pci: use igb_uio mapping only when needed
[dpdk.git] / lib / librte_pmd_e1000 / em_ethdev.c
1 /*-
2  *   BSD LICENSE
3  * 
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  * 
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  * 
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  * 
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
43 #include <rte_log.h>
44 #include <rte_debug.h>
45 #include <rte_pci.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_memory.h>
49 #include <rte_memzone.h>
50 #include <rte_tailq.h>
51 #include <rte_eal.h>
52 #include <rte_atomic.h>
53 #include <rte_malloc.h>
54
55 #include "e1000_logs.h"
56 #include "e1000/e1000_api.h"
57 #include "e1000_ethdev.h"
58
59 #define EM_EIAC                 0x000DC
60
61 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
62
63
64 static int eth_em_configure(struct rte_eth_dev *dev);
65 static int eth_em_start(struct rte_eth_dev *dev);
66 static void eth_em_stop(struct rte_eth_dev *dev);
67 static void eth_em_close(struct rte_eth_dev *dev);
68 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
69 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
70 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
71 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
72 static int eth_em_link_update(struct rte_eth_dev *dev,
73                                 int wait_to_complete);
74 static void eth_em_stats_get(struct rte_eth_dev *dev,
75                                 struct rte_eth_stats *rte_stats);
76 static void eth_em_stats_reset(struct rte_eth_dev *dev);
77 static void eth_em_infos_get(struct rte_eth_dev *dev,
78                                 struct rte_eth_dev_info *dev_info);
79 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
80                                 struct rte_eth_fc_conf *fc_conf);
81 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
82 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
83 static int eth_em_interrupt_action(struct rte_eth_dev *dev);
84 static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
85                                                         void *param);
86
87 static int em_hw_init(struct e1000_hw *hw);
88 static int em_hardware_init(struct e1000_hw *hw);
89 static void em_hw_control_acquire(struct e1000_hw *hw);
90 static void em_hw_control_release(struct e1000_hw *hw);
91 static void em_init_manageability(struct e1000_hw *hw);
92 static void em_release_manageability(struct e1000_hw *hw);
93
94 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
95                 uint16_t vlan_id, int on);
96 static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
97 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
98 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
99 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
100 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
101
102 /*
103 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
104                                         uint16_t vlan_id, int on);
105 */
106 static int eth_em_led_on(struct rte_eth_dev *dev);
107 static int eth_em_led_off(struct rte_eth_dev *dev);
108
109 static void em_intr_disable(struct e1000_hw *hw);
110 static int em_get_rx_buffer_size(struct e1000_hw *hw);
111 static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
112                 uint32_t index, uint32_t pool);
113 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
114
115 #define EM_FC_PAUSE_TIME 0x0680
116 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
117 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
118
119 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
120
121 /*
122  * The set of PCI devices this driver supports
123  */
124 static struct rte_pci_id pci_id_em_map[] = {
125
126 #define RTE_PCI_DEV_ID_DECL_EM(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
127 #include "rte_pci_dev_ids.h"
128
129 {.device_id = 0},
130 };
131
132 static struct eth_dev_ops eth_em_ops = {
133         .dev_configure        = eth_em_configure,
134         .dev_start            = eth_em_start,
135         .dev_stop             = eth_em_stop,
136         .dev_close            = eth_em_close,
137         .promiscuous_enable   = eth_em_promiscuous_enable,
138         .promiscuous_disable  = eth_em_promiscuous_disable,
139         .allmulticast_enable  = eth_em_allmulticast_enable,
140         .allmulticast_disable = eth_em_allmulticast_disable,
141         .link_update          = eth_em_link_update,
142         .stats_get            = eth_em_stats_get,
143         .stats_reset          = eth_em_stats_reset,
144         .dev_infos_get        = eth_em_infos_get,
145         .vlan_filter_set      = eth_em_vlan_filter_set,
146         .vlan_offload_set     = eth_em_vlan_offload_set,
147         .rx_queue_setup       = eth_em_rx_queue_setup,
148         .rx_queue_release     = eth_em_rx_queue_release,
149         .rx_queue_count       = eth_em_rx_queue_count,
150         .rx_descriptor_done   = eth_em_rx_descriptor_done,
151         .tx_queue_setup       = eth_em_tx_queue_setup,
152         .tx_queue_release     = eth_em_tx_queue_release,
153         .dev_led_on           = eth_em_led_on,
154         .dev_led_off          = eth_em_led_off,
155         .flow_ctrl_set        = eth_em_flow_ctrl_set,
156         .mac_addr_add         = eth_em_rar_set,
157         .mac_addr_remove      = eth_em_rar_clear,
158 };
159
160 /**
161  * Atomically reads the link status information from global
162  * structure rte_eth_dev.
