4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 #ifndef _RTE_MEMPOOL_H_
35 #define _RTE_MEMPOOL_H_
41 * A memory pool is an allocator of fixed-size object. It is
42 * identified by its name, and uses a ring to store free objects. It
43 * provides some other optional services, like a per-core object
44 * cache, and an alignment helper to ensure that objects are padded
45 * to spread them equally on all RAM channels, ranks, and so on.
47 * Objects owned by a mempool should never be added in another
48 * mempool. When an object is freed using rte_mempool_put() or
49 * equivalent, the object data is not modified; the user can save some
50 * meta-data in the object data and retrieve them when allocating a
53 * Note: the mempool implementation is not preemptable. A lcore must
54 * not be interrupted by another task that uses the same mempool
55 * (because it uses a ring which is not preemptable). Also, mempool
56 * functions must not be used outside the DPDK environment: for
57 * example, in linuxapp environment, a thread that is not created by
58 * the EAL must not use mempools. This is due to the per-lcore cache
59 * that won't work as rte_lcore_id() will not return a correct value.
67 #include <sys/queue.h>
70 #include <rte_debug.h>
71 #include <rte_lcore.h>
72 #include <rte_memory.h>
73 #include <rte_branch_prediction.h>
80 #define RTE_MEMPOOL_HEADER_COOKIE1 0xbadbadbadadd2e55ULL /**< Header cookie. */
81 #define RTE_MEMPOOL_HEADER_COOKIE2 0xf2eef2eedadd2e55ULL /**< Header cookie. */
82 #define RTE_MEMPOOL_TRAILER_COOKIE 0xadd2e55badbadbadULL /**< Trailer cookie.*/
84 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
86 * A structure that stores the mempool statistics (per-lcore).
88 struct rte_mempool_debug_stats {
89 uint64_t put_bulk; /**< Number of puts. */
90 uint64_t put_objs; /**< Number of objects successfully put. */
91 uint64_t get_success_bulk; /**< Successful allocation number. */
92 uint64_t get_success_objs; /**< Objects successfully allocated. */
93 uint64_t get_fail_bulk; /**< Failed allocation number. */
94 uint64_t get_fail_objs; /**< Objects that failed to be allocated. */
95 } __rte_cache_aligned;
98 #if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
100 * A structure that stores a per-core object cache.
102 struct rte_mempool_cache {
103 unsigned len; /**< Cache len */
105 * Cache is allocated to this size to allow it to overflow in certain
106 * cases to avoid needless emptying of cache.
108 void *objs[RTE_MEMPOOL_CACHE_MAX_SIZE * 3]; /**< Cache objects */
109 } __rte_cache_aligned;
110 #endif /* RTE_MEMPOOL_CACHE_MAX_SIZE > 0 */
113 * A structure that stores the size of mempool elements.
115 struct rte_mempool_objsz {
116 uint32_t elt_size; /**< Size of an element. */
117 uint32_t header_size; /**< Size of header (before elt). */
118 uint32_t trailer_size; /**< Size of trailer (after elt). */
120 /**< Total size of an object (header + elt + trailer). */
123 #define RTE_MEMPOOL_NAMESIZE 32 /**< Maximum length of a memory pool. */
124 #define RTE_MEMPOOL_MZ_PREFIX "MP_"
127 #define RTE_MEMPOOL_MZ_FORMAT RTE_MEMPOOL_MZ_PREFIX "%s"
129 #ifdef RTE_LIBRTE_XEN_DOM0
131 /* "<name>_MP_elt" */
132 #define RTE_MEMPOOL_OBJ_NAME "%s_" RTE_MEMPOOL_MZ_PREFIX "elt"
136 #define RTE_MEMPOOL_OBJ_NAME RTE_MEMPOOL_MZ_FORMAT
138 #endif /* RTE_LIBRTE_XEN_DOM0 */
140 #define MEMPOOL_PG_SHIFT_MAX (sizeof(uintptr_t) * CHAR_BIT - 1)
142 /** Mempool over one chunk of physically continuous memory */
143 #define MEMPOOL_PG_NUM_DEFAULT 1
145 #ifndef RTE_MEMPOOL_ALIGN
146 #define RTE_MEMPOOL_ALIGN RTE_CACHE_LINE_SIZE
149 #define RTE_MEMPOOL_ALIGN_MASK (RTE_MEMPOOL_ALIGN - 1)
152 * Mempool object header structure
154 * Each object stored in mempools are prefixed by this header structure,
155 * it allows to retrieve the mempool pointer from the object. When debug
156 * is enabled, a cookie is also added in this structure preventing
157 * corruptions and double-frees.
159 struct rte_mempool_objhdr {
160 struct rte_mempool *mp; /**< The mempool owning the object. */
161 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
162 uint64_t cookie; /**< Debug cookie. */
167 * Mempool object trailer structure
169 * In debug mode, each object stored in mempools are suffixed by this
170 * trailer structure containing a cookie preventing memory corruptions.
172 struct rte_mempool_objtlr {
173 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
174 uint64_t cookie; /**< Debug cookie. */
179 * The RTE mempool structure.
