NULL, pool, priv_size. The other fields must be initialized
814 * The mempool from which mbuf is allocated.
816 * - The pointer to the new mbuf on success.
817 * - NULL if allocation failed.
819 static inline struct rte_mbuf *rte_mbuf_raw_alloc(struct rte_mempool *mp)
824 if (rte_mempool_get(mp, &mb) < 0)
826 m = (struct rte_mbuf *)mb;
827 MBUF_RAW_ALLOC_CHECK(m);
832 * Put mbuf back into its original mempool.
834 * The caller must ensure that the mbuf is direct and properly
835 * reinitialized (refcnt=1, next=NULL, nb_segs=1), as done by
836 * rte_pktmbuf_prefree_seg().
838 * This function should be used with care, when optimization is
839 * required. For standard needs, prefer rte_pktmbuf_free() or
840 * rte_pktmbuf_free_seg().
843 * The mbuf to be freed.
845 static __rte_always_inline void
846 rte_mbuf_raw_free(struct rte_mbuf *m)
848 RTE_ASSERT(RTE_MBUF_DIRECT(m));
849 RTE_ASSERT(rte_mbuf_refcnt_read(m) == 1);
850 RTE_ASSERT(m->next == NULL);
851 RTE_ASSERT(m->nb_segs == 1);
852 __rte_mbuf_sanity_check(m, 0);
853 rte_mempool_put(m->pool, m);
856 /* compat with older versions */
859 __rte_mbuf_raw_free(struct rte_mbuf *m)
861 rte_mbuf_raw_free(m);
864 /* Operations on ctrl mbuf */
867 * The control mbuf constructor.
869 * This function initializes some fields in an mbuf structure that are
870 * not modified by the user once created (mbuf type, origin pool, buffer
871 * start address, and so on). This function is given as a callback function
872 * to rte_mempool_obj_iter() or rte_mempool_create() at pool creation time.
875 * The mempool from which the mbuf is allocated.
877 * A pointer that can be used by the user to retrieve useful information
878 * for mbuf initialization. This pointer is the opaque argument passed to
879 * rte_mempool_obj_iter() or rte_mempool_create().
881 * The mbuf to initialize.
883 * The index of the mbuf in the pool table.
885 void rte_ctrlmbuf_init(struct rte_mempool *mp, void *opaque_arg,
886 void *m, unsigned i);
889 * Allocate a new mbuf (type is ctrl) from mempool *mp*.
891 * This new mbuf is initialized with data pointing to the beginning of
892 * buffer, and with a length of zero.
895 * The mempool from which the mbuf is allocated.
897 * - The pointer to the new mbuf on success.
898 * - NULL if allocation failed.
900 #define rte_ctrlmbuf_alloc(mp) rte_pktmbuf_alloc(mp)
903 * Free a control mbuf back into its original mempool.
906 * The control mbuf to be freed.
908 #define rte_ctrlmbuf_free(m) rte_pktmbuf_free(m)
911 * A macro that returns the pointer to the carried data.
913 * The value that can be read or assigned.
918 #define rte_ctrlmbuf_data(m) ((char *)((m)->buf_addr) + (m)->data_off)
921 * A macro that returns the length of the carried data.
923 * The value that can be read or assigned.
928 #define rte_ctrlmbuf_len(m) rte_pktmbuf_data_len(m)
931 * Tests if an mbuf is a control mbuf
934 * The mbuf to be tested
936 * - True (1) if the mbuf is a control mbuf
937 * - False(0) otherwise
940 rte_is_ctrlmbuf(struct rte_mbuf *m)
942 return !!(m->ol_flags & CTRL_MBUF_FLAG);
945 /* Operations on pkt mbuf */
948 * The packet mbuf constructor.
950 * This function initializes some fields in the mbuf structure that are
951 * not modified by the user once created (origin pool, buffer start
952 * address, and so on). This function is given as a callback function to
953 * rte_mempool_obj_iter() or rte_mempool_create() at pool creation time.
956 * The mempool from which mbufs originate.
