1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright 2014 6WIND S.A.
13 * The mbuf library provides the ability to create and destroy buffers
14 * that may be used by the RTE application to store message
15 * buffers. The message buffers are stored in a mempool, using the
16 * RTE mempool library.
18 * The preferred way to create a mbuf pool is to use
19 * rte_pktmbuf_pool_create(). However, in some situations, an
20 * application may want to have more control (ex: populate the pool with
21 * specific memory), in this case it is possible to use functions from
22 * rte_mempool. See how rte_pktmbuf_pool_create() is implemented for
25 * This library provides an API to allocate/free packet mbufs, which are
26 * used to carry network packets.
28 * To understand the concepts of packet buffers or mbufs, you
29 * should read "TCP/IP Illustrated, Volume 2: The Implementation,
30 * Addison-Wesley, 1995, ISBN 0-201-63354-X from Richard Stevens"
31 * http://www.kohala.com/start/tcpipiv2.html
35 #include <rte_compat.h>
36 #include <rte_common.h>
37 #include <rte_config.h>
38 #include <rte_mempool.h>
39 #include <rte_memory.h>
40 #include <rte_atomic.h>
41 #include <rte_prefetch.h>
42 #include <rte_branch_prediction.h>
43 #include <rte_byteorder.h>
44 #include <rte_mbuf_ptype.h>
45 #include <rte_mbuf_core.h>
52 * Get the name of a RX offload flag
55 * The mask describing the flag.
57 * The name of this flag, or NULL if it's not a valid RX flag.
59 const char *rte_get_rx_ol_flag_name(uint64_t mask);
62 * Dump the list of RX offload flags in a buffer
65 * The mask describing the RX flags.
69 * The length of the buffer.
71 * 0 on success, (-1) on error.
73 int rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
76 * Get the name of a TX offload flag
79 * The mask describing the flag. Usually only one bit must be set.
80 * Several bits can be given if they belong to the same mask.
83 * The name of this flag, or NULL if it's not a valid TX flag.
85 const char *rte_get_tx_ol_flag_name(uint64_t mask);
88 * Dump the list of TX offload flags in a buffer
91 * The mask describing the TX flags.
95 * The length of the buffer.
97 * 0 on success, (-1) on error.
99 int rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
102 * Prefetch the first part of the mbuf
104 * The first 64 bytes of the mbuf corresponds to fields that are used early
105 * in the receive path. If the cache line of the architecture is higher than
106 * 64B, the second part will also be prefetched.
109 * The pointer to the mbuf.
112 rte_mbuf_prefetch_part1(struct rte_mbuf *m)
114 rte_prefetch0(&m->cacheline0);
118 * Prefetch the second part of the mbuf
120 * The next 64 bytes of the mbuf corresponds to fields that are used in the
121 * transmit path. If the cache line of the architecture is higher than 64B,
122 * this function does nothing as it is expected that the full mbuf is
126 * The pointer to the mbuf.
129 rte_mbuf_prefetch_part2(struct rte_mbuf *m)
131 #if RTE_CACHE_LINE_SIZE == 64
132 rte_prefetch0(&m->cacheline1);
139 static inline uint16_t rte_pktmbuf_priv_size(struct rte_mempool *mp);
142 * Return the IO address of the beginning of the mbuf data
145 * The pointer to the mbuf.
147 * The IO address of the beginning of the mbuf data
149 static inline rte_iova_t
150 rte_mbuf_data_iova(const struct rte_mbuf *mb)
152 return mb->buf_iova + mb->data_off;
156 static inline phys_addr_t
157 rte_mbuf_data_dma_addr(const struct rte_mbuf *mb)
159 return rte_mbuf_data_iova(mb);
163 * Return the default IO address of the beginning of the mbuf data
165 * This function is used by drivers in their receive function, as it
166 * returns the location where data should be written by the NIC, taking
167 * the default headroom in account.
170 * The pointer to the mbuf.
172 * The IO address of the beginning of the mbuf data
174 static inline rte_iova_t
175 rte_mbuf_data_iova_default(const struct rte_mbuf *mb)
177 return mb->buf_iova + RTE_PKTMBUF_HEADROOM;
181 static inline phys_addr_t
182 rte_mbuf_data_dma_addr_default(const struct rte_mbuf *mb)
184 return rte_mbuf_data_iova_default(mb);
188 * Return the mbuf owning the data buffer address of an indirect mbuf.
191 * The pointer to the indirect mbuf.
193 * The address of the direct mbuf corresponding to buffer_addr.
195 static inline struct rte_mbuf *
196 rte_mbuf_from_indirect(struct rte_mbuf *mi)
198 return (struct rte_mbuf *)RTE_PTR_SUB(mi->buf_addr, sizeof(*mi) + mi->priv_size);
202 * Return address of buffer embedded in the given mbuf.
204 * The return value shall be same as mb->buf_addr if the mbuf is already
205 * initialized and direct. However, this API is useful if mempool of the
206 * mbuf is already known because it doesn't need to access mbuf contents in
207 * order to get the mempool pointer.
210 * @b EXPERIMENTAL: This API may change without prior notice.
211 * This will be used by rte_mbuf_to_baddr() which has redundant code once
212 * experimental tag is removed.
215 * The pointer to the mbuf.
217 * The pointer to the mempool of the mbuf.
219 * The pointer of the mbuf buffer.
223 rte_mbuf_buf_addr(struct rte_mbuf *mb, struct rte_mempool *mp)
225 return (char *)mb + sizeof(*mb) + rte_pktmbuf_priv_size(mp);
229 * Return the default address of the beginning of the mbuf data.
232 * @b EXPERIMENTAL: This API may change without prior notice.
235 * The pointer to the mbuf.
237 * The pointer of the beginning of the mbuf data.
241 rte_mbuf_data_addr_default(__rte_unused struct rte_mbuf *mb)
243 /* gcc complains about calling this experimental function even
244 * when not using it. Hide it with ALLOW_EXPERIMENTAL_API.
246 #ifdef ALLOW_EXPERIMENTAL_API
247 return rte_mbuf_buf_addr(mb, mb->pool) + RTE_PKTMBUF_HEADROOM;
254 * Return address of buffer embedded in the given mbuf.
256 * @note: Accessing mempool pointer of a mbuf is expensive because the
257 * pointer is stored in the 2nd cache line of mbuf. If mempool is known, it
258 * is better not to reference the mempool pointer in mbuf but calling
259 * rte_mbuf_buf_addr() would be more efficient.
262 * The pointer to the mbuf.
264 * The address of the data buffer owned by the mbuf.
267 rte_mbuf_to_baddr(struct rte_mbuf *md)
269 #ifdef ALLOW_EXPERIMENTAL_API
270 return rte_mbuf_buf_addr(md, md->pool);
273 buffer_addr = (char *)md + sizeof(*md) + rte_pktmbuf_priv_size(md->pool);
279 * Return the starting address of the private data area embedded in
282 * Note that no check is made to ensure that a private data area
283 * actually exists in the supplied mbuf.