163  *
164  * @param dev
165  *   - Pointer to the structure rte_eth_dev to read from.
166  *   - Pointer to the buffer to be saved with the link status.
167  *
168  * @return
169  *   - On success, zero.
170  *   - On failure, negative value.
171  */
172 static inline int
173 rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
174                                 struct rte_eth_link *link)
175 {
176         struct rte_eth_link *dst = link;
177         struct rte_eth_link *src = &(dev->data->dev_link);
178
179         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
180                                         *(uint64_t *)src) == 0)
181                 return -1;
182
183         return 0;
184 }
185
186 /**
187  * Atomically writes the link status information into global
188  * structure rte_eth_dev.
189  *
190  * @param dev
191  *   - Pointer to the structure rte_eth_dev to read from.
192  *   - Pointer to the buffer to be saved with the link status.
193  *
194  * @return
195  *   - On success, zero.
196  *   - On failure, negative value.
197  */
198 static inline int
199 rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
200                                 struct rte_eth_link *link)
201 {
202         struct rte_eth_link *dst = &(dev->data->dev_link);
203         struct rte_eth_link *src = link;
204
205         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
206                                         *(uint64_t *)src) == 0)
207                 return -1;
208
209         return 0;
210 }
211
212 static int
213 eth_em_dev_init(__attribute__((unused)) struct eth_driver *eth_drv,
214                 struct rte_eth_dev *eth_dev)
215 {
216         struct rte_pci_device *pci_dev;
217         struct e1000_hw *hw =
218                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
219         struct e1000_vfta * shadow_vfta =
220                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
221
222         pci_dev = eth_dev->pci_dev;
223         eth_dev->dev_ops = &eth_em_ops;
224         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
225         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
226
227         /* for secondary processes, we don't initialise any further as primary
228          * has already done this work. Only check we don't need a different
229          * RX function */
230         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
231                 if (eth_dev->data->scattered_rx)
232                         eth_dev->rx_pkt_burst =
233                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
234                 return 0;
235         }
236
237         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
238         hw->device_id = pci_dev->id.device_id;
239
240         /* For ICH8 support we'll need to map the flash memory BAR */
241
242         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
243                         em_hw_init(hw) != 0) {
244                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
245                         "failed to init HW",
246                         eth_dev->data->port_id, pci_dev->id.vendor_id,
247                         pci_dev->id.device_id);
248                 return -(ENODEV);
249         }
250
251         /* Allocate memory for storing MAC addresses */
252         eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
253                         hw->mac.rar_entry_count, 0);
254         if (eth_dev->data->mac_addrs == NULL) {
255                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
256                         "store MAC addresses",
257                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
258                 return -(ENOMEM);
259         }
260
261         /* Copy the permanent MAC address */
262         ether_addr_copy((struct ether_addr *) hw->mac.addr,
263                 eth_dev->data->mac_addrs);
264
265         /* initialize the vfta */
266         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
267
268         PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x\n",
269                         eth_dev->data->port_id, pci_dev->id.vendor_id,
270                         pci_dev->id.device_id);
271
272         rte_intr_callback_register(&(pci_dev->intr_handle),
273                 eth_em_interrupt_handler, (void *)eth_dev);
274
275         return (0);
276 }
277
278 static struct eth_driver rte_em_pmd = {
279         {
280                 .name = "rte_em_pmd",
281                 .id_table = pci_id_em_map,
282                 .drv_flags = RTE_PCI_DRV_NEED_IGB_UIO,
283         },
284         .eth_dev_init = eth_em_dev_init,
285         .dev_private_size = sizeof(struct e1000_adapter),
286 };
287
288 int
289 rte_em_pmd_init(void)
290 {
291         rte_eth_driver_register(&rte_em_pmd);
292         return 0;
293 }
294
295 static int
296 em_hw_init(struct e1000_hw *hw)
297 {
298         int diag;
299
300         diag = hw->mac.ops.init_params(hw);
301         if (diag != 0) {
302                 PMD_INIT_LOG(ERR, "MAC Initialization Error\n");
303                 return diag;
304         }
305         diag = hw->nvm.ops.init_params(hw);
306         if (diag != 0) {
307                 PMD_INIT_LOG(ERR, "NVM Initialization Error\n");
308                 return diag;
309         }
310         diag = hw->phy.ops.init_params(hw);
311         if (diag != 0) {
312                 PMD_INIT_LOG(ERR, "PHY Initialization Error\n");
313                 return diag;
314         }
315         (void) e1000_get_bus_info(hw);
316
317         hw->mac.autoneg = 1;
318         hw->phy.autoneg_wait_to_complete = 0;
319         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
320
321         e1000_init_script_state_82541(hw, TRUE);
322         e1000_set_tbi_compatibility_82543(hw, TRUE);
323
324         /* Copper options */
325         if (hw->phy.media_type == e1000_media_type_copper) {
326                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
327                 hw->phy.disable_polarity_correction = 0;
328                 hw->phy.ms_type = e1000_ms_hw_default;
329         }
330
331         /*
332          * Start from a known state, this is important in reading the nvm
333          * and mac from that.
