1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright(c) 2016 6WIND S.A.
14 #include <sys/queue.h>
17 #include <rte_common.h>
19 #include <rte_debug.h>
20 #include <rte_memory.h>
21 #include <rte_memzone.h>
22 #include <rte_malloc.h>
23 #include <rte_atomic.h>
24 #include <rte_launch.h>
26 #include <rte_eal_memconfig.h>
27 #include <rte_per_lcore.h>
28 #include <rte_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_errno.h>
31 #include <rte_string_fns.h>
32 #include <rte_spinlock.h>
33 #include <rte_tailq.h>
35 #include "rte_mempool.h"
37 TAILQ_HEAD(rte_mempool_list, rte_tailq_entry);
39 static struct rte_tailq_elem rte_mempool_tailq = {
40 .name = "RTE_MEMPOOL",
42 EAL_REGISTER_TAILQ(rte_mempool_tailq)
44 #define CACHE_FLUSHTHRESH_MULTIPLIER 1.5
45 #define CALC_CACHE_FLUSHTHRESH(c) \
46 ((typeof(c))((c) * CACHE_FLUSHTHRESH_MULTIPLIER))
49 * return the greatest common divisor between a and b (fast algorithm)
52 static unsigned get_gcd(unsigned a, unsigned b)
77 * Depending on memory configuration, objects addresses are spread
78 * between channels and ranks in RAM: the pool allocator will add
79 * padding between objects. This function return the new size of the
82 static unsigned optimize_object_size(unsigned obj_size)
84 unsigned nrank, nchan;
85 unsigned new_obj_size;
87 /* get number of channels */
88 nchan = rte_memory_get_nchannel();
92 nrank = rte_memory_get_nrank();
96 /* process new object size */
97 new_obj_size = (obj_size + RTE_MEMPOOL_ALIGN_MASK) / RTE_MEMPOOL_ALIGN;
98 while (get_gcd(new_obj_size, nrank * nchan) != 1)
100 return new_obj_size * RTE_MEMPOOL_ALIGN;
103 struct pagesz_walk_arg {
109 find_min_pagesz(const struct rte_memseg_list *msl, void *arg)
111 struct pagesz_walk_arg *wa = arg;
115 * we need to only look at page sizes available for a particular socket
116 * ID. so, we either need an exact match on socket ID (can match both
117 * native and external memory), or, if SOCKET_ID_ANY was specified as a
118 * socket ID argument, we must only look at native memory and ignore any
119 * page sizes associated with external memory.
121 valid = msl->socket_id == wa->socket_id;
122 valid |= wa->socket_id == SOCKET_ID_ANY && msl->external == 0;
124 if (valid && msl->page_sz < wa->min)
125 wa->min = msl->page_sz;
131 get_min_page_size(int socket_id)
133 struct pagesz_walk_arg wa;
136 wa.socket_id = socket_id;
138 rte_memseg_list_walk(find_min_pagesz, &wa);
140 return wa.min == SIZE_MAX ? (size_t) getpagesize() : wa.min;
145 mempool_add_elem(struct rte_mempool *mp, __rte_unused void *opaque,
146 void *obj, rte_iova_t iova)
148 struct rte_mempool_objhdr *hdr;
149 struct rte_mempool_objtlr *tlr __rte_unused;
151 /* set mempool ptr in header */
152 hdr = RTE_PTR_SUB(obj, sizeof(*hdr));
155 STAILQ_INSERT_TAIL(&mp->elt_list, hdr, next);
156 mp->populated_size++;
158 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
159 hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
160 tlr = __mempool_get_trailer(obj);
161 tlr->cookie = RTE_MEMPOOL_TRAILER_COOKIE;
165 /* call obj_cb() for each mempool element */
167 rte_mempool_obj_iter(struct rte_mempool *mp,
168 rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg)
170 struct rte_mempool_objhdr *hdr;
174 STAILQ_FOREACH(hdr, &mp->elt_list, next) {
175 obj = (char *)hdr + sizeof(*hdr);
176 obj_cb(mp, obj_cb_arg, obj, n);
183 /* call mem_cb() for each mempool memory chunk */
185 rte_mempool_mem_iter(struct rte_mempool *mp,
186 rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg)
188 struct rte_mempool_memhdr *hdr;
191 STAILQ_FOREACH(hdr, &mp->mem_list, next) {
192 mem_cb(mp, mem_cb_arg, hdr, n);
199 /* get the header, trailer and total size of a mempool element. */