182 char name[RTE_MEMPOOL_NAMESIZE]; /**< Name of mempool. */
183 struct rte_ring *ring; /**< Ring to store objects. */
184 phys_addr_t phys_addr; /**< Phys. addr. of mempool struct. */
185 int flags; /**< Flags of the mempool. */
186 uint32_t size; /**< Size of the mempool. */
187 uint32_t cache_size; /**< Size of per-lcore local cache. */
188 uint32_t cache_flushthresh;
189 /**< Threshold before we flush excess elements. */
191 uint32_t elt_size; /**< Size of an element. */
192 uint32_t header_size; /**< Size of header (before elt). */
193 uint32_t trailer_size; /**< Size of trailer (after elt). */
195 unsigned private_data_size; /**< Size of private data. */
197 #if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
198 /** Per-lcore local cache. */
199 struct rte_mempool_cache local_cache[RTE_MAX_LCORE];
202 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
203 /** Per-lcore statistics. */
204 struct rte_mempool_debug_stats stats[RTE_MAX_LCORE];
207 /* Address translation support, starts from next cache line. */
209 /** Number of elements in the elt_pa array. */
210 uint32_t pg_num __rte_cache_aligned;
211 uint32_t pg_shift; /**< LOG2 of the physical pages. */
212 uintptr_t pg_mask; /**< physical page mask value. */
213 uintptr_t elt_va_start;
214 /**< Virtual address of the first mempool object. */
215 uintptr_t elt_va_end;
216 /**< Virtual address of the <size + 1> mempool object. */
217 phys_addr_t elt_pa[MEMPOOL_PG_NUM_DEFAULT];
218 /**< Array of physical page addresses for the mempool objects buffer. */
220 } __rte_cache_aligned;
222 #define MEMPOOL_F_NO_SPREAD 0x0001 /**< Do not spread in memory. */
223 #define MEMPOOL_F_NO_CACHE_ALIGN 0x0002 /**< Do not align objs on cache lines.*/
224 #define MEMPOOL_F_SP_PUT 0x0004 /**< Default put is "single-producer".*/
225 #define MEMPOOL_F_SC_GET 0x0008 /**< Default get is "single-consumer".*/
228 * @internal When debug is enabled, store some statistics.
231 * Pointer to the memory pool.
233 * Name of the statistics field to increment in the memory pool.
235 * Number to add to the object-oriented statistics.
237 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
238 #define __MEMPOOL_STAT_ADD(mp, name, n) do { \
239 unsigned __lcore_id = rte_lcore_id(); \
240 if (__lcore_id < RTE_MAX_LCORE) { \
241 mp->stats[__lcore_id].name##_objs += n; \
242 mp->stats[__lcore_id].name##_bulk += 1; \
246 #define __MEMPOOL_STAT_ADD(mp, name, n) do {} while(0)
250 * Calculate the size of the mempool header.
253 * Pointer to the memory pool.
255 * Number of pages used to store mempool objects.
257 #define MEMPOOL_HEADER_SIZE(mp, pgn) (sizeof(*(mp)) + \
258 RTE_ALIGN_CEIL(((pgn) - RTE_DIM((mp)->elt_pa)) * \
259 sizeof ((mp)->elt_pa[0]), RTE_CACHE_LINE_SIZE))
262 * Return true if the whole mempool is in contiguous memory.
264 #define MEMPOOL_IS_CONTIG(mp) \
265 ((mp)->pg_num == MEMPOOL_PG_NUM_DEFAULT && \
266 (mp)->phys_addr == (mp)->elt_pa[0])
268 /* return the header of a mempool object (internal) */
269 static inline struct rte_mempool_objhdr *__mempool_get_header(void *obj)
271 return (struct rte_mempool_objhdr *)RTE_PTR_SUB(obj, sizeof(struct rte_mempool_objhdr));
275 * Return a pointer to the mempool owning this object.
278 * An object that is owned by a pool. If this is not the case,
279 * the behavior is undefined.
281 * A pointer to the mempool structure.
283 static inline struct rte_mempool *rte_mempool_from_obj(void *obj)
285 struct rte_mempool_objhdr *hdr = __mempool_get_header(obj);
289 /* return the trailer of a mempool object (internal) */
290 static inline struct rte_mempool_objtlr *__mempool_get_trailer(void *obj)
292 struct rte_mempool *mp = rte_mempool_from_obj(obj);
293 return (struct rte_mempool_objtlr *)RTE_PTR_ADD(obj, mp->elt_size);
297 * @internal Check and update cookies or panic.
300 * Pointer to the memory pool.
301 * @param obj_table_const
302 * Pointer to a table of void * pointers (objects).
304 * Index of object in object table.