334          */
335         e1000_reset_hw(hw);
336
337         /* Make sure we have a good EEPROM before we read from it */
338         if (e1000_validate_nvm_checksum(hw) < 0) {
339                 /*
340                  * Some PCI-E parts fail the first check due to
341                  * the link being in sleep state, call it again,
342                  * if it fails a second time its a real issue.
343                  */
344                 diag = e1000_validate_nvm_checksum(hw);
345                 if (diag < 0) {
346                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
347                         goto error;
348                 }
349         }
350
351         /* Read the permanent MAC address out of the EEPROM */
352         diag = e1000_read_mac_addr(hw);
353         if (diag != 0) {
354                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
355                 goto error;
356         }
357
358         /* Now initialize the hardware */
359         diag = em_hardware_init(hw);
360         if (diag != 0) {
361                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
362                 goto error;
363         }
364
365         hw->mac.get_link_status = 1;
366
367         /* Indicate SOL/IDER usage */
368         diag = e1000_check_reset_block(hw);
369         if (diag < 0) {
370                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
371                         "SOL/IDER session");
372         }
373         return (0);
374
375 error:
376         em_hw_control_release(hw);
377         return (diag);
378 }
379
380 static int
381 eth_em_configure(struct rte_eth_dev *dev)
382 {
383         struct e1000_interrupt *intr =
384                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
385
386         PMD_INIT_LOG(DEBUG, ">>");
387
388         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
389
390         PMD_INIT_LOG(DEBUG, "<<");
391         return (0);
392 }
393
394 static void
395 em_set_pba(struct e1000_hw *hw)
396 {
397         uint32_t pba;
398
399         /*
400          * Packet Buffer Allocation (PBA)
401          * Writing PBA sets the receive portion of the buffer
402          * the remainder is used for the transmit buffer.
403          * Devices before the 82547 had a Packet Buffer of 64K.
404          * After the 82547 the buffer was reduced to 40K.
405          */
406         switch (hw->mac.type) {
407                 case e1000_82547:
408                 case e1000_82547_rev_2:
409                 /* 82547: Total Packet Buffer is 40K */
410                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
411                         break;
412                 case e1000_82571:
413                 case e1000_82572:
414                 case e1000_80003es2lan:
415                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
416                         break;
417                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
418                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
419                         break;
420                 case e1000_82574:
421                 case e1000_82583:
422                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
423                         break;
424                 case e1000_ich8lan:
425                         pba = E1000_PBA_8K;
426                         break;
427                 case e1000_ich9lan:
428                 case e1000_ich10lan:
429                         pba = E1000_PBA_10K;
430                         break;
431                 case e1000_pchlan:
432                 case e1000_pch2lan:
433                         pba = E1000_PBA_26K;
434                         break;
435                 default:
436                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
437         }
438
439         E1000_WRITE_REG(hw, E1000_PBA, pba);
440 }
441
442 static int
443 eth_em_start(struct rte_eth_dev *dev)
444 {
445         struct e1000_hw *hw =
446                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
447         int ret, mask;
448
449         PMD_INIT_LOG(DEBUG, ">>");
450
451         eth_em_stop(dev);
452
453         e1000_power_up_phy(hw);
454
455         /* Set default PBA value */
456         em_set_pba(hw);
457
458         /* Put the address into the Receive Address Array */
459         e1000_rar_set(hw, hw->mac.addr, 0);
460
461         /*
462          * With the 82571 adapter, RAR[0] may be overwritten
463          * when the other port is reset, we make a duplicate
464          * in RAR[14] for that eventuality, this assures
465          * the interface continues to function.