286 * The pointer to the mbuf.
288 * The starting address of the private data area of the given mbuf.
292 rte_mbuf_to_priv(struct rte_mbuf *m)
294 return RTE_PTR_ADD(m, sizeof(struct rte_mbuf));
298 * Private data in case of pktmbuf pool.
300 * A structure that contains some pktmbuf_pool-specific data that are
301 * appended after the mempool structure (in private data).
303 struct rte_pktmbuf_pool_private {
304 uint16_t mbuf_data_room_size; /**< Size of data space in each mbuf. */
305 uint16_t mbuf_priv_size; /**< Size of private area in each mbuf. */
306 uint32_t flags; /**< reserved for future use. */
310 * Return the flags from private data in an mempool structure.
313 * A pointer to the mempool structure.
315 * The flags from the private data structure.
317 static inline uint32_t
318 rte_pktmbuf_priv_flags(struct rte_mempool *mp)
320 struct rte_pktmbuf_pool_private *mbp_priv;
322 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
323 return mbp_priv->flags;
327 * When set, pktmbuf mempool will hold only mbufs with pinned external
328 * buffer. The external buffer will be attached to the mbuf at the
329 * memory pool creation and will never be detached by the mbuf free calls.
330 * mbuf should not contain any room for data after the mbuf structure.
332 #define RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF (1 << 0)
335 * Returns non zero if given mbuf has a pinned external buffer, or zero
336 * otherwise. The pinned external buffer is allocated at pool creation
337 * time and should not be freed on mbuf freeing.
339 * External buffer is a user-provided anonymous buffer.
341 #define RTE_MBUF_HAS_PINNED_EXTBUF(mb) \
342 (rte_pktmbuf_priv_flags(mb->pool) & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF)
344 #ifdef RTE_LIBRTE_MBUF_DEBUG
346 /** check mbuf type in debug mode */
347 #define __rte_mbuf_sanity_check(m, is_h) rte_mbuf_sanity_check(m, is_h)
349 #else /* RTE_LIBRTE_MBUF_DEBUG */
351 /** check mbuf type in debug mode */
352 #define __rte_mbuf_sanity_check(m, is_h) do { } while (0)
354 #endif /* RTE_LIBRTE_MBUF_DEBUG */
356 #ifdef RTE_MBUF_REFCNT_ATOMIC
359 * Reads the value of an mbuf's refcnt.
363 * Reference count number.
365 static inline uint16_t
366 rte_mbuf_refcnt_read(const struct rte_mbuf *m)
368 return (uint16_t)(rte_atomic16_read(&m->refcnt_atomic));
372 * Sets an mbuf's refcnt to a defined value.
379 rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
381 rte_atomic16_set(&m->refcnt_atomic, (int16_t)new_value);
385 static inline uint16_t
386 __rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
388 return (uint16_t)(rte_atomic16_add_return(&m->refcnt_atomic, value));
392 * Adds given value to an mbuf's refcnt and returns its new value.
396 * Value to add/subtract
400 static inline uint16_t
401 rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
404 * The atomic_add is an expensive operation, so we don't want to
405 * call it in the case where we know we are the unique holder of
406 * this mbuf (i.e. ref_cnt == 1). Otherwise, an atomic
407 * operation has to be used because concurrent accesses on the
408 * reference counter can occur.
410 if (likely(rte_mbuf_refcnt_read(m) == 1)) {
412 rte_mbuf_refcnt_set(m, (uint16_t)value);
413 return (uint16_t)value;
416 return __rte_mbuf_refcnt_update(m, value);
419 #else /* ! RTE_MBUF_REFCNT_ATOMIC */
422 static inline uint16_t
423 __rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
425 m->refcnt = (uint16_t)(m->refcnt + value);
430 * Adds given value to an mbuf's refcnt and returns its new value.
432 static inline uint16_t
433 rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
435 return __rte_mbuf_refcnt_update(m, value);
439 * Reads the value of an mbuf's refcnt.
441 static inline uint16_t
442 rte_mbuf_refcnt_read(const struct rte_mbuf *m)
448 * Sets an mbuf's refcnt to the defined value.
451 rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
453 m->refcnt = new_value;
456 #endif /* RTE_MBUF_REFCNT_ATOMIC */
459 * Reads the refcnt of an external buffer.
462 * Shared data of the external buffer.
464 * Reference count number.
466 static inline uint16_t
467 rte_mbuf_ext_refcnt_read(const struct rte_mbuf_ext_shared_info *shinfo)
469 return (uint16_t)(rte_atomic16_read(&shinfo->refcnt_atomic));
473 * Set refcnt of an external buffer.
476 * Shared data of the external buffer.
481 rte_mbuf_ext_refcnt_set(struct rte_mbuf_ext_shared_info *shinfo,
484 rte_atomic16_set(&shinfo->refcnt_atomic, (int16_t)new_value);
488 * Add given value to refcnt of an external buffer and return its new
492 * Shared data of the external buffer.
494 * Value to add/subtract
498 static inline uint16_t
499 rte_mbuf_ext_refcnt_update(struct rte_mbuf_ext_shared_info *shinfo,
502 if (likely(rte_mbuf_ext_refcnt_read(shinfo) == 1)) {
504 rte_mbuf_ext_refcnt_set(shinfo, (uint16_t)value);
505 return (uint16_t)value;
508 return (uint16_t)rte_atomic16_add_return(&shinfo->refcnt_atomic, value);
512 #define RTE_MBUF_PREFETCH_TO_FREE(m) do { \
519 * Sanity checks on an mbuf.
521 * Check the consistency of the given mbuf. The function will cause a
522 * panic if corruption is detected.
525 * The mbuf to be checked.
527 * True if the mbuf is a packet header, false if it is a sub-segment
528 * of a packet (in this case, some fields like nb_segs are not checked)
531 rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header);
534 * Sanity checks on a mbuf.
536 * Almost like rte_mbuf_sanity_check(), but this function gives the reason
537 * if corruption is detected rather than panic.
540 * The mbuf to be checked.
542 * True if the mbuf is a packet header, false if it is a sub-segment
543 * of a packet (in this case, some fields like nb_segs are not checked)
545 * A reference to a string pointer where to store the reason why a mbuf is
546 * considered invalid.
548 * - 0 if no issue has been found, reason is left untouched.
549 * - -1 if a problem is detected, reason then points to a string describing
550 * the reason why the mbuf is deemed invalid.
553 int rte_mbuf_check(const struct rte_mbuf *m, int is_header,
554 const char **reason);
556 #define MBUF_RAW_ALLOC_CHECK(m) do { \
557 RTE_ASSERT(rte_mbuf_refcnt_read(m) == 1); \
558 RTE_ASSERT((m)->next == NULL); \
559 RTE_ASSERT((m)->nb_segs == 1); \
560 __rte_mbuf_sanity_check(m, 0); \
564 * Allocate an uninitialized mbuf from mempool *mp*.
566 * This function can be used by PMDs (especially in RX functions) to
567 * allocate an uninitialized mbuf. The driver is responsible of
568 * initializing all the required fields. See rte_pktmbuf_reset().