201 rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
202 struct rte_mempool_objsz *sz)
204 struct rte_mempool_objsz lsz;
206 sz = (sz != NULL) ? sz : &lsz;
208 sz->header_size = sizeof(struct rte_mempool_objhdr);
209 if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0)
210 sz->header_size = RTE_ALIGN_CEIL(sz->header_size,
213 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
214 sz->trailer_size = sizeof(struct rte_mempool_objtlr);
216 sz->trailer_size = 0;
219 /* element size is 8 bytes-aligned at least */
220 sz->elt_size = RTE_ALIGN_CEIL(elt_size, sizeof(uint64_t));
222 /* expand trailer to next cache line */
223 if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0) {
224 sz->total_size = sz->header_size + sz->elt_size +
226 sz->trailer_size += ((RTE_MEMPOOL_ALIGN -
227 (sz->total_size & RTE_MEMPOOL_ALIGN_MASK)) &
228 RTE_MEMPOOL_ALIGN_MASK);
232 * increase trailer to add padding between objects in order to
233 * spread them across memory channels/ranks
235 if ((flags & MEMPOOL_F_NO_SPREAD) == 0) {
237 new_size = optimize_object_size(sz->header_size + sz->elt_size +
239 sz->trailer_size = new_size - sz->header_size - sz->elt_size;
242 /* this is the size of an object, including header and trailer */
243 sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size;
245 return sz->total_size;
248 /* free a memchunk allocated with rte_memzone_reserve() */
250 rte_mempool_memchunk_mz_free(__rte_unused struct rte_mempool_memhdr *memhdr,
253 const struct rte_memzone *mz = opaque;
254 rte_memzone_free(mz);
257 /* Free memory chunks used by a mempool. Objects must be in pool */
259 rte_mempool_free_memchunks(struct rte_mempool *mp)
261 struct rte_mempool_memhdr *memhdr;
264 while (!STAILQ_EMPTY(&mp->elt_list)) {
265 rte_mempool_ops_dequeue_bulk(mp, &elt, 1);
267 STAILQ_REMOVE_HEAD(&mp->elt_list, next);
268 mp->populated_size--;
271 while (!STAILQ_EMPTY(&mp->mem_list)) {
272 memhdr = STAILQ_FIRST(&mp->mem_list);
273 STAILQ_REMOVE_HEAD(&mp->mem_list, next);
274 if (memhdr->free_cb != NULL)
275 memhdr->free_cb(memhdr, memhdr->opaque);
282 mempool_ops_alloc_once(struct rte_mempool *mp)
286 /* create the internal ring if not already done */
287 if ((mp->flags & MEMPOOL_F_POOL_CREATED) == 0) {
288 ret = rte_mempool_ops_alloc(mp);
291 mp->flags |= MEMPOOL_F_POOL_CREATED;
296 /* Add objects in the pool, using a physically contiguous memory
297 * zone. Return the number of objects added, or a negative value
301 rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr,
302 rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
307 struct rte_mempool_memhdr *memhdr;
310 ret = mempool_ops_alloc_once(mp);
314 /* mempool is already populated */
315 if (mp->populated_size >= mp->size)
318 memhdr = rte_zmalloc("MEMPOOL_MEMHDR", sizeof(*memhdr), 0);
323 memhdr->addr = vaddr;
326 memhdr->free_cb = free_cb;
327 memhdr->opaque = opaque;
329 if (mp->flags & MEMPOOL_F_NO_CACHE_ALIGN)
330 off = RTE_PTR_ALIGN_CEIL(vaddr, 8) - vaddr;
332 off = RTE_PTR_ALIGN_CEIL(vaddr, RTE_MEMPOOL_ALIGN) - vaddr;
339 i = rte_mempool_ops_populate(mp, mp->size - mp->populated_size,
341 (iova == RTE_BAD_IOVA) ? RTE_BAD_IOVA : (iova + off),
342 len - off, mempool_add_elem, NULL);
344 /* not enough room to store one object */
350 STAILQ_INSERT_TAIL(&mp->mem_list, memhdr, next);
362 struct rte_memseg *ms;
364 /* try registered memory first */
365 ms = rte_mem_virt2memseg(addr, NULL);
366 if (ms == NULL || ms->iova == RTE_BAD_IOVA)
367 /* fall back to actual physical address */
368 return rte_mem_virt2iova(addr);
369 return ms->iova + RTE_PTR_DIFF(addr, ms->addr);
372 /* Populate the mempool with a virtual area. Return the number of
373 * objects added, or a negative value on error.