958 * A pointer that can be used by the user to retrieve useful information
959 * for mbuf initialization. This pointer is the opaque argument passed to
960 * rte_mempool_obj_iter() or rte_mempool_create().
962 * The mbuf to initialize.
964 * The index of the mbuf in the pool table.
966 void rte_pktmbuf_init(struct rte_mempool *mp, void *opaque_arg,
967 void *m, unsigned i);
971 * A packet mbuf pool constructor.
973 * This function initializes the mempool private data in the case of a
974 * pktmbuf pool. This private data is needed by the driver. The
975 * function must be called on the mempool before it is used, or it
976 * can be given as a callback function to rte_mempool_create() at
977 * pool creation. It can be extended by the user, for example, to
978 * provide another packet size.
981 * The mempool from which mbufs originate.
983 * A pointer that can be used by the user to retrieve useful information
984 * for mbuf initialization. This pointer is the opaque argument passed to
985 * rte_mempool_create().
987 void rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg);
990 * Create a mbuf pool.
992 * This function creates and initializes a packet mbuf pool. It is
993 * a wrapper to rte_mempool functions.
996 * The name of the mbuf pool.
998 * The number of elements in the mbuf pool. The optimum size (in terms
999 * of memory usage) for a mempool is when n is a power of two minus one:
1002 * Size of the per-core object cache. See rte_mempool_create() for
1005 * Size of application private are between the rte_mbuf structure
1006 * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
1007 * @param data_room_size
1008 * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
1010 * The socket identifier where the memory should be allocated. The
1011 * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
1014 * The pointer to the new allocated mempool, on success. NULL on error
1015 * with rte_errno set appropriately. Possible rte_errno values include:
1016 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
1017 * - E_RTE_SECONDARY - function was called from a secondary process instance
1018 * - EINVAL - cache size provided is too large, or priv_size is not aligned.
1019 * - ENOSPC - the maximum number of memzones has already been allocated
1020 * - EEXIST - a memzone with the same name already exists
1021 * - ENOMEM - no appropriate memory area found in which to create memzone
1023 struct rte_mempool *
1024 rte_pktmbuf_pool_create(const char *name, unsigned n,
1025 unsigned cache_size, uint16_t priv_size, uint16_t data_room_size,
1029 * Get the data room size of mbufs stored in a pktmbuf_pool
1031 * The data room size is the amount of data that can be stored in a
1032 * mbuf including the headroom (RTE_PKTMBUF_HEADROOM).
1035 * The packet mbuf pool.
1037 * The data room size of mbufs stored in this mempool.
1039 static inline uint16_t
1040 rte_pktmbuf_data_room_size(struct rte_mempool *mp)
1042 struct rte_pktmbuf_pool_private *mbp_priv;
1044 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
1045 return mbp_priv->mbuf_data_room_size;
1049 * Get the application private size of mbufs stored in a pktmbuf_pool
1051 * The private size of mbuf is a zone located between the rte_mbuf
1052 * structure and the data buffer where an application can store data
1053 * associated to a packet.
1056 * The packet mbuf pool.
1058 * The private size of mbufs stored in this mempool.
1060 static inline uint16_t
1061 rte_pktmbuf_priv_size(struct rte_mempool *mp)
1063 struct rte_pktmbuf_pool_private *mbp_priv;
1065 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
1066 return mbp_priv->mbuf_priv_size;
1070 * Reset the data_off field of a packet mbuf to its default value.
1072 * The given mbuf must have only one segment, which should be empty.
1075 * The packet mbuf's data_off field has to be reset.
1077 static inline void rte_pktmbuf_reset_headroom(struct rte_mbuf *m)
1079 m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len);
1083 * Reset the fields of a packet mbuf to their default values.
1085 * The given mbuf must have only one segment.
1088 * The packet mbuf to be resetted.
1090 static inline void rte_pktmbuf_reset(struct rte_mbuf *m)
1096 m->vlan_tci_outer = 0;
1102 rte_pktmbuf_reset_headroom(m);
1105 __rte_mbuf_sanity_check(m, 1);
1109 * Allocate a new mbuf from a mempool.