306 * - 0: object is supposed to be allocated, mark it as free
307 * - 1: object is supposed to be free, mark it as allocated
308 * - 2: just check that cookie is valid (free or allocated)
310 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
311 #ifndef __INTEL_COMPILER
312 #pragma GCC diagnostic ignored "-Wcast-qual"
314 static inline void __mempool_check_cookies(const struct rte_mempool *mp,
315 void * const *obj_table_const,
316 unsigned n, int free)
318 struct rte_mempool_objhdr *hdr;
319 struct rte_mempool_objtlr *tlr;
325 /* Force to drop the "const" attribute. This is done only when
326 * DEBUG is enabled */
327 tmp = (void *) obj_table_const;
328 obj_table = (void **) tmp;
333 if (rte_mempool_from_obj(obj) != mp)
334 rte_panic("MEMPOOL: object is owned by another "
337 hdr = __mempool_get_header(obj);
338 cookie = hdr->cookie;
341 if (cookie != RTE_MEMPOOL_HEADER_COOKIE1) {
342 rte_log_set_history(0);
343 RTE_LOG(CRIT, MEMPOOL,
344 "obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
345 obj, (const void *) mp, cookie);
346 rte_panic("MEMPOOL: bad header cookie (put)\n");
348 hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
350 else if (free == 1) {
351 if (cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
352 rte_log_set_history(0);
353 RTE_LOG(CRIT, MEMPOOL,
354 "obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
355 obj, (const void *) mp, cookie);
356 rte_panic("MEMPOOL: bad header cookie (get)\n");
358 hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE1;
360 else if (free == 2) {
361 if (cookie != RTE_MEMPOOL_HEADER_COOKIE1 &&
362 cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
363 rte_log_set_history(0);
364 RTE_LOG(CRIT, MEMPOOL,
365 "obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
366 obj, (const void *) mp, cookie);
367 rte_panic("MEMPOOL: bad header cookie (audit)\n");
370 tlr = __mempool_get_trailer(obj);
371 cookie = tlr->cookie;
372 if (cookie != RTE_MEMPOOL_TRAILER_COOKIE) {
373 rte_log_set_history(0);
374 RTE_LOG(CRIT, MEMPOOL,
375 "obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
376 obj, (const void *) mp, cookie);
377 rte_panic("MEMPOOL: bad trailer cookie\n");
381 #ifndef __INTEL_COMPILER
382 #pragma GCC diagnostic error "-Wcast-qual"
385 #define __mempool_check_cookies(mp, obj_table_const, n, free) do {} while(0)
386 #endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
389 * A mempool object iterator callback function.
391 typedef void (*rte_mempool_obj_iter_t)(void * /*obj_iter_arg*/,
392 void * /*obj_start*/,
394 uint32_t /*obj_index */);
397 * Call a function for each mempool object in a memory chunk
399 * Iterate across objects of the given size and alignment in the
400 * provided chunk of memory. The given memory buffer can consist of
401 * disjointed physical pages.
403 * For each object, call the provided callback (if any). This function
404 * is used to populate a mempool, or walk through all the elements of a
405 * mempool, or estimate how many elements of the given size could be
406 * created in the given memory buffer.
409 * Virtual address of the memory buffer.
411 * Maximum number of objects to iterate through.
413 * Size of each object.
415 * Alignment of each object.
417 * Array of physical addresses of the pages that comprises given memory
420 * Number of elements in the paddr array.
422 * LOG2 of the physical pages size.
424 * Object iterator callback function (could be NULL).
425 * @param obj_iter_arg
426 * User defined parameter for the object iterator callback function.
429 * Number of objects iterated through.
431 uint32_t rte_mempool_obj_iter(void *vaddr,
432 uint32_t elt_num, size_t elt_sz, size_t align,
433 const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift,
434 rte_mempool_obj_iter_t obj_iter, void *obj_iter_arg);
437 * An object constructor callback function for mempool.
439 * Arguments are the mempool, the opaque pointer given by the user in
440 * rte_mempool_create(), the pointer to the element and the index of
441 * the element in the pool.
443 typedef void (rte_mempool_obj_ctor_t)(struct rte_mempool *, void *,
447 * A mempool constructor callback function.
449 * Arguments are the mempool and the opaque pointer given by the user in
450 * rte_mempool_create().
452 typedef void (rte_mempool_ctor_t)(struct rte_mempool *, void *);
455 * Create a new mempool named *name* in memory.
457 * This function uses ``memzone_reserve()`` to allocate memory. The
458 * pool contains n elements of elt_size. Its size is set to n.
459 * All elements of the mempool are allocated together with the mempool header,
460 * in one physically continuous chunk of memory.
463 * The name of the mempool.
465 * The number of elements in the mempool. The optimum size (in terms of
466 * memory usage) for a mempool is when n is a power of two minus one:
469 * The size of each element.
471 * If cache_size is non-zero, the rte_mempool library will try to
472 * limit the accesses to the common lockless pool, by maintaining a
473 * per-lcore object cache. This argument must be lower or equal to
474 * CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE and n / 1.5. It is advised to choose
475 * cache_size to have "n modulo cache_size == 0": if this is
476 * not the case, some elements will always stay in the pool and will
477 * never be used. The access to the per-lcore table is of course
478 * faster than the multi-producer/consumer pool. The cache can be
479 * disabled if the cache_size argument is set to 0; it can be useful to
480 * avoid losing objects in cache. Note that even if not used, the
481 * memory space for cache is always reserved in a mempool structure,
482 * except if CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE is set to 0.
483 * @param private_data_size
484 * The size of the private data appended after the mempool
485 * structure. This is useful for storing some private data after the
486 * mempool structure, as is done for rte_mbuf_pool for example.
488 * A function pointer that is called for initialization of the pool,
489 * before object initialization. The user can initialize the private
490 * data in this function if needed. This parameter can be NULL if
493 * An opaque pointer to data that can be used in the mempool
494 * constructor function.
496 * A function pointer that is called for each object at
497 * initialization of the pool. The user can set some meta data in
498 * objects if needed. This parameter can be NULL if not needed.
499 * The obj_init() function takes the mempool pointer, the init_arg,
500 * the object pointer and the object number as parameters.
501 * @param obj_init_arg
502 * An opaque pointer to data that can be used as an argument for
503 * each call to the object constructor function.
505 * The *socket_id* argument is the socket identifier in the case of
506 * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
507 * constraint for the reserved zone.