376 rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
377 size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
381 size_t off, phys_len;
384 if (mp->flags & MEMPOOL_F_NO_IOVA_CONTIG)
385 return rte_mempool_populate_iova(mp, addr, RTE_BAD_IOVA,
386 len, free_cb, opaque);
388 for (off = 0; off < len &&
389 mp->populated_size < mp->size; off += phys_len) {
391 iova = get_iova(addr + off);
393 /* populate with the largest group of contiguous pages */
394 for (phys_len = RTE_MIN(
395 (size_t)(RTE_PTR_ALIGN_CEIL(addr + off + 1, pg_sz) -
398 off + phys_len < len;
399 phys_len = RTE_MIN(phys_len + pg_sz, len - off)) {
402 iova_tmp = get_iova(addr + off + phys_len);
404 if (iova_tmp == RTE_BAD_IOVA ||
405 iova_tmp != iova + phys_len)
409 ret = rte_mempool_populate_iova(mp, addr + off, iova,
410 phys_len, free_cb, opaque);
413 /* no need to call the free callback for next chunks */
421 rte_mempool_free_memchunks(mp);
425 /* Get the minimal page size used in a mempool before populating it. */
427 rte_mempool_get_page_size(struct rte_mempool *mp, size_t *pg_sz)
429 bool need_iova_contig_obj;
430 bool alloc_in_ext_mem;
433 /* check if we can retrieve a valid socket ID */
434 ret = rte_malloc_heap_socket_is_external(mp->socket_id);
437 alloc_in_ext_mem = (ret == 1);
438 need_iova_contig_obj = !(mp->flags & MEMPOOL_F_NO_IOVA_CONTIG);
440 if (!need_iova_contig_obj)
442 else if (rte_eal_has_hugepages() || alloc_in_ext_mem)
443 *pg_sz = get_min_page_size(mp->socket_id);
445 *pg_sz = getpagesize();
450 /* Default function to populate the mempool: allocate memory in memzones,
451 * and populate them. Return the number of objects added, or a negative
455 rte_mempool_populate_default(struct rte_mempool *mp)
457 unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
458 char mz_name[RTE_MEMZONE_NAMESIZE];
459 const struct rte_memzone *mz;
461 size_t align, pg_sz, pg_shift = 0;
465 bool need_iova_contig_obj;
467 ret = mempool_ops_alloc_once(mp);
471 /* mempool must not be populated */
472 if (mp->nb_mem_chunks != 0)
476 * the following section calculates page shift and page size values.
478 * these values impact the result of calc_mem_size operation, which
479 * returns the amount of memory that should be allocated to store the
480 * desired number of objects. when not zero, it allocates more memory
481 * for the padding between objects, to ensure that an object does not
482 * cross a page boundary. in other words, page size/shift are to be set
483 * to zero if mempool elements won't care about page boundaries.
484 * there are several considerations for page size and page shift here.
486 * if we don't need our mempools to have physically contiguous objects,
487 * then just set page shift and page size to 0, because the user has
488 * indicated that there's no need to care about anything.
490 * if we do need contiguous objects (if a mempool driver has its
491 * own calc_size() method returning min_chunk_size = mem_size),
492 * there is also an option to reserve the entire mempool memory
493 * as one contiguous block of memory.
495 * if we require contiguous objects, but not necessarily the entire
496 * mempool reserved space to be contiguous, pg_sz will be != 0,
497 * and the default ops->populate() will take care of not placing
498 * objects across pages.
500 * if our IO addresses are physical, we may get memory from bigger
501 * pages, or we might get memory from smaller pages, and how much of it
502 * we require depends on whether we want bigger or smaller pages.
503 * However, requesting each and every memory size is too much work, so
504 * what we'll do instead is walk through the page sizes available, pick
505 * the smallest one and set up page shift to match that one. We will be
506 * wasting some space this way, but it's much nicer than looping around
507 * trying to reserve each and every page size.
509 * If we fail to get enough contiguous memory, then we'll go and
510 * reserve space in smaller chunks.