569 * For standard needs, prefer rte_pktmbuf_alloc().
571 * The caller can expect that the following fields of the mbuf structure
572 * are initialized: buf_addr, buf_iova, buf_len, refcnt=1, nb_segs=1,
573 * next=NULL, pool, priv_size. The other fields must be initialized
577 * The mempool from which mbuf is allocated.
579 * - The pointer to the new mbuf on success.
580 * - NULL if allocation failed.
582 static inline struct rte_mbuf *rte_mbuf_raw_alloc(struct rte_mempool *mp)
586 if (rte_mempool_get(mp, (void **)&m) < 0)
588 MBUF_RAW_ALLOC_CHECK(m);
593 * Put mbuf back into its original mempool.
595 * The caller must ensure that the mbuf is direct and properly
596 * reinitialized (refcnt=1, next=NULL, nb_segs=1), as done by
597 * rte_pktmbuf_prefree_seg().
599 * This function should be used with care, when optimization is
600 * required. For standard needs, prefer rte_pktmbuf_free() or
601 * rte_pktmbuf_free_seg().
604 * The mbuf to be freed.
606 static __rte_always_inline void
607 rte_mbuf_raw_free(struct rte_mbuf *m)
609 RTE_ASSERT(!RTE_MBUF_CLONED(m) &&
610 (!RTE_MBUF_HAS_EXTBUF(m) || RTE_MBUF_HAS_PINNED_EXTBUF(m)));
611 RTE_ASSERT(rte_mbuf_refcnt_read(m) == 1);
612 RTE_ASSERT(m->next == NULL);
613 RTE_ASSERT(m->nb_segs == 1);
614 __rte_mbuf_sanity_check(m, 0);
615 rte_mempool_put(m->pool, m);
619 * The packet mbuf constructor.
621 * This function initializes some fields in the mbuf structure that are
622 * not modified by the user once created (origin pool, buffer start
623 * address, and so on). This function is given as a callback function to
624 * rte_mempool_obj_iter() or rte_mempool_create() at pool creation time.
627 * The mempool from which mbufs originate.
629 * A pointer that can be used by the user to retrieve useful information
630 * for mbuf initialization. This pointer is the opaque argument passed to
631 * rte_mempool_obj_iter() or rte_mempool_create().
633 * The mbuf to initialize.
635 * The index of the mbuf in the pool table.
637 void rte_pktmbuf_init(struct rte_mempool *mp, void *opaque_arg,
638 void *m, unsigned i);
641 * A packet mbuf pool constructor.
643 * This function initializes the mempool private data in the case of a
644 * pktmbuf pool. This private data is needed by the driver. The
645 * function must be called on the mempool before it is used, or it
646 * can be given as a callback function to rte_mempool_create() at
647 * pool creation. It can be extended by the user, for example, to
648 * provide another packet size.
651 * The mempool from which mbufs originate.
653 * A pointer that can be used by the user to retrieve useful information
654 * for mbuf initialization. This pointer is the opaque argument passed to
655 * rte_mempool_create().
657 void rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg);
660 * Create a mbuf pool.
662 * This function creates and initializes a packet mbuf pool. It is
663 * a wrapper to rte_mempool functions.
666 * The name of the mbuf pool.
668 * The number of elements in the mbuf pool. The optimum size (in terms
669 * of memory usage) for a mempool is when n is a power of two minus one:
672 * Size of the per-core object cache. See rte_mempool_create() for
675 * Size of application private are between the rte_mbuf structure
676 * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
677 * @param data_room_size
678 * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
680 * The socket identifier where the memory should be allocated. The
681 * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
684 * The pointer to the new allocated mempool, on success. NULL on error
685 * with rte_errno set appropriately. Possible rte_errno values include:
686 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
687 * - E_RTE_SECONDARY - function was called from a secondary process instance
688 * - EINVAL - cache size provided is too large, or priv_size is not aligned.
689 * - ENOSPC - the maximum number of memzones has already been allocated
690 * - EEXIST - a memzone with the same name already exists
691 * - ENOMEM - no appropriate memory area found in which to create memzone
694 rte_pktmbuf_pool_create(const char *name, unsigned n,
695 unsigned cache_size, uint16_t priv_size, uint16_t data_room_size,
699 * Create a mbuf pool with a given mempool ops name
701 * This function creates and initializes a packet mbuf pool. It is
702 * a wrapper to rte_mempool functions.
705 * The name of the mbuf pool.
707 * The number of elements in the mbuf pool. The optimum size (in terms
708 * of memory usage) for a mempool is when n is a power of two minus one:
711 * Size of the per-core object cache. See rte_mempool_create() for
714 * Size of application private are between the rte_mbuf structure
715 * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
716 * @param data_room_size
717 * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
719 * The socket identifier where the memory should be allocated. The
720 * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
723 * The mempool ops name to be used for this mempool instead of
724 * default mempool. The value can be *NULL* to use default mempool.
726 * The pointer to the new allocated mempool, on success. NULL on error
727 * with rte_errno set appropriately. Possible rte_errno values include:
728 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
729 * - E_RTE_SECONDARY - function was called from a secondary process instance
730 * - EINVAL - cache size provided is too large, or priv_size is not aligned.
731 * - ENOSPC - the maximum number of memzones has already been allocated
732 * - EEXIST - a memzone with the same name already exists
733 * - ENOMEM - no appropriate memory area found in which to create memzone
736 rte_pktmbuf_pool_create_by_ops(const char *name, unsigned int n,
737 unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
738 int socket_id, const char *ops_name);
740 /** A structure that describes the pinned external buffer segment. */
741 struct rte_pktmbuf_extmem {
742 void *buf_ptr; /**< The virtual address of data buffer. */
743 rte_iova_t buf_iova; /**< The IO address of the data buffer. */
744 size_t buf_len; /**< External buffer length in bytes. */
745 uint16_t elt_size; /**< mbuf element size in bytes. */
749 * Create a mbuf pool with external pinned data buffers.
751 * This function creates and initializes a packet mbuf pool that contains
752 * only mbufs with external buffer. It is a wrapper to rte_mempool functions.
755 * The name of the mbuf pool.
757 * The number of elements in the mbuf pool. The optimum size (in terms
758 * of memory usage) for a mempool is when n is a power of two minus one:
761 * Size of the per-core object cache. See rte_mempool_create() for
764 * Size of application private are between the rte_mbuf structure
765 * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
766 * @param data_room_size
767 * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
769 * The socket identifier where the memory should be allocated. The
770 * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
773 * Pointer to the array of structures describing the external memory
774 * for data buffers. It is caller responsibility to register this memory
775 * with rte_extmem_register() (if needed), map this memory to appropriate
776 * physical device, etc.
778 * Number of elements in the ext_mem array.
780 * The pointer to the new allocated mempool, on success. NULL on error
781 * with rte_errno set appropriately. Possible rte_errno values include:
782 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
783 * - E_RTE_SECONDARY - function was called from a secondary process instance
784 * - EINVAL - cache size provided is too large, or priv_size is not aligned.