466          */
467         if (hw->mac.type == e1000_82571) {
468                 e1000_set_laa_state_82571(hw, TRUE);
469                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
470         }
471
472         /* Initialize the hardware */
473         if (em_hardware_init(hw)) {
474                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
475                 return (-EIO);
476         }
477
478         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
479
480         /* Configure for OS presence */
481         em_init_manageability(hw);
482
483         eth_em_tx_init(dev);
484
485         ret = eth_em_rx_init(dev);
486         if (ret) {
487                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
488                 em_dev_clear_queues(dev);
489                 return ret;
490         }
491
492         e1000_clear_hw_cntrs_base_generic(hw);
493
494         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
495                         ETH_VLAN_EXTEND_MASK;
496         eth_em_vlan_offload_set(dev, mask);
497
498         /* Set Interrupt Throttling Rate to maximum allowed value. */
499         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
500
501         /* Setup link speed and duplex */
502         switch (dev->data->dev_conf.link_speed) {
503         case ETH_LINK_SPEED_AUTONEG:
504                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
505                         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
506                 else if (dev->data->dev_conf.link_duplex ==
507                                         ETH_LINK_HALF_DUPLEX)
508                         hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
509                 else if (dev->data->dev_conf.link_duplex ==
510                                         ETH_LINK_FULL_DUPLEX)
511                         hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
512                 else
513                         goto error_invalid_config;
514                 break;
515         case ETH_LINK_SPEED_10:
516                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
517                         hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
518                 else if (dev->data->dev_conf.link_duplex ==
519                                         ETH_LINK_HALF_DUPLEX)
520                         hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
521                 else if (dev->data->dev_conf.link_duplex ==
522                                         ETH_LINK_FULL_DUPLEX)
523                         hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
524                 else
525                         goto error_invalid_config;
526                 break;
527         case ETH_LINK_SPEED_100:
528                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
529                         hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
530                 else if (dev->data->dev_conf.link_duplex ==
531                                         ETH_LINK_HALF_DUPLEX)
532                         hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
533                 else if (dev->data->dev_conf.link_duplex ==
534                                         ETH_LINK_FULL_DUPLEX)
535                         hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
536                 else
537                         goto error_invalid_config;
538                 break;
539         case ETH_LINK_SPEED_1000:
540                 if ((dev->data->dev_conf.link_duplex ==
541                                 ETH_LINK_AUTONEG_DUPLEX) ||
542                         (dev->data->dev_conf.link_duplex ==
543                                         ETH_LINK_FULL_DUPLEX))
544                         hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
545                 else
546                         goto error_invalid_config;
547                 break;
548         case ETH_LINK_SPEED_10000:
549         default:
550                 goto error_invalid_config;
551         }
552         e1000_setup_link(hw);
553
554         /* check if lsc interrupt feature is enabled */
555         if (dev->data->dev_conf.intr_conf.lsc != 0) {
556                 ret = eth_em_interrupt_setup(dev);
557                 if (ret) {
558                         PMD_INIT_LOG(ERR, "Unable to setup interrupts");
559                         em_dev_clear_queues(dev);
560                         return ret;
561                 }
562         }
563
564         PMD_INIT_LOG(DEBUG, "<<");
565
566         return (0);
567
568 error_invalid_config:
569         PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port "
570                                 "%u\n", dev->data->dev_conf.link_speed,
571                         dev->data->dev_conf.link_duplex, dev->data->port_id);
572         em_dev_clear_queues(dev);
573         return (-EINVAL);
574 }
575
576 /*********************************************************************
577  *
578  *  This routine disables all traffic on the adapter by issuing a
579  *  global reset on the MAC.
580  *
581  **********************************************************************/
582 static void
583 eth_em_stop(struct rte_eth_dev *dev)
584 {
585         struct rte_eth_link link;
586         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
587
588         em_intr_disable(hw);
589         e1000_reset_hw(hw);
590         if (hw->mac.type >= e1000_82544)
591                 E1000_WRITE_REG(hw, E1000_WUC, 0);
592
593         /* Power down the phy. Needed to make the link go down */
594         e1000_power_down_phy(hw);
595
596         em_dev_clear_queues(dev);
597
598         /* clear the recorded link status */
599         memset(&link, 0, sizeof(link));
600         rte_em_dev_atomic_write_link_status(dev, &link);
601 }
602
603 static void
604 eth_em_close(struct rte_eth_dev *dev)
605 {
606         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
607
608         eth_em_stop(dev);
609         e1000_phy_hw_reset(hw);
610         em_release_manageability(hw);
611         em_hw_control_release(hw);
612 }
613
614 static int
615 em_get_rx_buffer_size(struct e1000_hw *hw)
616 {
617         uint32_t rx_buf_size;
618
619         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
620         return rx_buf_size;
621 }
622
623 /*********************************************************************
624  *
625  *  Initialize the hardware
626  *
627  **********************************************************************/
628 static int
629 em_hardware_init(struct e1000_hw *hw)
630 {
631         uint32_t rx_buf_size;
632         int diag;
633
634         /* Issue a global reset */
635         e1000_reset_hw(hw);
636
637         /* Let the firmware know the OS is in control */
638         em_hw_control_acquire(hw);
639
640         /*
641          * These parameters control the automatic generation (Tx) and
642          * response (Rx) to Ethernet PAUSE frames.
