1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2017 Intel Corporation
8 #include <rte_malloc.h>
9 #include <rte_memory.h>
10 #include <rte_errno.h>
13 #include "rte_member.h"
14 #include "rte_member_vbf.h"
17 * vBF currently implemented as a big array.
18 * The BFs have a vertical layout. Bits in same location of all bfs will stay
19 * in the same cache line.
20 * For example, if we have 32 bloom filters, we use a uint32_t array to
21 * represent all of them. array[0] represent the first location of all the
22 * bloom filters, array[1] represents the second location of all the
23 * bloom filters, etc. The advantage of this layout is to minimize the average
24 * number of memory accesses to test all bloom filters.
26 * Currently the implementation supports vBF containing 1,2,4,8,16,32 BFs.
29 rte_member_create_vbf(struct rte_member_setsum *ss,
30 const struct rte_member_parameters *params)
33 if (params->num_set > RTE_MEMBER_MAX_BF ||
34 !rte_is_power_of_2(params->num_set) ||
35 params->num_keys == 0 ||
36 params->false_positive_rate == 0 ||
37 params->false_positive_rate > 1) {
39 RTE_MEMBER_LOG(ERR, "Membership vBF create with invalid parameters\n");
43 /* We assume expected keys evenly distribute to all BFs */
44 uint32_t num_keys_per_bf = 1 + (params->num_keys - 1) / ss->num_set;
47 * Note that the false positive rate is for all BFs in the vBF
48 * such that the single BF's false positive rate needs to be
50 * Assume each BF's False positive rate is fp_one_bf. The total false
51 * positive rate is fp = 1-(1-fp_one_bf)^n.
52 * => fp_one_bf = 1 - (1-fp)^(1/n)
55 float fp_one_bf = 1 - pow((1 - params->false_positive_rate),
60 RTE_MEMBER_LOG(ERR, "Membership BF false positive rate is too small\n");
64 uint32_t bits = ceil((num_keys_per_bf *
66 log(1.0 / (pow(2.0, log(2.0)))));
68 /* We round to power of 2 for performance during lookup */
69 ss->bits = rte_align32pow2(bits);
71 ss->num_hashes = (uint32_t)(log(2.0) * bits / num_keys_per_bf);
72 ss->bit_mask = ss->bits - 1;
75 * Since we round the bits to power of 2, the final false positive
76 * rate will probably not be same as the user specified. We log the
77 * new value as debug message.
79 float new_fp = pow((1 - pow((1 - 1.0 / ss->bits), num_keys_per_bf *
80 ss->num_hashes)), ss->num_hashes);
81 new_fp = 1 - pow((1 - new_fp), ss->num_set);
84 * Reduce hash function count, until we approach the user specified
85 * false-positive rate. Otherwise it is too conservative
87 int tmp_num_hash = ss->num_hashes;
89 while (tmp_num_hash > 1) {
90 float tmp_fp = new_fp;
93 new_fp = pow((1 - pow((1 - 1.0 / ss->bits), num_keys_per_bf *
94 tmp_num_hash)), tmp_num_hash);
95 new_fp = 1 - pow((1 - new_fp), ss->num_set);
97 if (new_fp > params->false_positive_rate) {
104 ss->num_hashes = tmp_num_hash;
107 * To avoid multiplication and division:
108 * mul_shift is used for multiplication shift during bit test
109 * div_shift is used for division shift, to be divided by number of bits
110 * represented by a uint32_t variable
112 ss->mul_shift = __builtin_ctzl(ss->num_set);
113 ss->div_shift = __builtin_ctzl(32 >> ss->mul_shift);
115 RTE_MEMBER_LOG(DEBUG, "vector bloom filter created, "
116 "each bloom filter expects %u keys, needs %u bits, %u hashes, "
117 "with false positive rate set as %.5f, "
118 "The new calculated vBF false positive rate is %.5f\n",
119 num_keys_per_bf, ss->bits, ss->num_hashes, fp_one_bf, new_fp);
121 ss->table = rte_zmalloc_socket(NULL, ss->num_set * (ss->bits >> 3),
122 RTE_CACHE_LINE_SIZE, ss->socket_id);
123 if (ss->table == NULL)
129 static inline uint32_t
130 test_bit(uint32_t bit_loc, const struct rte_member_setsum *ss)
132 uint32_t *vbf = ss->table;
133 uint32_t n = ss->num_set;
134 uint32_t div_shift = ss->div_shift;
135 uint32_t mul_shift = ss->mul_shift;
137 * a is how many bits in one BF are represented by one 32bit