785 * - ENOSPC - the maximum number of memzones has already been allocated
786 * - EEXIST - a memzone with the same name already exists
787 * - ENOMEM - no appropriate memory area found in which to create memzone
791 rte_pktmbuf_pool_create_extbuf(const char *name, unsigned int n,
792 unsigned int cache_size, uint16_t priv_size,
793 uint16_t data_room_size, int socket_id,
794 const struct rte_pktmbuf_extmem *ext_mem,
795 unsigned int ext_num);
798 * Get the data room size of mbufs stored in a pktmbuf_pool
800 * The data room size is the amount of data that can be stored in a
801 * mbuf including the headroom (RTE_PKTMBUF_HEADROOM).
804 * The packet mbuf pool.
806 * The data room size of mbufs stored in this mempool.
808 static inline uint16_t
809 rte_pktmbuf_data_room_size(struct rte_mempool *mp)
811 struct rte_pktmbuf_pool_private *mbp_priv;
813 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
814 return mbp_priv->mbuf_data_room_size;
818 * Get the application private size of mbufs stored in a pktmbuf_pool
820 * The private size of mbuf is a zone located between the rte_mbuf
821 * structure and the data buffer where an application can store data
822 * associated to a packet.
825 * The packet mbuf pool.
827 * The private size of mbufs stored in this mempool.
829 static inline uint16_t
830 rte_pktmbuf_priv_size(struct rte_mempool *mp)
832 struct rte_pktmbuf_pool_private *mbp_priv;
834 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
835 return mbp_priv->mbuf_priv_size;
839 * Reset the data_off field of a packet mbuf to its default value.
841 * The given mbuf must have only one segment, which should be empty.
844 * The packet mbuf's data_off field has to be reset.
846 static inline void rte_pktmbuf_reset_headroom(struct rte_mbuf *m)
848 m->data_off = (uint16_t)RTE_MIN((uint16_t)RTE_PKTMBUF_HEADROOM,
849 (uint16_t)m->buf_len);
853 * Reset the fields of a packet mbuf to their default values.
855 * The given mbuf must have only one segment.
858 * The packet mbuf to be reset.
860 #define MBUF_INVALID_PORT UINT16_MAX
862 static inline void rte_pktmbuf_reset(struct rte_mbuf *m)
868 m->vlan_tci_outer = 0;
870 m->port = MBUF_INVALID_PORT;
872 m->ol_flags &= EXT_ATTACHED_MBUF;
874 rte_pktmbuf_reset_headroom(m);
877 __rte_mbuf_sanity_check(m, 1);
881 * Allocate a new mbuf from a mempool.
883 * This new mbuf contains one segment, which has a length of 0. The pointer
884 * to data is initialized to have some bytes of headroom in the buffer
885 * (if buffer size allows).
888 * The mempool from which the mbuf is allocated.
890 * - The pointer to the new mbuf on success.
891 * - NULL if allocation failed.
893 static inline struct rte_mbuf *rte_pktmbuf_alloc(struct rte_mempool *mp)
896 if ((m = rte_mbuf_raw_alloc(mp)) != NULL)
897 rte_pktmbuf_reset(m);
902 * Allocate a bulk of mbufs, initialize refcnt and reset the fields to default
906 * The mempool from which mbufs are allocated.
908 * Array of pointers to mbufs
913 * - -ENOENT: Not enough entries in the mempool; no mbufs are retrieved.
915 static inline int rte_pktmbuf_alloc_bulk(struct rte_mempool *pool,
916 struct rte_mbuf **mbufs, unsigned count)
921 rc = rte_mempool_get_bulk(pool, (void **)mbufs, count);
925 /* To understand duff's device on loop unwinding optimization, see
926 * https://en.wikipedia.org/wiki/Duff's_device.
927 * Here while() loop is used rather than do() while{} to avoid extra
928 * check if count is zero.
932 while (idx != count) {
933 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
934 rte_pktmbuf_reset(mbufs[idx]);
938 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
939 rte_pktmbuf_reset(mbufs[idx]);
943 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
944 rte_pktmbuf_reset(mbufs[idx]);
948 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
949 rte_pktmbuf_reset(mbufs[idx]);
958 * Initialize shared data at the end of an external buffer before attaching
959 * to a mbuf by ``rte_pktmbuf_attach_extbuf()``. This is not a mandatory
960 * initialization but a helper function to simply spare a few bytes at the
961 * end of the buffer for shared data. If shared data is allocated
962 * separately, this should not be called but application has to properly
963 * initialize the shared data according to its need.
965 * Free callback and its argument is saved and the refcnt is set to 1.
968 * The value of buf_len will be reduced to RTE_PTR_DIFF(shinfo, buf_addr)
969 * after this initialization. This shall be used for
970 * ``rte_pktmbuf_attach_extbuf()``
973 * The pointer to the external buffer.
974 * @param [in,out] buf_len
975 * The pointer to length of the external buffer. Input value must be
976 * larger than the size of ``struct rte_mbuf_ext_shared_info`` and
977 * padding for alignment. If not enough, this function will return NULL.
978 * Adjusted buffer length will be returned through this pointer.
980 * Free callback function to call when the external buffer needs to be
983 * Argument for the free callback function.
986 * A pointer to the initialized shared data on success, return NULL
989 static inline struct rte_mbuf_ext_shared_info *
990 rte_pktmbuf_ext_shinfo_init_helper(void *buf_addr, uint16_t *buf_len,
991 rte_mbuf_extbuf_free_callback_t free_cb, void *fcb_opaque)
993 struct rte_mbuf_ext_shared_info *shinfo;
994 void *buf_end = RTE_PTR_ADD(buf_addr, *buf_len);
997 addr = RTE_PTR_ALIGN_FLOOR(RTE_PTR_SUB(buf_end, sizeof(*shinfo)),
999 if (addr <= buf_addr)
1002 shinfo = (struct rte_mbuf_ext_shared_info *)addr;
1003 shinfo->free_cb = free_cb;
1004 shinfo->fcb_opaque = fcb_opaque;
1005 rte_mbuf_ext_refcnt_set(shinfo, 1);
1007 *buf_len = (uint16_t)RTE_PTR_DIFF(shinfo, buf_addr);
1012 * Attach an external buffer to a mbuf.
1014 * User-managed anonymous buffer can be attached to an mbuf. When attaching
1015 * it, corresponding free callback function and its argument should be
1016 * provided via shinfo. This callback function will be called once all the
1017 * mbufs are detached from the buffer (refcnt becomes zero).
1019 * The headroom length of the attaching mbuf will be set to zero and this
1020 * can be properly adjusted after attachment. For example, ``rte_pktmbuf_adj()``
1021 * or ``rte_pktmbuf_reset_headroom()`` might be used.
1023 * Similarly, the packet length is initialized to 0. If the buffer contains
1024 * data, the user has to adjust ``data_len`` and the ``pkt_len`` field of
1025 * the mbuf accordingly.