509 * The *flags* arguments is an OR of following flags:
510 * - MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread
511 * between channels in RAM: the pool allocator will add padding
512 * between objects depending on the hardware configuration. See
513 * Memory alignment constraints for details. If this flag is set,
514 * the allocator will just align them to a cache line.
515 * - MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are
516 * cache-aligned. This flag removes this constraint, and no
517 * padding will be present between objects. This flag implies
518 * MEMPOOL_F_NO_SPREAD.
519 * - MEMPOOL_F_SP_PUT: If this flag is set, the default behavior
520 * when using rte_mempool_put() or rte_mempool_put_bulk() is
521 * "single-producer". Otherwise, it is "multi-producers".
522 * - MEMPOOL_F_SC_GET: If this flag is set, the default behavior
523 * when using rte_mempool_get() or rte_mempool_get_bulk() is
524 * "single-consumer". Otherwise, it is "multi-consumers".
526 * The pointer to the new allocated mempool, on success. NULL on error
527 * with rte_errno set appropriately. Possible rte_errno values include:
528 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
529 * - E_RTE_SECONDARY - function was called from a secondary process instance
530 * - EINVAL - cache size provided is too large
531 * - ENOSPC - the maximum number of memzones has already been allocated
532 * - EEXIST - a memzone with the same name already exists
533 * - ENOMEM - no appropriate memory area found in which to create memzone
536 rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
537 unsigned cache_size, unsigned private_data_size,
538 rte_mempool_ctor_t *mp_init, void *mp_init_arg,
539 rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg,
540 int socket_id, unsigned flags);
543 * Create a new mempool named *name* in memory.
545 * This function uses ``memzone_reserve()`` to allocate memory. The
546 * pool contains n elements of elt_size. Its size is set to n.
547 * Depending on the input parameters, mempool elements can be either allocated
548 * together with the mempool header, or an externally provided memory buffer
549 * could be used to store mempool objects. In later case, that external
550 * memory buffer can consist of set of disjoint physical pages.
553 * The name of the mempool.
555 * The number of elements in the mempool. The optimum size (in terms of
556 * memory usage) for a mempool is when n is a power of two minus one:
559 * The size of each element.
561 * If cache_size is non-zero, the rte_mempool library will try to
562 * limit the accesses to the common lockless pool, by maintaining a
563 * per-lcore object cache. This argument must be lower or equal to
564 * CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE. It is advised to choose
565 * cache_size to have "n modulo cache_size == 0": if this is
566 * not the case, some elements will always stay in the pool and will
567 * never be used. The access to the per-lcore table is of course
568 * faster than the multi-producer/consumer pool. The cache can be
569 * disabled if the cache_size argument is set to 0; it can be useful to
570 * avoid losing objects in cache. Note that even if not used, the
571 * memory space for cache is always reserved in a mempool structure,
572 * except if CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE is set to 0.
573 * @param private_data_size
574 * The size of the private data appended after the mempool
575 * structure. This is useful for storing some private data after the
576 * mempool structure, as is done for rte_mbuf_pool for example.
578 * A function pointer that is called for initialization of the pool,
579 * before object initialization. The user can initialize the private
580 * data in this function if needed. This parameter can be NULL if
583 * An opaque pointer to data that can be used in the mempool
584 * constructor function.
586 * A function pointer that is called for each object at
587 * initialization of the pool. The user can set some meta data in
588 * objects if needed. This parameter can be NULL if not needed.
589 * The obj_init() function takes the mempool pointer, the init_arg,
590 * the object pointer and the object number as parameters.
591 * @param obj_init_arg
592 * An opaque pointer to data that can be used as an argument for
593 * each call to the object constructor function.
595 * The *socket_id* argument is the socket identifier in the case of
596 * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
597 * constraint for the reserved zone.
599 * The *flags* arguments is an OR of following flags:
600 * - MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread
601 * between channels in RAM: the pool allocator will add padding
602 * between objects depending on the hardware configuration. See
603 * Memory alignment constraints for details. If this flag is set,
604 * the allocator will just align them to a cache line.
605 * - MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are
606 * cache-aligned. This flag removes this constraint, and no
607 * padding will be present between objects. This flag implies
608 * MEMPOOL_F_NO_SPREAD.
609 * - MEMPOOL_F_SP_PUT: If this flag is set, the default behavior
610 * when using rte_mempool_put() or rte_mempool_put_bulk() is
611 * "single-producer". Otherwise, it is "multi-producers".
612 * - MEMPOOL_F_SC_GET: If this flag is set, the default behavior
613 * when using rte_mempool_get() or rte_mempool_get_bulk() is
614 * "single-consumer". Otherwise, it is "multi-consumers".
616 * Virtual address of the externally allocated memory buffer.
617 * Will be used to store mempool objects.
619 * Array of physical addresses of the pages that comprises given memory
622 * Number of elements in the paddr array.
624 * LOG2 of the physical pages size.
626 * The pointer to the new allocated mempool, on success. NULL on error
627 * with rte_errno set appropriately. Possible rte_errno values include:
628 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
629 * - E_RTE_SECONDARY - function was called from a secondary process instance
630 * - EINVAL - cache size provided is too large
631 * - ENOSPC - the maximum number of memzones has already been allocated
632 * - EEXIST - a memzone with the same name already exists
633 * - ENOMEM - no appropriate memory area found in which to create memzone
636 rte_mempool_xmem_create(const char *name, unsigned n, unsigned elt_size,
637 unsigned cache_size, unsigned private_data_size,
638 rte_mempool_ctor_t *mp_init, void *mp_init_arg,
639 rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg,
640 int socket_id, unsigned flags, void *vaddr,
641 const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift);
644 * Create a new mempool named *name* in memory on Xen Dom0.