513 need_iova_contig_obj = !(mp->flags & MEMPOOL_F_NO_IOVA_CONTIG);
514 ret = rte_mempool_get_page_size(mp, &pg_sz);
519 pg_shift = rte_bsf32(pg_sz);
521 for (mz_id = 0, n = mp->size; n > 0; mz_id++, n -= ret) {
522 size_t min_chunk_size;
524 mem_size = rte_mempool_ops_calc_mem_size(
525 mp, n, pg_shift, &min_chunk_size, &align);
532 ret = snprintf(mz_name, sizeof(mz_name),
533 RTE_MEMPOOL_MZ_FORMAT "_%d", mp->name, mz_id);
534 if (ret < 0 || ret >= (int)sizeof(mz_name)) {
539 /* if we're trying to reserve contiguous memory, add appropriate
542 if (min_chunk_size == (size_t)mem_size)
543 mz_flags |= RTE_MEMZONE_IOVA_CONTIG;
545 mz = rte_memzone_reserve_aligned(mz_name, mem_size,
546 mp->socket_id, mz_flags, align);
548 /* don't try reserving with 0 size if we were asked to reserve
549 * IOVA-contiguous memory.
551 if (min_chunk_size < (size_t)mem_size && mz == NULL) {
552 /* not enough memory, retry with the biggest zone we
555 mz = rte_memzone_reserve_aligned(mz_name, 0,
556 mp->socket_id, mz_flags, align);
563 if (mz->len < min_chunk_size) {
564 rte_memzone_free(mz);
569 if (need_iova_contig_obj)
574 if (pg_sz == 0 || (mz_flags & RTE_MEMZONE_IOVA_CONTIG))
575 ret = rte_mempool_populate_iova(mp, mz->addr,
577 rte_mempool_memchunk_mz_free,
578 (void *)(uintptr_t)mz);
580 ret = rte_mempool_populate_virt(mp, mz->addr,
582 rte_mempool_memchunk_mz_free,
583 (void *)(uintptr_t)mz);
585 rte_memzone_free(mz);
593 rte_mempool_free_memchunks(mp);
597 /* return the memory size required for mempool objects in anonymous mem */
599 get_anon_size(const struct rte_mempool *mp)
602 size_t pg_sz, pg_shift;
603 size_t min_chunk_size;
606 pg_sz = getpagesize();
607 pg_shift = rte_bsf32(pg_sz);
608 size = rte_mempool_ops_calc_mem_size(mp, mp->size, pg_shift,
609 &min_chunk_size, &align);
614 /* unmap a memory zone mapped by rte_mempool_populate_anon() */
616 rte_mempool_memchunk_anon_free(struct rte_mempool_memhdr *memhdr,
622 * Calculate size since memhdr->len has contiguous chunk length
623 * which may be smaller if anon map is split into many contiguous
624 * chunks. Result must be the same as we calculated on populate.
626 size = get_anon_size(memhdr->mp);
630 munmap(opaque, size);
633 /* populate the mempool with an anonymous mapping */
635 rte_mempool_populate_anon(struct rte_mempool *mp)
641 /* mempool is already populated, error */
642 if ((!STAILQ_EMPTY(&mp->mem_list)) || mp->nb_mem_chunks != 0) {
647 ret = mempool_ops_alloc_once(mp);
651 size = get_anon_size(mp);
657 /* get chunk of virtually continuous memory */
658 addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
659 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
660 if (addr == MAP_FAILED) {
664 /* can't use MMAP_LOCKED, it does not exist on BSD */
665 if (mlock(addr, size) < 0) {
671 ret = rte_mempool_populate_virt(mp, addr, size, getpagesize(),
672 rte_mempool_memchunk_anon_free, addr);
676 return mp->populated_size;
679 rte_mempool_free_memchunks(mp);
685 rte_mempool_free(struct rte_mempool *mp)
687 struct rte_mempool_list *mempool_list = NULL;
688 struct rte_tailq_entry *te;
693 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
694 rte_mcfg_tailq_write_lock();
695 /* find out tailq entry */
696 TAILQ_FOREACH(te, mempool_list, next) {
697 if (te->data == (void *)mp)
702 TAILQ_REMOVE(mempool_list, te, next);
705 rte_mcfg_tailq_write_unlock();
707 rte_mempool_free_memchunks(mp);
708 rte_mempool_ops_free(mp);
709 rte_memzone_free(mp->mz);
713 mempool_cache_init(struct rte_mempool_cache *cache, uint32_t size)
716 cache->flushthresh = CALC_CACHE_FLUSHTHRESH(size);
721 * Create and initialize a cache for objects that are retrieved from and
722 * returned to an underlying mempool. This structure is identical to the
723 * local_cache[lcore_id] pointed to by the mempool structure.