140 uint32_t a = 32 >> mul_shift;
142 * x>>b is the divide, x & (a-1) is the mod, & (1<<n-1) to mask out bits
145 return (vbf[bit_loc >> div_shift] >>
146 ((bit_loc & (a - 1)) << mul_shift)) & ((1ULL << n) - 1);
150 set_bit(uint32_t bit_loc, const struct rte_member_setsum *ss, int32_t set)
152 uint32_t *vbf = ss->table;
153 uint32_t div_shift = ss->div_shift;
154 uint32_t mul_shift = ss->mul_shift;
155 uint32_t a = 32 >> mul_shift;
157 vbf[bit_loc >> div_shift] |=
158 1UL << (((bit_loc & (a - 1)) << mul_shift) + set - 1);
162 rte_member_lookup_vbf(const struct rte_member_setsum *ss, const void *key,
163 member_set_t *set_id)
166 uint32_t h1 = MEMBER_HASH_FUNC(key, ss->key_len, ss->prim_hash_seed);
167 uint32_t h2 = MEMBER_HASH_FUNC(&h1, sizeof(uint32_t),
172 for (j = 0; j < ss->num_hashes; j++) {
173 bit_loc = (h1 + j * h2) & ss->bit_mask;
174 mask &= test_bit(bit_loc, ss);
178 *set_id = __builtin_ctzl(mask) + 1;
182 *set_id = RTE_MEMBER_NO_MATCH;
187 rte_member_lookup_bulk_vbf(const struct rte_member_setsum *ss,
188 const void **keys, uint32_t num_keys, member_set_t *set_ids)
191 uint32_t num_matches = 0;
192 uint32_t mask[RTE_MEMBER_LOOKUP_BULK_MAX];
193 uint32_t h1[RTE_MEMBER_LOOKUP_BULK_MAX], h2[RTE_MEMBER_LOOKUP_BULK_MAX];
196 for (i = 0; i < num_keys; i++)
197 h1[i] = MEMBER_HASH_FUNC(keys[i], ss->key_len,
199 for (i = 0; i < num_keys; i++)
200 h2[i] = MEMBER_HASH_FUNC(&h1[i], sizeof(uint32_t),
202 for (i = 0; i < num_keys; i++) {
204 for (k = 0; k < ss->num_hashes; k++) {
205 bit_loc = (h1[i] + k * h2[i]) & ss->bit_mask;
206 mask[i] &= test_bit(bit_loc, ss);
209 for (i = 0; i < num_keys; i++) {
211 set_ids[i] = __builtin_ctzl(mask[i]) + 1;
214 set_ids[i] = RTE_MEMBER_NO_MATCH;
220 rte_member_lookup_multi_vbf(const struct rte_member_setsum *ss,
221 const void *key, uint32_t match_per_key,
222 member_set_t *set_id)
224 uint32_t num_matches = 0;
226 uint32_t h1 = MEMBER_HASH_FUNC(key, ss->key_len, ss->prim_hash_seed);
227 uint32_t h2 = MEMBER_HASH_FUNC(&h1, sizeof(uint32_t),
232 for (j = 0; j < ss->num_hashes; j++) {
233 bit_loc = (h1 + j * h2) & ss->bit_mask;
234 mask &= test_bit(bit_loc, ss);
237 uint32_t loc = __builtin_ctzl(mask);
238 set_id[num_matches] = loc + 1;
240 if (num_matches >= match_per_key)
242 mask &= ~(1UL << loc);
248 rte_member_lookup_multi_bulk_vbf(const struct rte_member_setsum *ss,
249 const void **keys, uint32_t num_keys, uint32_t match_per_key,
250 uint32_t *match_count,
251 member_set_t *set_ids)
254 uint32_t num_matches = 0;
255 uint32_t match_cnt_t;
256 uint32_t mask[RTE_MEMBER_LOOKUP_BULK_MAX];
257 uint32_t h1[RTE_MEMBER_LOOKUP_BULK_MAX], h2[RTE_MEMBER_LOOKUP_BULK_MAX];
260 for (i = 0; i < num_keys; i++)
261 h1[i] = MEMBER_HASH_FUNC(keys[i], ss->key_len,
263 for (i = 0; i < num_keys; i++)
264 h2[i] = MEMBER_HASH_FUNC(&h1[i], sizeof(uint32_t),
266 for (i = 0; i < num_keys; i++) {
268 for (k = 0; k < ss->num_hashes; k++) {
269 bit_loc = (h1[i] + k * h2[i]) & ss->bit_mask;
270 mask[i] &= test_bit(bit_loc, ss);
273 for (i = 0; i < num_keys; i++) {
276 uint32_t loc = __builtin_ctzl(mask[i]);
277 set_ids[i * match_per_key + match_cnt_t] = loc + 1;
279 if (match_cnt_t >= match_per_key)
281 mask[i] &= ~(1UL << loc);
283 match_count[i] = match_cnt_t;
284 if (match_cnt_t != 0)
291 rte_member_add_vbf(const struct rte_member_setsum *ss,
292 const void *key, member_set_t set_id)
297 if (set_id > ss->num_set || set_id == RTE_MEMBER_NO_MATCH)
300 h1 = MEMBER_HASH_FUNC(key, ss->key_len, ss->prim_hash_seed);
301 h2 = MEMBER_HASH_FUNC(&h1, sizeof(uint32_t), ss->sec_hash_seed);
303 for (i = 0; i < ss->num_hashes; i++) {
304 bit_loc = (h1 + i * h2) & ss->bit_mask;
305 set_bit(bit_loc, ss, set_id);
311 rte_member_free_vbf(struct rte_member_setsum *ss)
317 rte_member_reset_vbf(const struct rte_member_setsum *ss)
319 uint32_t *vbf = ss->table;
320 memset(vbf, 0, (ss->num_set * ss->bits) >> 3);