646 * This function uses ``rte_mempool_xmem_create()`` to allocate memory. The
647 * pool contains n elements of elt_size. Its size is set to n.
648 * All elements of the mempool are allocated together with the mempool header,
649 * and memory buffer can consist of set of disjoint physical pages.
652 * The name of the mempool.
654 * The number of elements in the mempool. The optimum size (in terms of
655 * memory usage) for a mempool is when n is a power of two minus one:
658 * The size of each element.
660 * If cache_size is non-zero, the rte_mempool library will try to
661 * limit the accesses to the common lockless pool, by maintaining a
662 * per-lcore object cache. This argument must be lower or equal to
663 * CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE. It is advised to choose
664 * cache_size to have "n modulo cache_size == 0": if this is
665 * not the case, some elements will always stay in the pool and will
666 * never be used. The access to the per-lcore table is of course
667 * faster than the multi-producer/consumer pool. The cache can be
668 * disabled if the cache_size argument is set to 0; it can be useful to
669 * avoid losing objects in cache. Note that even if not used, the
670 * memory space for cache is always reserved in a mempool structure,
671 * except if CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE is set to 0.
672 * @param private_data_size
673 * The size of the private data appended after the mempool
674 * structure. This is useful for storing some private data after the
675 * mempool structure, as is done for rte_mbuf_pool for example.
677 * A function pointer that is called for initialization of the pool,
678 * before object initialization. The user can initialize the private
679 * data in this function if needed. This parameter can be NULL if
682 * An opaque pointer to data that can be used in the mempool
683 * constructor function.
685 * A function pointer that is called for each object at
686 * initialization of the pool. The user can set some meta data in
687 * objects if needed. This parameter can be NULL if not needed.
688 * The obj_init() function takes the mempool pointer, the init_arg,
689 * the object pointer and the object number as parameters.
690 * @param obj_init_arg
691 * An opaque pointer to data that can be used as an argument for
692 * each call to the object constructor function.
694 * The *socket_id* argument is the socket identifier in the case of
695 * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
696 * constraint for the reserved zone.
698 * The *flags* arguments is an OR of following flags:
699 * - MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread
700 * between channels in RAM: the pool allocator will add padding
701 * between objects depending on the hardware configuration. See
702 * Memory alignment constraints for details. If this flag is set,
703 * the allocator will just align them to a cache line.
704 * - MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are
705 * cache-aligned. This flag removes this constraint, and no
706 * padding will be present between objects. This flag implies
707 * MEMPOOL_F_NO_SPREAD.
708 * - MEMPOOL_F_SP_PUT: If this flag is set, the default behavior
709 * when using rte_mempool_put() or rte_mempool_put_bulk() is
710 * "single-producer". Otherwise, it is "multi-producers".
711 * - MEMPOOL_F_SC_GET: If this flag is set, the default behavior
712 * when using rte_mempool_get() or rte_mempool_get_bulk() is
713 * "single-consumer". Otherwise, it is "multi-consumers".
715 * The pointer to the new allocated mempool, on success. NULL on error
716 * with rte_errno set appropriately. Possible rte_errno values include:
717 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
718 * - E_RTE_SECONDARY - function was called from a secondary process instance
719 * - EINVAL - cache size provided is too large
720 * - ENOSPC - the maximum number of memzones has already been allocated
721 * - EEXIST - a memzone with the same name already exists
722 * - ENOMEM - no appropriate memory area found in which to create memzone
725 rte_dom0_mempool_create(const char *name, unsigned n, unsigned elt_size,
726 unsigned cache_size, unsigned private_data_size,
727 rte_mempool_ctor_t *mp_init, void *mp_init_arg,
728 rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg,
729 int socket_id, unsigned flags);
733 * Dump the status of the mempool to the console.
736 * A pointer to a file for output
738 * A pointer to the mempool structure.
740 void rte_mempool_dump(FILE *f, const struct rte_mempool *mp);
743 * @internal Put several objects back in the mempool; used internally.
745 * A pointer to the mempool structure.
747 * A pointer to a table of void * pointers (objects).
749 * The number of objects to store back in the mempool, must be strictly
752 * Mono-producer (0) or multi-producers (1).
754 static inline void __attribute__((always_inline))
755 __mempool_put_bulk(struct rte_mempool *mp, void * const *obj_table,
756 unsigned n, int is_mp)
758 #if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
759 struct rte_mempool_cache *cache;
762 unsigned lcore_id = rte_lcore_id();
763 uint32_t cache_size = mp->cache_size;
764 uint32_t flushthresh = mp->cache_flushthresh;
765 #endif /* RTE_MEMPOOL_CACHE_MAX_SIZE > 0 */
767 /* increment stat now, adding in mempool always success */
768 __MEMPOOL_STAT_ADD(mp, put, n);
770 #if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
771 /* cache is not enabled or single producer or non-EAL thread */
772 if (unlikely(cache_size == 0 || is_mp == 0 ||
773 lcore_id >= RTE_MAX_LCORE))
776 /* Go straight to ring if put would overflow mem allocated for cache */
777 if (unlikely(n > RTE_MEMPOOL_CACHE_MAX_SIZE))
780 cache = &mp->local_cache[lcore_id];
781 cache_objs = &cache->objs[cache->len];
784 * The cache follows the following algorithm
785 * 1. Add the objects to the cache
786 * 2. Anything greater than the cache min value (if it crosses the
787 * cache flush threshold) is flushed to the ring.