1027 * More mbufs can be attached to the same external buffer by
1028 * ``rte_pktmbuf_attach()`` once the external buffer has been attached by
1031 * Detachment can be done by either ``rte_pktmbuf_detach_extbuf()`` or
1032 * ``rte_pktmbuf_detach()``.
1034 * Memory for shared data must be provided and user must initialize all of
1035 * the content properly, especially free callback and refcnt. The pointer
1036 * of shared data will be stored in m->shinfo.
1037 * ``rte_pktmbuf_ext_shinfo_init_helper`` can help to simply spare a few
1038 * bytes at the end of buffer for the shared data, store free callback and
1039 * its argument and set the refcnt to 1. The following is an example:
1041 * struct rte_mbuf_ext_shared_info *shinfo =
1042 * rte_pktmbuf_ext_shinfo_init_helper(buf_addr, &buf_len,
1043 * free_cb, fcb_arg);
1044 * rte_pktmbuf_attach_extbuf(m, buf_addr, buf_iova, buf_len, shinfo);
1045 * rte_pktmbuf_reset_headroom(m);
1046 * rte_pktmbuf_adj(m, data_len);
1048 * Attaching an external buffer is quite similar to mbuf indirection in
1049 * replacing buffer addresses and length of a mbuf, but a few differences:
1050 * - When an indirect mbuf is attached, refcnt of the direct mbuf would be
1051 * 2 as long as the direct mbuf itself isn't freed after the attachment.
1052 * In such cases, the buffer area of a direct mbuf must be read-only. But
1053 * external buffer has its own refcnt and it starts from 1. Unless
1054 * multiple mbufs are attached to a mbuf having an external buffer, the
1055 * external buffer is writable.
1056 * - There's no need to allocate buffer from a mempool. Any buffer can be
1057 * attached with appropriate free callback and its IO address.
1058 * - Smaller metadata is required to maintain shared data such as refcnt.
1061 * The pointer to the mbuf.
1063 * The pointer to the external buffer.
1065 * IO address of the external buffer.
1067 * The size of the external buffer.
1069 * User-provided memory for shared data of the external buffer.
1072 rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr,
1073 rte_iova_t buf_iova, uint16_t buf_len,
1074 struct rte_mbuf_ext_shared_info *shinfo)
1076 /* mbuf should not be read-only */
1077 RTE_ASSERT(RTE_MBUF_DIRECT(m) && rte_mbuf_refcnt_read(m) == 1);
1078 RTE_ASSERT(shinfo->free_cb != NULL);
1080 m->buf_addr = buf_addr;
1081 m->buf_iova = buf_iova;
1082 m->buf_len = buf_len;
1087 m->ol_flags |= EXT_ATTACHED_MBUF;
1092 * Detach the external buffer attached to a mbuf, same as
1093 * ``rte_pktmbuf_detach()``
1096 * The mbuf having external buffer.
1098 #define rte_pktmbuf_detach_extbuf(m) rte_pktmbuf_detach(m)
1101 * Copy dynamic fields from msrc to mdst.
1104 * The destination mbuf.
1109 rte_mbuf_dynfield_copy(struct rte_mbuf *mdst, const struct rte_mbuf *msrc)
1111 memcpy(&mdst->dynfield1, msrc->dynfield1, sizeof(mdst->dynfield1));
1116 __rte_pktmbuf_copy_hdr(struct rte_mbuf *mdst, const struct rte_mbuf *msrc)
1118 mdst->port = msrc->port;
1119 mdst->vlan_tci = msrc->vlan_tci;
1120 mdst->vlan_tci_outer = msrc->vlan_tci_outer;
1121 mdst->tx_offload = msrc->tx_offload;
1122 mdst->hash = msrc->hash;
1123 mdst->packet_type = msrc->packet_type;
1124 mdst->timestamp = msrc->timestamp;
1125 rte_mbuf_dynfield_copy(mdst, msrc);
1129 * Attach packet mbuf to another packet mbuf.
1131 * If the mbuf we are attaching to isn't a direct buffer and is attached to
1132 * an external buffer, the mbuf being attached will be attached to the
1133 * external buffer instead of mbuf indirection.
1135 * Otherwise, the mbuf will be indirectly attached. After attachment we
1136 * refer the mbuf we attached as 'indirect', while mbuf we attached to as
1137 * 'direct'. The direct mbuf's reference counter is incremented.
1139 * Right now, not supported:
1140 * - attachment for already indirect mbuf (e.g. - mi has to be direct).
1141 * - mbuf we trying to attach (mi) is used by someone else
1142 * e.g. it's reference counter is greater then 1.
1145 * The indirect packet mbuf.
1147 * The packet mbuf we're attaching to.
1149 static inline void rte_pktmbuf_attach(struct rte_mbuf *mi, struct rte_mbuf *m)
1151 RTE_ASSERT(RTE_MBUF_DIRECT(mi) &&
1152 rte_mbuf_refcnt_read(mi) == 1);
1154 if (RTE_MBUF_HAS_EXTBUF(m)) {
1155 rte_mbuf_ext_refcnt_update(m->shinfo, 1);
1156 mi->ol_flags = m->ol_flags;
1157 mi->shinfo = m->shinfo;
1159 /* if m is not direct, get the mbuf that embeds the data */
1160 rte_mbuf_refcnt_update(rte_mbuf_from_indirect(m), 1);
1161 mi->priv_size = m->priv_size;
1162 mi->ol_flags = m->ol_flags | IND_ATTACHED_MBUF;
1165 __rte_pktmbuf_copy_hdr(mi, m);
1167 mi->data_off = m->data_off;
1168 mi->data_len = m->data_len;
1169 mi->buf_iova = m->buf_iova;
1170 mi->buf_addr = m->buf_addr;
1171 mi->buf_len = m->buf_len;
1174 mi->pkt_len = mi->data_len;
1177 __rte_mbuf_sanity_check(mi, 1);
1178 __rte_mbuf_sanity_check(m, 0);
1182 * @internal used by rte_pktmbuf_detach().
1184 * Decrement the reference counter of the external buffer. When the
1185 * reference counter becomes 0, the buffer is freed by pre-registered
1189 __rte_pktmbuf_free_extbuf(struct rte_mbuf *m)
1191 RTE_ASSERT(RTE_MBUF_HAS_EXTBUF(m));
1192 RTE_ASSERT(m->shinfo != NULL);
1194 if (rte_mbuf_ext_refcnt_update(m->shinfo, -1) == 0)
1195 m->shinfo->free_cb(m->buf_addr, m->shinfo->fcb_opaque);
1199 * @internal used by rte_pktmbuf_detach().
1201 * Decrement the direct mbuf's reference counter. When the reference
1202 * counter becomes 0, the direct mbuf is freed.
1205 __rte_pktmbuf_free_direct(struct rte_mbuf *m)
1207 struct rte_mbuf *md;
1209 RTE_ASSERT(RTE_MBUF_CLONED(m));
1211 md = rte_mbuf_from_indirect(m);
1213 if (rte_mbuf_refcnt_update(md, -1) == 0) {
1216 rte_mbuf_refcnt_set(md, 1);
1217 rte_mbuf_raw_free(md);
1222 * Detach a packet mbuf from external buffer or direct buffer.