1111 * This new mbuf contains one segment, which has a length of 0. The pointer
1112 * to data is initialized to have some bytes of headroom in the buffer
1113 * (if buffer size allows).
1116 * The mempool from which the mbuf is allocated.
1118 * - The pointer to the new mbuf on success.
1119 * - NULL if allocation failed.
1121 static inline struct rte_mbuf *rte_pktmbuf_alloc(struct rte_mempool *mp)
1124 if ((m = rte_mbuf_raw_alloc(mp)) != NULL)
1125 rte_pktmbuf_reset(m);
1130 * Allocate a bulk of mbufs, initialize refcnt and reset the fields to default
1134 * The mempool from which mbufs are allocated.
1136 * Array of pointers to mbufs
1141 * - -ENOENT: Not enough entries in the mempool; no mbufs are retrieved.
1143 static inline int rte_pktmbuf_alloc_bulk(struct rte_mempool *pool,
1144 struct rte_mbuf **mbufs, unsigned count)
1149 rc = rte_mempool_get_bulk(pool, (void **)mbufs, count);
1153 /* To understand duff's device on loop unwinding optimization, see
1154 * https://en.wikipedia.org/wiki/Duff's_device.
1155 * Here while() loop is used rather than do() while{} to avoid extra
1156 * check if count is zero.
1158 switch (count % 4) {
1160 while (idx != count) {
1161 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
1162 rte_pktmbuf_reset(mbufs[idx]);
1166 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
1167 rte_pktmbuf_reset(mbufs[idx]);
1171 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
1172 rte_pktmbuf_reset(mbufs[idx]);
1176 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
1177 rte_pktmbuf_reset(mbufs[idx]);
1186 * Attach packet mbuf to another packet mbuf.
1188 * After attachment we refer the mbuf we attached as 'indirect',
1189 * while mbuf we attached to as 'direct'.
1190 * The direct mbuf's reference counter is incremented.
1192 * Right now, not supported:
1193 * - attachment for already indirect mbuf (e.g. - mi has to be direct).
1194 * - mbuf we trying to attach (mi) is used by someone else
1195 * e.g. it's reference counter is greater then 1.
1198 * The indirect packet mbuf.
1200 * The packet mbuf we're attaching to.
1202 static inline void rte_pktmbuf_attach(struct rte_mbuf *mi, struct rte_mbuf *m)
1204 struct rte_mbuf *md;
1206 RTE_ASSERT(RTE_MBUF_DIRECT(mi) &&
1207 rte_mbuf_refcnt_read(mi) == 1);
1209 /* if m is not direct, get the mbuf that embeds the data */
1210 if (RTE_MBUF_DIRECT(m))
1213 md = rte_mbuf_from_indirect(m);
1215 rte_mbuf_refcnt_update(md, 1);
1216 mi->priv_size = m->priv_size;
1217 mi->buf_physaddr = m->buf_physaddr;
1218 mi->buf_addr = m->buf_addr;
1219 mi->buf_len = m->buf_len;
1221 mi->data_off = m->data_off;
1222 mi->data_len = m->data_len;
1224 mi->vlan_tci = m->vlan_tci;
1225 mi->vlan_tci_outer = m->vlan_tci_outer;
1226 mi->tx_offload = m->tx_offload;
1230 mi->pkt_len = mi->data_len;
1232 mi->ol_flags = m->ol_flags | IND_ATTACHED_MBUF;
1233 mi->packet_type = m->packet_type;
1234 mi->timestamp = m->timestamp;
1236 __rte_mbuf_sanity_check(mi, 1);
1237 __rte_mbuf_sanity_check(m, 0);
1241 * Detach an indirect packet mbuf.
1243 * - restore original mbuf address and length values.
1244 * - reset pktmbuf data and data_len to their default values.
1245 * - decrement the direct mbuf's reference counter. When the
1246 * reference counter becomes 0, the direct mbuf is freed.
1248 * All other fields of the given packet mbuf will be left intact.
1251 * The indirect attached packet mbuf.