725 struct rte_mempool_cache *
726 rte_mempool_cache_create(uint32_t size, int socket_id)
728 struct rte_mempool_cache *cache;
730 if (size == 0 || size > RTE_MEMPOOL_CACHE_MAX_SIZE) {
735 cache = rte_zmalloc_socket("MEMPOOL_CACHE", sizeof(*cache),
736 RTE_CACHE_LINE_SIZE, socket_id);
738 RTE_LOG(ERR, MEMPOOL, "Cannot allocate mempool cache.\n");
743 mempool_cache_init(cache, size);
749 * Free a cache. It's the responsibility of the user to make sure that any
750 * remaining objects in the cache are flushed to the corresponding
754 rte_mempool_cache_free(struct rte_mempool_cache *cache)
759 /* create an empty mempool */
761 rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
762 unsigned cache_size, unsigned private_data_size,
763 int socket_id, unsigned flags)
765 char mz_name[RTE_MEMZONE_NAMESIZE];
766 struct rte_mempool_list *mempool_list;
767 struct rte_mempool *mp = NULL;
768 struct rte_tailq_entry *te = NULL;
769 const struct rte_memzone *mz = NULL;
771 unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
772 struct rte_mempool_objsz objsz;
776 /* compilation-time checks */
777 RTE_BUILD_BUG_ON((sizeof(struct rte_mempool) &
778 RTE_CACHE_LINE_MASK) != 0);
779 RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_cache) &
780 RTE_CACHE_LINE_MASK) != 0);
781 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
782 RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_debug_stats) &
783 RTE_CACHE_LINE_MASK) != 0);
784 RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, stats) &
785 RTE_CACHE_LINE_MASK) != 0);
788 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
790 /* asked for zero items */
796 /* asked cache too big */
797 if (cache_size > RTE_MEMPOOL_CACHE_MAX_SIZE ||
798 CALC_CACHE_FLUSHTHRESH(cache_size) > n) {
803 /* "no cache align" imply "no spread" */
804 if (flags & MEMPOOL_F_NO_CACHE_ALIGN)
805 flags |= MEMPOOL_F_NO_SPREAD;
807 /* calculate mempool object sizes. */
808 if (!rte_mempool_calc_obj_size(elt_size, flags, &objsz)) {
813 rte_mcfg_mempool_write_lock();
816 * reserve a memory zone for this mempool: private data is
819 private_data_size = (private_data_size +
820 RTE_MEMPOOL_ALIGN_MASK) & (~RTE_MEMPOOL_ALIGN_MASK);
823 /* try to allocate tailq entry */
824 te = rte_zmalloc("MEMPOOL_TAILQ_ENTRY", sizeof(*te), 0);
826 RTE_LOG(ERR, MEMPOOL, "Cannot allocate tailq entry!\n");
830 mempool_size = MEMPOOL_HEADER_SIZE(mp, cache_size);
831 mempool_size += private_data_size;
832 mempool_size = RTE_ALIGN_CEIL(mempool_size, RTE_MEMPOOL_ALIGN);
834 ret = snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT, name);
835 if (ret < 0 || ret >= (int)sizeof(mz_name)) {
836 rte_errno = ENAMETOOLONG;
840 mz = rte_memzone_reserve(mz_name, mempool_size, socket_id, mz_flags);
844 /* init the mempool structure */
846 memset(mp, 0, MEMPOOL_HEADER_SIZE(mp, cache_size));
847 ret = strlcpy(mp->name, name, sizeof(mp->name));
848 if (ret < 0 || ret >= (int)sizeof(mp->name)) {
849 rte_errno = ENAMETOOLONG;
855 mp->socket_id = socket_id;
856 mp->elt_size = objsz.elt_size;
857 mp->header_size = objsz.header_size;
858 mp->trailer_size = objsz.trailer_size;
859 /* Size of default caches, zero means disabled. */
860 mp->cache_size = cache_size;
861 mp->private_data_size = private_data_size;
862 STAILQ_INIT(&mp->elt_list);
863 STAILQ_INIT(&mp->mem_list);
866 * local_cache pointer is set even if cache_size is zero.
867 * The local_cache points to just past the elt_pa[] array.