1224 * - decrement refcnt and free the external/direct buffer if refcnt
1226 * - restore original mbuf address and length values.
1227 * - reset pktmbuf data and data_len to their default values.
1229 * All other fields of the given packet mbuf will be left intact.
1231 * If the packet mbuf was allocated from the pool with pinned
1232 * external buffers the rte_pktmbuf_detach does nothing with the
1233 * mbuf of this kind, because the pinned buffers are not supposed
1237 * The indirect attached packet mbuf.
1239 static inline void rte_pktmbuf_detach(struct rte_mbuf *m)
1241 struct rte_mempool *mp = m->pool;
1242 uint32_t mbuf_size, buf_len;
1245 if (RTE_MBUF_HAS_EXTBUF(m)) {
1247 * The mbuf has the external attached buffer,
1248 * we should check the type of the memory pool where
1249 * the mbuf was allocated from to detect the pinned
1252 uint32_t flags = rte_pktmbuf_priv_flags(mp);
1254 if (flags & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) {
1256 * The pinned external buffer should not be
1257 * detached from its backing mbuf, just exit.
1261 __rte_pktmbuf_free_extbuf(m);
1263 __rte_pktmbuf_free_direct(m);
1265 priv_size = rte_pktmbuf_priv_size(mp);
1266 mbuf_size = (uint32_t)(sizeof(struct rte_mbuf) + priv_size);
1267 buf_len = rte_pktmbuf_data_room_size(mp);
1269 m->priv_size = priv_size;
1270 m->buf_addr = (char *)m + mbuf_size;
1271 m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
1272 m->buf_len = (uint16_t)buf_len;
1273 rte_pktmbuf_reset_headroom(m);
1279 * @internal Handle the packet mbufs with attached pinned external buffer
1280 * on the mbuf freeing:
1282 * - return zero if reference counter in shinfo is one. It means there is
1283 * no more reference to this pinned buffer and mbuf can be returned to
1286 * - otherwise (if reference counter is not one), decrement reference
1287 * counter and return non-zero value to prevent freeing the backing mbuf.
1289 * Returns non zero if mbuf should not be freed.
1291 static inline int __rte_pktmbuf_pinned_extbuf_decref(struct rte_mbuf *m)
1293 struct rte_mbuf_ext_shared_info *shinfo;
1295 /* Clear flags, mbuf is being freed. */
1296 m->ol_flags = EXT_ATTACHED_MBUF;
1299 /* Optimize for performance - do not dec/reinit */
1300 if (likely(rte_mbuf_ext_refcnt_read(shinfo) == 1))
1304 * Direct usage of add primitive to avoid
1305 * duplication of comparing with one.
1307 if (likely(rte_atomic16_add_return
1308 (&shinfo->refcnt_atomic, -1)))
1311 /* Reinitialize counter before mbuf freeing. */
1312 rte_mbuf_ext_refcnt_set(shinfo, 1);
1317 * Decrease reference counter and unlink a mbuf segment
1319 * This function does the same than a free, except that it does not
1320 * return the segment to its pool.
1321 * It decreases the reference counter, and if it reaches 0, it is
1322 * detached from its parent for an indirect mbuf.
1325 * The mbuf to be unlinked
1327 * - (m) if it is the last reference. It can be recycled or freed.
1328 * - (NULL) if the mbuf still has remaining references on it.
1330 static __rte_always_inline struct rte_mbuf *
1331 rte_pktmbuf_prefree_seg(struct rte_mbuf *m)
1333 __rte_mbuf_sanity_check(m, 0);
1335 if (likely(rte_mbuf_refcnt_read(m) == 1)) {
1337 if (!RTE_MBUF_DIRECT(m)) {
1338 rte_pktmbuf_detach(m);
1339 if (RTE_MBUF_HAS_EXTBUF(m) &&
1340 RTE_MBUF_HAS_PINNED_EXTBUF(m) &&
1341 __rte_pktmbuf_pinned_extbuf_decref(m))
1345 if (m->next != NULL) {
1352 } else if (__rte_mbuf_refcnt_update(m, -1) == 0) {
1354 if (!RTE_MBUF_DIRECT(m)) {
1355 rte_pktmbuf_detach(m);
1356 if (RTE_MBUF_HAS_EXTBUF(m) &&
1357 RTE_MBUF_HAS_PINNED_EXTBUF(m) &&
1358 __rte_pktmbuf_pinned_extbuf_decref(m))
1362 if (m->next != NULL) {
1366 rte_mbuf_refcnt_set(m, 1);
1374 * Free a segment of a packet mbuf into its original mempool.
1376 * Free an mbuf, without parsing other segments in case of chained
1380 * The packet mbuf segment to be freed.
1382 static __rte_always_inline void
1383 rte_pktmbuf_free_seg(struct rte_mbuf *m)
1385 m = rte_pktmbuf_prefree_seg(m);
1386 if (likely(m != NULL))
1387 rte_mbuf_raw_free(m);
1391 * Free a packet mbuf back into its original mempool.
1393 * Free an mbuf, and all its segments in case of chained buffers. Each
1394 * segment is added back into its original mempool.
1397 * The packet mbuf to be freed. If NULL, the function does nothing.
1399 static inline void rte_pktmbuf_free(struct rte_mbuf *m)
1401 struct rte_mbuf *m_next;
1404 __rte_mbuf_sanity_check(m, 1);
1408 rte_pktmbuf_free_seg(m);
1414 * Free a bulk of packet mbufs back into their original mempools.
1416 * Free a bulk of mbufs, and all their segments in case of chained buffers.
1417 * Each segment is added back into its original mempool.
1420 * Array of pointers to packet mbufs.
1421 * The array may contain NULL pointers.
1426 void rte_pktmbuf_free_bulk(struct rte_mbuf **mbufs, unsigned int count);
1429 * Create a "clone" of the given packet mbuf.
1431 * Walks through all segments of the given packet mbuf, and for each of them:
1432 * - Creates a new packet mbuf from the given pool.
1433 * - Attaches newly created mbuf to the segment.
1434 * Then updates pkt_len and nb_segs of the "clone" packet mbuf to match values
1435 * from the original packet mbuf.
1438 * The packet mbuf to be cloned.
1440 * The mempool from which the "clone" mbufs are allocated.
1442 * - The pointer to the new "clone" mbuf on success.
1443 * - NULL if allocation fails.
1446 rte_pktmbuf_clone(struct rte_mbuf *md, struct rte_mempool *mp);
1449 * Create a full copy of a given packet mbuf.
1451 * Copies all the data from a given packet mbuf to a newly allocated
1452 * set of mbufs. The private data are is not copied.
1455 * The packet mbuf to be copiedd.
1457 * The mempool from which the "clone" mbufs are allocated.
1459 * The number of bytes to skip before copying.
1460 * If the mbuf does not have that many bytes, it is an error
1461 * and NULL is returned.