1253 static inline void rte_pktmbuf_detach(struct rte_mbuf *m)
1255 struct rte_mbuf *md = rte_mbuf_from_indirect(m);
1256 struct rte_mempool *mp = m->pool;
1257 uint32_t mbuf_size, buf_len, priv_size;
1259 priv_size = rte_pktmbuf_priv_size(mp);
1260 mbuf_size = sizeof(struct rte_mbuf) + priv_size;
1261 buf_len = rte_pktmbuf_data_room_size(mp);
1263 m->priv_size = priv_size;
1264 m->buf_addr = (char *)m + mbuf_size;
1265 m->buf_physaddr = rte_mempool_virt2phy(mp, m) + mbuf_size;
1266 m->buf_len = (uint16_t)buf_len;
1267 rte_pktmbuf_reset_headroom(m);
1271 if (rte_mbuf_refcnt_update(md, -1) == 0) {
1274 rte_mbuf_refcnt_set(md, 1);
1275 rte_mbuf_raw_free(md);
1280 * Decrease reference counter and unlink a mbuf segment
1282 * This function does the same than a free, except that it does not
1283 * return the segment to its pool.
1284 * It decreases the reference counter, and if it reaches 0, it is
1285 * detached from its parent for an indirect mbuf.
1288 * The mbuf to be unlinked
1290 * - (m) if it is the last reference. It can be recycled or freed.
1291 * - (NULL) if the mbuf still has remaining references on it.
1293 static __rte_always_inline struct rte_mbuf *
1294 rte_pktmbuf_prefree_seg(struct rte_mbuf *m)
1296 __rte_mbuf_sanity_check(m, 0);
1298 if (likely(rte_mbuf_refcnt_read(m) == 1)) {
1300 if (RTE_MBUF_INDIRECT(m))
1301 rte_pktmbuf_detach(m);
1303 if (m->next != NULL) {
1310 } else if (rte_atomic16_add_return(&m->refcnt_atomic, -1) == 0) {
1313 if (RTE_MBUF_INDIRECT(m))
1314 rte_pktmbuf_detach(m);
1316 if (m->next != NULL) {
1320 rte_mbuf_refcnt_set(m, 1);
1327 /* deprecated, replaced by rte_pktmbuf_prefree_seg() */
1329 static inline struct rte_mbuf *
1330 __rte_pktmbuf_prefree_seg(struct rte_mbuf *m)
1332 return rte_pktmbuf_prefree_seg(m);
1336 * Free a segment of a packet mbuf into its original mempool.
1338 * Free an mbuf, without parsing other segments in case of chained
1342 * The packet mbuf segment to be freed.
1344 static __rte_always_inline void
1345 rte_pktmbuf_free_seg(struct rte_mbuf *m)
1347 m = rte_pktmbuf_prefree_seg(m);
1348 if (likely(m != NULL))
1349 rte_mbuf_raw_free(m);
1353 * Free a packet mbuf back into its original mempool.
1355 * Free an mbuf, and all its segments in case of chained buffers. Each
1356 * segment is added back into its original mempool.
1359 * The packet mbuf to be freed.
1361 static inline void rte_pktmbuf_free(struct rte_mbuf *m)
1363 struct rte_mbuf *m_next;
1365 __rte_mbuf_sanity_check(m, 1);
1369 rte_pktmbuf_free_seg(m);
1375 * Creates a "clone" of the given packet mbuf.
1377 * Walks through all segments of the given packet mbuf, and for each of them:
1378 * - Creates a new packet mbuf from the given pool.
1379 * - Attaches newly created mbuf to the segment.
1380 * Then updates pkt_len and nb_segs of the "clone" packet mbuf to match values
1381 * from the original packet mbuf.
1384 * The packet mbuf to be cloned.
1386 * The mempool from which the "clone" mbufs are allocated.
1388 * - The pointer to the new "clone" mbuf on success.
1389 * - NULL if allocation fails.