869 mp->local_cache = (struct rte_mempool_cache *)
870 RTE_PTR_ADD(mp, MEMPOOL_HEADER_SIZE(mp, 0));
872 /* Init all default caches. */
873 if (cache_size != 0) {
874 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
875 mempool_cache_init(&mp->local_cache[lcore_id],
881 rte_mcfg_tailq_write_lock();
882 TAILQ_INSERT_TAIL(mempool_list, te, next);
883 rte_mcfg_tailq_write_unlock();
884 rte_mcfg_mempool_write_unlock();
889 rte_mcfg_mempool_write_unlock();
891 rte_mempool_free(mp);
895 /* create the mempool */
897 rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
898 unsigned cache_size, unsigned private_data_size,
899 rte_mempool_ctor_t *mp_init, void *mp_init_arg,
900 rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
901 int socket_id, unsigned flags)
904 struct rte_mempool *mp;
906 mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
907 private_data_size, socket_id, flags);
912 * Since we have 4 combinations of the SP/SC/MP/MC examine the flags to
913 * set the correct index into the table of ops structs.
915 if ((flags & MEMPOOL_F_SP_PUT) && (flags & MEMPOOL_F_SC_GET))
916 ret = rte_mempool_set_ops_byname(mp, "ring_sp_sc", NULL);
917 else if (flags & MEMPOOL_F_SP_PUT)
918 ret = rte_mempool_set_ops_byname(mp, "ring_sp_mc", NULL);
919 else if (flags & MEMPOOL_F_SC_GET)
920 ret = rte_mempool_set_ops_byname(mp, "ring_mp_sc", NULL);
922 ret = rte_mempool_set_ops_byname(mp, "ring_mp_mc", NULL);
927 /* call the mempool priv initializer */
929 mp_init(mp, mp_init_arg);
931 if (rte_mempool_populate_default(mp) < 0)
934 /* call the object initializers */
936 rte_mempool_obj_iter(mp, obj_init, obj_init_arg);
941 rte_mempool_free(mp);
945 /* Return the number of entries in the mempool */
947 rte_mempool_avail_count(const struct rte_mempool *mp)
952 count = rte_mempool_ops_get_count(mp);
954 if (mp->cache_size == 0)
957 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
958 count += mp->local_cache[lcore_id].len;
961 * due to race condition (access to len is not locked), the
962 * total can be greater than size... so fix the result
964 if (count > mp->size)
969 /* return the number of entries allocated from the mempool */
971 rte_mempool_in_use_count(const struct rte_mempool *mp)
973 return mp->size - rte_mempool_avail_count(mp);
976 /* dump the cache status */
978 rte_mempool_dump_cache(FILE *f, const struct rte_mempool *mp)
982 unsigned cache_count;
984 fprintf(f, " internal cache infos:\n");
985 fprintf(f, " cache_size=%"PRIu32"\n", mp->cache_size);
987 if (mp->cache_size == 0)
990 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
991 cache_count = mp->local_cache[lcore_id].len;
992 fprintf(f, " cache_count[%u]=%"PRIu32"\n",
993 lcore_id, cache_count);
994 count += cache_count;
996 fprintf(f, " total_cache_count=%u\n", count);
1000 #ifndef __INTEL_COMPILER
1001 #pragma GCC diagnostic ignored "-Wcast-qual"
1004 /* check and update cookies or panic (internal) */
1005 void rte_mempool_check_cookies(const struct rte_mempool *mp,
1006 void * const *obj_table_const, unsigned n, int free)
1008 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1009 struct rte_mempool_objhdr *hdr;
1010 struct rte_mempool_objtlr *tlr;
1016 /* Force to drop the "const" attribute. This is done only when
1017 * DEBUG is enabled */
1018 tmp = (void *) obj_table_const;
1024 if (rte_mempool_from_obj(obj) != mp)
1025 rte_panic("MEMPOOL: object is owned by another "
1028 hdr = __mempool_get_header(obj);
1029 cookie = hdr->cookie;
1032 if (cookie != RTE_MEMPOOL_HEADER_COOKIE1) {
1033 RTE_LOG(CRIT, MEMPOOL,
1034 "obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1035 obj, (const void *) mp, cookie);