1463 * The upper limit on bytes to copy. Passing UINT32_MAX
1464 * means all data (after offset).
1466 * - The pointer to the new "clone" mbuf on success.
1467 * - NULL if allocation fails.
1471 rte_pktmbuf_copy(const struct rte_mbuf *m, struct rte_mempool *mp,
1472 uint32_t offset, uint32_t length);
1475 * Adds given value to the refcnt of all packet mbuf segments.
1477 * Walks through all segments of given packet mbuf and for each of them
1478 * invokes rte_mbuf_refcnt_update().
1481 * The packet mbuf whose refcnt to be updated.
1483 * The value to add to the mbuf's segments refcnt.
1485 static inline void rte_pktmbuf_refcnt_update(struct rte_mbuf *m, int16_t v)
1487 __rte_mbuf_sanity_check(m, 1);
1490 rte_mbuf_refcnt_update(m, v);
1491 } while ((m = m->next) != NULL);
1495 * Get the headroom in a packet mbuf.
1500 * The length of the headroom.
1502 static inline uint16_t rte_pktmbuf_headroom(const struct rte_mbuf *m)
1504 __rte_mbuf_sanity_check(m, 0);
1509 * Get the tailroom of a packet mbuf.
1514 * The length of the tailroom.
1516 static inline uint16_t rte_pktmbuf_tailroom(const struct rte_mbuf *m)
1518 __rte_mbuf_sanity_check(m, 0);
1519 return (uint16_t)(m->buf_len - rte_pktmbuf_headroom(m) -
1524 * Get the last segment of the packet.
1529 * The last segment of the given mbuf.
1531 static inline struct rte_mbuf *rte_pktmbuf_lastseg(struct rte_mbuf *m)
1533 __rte_mbuf_sanity_check(m, 1);
1534 while (m->next != NULL)
1540 #define rte_pktmbuf_mtophys_offset(m, o) \
1541 rte_pktmbuf_iova_offset(m, o)
1544 #define rte_pktmbuf_mtophys(m) rte_pktmbuf_iova(m)
1547 * A macro that returns the length of the packet.
1549 * The value can be read or assigned.
1554 #define rte_pktmbuf_pkt_len(m) ((m)->pkt_len)
1557 * A macro that returns the length of the segment.
1559 * The value can be read or assigned.
1564 #define rte_pktmbuf_data_len(m) ((m)->data_len)
1567 * Prepend len bytes to an mbuf data area.
1569 * Returns a pointer to the new
1570 * data start address. If there is not enough headroom in the first
1571 * segment, the function will return NULL, without modifying the mbuf.
1576 * The amount of data to prepend (in bytes).
1578 * A pointer to the start of the newly prepended data, or
1579 * NULL if there is not enough headroom space in the first segment
1581 static inline char *rte_pktmbuf_prepend(struct rte_mbuf *m,
1584 __rte_mbuf_sanity_check(m, 1);
1586 if (unlikely(len > rte_pktmbuf_headroom(m)))
1589 /* NB: elaborating the subtraction like this instead of using
1590 * -= allows us to ensure the result type is uint16_t
1591 * avoiding compiler warnings on gcc 8.1 at least */
1592 m->data_off = (uint16_t)(m->data_off - len);
1593 m->data_len = (uint16_t)(m->data_len + len);
1594 m->pkt_len = (m->pkt_len + len);
1596 return (char *)m->buf_addr + m->data_off;
1600 * Append len bytes to an mbuf.
1602 * Append len bytes to an mbuf and return a pointer to the start address
1603 * of the added data. If there is not enough tailroom in the last
1604 * segment, the function will return NULL, without modifying the mbuf.
1609 * The amount of data to append (in bytes).
1611 * A pointer to the start of the newly appended data, or
1612 * NULL if there is not enough tailroom space in the last segment
1614 static inline char *rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
1617 struct rte_mbuf *m_last;
1619 __rte_mbuf_sanity_check(m, 1);
1621 m_last = rte_pktmbuf_lastseg(m);
1622 if (unlikely(len > rte_pktmbuf_tailroom(m_last)))
1625 tail = (char *)m_last->buf_addr + m_last->data_off + m_last->data_len;
1626 m_last->data_len = (uint16_t)(m_last->data_len + len);
1627 m->pkt_len = (m->pkt_len + len);
1628 return (char*) tail;
1632 * Remove len bytes at the beginning of an mbuf.
1634 * Returns a pointer to the start address of the new data area. If the
1635 * length is greater than the length of the first segment, then the
1636 * function will fail and return NULL, without modifying the mbuf.
1641 * The amount of data to remove (in bytes).
1643 * A pointer to the new start of the data.
1645 static inline char *rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len)
1647 __rte_mbuf_sanity_check(m, 1);
1649 if (unlikely(len > m->data_len))
1652 /* NB: elaborating the addition like this instead of using
1653 * += allows us to ensure the result type is uint16_t
1654 * avoiding compiler warnings on gcc 8.1 at least */
1655 m->data_len = (uint16_t)(m->data_len - len);
1656 m->data_off = (uint16_t)(m->data_off + len);
1657 m->pkt_len = (m->pkt_len - len);
1658 return (char *)m->buf_addr + m->data_off;
1662 * Remove len bytes of data at the end of the mbuf.
1664 * If the length is greater than the length of the last segment, the
1665 * function will fail and return -1 without modifying the mbuf.
1670 * The amount of data to remove (in bytes).
1675 static inline int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len)
1677 struct rte_mbuf *m_last;
1679 __rte_mbuf_sanity_check(m, 1);
1681 m_last = rte_pktmbuf_lastseg(m);
1682 if (unlikely(len > m_last->data_len))
1685 m_last->data_len = (uint16_t)(m_last->data_len - len);
1686 m->pkt_len = (m->pkt_len - len);
1691 * Test if mbuf data is contiguous.
1696 * - 1, if all data is contiguous (one segment).
1697 * - 0, if there is several segments.
1699 static inline int rte_pktmbuf_is_contiguous(const struct rte_mbuf *m)
1701 __rte_mbuf_sanity_check(m, 1);
1702 return m->nb_segs == 1;
1706 * @internal used by rte_pktmbuf_read().
1708 const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off,
1709 uint32_t len, void *buf);
1712 * Read len data bytes in a mbuf at specified offset.
1714 * If the data is contiguous, return the pointer in the mbuf data, else
1715 * copy the data in the buffer provided by the user and return its
1719 * The pointer to the mbuf.
1721 * The offset of the data in the mbuf.
1723 * The amount of bytes to read.
1725 * The buffer where data is copied if it is not contiguous in mbuf
1726 * data. Its length should be at least equal to the len parameter.
1728 * The pointer to the data, either in the mbuf if it is contiguous,
1729 * or in the user buffer. If mbuf is too small, NULL is returned.
1731 static inline const void *rte_pktmbuf_read(const struct rte_mbuf *m,
1732 uint32_t off, uint32_t len, void *buf)
1734 if (likely(off + len <= rte_pktmbuf_data_len(m)))
1735 return rte_pktmbuf_mtod_offset(m, char *, off);
1737 return __rte_pktmbuf_read(m, off, len, buf);
1741 * Chain an mbuf to another, thereby creating a segmented packet.