1391 static inline struct rte_mbuf *rte_pktmbuf_clone(struct rte_mbuf *md,
1392 struct rte_mempool *mp)
1394 struct rte_mbuf *mc, *mi, **prev;
1398 if (unlikely ((mc = rte_pktmbuf_alloc(mp)) == NULL))
1403 pktlen = md->pkt_len;
1408 rte_pktmbuf_attach(mi, md);
1411 } while ((md = md->next) != NULL &&
1412 (mi = rte_pktmbuf_alloc(mp)) != NULL);
1416 mc->pkt_len = pktlen;
1418 /* Allocation of new indirect segment failed */
1419 if (unlikely (mi == NULL)) {
1420 rte_pktmbuf_free(mc);
1424 __rte_mbuf_sanity_check(mc, 1);
1429 * Adds given value to the refcnt of all packet mbuf segments.
1431 * Walks through all segments of given packet mbuf and for each of them
1432 * invokes rte_mbuf_refcnt_update().
1435 * The packet mbuf whose refcnt to be updated.
1437 * The value to add to the mbuf's segments refcnt.
1439 static inline void rte_pktmbuf_refcnt_update(struct rte_mbuf *m, int16_t v)
1441 __rte_mbuf_sanity_check(m, 1);
1444 rte_mbuf_refcnt_update(m, v);
1445 } while ((m = m->next) != NULL);
1449 * Get the headroom in a packet mbuf.
1454 * The length of the headroom.
1456 static inline uint16_t rte_pktmbuf_headroom(const struct rte_mbuf *m)
1458 __rte_mbuf_sanity_check(m, 0);
1463 * Get the tailroom of a packet mbuf.
1468 * The length of the tailroom.
1470 static inline uint16_t rte_pktmbuf_tailroom(const struct rte_mbuf *m)
1472 __rte_mbuf_sanity_check(m, 0);
1473 return (uint16_t)(m->buf_len - rte_pktmbuf_headroom(m) -
1478 * Get the last segment of the packet.
1483 * The last segment of the given mbuf.
1485 static inline struct rte_mbuf *rte_pktmbuf_lastseg(struct rte_mbuf *m)
1487 struct rte_mbuf *m2 = (struct rte_mbuf *)m;
1489 __rte_mbuf_sanity_check(m, 1);
1490 while (m2->next != NULL)
1496 * A macro that points to an offset into the data in the mbuf.
1498 * The returned pointer is cast to type t. Before using this
1499 * function, the user must ensure that the first segment is large
1500 * enough to accommodate its data.
1505 * The offset into the mbuf data.
1507 * The type to cast the result into.
1509 #define rte_pktmbuf_mtod_offset(m, t, o) \
1510 ((t)((char *)(m)->buf_addr + (m)->data_off + (o)))
1513 * A macro that points to the start of the data in the mbuf.
1515 * The returned pointer is cast to type t. Before using this
1516 * function, the user must ensure that the first segment is large
1517 * enough to accommodate its data.
1522 * The type to cast the result into.
1524 #define rte_pktmbuf_mtod(m, t) rte_pktmbuf_mtod_offset(m, t, 0)
1527 * A macro that returns the physical address that points to an offset of the
1528 * start of the data in the mbuf
1533 * The offset into the data to calculate address from.
1535 #define rte_pktmbuf_mtophys_offset(m, o) \
1536 (phys_addr_t)((m)->buf_physaddr + (m)->data_off + (o))
1539 * A macro that returns the physical address that points to the start of the
1545 #define rte_pktmbuf_mtophys(m) rte_pktmbuf_mtophys_offset(m, 0)
1548 * A macro that returns the length of the packet.
1550 * The value can be read or assigned.
1555 #define rte_pktmbuf_pkt_len(m) ((m)->pkt_len)
1558 * A macro that returns the length of the segment.
1560 * The value can be read or assigned.
1565 #define rte_pktmbuf_data_len(m) ((m)->data_len)
1568 * Prepend len bytes to an mbuf data area.
1570 * Returns a pointer to the new
1571 * data start address. If there is not enough headroom in the first
1572 * segment, the function will return NULL, without modifying the mbuf.
1577 * The amount of data to prepend (in bytes).