1036 rte_panic("MEMPOOL: bad header cookie (put)\n");
1038 hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
1039 } else if (free == 1) {
1040 if (cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
1041 RTE_LOG(CRIT, MEMPOOL,
1042 "obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1043 obj, (const void *) mp, cookie);
1044 rte_panic("MEMPOOL: bad header cookie (get)\n");
1046 hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE1;
1047 } else if (free == 2) {
1048 if (cookie != RTE_MEMPOOL_HEADER_COOKIE1 &&
1049 cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
1050 RTE_LOG(CRIT, MEMPOOL,
1051 "obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1052 obj, (const void *) mp, cookie);
1053 rte_panic("MEMPOOL: bad header cookie (audit)\n");
1056 tlr = __mempool_get_trailer(obj);
1057 cookie = tlr->cookie;
1058 if (cookie != RTE_MEMPOOL_TRAILER_COOKIE) {
1059 RTE_LOG(CRIT, MEMPOOL,
1060 "obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1061 obj, (const void *) mp, cookie);
1062 rte_panic("MEMPOOL: bad trailer cookie\n");
1067 RTE_SET_USED(obj_table_const);
1074 rte_mempool_contig_blocks_check_cookies(const struct rte_mempool *mp,
1075 void * const *first_obj_table_const, unsigned int n, int free)
1077 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1078 struct rte_mempool_info info;
1079 const size_t total_elt_sz =
1080 mp->header_size + mp->elt_size + mp->trailer_size;
1083 rte_mempool_ops_get_info(mp, &info);
1085 for (i = 0; i < n; ++i) {
1086 void *first_obj = first_obj_table_const[i];
1088 for (j = 0; j < info.contig_block_size; ++j) {
1091 obj = (void *)((uintptr_t)first_obj + j * total_elt_sz);
1092 rte_mempool_check_cookies(mp, &obj, 1, free);
1097 RTE_SET_USED(first_obj_table_const);
1103 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1105 mempool_obj_audit(struct rte_mempool *mp, __rte_unused void *opaque,
1106 void *obj, __rte_unused unsigned idx)
1108 __mempool_check_cookies(mp, &obj, 1, 2);
1112 mempool_audit_cookies(struct rte_mempool *mp)
1116 num = rte_mempool_obj_iter(mp, mempool_obj_audit, NULL);
1117 if (num != mp->size) {
1118 rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
1119 "iterated only over %u elements\n",
1124 #define mempool_audit_cookies(mp) do {} while(0)
1127 #ifndef __INTEL_COMPILER
1128 #pragma GCC diagnostic error "-Wcast-qual"
1131 /* check cookies before and after objects */
1133 mempool_audit_cache(const struct rte_mempool *mp)
1135 /* check cache size consistency */
1138 if (mp->cache_size == 0)
1141 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1142 const struct rte_mempool_cache *cache;
1143 cache = &mp->local_cache[lcore_id];
1144 if (cache->len > cache->flushthresh) {
1145 RTE_LOG(CRIT, MEMPOOL, "badness on cache[%u]\n",
1147 rte_panic("MEMPOOL: invalid cache len\n");
1152 /* check the consistency of mempool (size, cookies, ...) */
1154 rte_mempool_audit(struct rte_mempool *mp)
1156 mempool_audit_cache(mp);
1157 mempool_audit_cookies(mp);
1159 /* For case where mempool DEBUG is not set, and cache size is 0 */
1163 /* dump the status of the mempool on the console */
1165 rte_mempool_dump(FILE *f, struct rte_mempool *mp)
1167 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1168 struct rte_mempool_info info;
1169 struct rte_mempool_debug_stats sum;
1172 struct rte_mempool_memhdr *memhdr;
1173 unsigned common_count;
1174 unsigned cache_count;
1177 RTE_ASSERT(f != NULL);
1178 RTE_ASSERT(mp != NULL);
1180 fprintf(f, "mempool <%s>@%p\n", mp->name, mp);
1181 fprintf(f, " flags=%x\n", mp->flags);
1182 fprintf(f, " pool=%p\n", mp->pool_data);
1183 fprintf(f, " iova=0x%" PRIx64 "\n", mp->mz->iova);