1743 * Note: The implementation will do a linear walk over the segments to find
1744 * the tail entry. For cases when there are many segments, it's better to
1745 * chain the entries manually.
1748 * The head of the mbuf chain (the first packet)
1750 * The mbuf to put last in the chain
1754 * - -EOVERFLOW, if the chain segment limit exceeded
1756 static inline int rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail)
1758 struct rte_mbuf *cur_tail;
1760 /* Check for number-of-segments-overflow */
1761 if (head->nb_segs + tail->nb_segs > RTE_MBUF_MAX_NB_SEGS)
1764 /* Chain 'tail' onto the old tail */
1765 cur_tail = rte_pktmbuf_lastseg(head);
1766 cur_tail->next = tail;
1768 /* accumulate number of segments and total length.
1769 * NB: elaborating the addition like this instead of using
1770 * -= allows us to ensure the result type is uint16_t
1771 * avoiding compiler warnings on gcc 8.1 at least */
1772 head->nb_segs = (uint16_t)(head->nb_segs + tail->nb_segs);
1773 head->pkt_len += tail->pkt_len;
1775 /* pkt_len is only set in the head */
1776 tail->pkt_len = tail->data_len;
1783 * @b EXPERIMENTAL: This API may change without prior notice.
1785 * For given input values generate raw tx_offload value.
1786 * Note that it is caller responsibility to make sure that input parameters
1787 * don't exceed maximum bit-field values.
1797 * outer_l3_len value.
1799 * outer_l2_len value.
1803 * raw tx_offload value.
1805 static __rte_always_inline uint64_t
1806 rte_mbuf_tx_offload(uint64_t il2, uint64_t il3, uint64_t il4, uint64_t tso,
1807 uint64_t ol3, uint64_t ol2, uint64_t unused)
1809 return il2 << RTE_MBUF_L2_LEN_OFS |
1810 il3 << RTE_MBUF_L3_LEN_OFS |
1811 il4 << RTE_MBUF_L4_LEN_OFS |
1812 tso << RTE_MBUF_TSO_SEGSZ_OFS |
1813 ol3 << RTE_MBUF_OUTL3_LEN_OFS |
1814 ol2 << RTE_MBUF_OUTL2_LEN_OFS |
1815 unused << RTE_MBUF_TXOFLD_UNUSED_OFS;
1819 * Validate general requirements for Tx offload in mbuf.
1821 * This function checks correctness and completeness of Tx offload settings.
1824 * The packet mbuf to be validated.
1826 * 0 if packet is valid
1829 rte_validate_tx_offload(const struct rte_mbuf *m)
1831 uint64_t ol_flags = m->ol_flags;
1833 /* Does packet set any of available offloads? */
1834 if (!(ol_flags & PKT_TX_OFFLOAD_MASK))
1837 /* IP checksum can be counted only for IPv4 packet */
1838 if ((ol_flags & PKT_TX_IP_CKSUM) && (ol_flags & PKT_TX_IPV6))
1841 /* IP type not set when required */
1842 if (ol_flags & (PKT_TX_L4_MASK | PKT_TX_TCP_SEG))
1843 if (!(ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)))
1846 /* Check requirements for TSO packet */
1847 if (ol_flags & PKT_TX_TCP_SEG)
1848 if ((m->tso_segsz == 0) ||
1849 ((ol_flags & PKT_TX_IPV4) &&
1850 !(ol_flags & PKT_TX_IP_CKSUM)))
1853 /* PKT_TX_OUTER_IP_CKSUM set for non outer IPv4 packet. */
1854 if ((ol_flags & PKT_TX_OUTER_IP_CKSUM) &&
1855 !(ol_flags & PKT_TX_OUTER_IPV4))
1862 * @internal used by rte_pktmbuf_linearize().
1864 int __rte_pktmbuf_linearize(struct rte_mbuf *mbuf);
1867 * Linearize data in mbuf.
1869 * This function moves the mbuf data in the first segment if there is enough
1870 * tailroom. The subsequent segments are unchained and freed.
1879 rte_pktmbuf_linearize(struct rte_mbuf *mbuf)
1881 if (rte_pktmbuf_is_contiguous(mbuf))
1883 return __rte_pktmbuf_linearize(mbuf);
1887 * Dump an mbuf structure to a file.
1889 * Dump all fields for the given packet mbuf and all its associated
1890 * segments (in the case of a chained buffer).
1893 * A pointer to a file for output
1897 * If dump_len != 0, also dump the "dump_len" first data bytes of
1900 void rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len);
1903 * Get the value of mbuf sched queue_id field.
1905 static inline uint32_t
1906 rte_mbuf_sched_queue_get(const struct rte_mbuf *m)
1908 return m->hash.sched.queue_id;
1912 * Get the value of mbuf sched traffic_class field.
1914 static inline uint8_t
1915 rte_mbuf_sched_traffic_class_get(const struct rte_mbuf *m)
1917 return m->hash.sched.traffic_class;
1921 * Get the value of mbuf sched color field.
1923 static inline uint8_t
1924 rte_mbuf_sched_color_get(const struct rte_mbuf *m)
1926 return m->hash.sched.color;
1930 * Get the values of mbuf sched queue_id, traffic_class and color.
1935 * Returns the queue id
1936 * @param traffic_class
1937 * Returns the traffic class id
1939 * Returns the colour id
1942 rte_mbuf_sched_get(const struct rte_mbuf *m, uint32_t *queue_id,
1943 uint8_t *traffic_class,
1946 struct rte_mbuf_sched sched = m->hash.sched;
1948 *queue_id = sched.queue_id;
1949 *traffic_class = sched.traffic_class;
1950 *color = sched.color;
1954 * Set the mbuf sched queue_id to the defined value.
1957 rte_mbuf_sched_queue_set(struct rte_mbuf *m, uint32_t queue_id)
1959 m->hash.sched.queue_id = queue_id;
1963 * Set the mbuf sched traffic_class id to the defined value.
1966 rte_mbuf_sched_traffic_class_set(struct rte_mbuf *m, uint8_t traffic_class)
1968 m->hash.sched.traffic_class = traffic_class;
1972 * Set the mbuf sched color id to the defined value.
1975 rte_mbuf_sched_color_set(struct rte_mbuf *m, uint8_t color)
1977 m->hash.sched.color = color;
1981 * Set the mbuf sched queue_id, traffic_class and color.
1986 * Queue id value to be set
1987 * @param traffic_class
1988 * Traffic class id value to be set
1990 * Color id to be set
1993 rte_mbuf_sched_set(struct rte_mbuf *m, uint32_t queue_id,
1994 uint8_t traffic_class,
1997 m->hash.sched = (struct rte_mbuf_sched){
1998 .queue_id = queue_id,
1999 .traffic_class = traffic_class,
2009 #endif /* _RTE_MBUF_H_ */