790 /* Add elements back into the cache */
791 for (index = 0; index < n; ++index, obj_table++)
792 cache_objs[index] = *obj_table;
796 if (cache->len >= flushthresh) {
797 rte_ring_mp_enqueue_bulk(mp->ring, &cache->objs[cache_size],
798 cache->len - cache_size);
799 cache->len = cache_size;
805 #endif /* RTE_MEMPOOL_CACHE_MAX_SIZE > 0 */
807 /* push remaining objects in ring */
808 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
810 if (rte_ring_mp_enqueue_bulk(mp->ring, obj_table, n) < 0)
811 rte_panic("cannot put objects in mempool\n");
814 if (rte_ring_sp_enqueue_bulk(mp->ring, obj_table, n) < 0)
815 rte_panic("cannot put objects in mempool\n");
819 rte_ring_mp_enqueue_bulk(mp->ring, obj_table, n);
821 rte_ring_sp_enqueue_bulk(mp->ring, obj_table, n);
827 * Put several objects back in the mempool (multi-producers safe).
830 * A pointer to the mempool structure.
832 * A pointer to a table of void * pointers (objects).
834 * The number of objects to add in the mempool from the obj_table.
836 static inline void __attribute__((always_inline))
837 rte_mempool_mp_put_bulk(struct rte_mempool *mp, void * const *obj_table,
840 __mempool_check_cookies(mp, obj_table, n, 0);
841 __mempool_put_bulk(mp, obj_table, n, 1);
845 * Put several objects back in the mempool (NOT multi-producers safe).
848 * A pointer to the mempool structure.
850 * A pointer to a table of void * pointers (objects).
852 * The number of objects to add in the mempool from obj_table.
855 rte_mempool_sp_put_bulk(struct rte_mempool *mp, void * const *obj_table,
858 __mempool_check_cookies(mp, obj_table, n, 0);
859 __mempool_put_bulk(mp, obj_table, n, 0);
863 * Put several objects back in the mempool.
865 * This function calls the multi-producer or the single-producer
866 * version depending on the default behavior that was specified at
867 * mempool creation time (see flags).
870 * A pointer to the mempool structure.
872 * A pointer to a table of void * pointers (objects).
874 * The number of objects to add in the mempool from obj_table.
876 static inline void __attribute__((always_inline))
877 rte_mempool_put_bulk(struct rte_mempool *mp, void * const *obj_table,
880 __mempool_check_cookies(mp, obj_table, n, 0);
881 __mempool_put_bulk(mp, obj_table, n, !(mp->flags & MEMPOOL_F_SP_PUT));
885 * Put one object in the mempool (multi-producers safe).
888 * A pointer to the mempool structure.
890 * A pointer to the object to be added.
892 static inline void __attribute__((always_inline))
893 rte_mempool_mp_put(struct rte_mempool *mp, void *obj)
895 rte_mempool_mp_put_bulk(mp, &obj, 1);
899 * Put one object back in the mempool (NOT multi-producers safe).
902 * A pointer to the mempool structure.
904 * A pointer to the object to be added.
906 static inline void __attribute__((always_inline))
907 rte_mempool_sp_put(struct rte_mempool *mp, void *obj)
909 rte_mempool_sp_put_bulk(mp, &obj, 1);
913 * Put one object back in the mempool.
915 * This function calls the multi-producer or the single-producer
916 * version depending on the default behavior that was specified at
917 * mempool creation time (see flags).
920 * A pointer to the mempool structure.
922 * A pointer to the object to be added.
924 static inline void __attribute__((always_inline))
925 rte_mempool_put(struct rte_mempool *mp, void *obj)
927 rte_mempool_put_bulk(mp, &obj, 1);
931 * @internal Get several objects from the mempool; used internally.
933 * A pointer to the mempool structure.
935 * A pointer to a table of void * pointers (objects).
937 * The number of objects to get, must be strictly positive.
939 * Mono-consumer (0) or multi-consumers (1).
941 * - >=0: Success; number of objects supplied.
942 * - <0: Error; code of ring dequeue function.
944 static inline int __attribute__((always_inline))
945 __mempool_get_bulk(struct rte_mempool *mp, void **obj_table,
946 unsigned n, int is_mc)
949 #if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
950 struct rte_mempool_cache *cache;
953 unsigned lcore_id = rte_lcore_id();
954 uint32_t cache_size = mp->cache_size;
956 /* cache is not enabled or single consumer */
957 if (unlikely(cache_size == 0 || is_mc == 0 ||
958 n >= cache_size || lcore_id >= RTE_MAX_LCORE))
961 cache = &mp->local_cache[lcore_id];
962 cache_objs = cache->objs;
964 /* Can this be satisfied from the cache? */
965 if (cache->len < n) {
966 /* No. Backfill the cache first, and then fill from it */
967 uint32_t req = n + (cache_size - cache->len);
969 /* How many do we require i.e. number to fill the cache + the request */
970 ret = rte_ring_mc_dequeue_bulk(mp->ring, &cache->objs[cache->len], req);
971 if (unlikely(ret < 0)) {
973 * In the offchance that we are buffer constrained,
974 * where we are not able to allocate cache + n, go to
975 * the ring directly. If that fails, we are truly out of
984 /* Now fill in the response ... */
985 for (index = 0, len = cache->len - 1; index < n; ++index, len--, obj_table++)
986 *obj_table = cache_objs[len];
990 __MEMPOOL_STAT_ADD(mp, get_success, n);
995 #endif /* RTE_MEMPOOL_CACHE_MAX_SIZE > 0 */
997 /* get remaining objects from ring */
999 ret = rte_ring_mc_dequeue_bulk(mp->ring, obj_table, n);
1001 ret = rte_ring_sc_dequeue_bulk(mp->ring, obj_table, n);
1004 __MEMPOOL_STAT_ADD(mp, get_fail, n);
1006 __MEMPOOL_STAT_ADD(mp, get_success, n);
1012 * Get several objects from the mempool (multi-consumers safe).