1579 * A pointer to the start of the newly prepended data, or
1580 * NULL if there is not enough headroom space in the first segment
1582 static inline char *rte_pktmbuf_prepend(struct rte_mbuf *m,
1585 __rte_mbuf_sanity_check(m, 1);
1587 if (unlikely(len > rte_pktmbuf_headroom(m)))
1591 m->data_len = (uint16_t)(m->data_len + len);
1592 m->pkt_len = (m->pkt_len + len);
1594 return (char *)m->buf_addr + m->data_off;
1598 * Append len bytes to an mbuf.
1600 * Append len bytes to an mbuf and return a pointer to the start address
1601 * of the added data. If there is not enough tailroom in the last
1602 * segment, the function will return NULL, without modifying the mbuf.
1607 * The amount of data to append (in bytes).
1609 * A pointer to the start of the newly appended data, or
1610 * NULL if there is not enough tailroom space in the last segment
1612 static inline char *rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
1615 struct rte_mbuf *m_last;
1617 __rte_mbuf_sanity_check(m, 1);
1619 m_last = rte_pktmbuf_lastseg(m);
1620 if (unlikely(len > rte_pktmbuf_tailroom(m_last)))
1623 tail = (char *)m_last->buf_addr + m_last->data_off + m_last->data_len;
1624 m_last->data_len = (uint16_t)(m_last->data_len + len);
1625 m->pkt_len = (m->pkt_len + len);
1626 return (char*) tail;
1630 * Remove len bytes at the beginning of an mbuf.
1632 * Returns a pointer to the start address of the new data area. If the
1633 * length is greater than the length of the first segment, then the
1634 * function will fail and return NULL, without modifying the mbuf.
1639 * The amount of data to remove (in bytes).
1641 * A pointer to the new start of the data.
1643 static inline char *rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len)
1645 __rte_mbuf_sanity_check(m, 1);
1647 if (unlikely(len > m->data_len))
1650 m->data_len = (uint16_t)(m->data_len - len);
1652 m->pkt_len = (m->pkt_len - len);
1653 return (char *)m->buf_addr + m->data_off;
1657 * Remove len bytes of data at the end of the mbuf.
1659 * If the length is greater than the length of the last segment, the
1660 * function will fail and return -1 without modifying the mbuf.
1665 * The amount of data to remove (in bytes).
1670 static inline int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len)
1672 struct rte_mbuf *m_last;
1674 __rte_mbuf_sanity_check(m, 1);
1676 m_last = rte_pktmbuf_lastseg(m);
1677 if (unlikely(len > m_last->data_len))
1680 m_last->data_len = (uint16_t)(m_last->data_len - len);
1681 m->pkt_len = (m->pkt_len - len);
1686 * Test if mbuf data is contiguous.
1691 * - 1, if all data is contiguous (one segment).
1692 * - 0, if there is several segments.
1694 static inline int rte_pktmbuf_is_contiguous(const struct rte_mbuf *m)
1696 __rte_mbuf_sanity_check(m, 1);
1697 return !!(m->nb_segs == 1);
1701 * @internal used by rte_pktmbuf_read().
1703 const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off,
1704 uint32_t len, void *buf);
1707 * Read len data bytes in a mbuf at specified offset.
1709 * If the data is contiguous, return the pointer in the mbuf data, else
1710 * copy the data in the buffer provided by the user and return its
1714 * The pointer to the mbuf.
1716 * The offset of the data in the mbuf.
1718 * The amount of bytes to read.
1720 * The buffer where data is copied if it is not contigous in mbuf
1721 * data. Its length should be at least equal to the len parameter.
1723 * The pointer to the data, either in the mbuf if it is contiguous,
1724 * or in the user buffer. If mbuf is too small, NULL is returned.
1726 static inline const void *rte_pktmbuf_read(const struct rte_mbuf *m,
1727 uint32_t off, uint32_t len, void *buf)
1729 if (likely(off + len <= rte_pktmbuf_data_len(m)))
1730 return rte_pktmbuf_mtod_offset(m, char *, off);
1732 return __rte_pktmbuf_read(m, off, len, buf);
1736 * Chain an mbuf to another, thereby creating a segmented packet.
1738 * Note: The implementation will do a linear walk over the segments to find
1739 * the tail entry. For cases when there are many segments, it's better to
1740 * chain the entries manually.