1184 fprintf(f, " nb_mem_chunks=%u\n", mp->nb_mem_chunks);
1185 fprintf(f, " size=%"PRIu32"\n", mp->size);
1186 fprintf(f, " populated_size=%"PRIu32"\n", mp->populated_size);
1187 fprintf(f, " header_size=%"PRIu32"\n", mp->header_size);
1188 fprintf(f, " elt_size=%"PRIu32"\n", mp->elt_size);
1189 fprintf(f, " trailer_size=%"PRIu32"\n", mp->trailer_size);
1190 fprintf(f, " total_obj_size=%"PRIu32"\n",
1191 mp->header_size + mp->elt_size + mp->trailer_size);
1193 fprintf(f, " private_data_size=%"PRIu32"\n", mp->private_data_size);
1195 STAILQ_FOREACH(memhdr, &mp->mem_list, next)
1196 mem_len += memhdr->len;
1198 fprintf(f, " avg bytes/object=%#Lf\n",
1199 (long double)mem_len / mp->size);
1202 cache_count = rte_mempool_dump_cache(f, mp);
1203 common_count = rte_mempool_ops_get_count(mp);
1204 if ((cache_count + common_count) > mp->size)
1205 common_count = mp->size - cache_count;
1206 fprintf(f, " common_pool_count=%u\n", common_count);
1208 /* sum and dump statistics */
1209 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1210 rte_mempool_ops_get_info(mp, &info);
1211 memset(&sum, 0, sizeof(sum));
1212 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1213 sum.put_bulk += mp->stats[lcore_id].put_bulk;
1214 sum.put_objs += mp->stats[lcore_id].put_objs;
1215 sum.get_success_bulk += mp->stats[lcore_id].get_success_bulk;
1216 sum.get_success_objs += mp->stats[lcore_id].get_success_objs;
1217 sum.get_fail_bulk += mp->stats[lcore_id].get_fail_bulk;
1218 sum.get_fail_objs += mp->stats[lcore_id].get_fail_objs;
1219 sum.get_success_blks += mp->stats[lcore_id].get_success_blks;
1220 sum.get_fail_blks += mp->stats[lcore_id].get_fail_blks;
1222 fprintf(f, " stats:\n");
1223 fprintf(f, " put_bulk=%"PRIu64"\n", sum.put_bulk);
1224 fprintf(f, " put_objs=%"PRIu64"\n", sum.put_objs);
1225 fprintf(f, " get_success_bulk=%"PRIu64"\n", sum.get_success_bulk);
1226 fprintf(f, " get_success_objs=%"PRIu64"\n", sum.get_success_objs);
1227 fprintf(f, " get_fail_bulk=%"PRIu64"\n", sum.get_fail_bulk);
1228 fprintf(f, " get_fail_objs=%"PRIu64"\n", sum.get_fail_objs);
1229 if (info.contig_block_size > 0) {
1230 fprintf(f, " get_success_blks=%"PRIu64"\n",
1231 sum.get_success_blks);
1232 fprintf(f, " get_fail_blks=%"PRIu64"\n", sum.get_fail_blks);
1235 fprintf(f, " no statistics available\n");
1238 rte_mempool_audit(mp);
1241 /* dump the status of all mempools on the console */
1243 rte_mempool_list_dump(FILE *f)
1245 struct rte_mempool *mp = NULL;
1246 struct rte_tailq_entry *te;
1247 struct rte_mempool_list *mempool_list;
1249 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1251 rte_mcfg_mempool_read_lock();
1253 TAILQ_FOREACH(te, mempool_list, next) {
1254 mp = (struct rte_mempool *) te->data;
1255 rte_mempool_dump(f, mp);
1258 rte_mcfg_mempool_read_unlock();
1261 /* search a mempool from its name */
1262 struct rte_mempool *
1263 rte_mempool_lookup(const char *name)
1265 struct rte_mempool *mp = NULL;
1266 struct rte_tailq_entry *te;
1267 struct rte_mempool_list *mempool_list;
1269 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1271 rte_mcfg_mempool_read_lock();
1273 TAILQ_FOREACH(te, mempool_list, next) {
1274 mp = (struct rte_mempool *) te->data;
1275 if (strncmp(name, mp->name, RTE_MEMPOOL_NAMESIZE) == 0)
1279 rte_mcfg_mempool_read_unlock();
1289 void rte_mempool_walk(void (*func)(struct rte_mempool *, void *),
1292 struct rte_tailq_entry *te = NULL;
1293 struct rte_mempool_list *mempool_list;
1296 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1298 rte_mcfg_mempool_read_lock();
1300 TAILQ_FOREACH_SAFE(te, mempool_list, next, tmp_te) {
1301 (*func)((struct rte_mempool *) te->data, arg);
1304 rte_mcfg_mempool_read_unlock();