1014 * If cache is enabled, objects will be retrieved first from cache,
1015 * subsequently from the common pool. Note that it can return -ENOENT when
1016 * the local cache and common pool are empty, even if cache from other
1020 * A pointer to the mempool structure.
1022 * A pointer to a table of void * pointers (objects) that will be filled.
1024 * The number of objects to get from mempool to obj_table.
1026 * - 0: Success; objects taken.
1027 * - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1029 static inline int __attribute__((always_inline))
1030 rte_mempool_mc_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned n)
1033 ret = __mempool_get_bulk(mp, obj_table, n, 1);
1035 __mempool_check_cookies(mp, obj_table, n, 1);
1040 * Get several objects from the mempool (NOT multi-consumers safe).
1042 * If cache is enabled, objects will be retrieved first from cache,
1043 * subsequently from the common pool. Note that it can return -ENOENT when
1044 * the local cache and common pool are empty, even if cache from other
1048 * A pointer to the mempool structure.
1050 * A pointer to a table of void * pointers (objects) that will be filled.
1052 * The number of objects to get from the mempool to obj_table.
1054 * - 0: Success; objects taken.
1055 * - -ENOENT: Not enough entries in the mempool; no object is
1058 static inline int __attribute__((always_inline))
1059 rte_mempool_sc_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned n)
1062 ret = __mempool_get_bulk(mp, obj_table, n, 0);
1064 __mempool_check_cookies(mp, obj_table, n, 1);
1069 * Get several objects from the mempool.
1071 * This function calls the multi-consumers or the single-consumer
1072 * version, depending on the default behaviour that was specified at
1073 * mempool creation time (see flags).
1075 * If cache is enabled, objects will be retrieved first from cache,
1076 * subsequently from the common pool. Note that it can return -ENOENT when
1077 * the local cache and common pool are empty, even if cache from other
1081 * A pointer to the mempool structure.
1083 * A pointer to a table of void * pointers (objects) that will be filled.
1085 * The number of objects to get from the mempool to obj_table.
1087 * - 0: Success; objects taken
1088 * - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1090 static inline int __attribute__((always_inline))
1091 rte_mempool_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned n)
1094 ret = __mempool_get_bulk(mp, obj_table, n,
1095 !(mp->flags & MEMPOOL_F_SC_GET));
1097 __mempool_check_cookies(mp, obj_table, n, 1);
1102 * Get one object from the mempool (multi-consumers safe).
1104 * If cache is enabled, objects will be retrieved first from cache,
1105 * subsequently from the common pool. Note that it can return -ENOENT when
1106 * the local cache and common pool are empty, even if cache from other
1110 * A pointer to the mempool structure.
1112 * A pointer to a void * pointer (object) that will be filled.
1114 * - 0: Success; objects taken.
1115 * - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1117 static inline int __attribute__((always_inline))
1118 rte_mempool_mc_get(struct rte_mempool *mp, void **obj_p)
1120 return rte_mempool_mc_get_bulk(mp, obj_p, 1);
1124 * Get one object from the mempool (NOT multi-consumers safe).
1126 * If cache is enabled, objects will be retrieved first from cache,
1127 * subsequently from the common pool. Note that it can return -ENOENT when
1128 * the local cache and common pool are empty, even if cache from other
1132 * A pointer to the mempool structure.
1134 * A pointer to a void * pointer (object) that will be filled.
1136 * - 0: Success; objects taken.
1137 * - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1139 static inline int __attribute__((always_inline))
1140 rte_mempool_sc_get(struct rte_mempool *mp, void **obj_p)
1142 return rte_mempool_sc_get_bulk(mp, obj_p, 1);
1146 * Get one object from the mempool.
1148 * This function calls the multi-consumers or the single-consumer
1149 * version, depending on the default behavior that was specified at
1150 * mempool creation (see flags).
1152 * If cache is enabled, objects will be retrieved first from cache,
1153 * subsequently from the common pool. Note that it can return -ENOENT when
1154 * the local cache and common pool are empty, even if cache from other
1158 * A pointer to the mempool structure.
1160 * A pointer to a void * pointer (object) that will be filled.
1162 * - 0: Success; objects taken.
1163 * - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1165 static inline int __attribute__((always_inline))
1166 rte_mempool_get(struct rte_mempool *mp, void **obj_p)
1168 return rte_mempool_get_bulk(mp, obj_p, 1);
1172 * Return the number of entries in the mempool.
1174 * When cache is enabled, this function has to browse the length of
1175 * all lcores, so it should not be used in a data path, but only for
1179 * A pointer to the mempool structure.
1181 * The number of entries in the mempool.
1183 unsigned rte_mempool_count(const struct rte_mempool *mp);
1186 * Return the number of free entries in the mempool ring.