1743 * The head of the mbuf chain (the first packet)
1745 * The mbuf to put last in the chain
1749 * - -EOVERFLOW, if the chain is full (256 entries)
1751 static inline int rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail)
1753 struct rte_mbuf *cur_tail;
1755 /* Check for number-of-segments-overflow */
1756 if (head->nb_segs + tail->nb_segs >= 1 << (sizeof(head->nb_segs) * 8))
1759 /* Chain 'tail' onto the old tail */
1760 cur_tail = rte_pktmbuf_lastseg(head);
1761 cur_tail->next = tail;
1763 /* accumulate number of segments and total length. */
1764 head->nb_segs = (uint8_t)(head->nb_segs + tail->nb_segs);
1765 head->pkt_len += tail->pkt_len;
1767 /* pkt_len is only set in the head */
1768 tail->pkt_len = tail->data_len;
1774 * Validate general requirements for Tx offload in mbuf.
1776 * This function checks correctness and completeness of Tx offload settings.
1779 * The packet mbuf to be validated.
1781 * 0 if packet is valid
1784 rte_validate_tx_offload(const struct rte_mbuf *m)
1786 uint64_t ol_flags = m->ol_flags;
1787 uint64_t inner_l3_offset = m->l2_len;
1789 /* Does packet set any of available offloads? */
1790 if (!(ol_flags & PKT_TX_OFFLOAD_MASK))
1793 if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
1794 inner_l3_offset += m->outer_l2_len + m->outer_l3_len;
1796 /* Headers are fragmented */
1797 if (rte_pktmbuf_data_len(m) < inner_l3_offset + m->l3_len + m->l4_len)
1800 /* IP checksum can be counted only for IPv4 packet */
1801 if ((ol_flags & PKT_TX_IP_CKSUM) && (ol_flags & PKT_TX_IPV6))
1804 /* IP type not set when required */
1805 if (ol_flags & (PKT_TX_L4_MASK | PKT_TX_TCP_SEG))
1806 if (!(ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)))
1809 /* Check requirements for TSO packet */
1810 if (ol_flags & PKT_TX_TCP_SEG)
1811 if ((m->tso_segsz == 0) ||
1812 ((ol_flags & PKT_TX_IPV4) &&
1813 !(ol_flags & PKT_TX_IP_CKSUM)))
1816 /* PKT_TX_OUTER_IP_CKSUM set for non outer IPv4 packet. */
1817 if ((ol_flags & PKT_TX_OUTER_IP_CKSUM) &&
1818 !(ol_flags & PKT_TX_OUTER_IPV4))
1825 * Linearize data in mbuf.
1827 * This function moves the mbuf data in the first segment if there is enough
1828 * tailroom. The subsequent segments are unchained and freed.
1837 rte_pktmbuf_linearize(struct rte_mbuf *mbuf)
1839 int seg_len, copy_len;
1841 struct rte_mbuf *m_next;
1844 if (rte_pktmbuf_is_contiguous(mbuf))
1847 /* Extend first segment to the total packet length */
1848 copy_len = rte_pktmbuf_pkt_len(mbuf) - rte_pktmbuf_data_len(mbuf);
1850 if (unlikely(copy_len > rte_pktmbuf_tailroom(mbuf)))
1853 buffer = rte_pktmbuf_mtod_offset(mbuf, char *, mbuf->data_len);
1854 mbuf->data_len = (uint16_t)(mbuf->pkt_len);
1856 /* Append data from next segments to the first one */
1861 seg_len = rte_pktmbuf_data_len(m);
1862 rte_memcpy(buffer, rte_pktmbuf_mtod(m, char *), seg_len);
1865 rte_pktmbuf_free_seg(m);
1876 * Dump an mbuf structure to a file.
1878 * Dump all fields for the given packet mbuf and all its associated
1879 * segments (in the case of a chained buffer).
1882 * A pointer to a file for output
1886 * If dump_len != 0, also dump the "dump_len" first data bytes of
1889 void rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len);
1895 #endif /* _RTE_MBUF_H_ */