1187 * i.e. how many entries can be freed back to the mempool.
1189 * NOTE: This corresponds to the number of elements *allocated* from the
1190 * memory pool, not the number of elements in the pool itself. To count
1191 * the number elements currently available in the pool, use "rte_mempool_count"
1193 * When cache is enabled, this function has to browse the length of
1194 * all lcores, so it should not be used in a data path, but only for
1198 * A pointer to the mempool structure.
1200 * The number of free entries in the mempool.
1202 static inline unsigned
1203 rte_mempool_free_count(const struct rte_mempool *mp)
1205 return mp->size - rte_mempool_count(mp);
1209 * Test if the mempool is full.
1211 * When cache is enabled, this function has to browse the length of all
1212 * lcores, so it should not be used in a data path, but only for debug
1216 * A pointer to the mempool structure.
1218 * - 1: The mempool is full.
1219 * - 0: The mempool is not full.
1222 rte_mempool_full(const struct rte_mempool *mp)
1224 return !!(rte_mempool_count(mp) == mp->size);
1228 * Test if the mempool is empty.
1230 * When cache is enabled, this function has to browse the length of all
1231 * lcores, so it should not be used in a data path, but only for debug
1235 * A pointer to the mempool structure.
1237 * - 1: The mempool is empty.
1238 * - 0: The mempool is not empty.
1241 rte_mempool_empty(const struct rte_mempool *mp)
1243 return !!(rte_mempool_count(mp) == 0);
1247 * Return the physical address of elt, which is an element of the pool mp.
1250 * A pointer to the mempool structure.
1252 * A pointer (virtual address) to the element of the pool.
1254 * The physical address of the elt element.
1256 static inline phys_addr_t
1257 rte_mempool_virt2phy(const struct rte_mempool *mp, const void *elt)
1259 if (rte_eal_has_hugepages()) {
1262 off = (const char *)elt - (const char *)mp->elt_va_start;
1263 return (mp->elt_pa[off >> mp->pg_shift] + (off & mp->pg_mask));
1266 * If huge pages are disabled, we cannot assume the
1267 * memory region to be physically contiguous.
1268 * Lookup for each element.
1270 return rte_mem_virt2phy(elt);
1275 * Check the consistency of mempool objects.
1277 * Verify the coherency of fields in the mempool structure. Also check
1278 * that the cookies of mempool objects (even the ones that are not
1279 * present in pool) have a correct value. If not, a panic will occur.
1282 * A pointer to the mempool structure.
1284 void rte_mempool_audit(const struct rte_mempool *mp);
1287 * Return a pointer to the private data in an mempool structure.
1290 * A pointer to the mempool structure.
1292 * A pointer to the private data.
1294 static inline void *rte_mempool_get_priv(struct rte_mempool *mp)
1296 return (char *)mp + MEMPOOL_HEADER_SIZE(mp, mp->pg_num);
1300 * Dump the status of all mempools on the console
1303 * A pointer to a file for output
1305 void rte_mempool_list_dump(FILE *f);
1308 * Search a mempool from its name
1311 * The name of the mempool.
1313 * The pointer to the mempool matching the name, or NULL if not found.
1315 * with rte_errno set appropriately. Possible rte_errno values include:
1316 * - ENOENT - required entry not available to return.
1319 struct rte_mempool *rte_mempool_lookup(const char *name);
1322 * Get the header, trailer and total size of a mempool element.
1324 * Given a desired size of the mempool element and mempool flags,
1325 * calculates header, trailer, body and total sizes of the mempool object.
1328 * The size of each element.
1330 * The flags used for the mempool creation.
1331 * Consult rte_mempool_create() for more information about possible values.
1332 * The size of each element.
1334 * The calculated detailed size the mempool object. May be NULL.
1336 * Total size of the mempool object.
1338 uint32_t rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
1339 struct rte_mempool_objsz *sz);
1342 * Get the size of memory required to store mempool elements.
1344 * Calculate the maximum amount of memory required to store given number
1345 * of objects. Assume that the memory buffer will be aligned at page
1348 * Note that if object size is bigger then page size, then it assumes
1349 * that pages are grouped in subsets of physically continuous pages big
1350 * enough to store at least one object.
1353 * Number of elements.
1355 * The size of each element.
1357 * LOG2 of the physical pages size.
1359 * Required memory size aligned at page boundary.
1361 size_t rte_mempool_xmem_size(uint32_t elt_num, size_t elt_sz,
1365 * Get the size of memory required to store mempool elements.
1367 * Calculate how much memory would be actually required with the given
1368 * memory footprint to store required number of objects.
1371 * Virtual address of the externally allocated memory buffer.
1372 * Will be used to store mempool objects.
1374 * Number of elements.
1376 * The size of each element.
1378 * Array of physical addresses of the pages that comprises given memory
1381 * Number of elements in the paddr array.
1383 * LOG2 of the physical pages size.
1385 * On success, the number of bytes needed to store given number of
1386 * objects, aligned to the given page size. If the provided memory
1387 * buffer is too small, return a negative value whose absolute value
1388 * is the actual number of elements that can be stored in that buffer.
1390 ssize_t rte_mempool_xmem_usage(void *vaddr, uint32_t elt_num, size_t elt_sz,
1391 const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift);
1394 * Walk list of all memory pools
1399 * Argument passed to iterator
1401 void rte_mempool_walk(void (*func)(const struct rte_mempool *, void *arg),
1408 #endif /* _RTE_MEMPOOL_H_ */