643          * - High water mark should allow for at least two standard size (1518)
644          *   frames to be received after sending an XOFF.
645          * - Low water mark works best when it is very near the high water mark.
646          *   This allows the receiver to restart by sending XON when it has
647          *   drained a bit. Here we use an arbitary value of 1500 which will
648          *   restart after one full frame is pulled from the buffer. There
649          *   could be several smaller frames in the buffer and if so they will
650          *   not trigger the XON until their total number reduces the buffer
651          *   by 1500.
652          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
653          */
654         rx_buf_size = em_get_rx_buffer_size(hw);
655
656         hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
657         hw->fc.low_water = hw->fc.high_water - 1500;
658
659         if (hw->mac.type == e1000_80003es2lan)
660                 hw->fc.pause_time = UINT16_MAX;
661         else
662                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
663
664         hw->fc.send_xon = 1;
665
666         /* Set Flow control, use the tunable location if sane */
667         if (em_fc_setting <= e1000_fc_full)
668                 hw->fc.requested_mode = em_fc_setting;
669         else
670                 hw->fc.requested_mode = e1000_fc_none;
671
672         /* Workaround: no TX flow ctrl for PCH */
673         if (hw->mac.type == e1000_pchlan)
674                 hw->fc.requested_mode = e1000_fc_rx_pause;
675
676         /* Override - settings for PCH2LAN, ya its magic :) */
677         if (hw->mac.type == e1000_pch2lan) {
678                 hw->fc.high_water = 0x5C20;
679                 hw->fc.low_water = 0x5048;
680                 hw->fc.pause_time = 0x0650;
681                 hw->fc.refresh_time = 0x0400;
682         }
683
684         diag = e1000_init_hw(hw);
685         if (diag < 0)
686                 return (diag);
687         e1000_check_for_link(hw);
688         return (0);
689 }
690
691 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
692 static void
693 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
694 {
695         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
696         struct e1000_hw_stats *stats =
697                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
698         int pause_frames;
699
700         if(hw->phy.media_type == e1000_media_type_copper ||
701                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
702                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
703                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
704         }
705
706         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
707         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
708         stats->scc += E1000_READ_REG(hw, E1000_SCC);
709         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
710
711         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
712         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
713         stats->colc += E1000_READ_REG(hw, E1000_COLC);
714         stats->dc += E1000_READ_REG(hw, E1000_DC);
715         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
716         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
717         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
718
719         /*
720          * For watchdog management we need to know if we have been
721          * paused during the last interval, so capture that here.
722          */
723         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
724         stats->xoffrxc += pause_frames;
725         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
726         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
727         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
728         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
729         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
730         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
731         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
732         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
733         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
734         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
735         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
736         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
737
738         /*
739          * For the 64-bit byte counters the low dword must be read first.
740          * Both registers clear on the read of the high dword.
741          */
742
743         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
744         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
745         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
746         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
747
748         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
749         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
750         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
751         stats->roc += E1000_READ_REG(hw, E1000_ROC);
752         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
753
754         stats->tor += E1000_READ_REG(hw, E1000_TORH);
755         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
756
757         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
758         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
759         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
760         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
761         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
762         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
763         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
764         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
765         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
766         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
767
768         /* Interrupt Counts */
769
770         if (hw->mac.type >= e1000_82571) {
771                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
772                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
773                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
774                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
775                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
776                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
777                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
778                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
779                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
780         }
781
782         if (hw->mac.type >= e1000_82543) {
783                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
784                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
785                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
786                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
787                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
788                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
789         }
790
791         if (rte_stats == NULL)
792                 return;
793
794         /* Rx Errors */
795         rte_stats->ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
796                 stats->ruc + stats->roc + stats->mpc + stats->cexterr;
797
798         /* Tx Errors */
799         rte_stats->oerrors = stats->ecol + stats->latecol;
800
801         rte_stats->ipackets = stats->gprc;
802         rte_stats->opackets = stats->gptc;
803         rte_stats->ibytes   = stats->gorc;
804         rte_stats->obytes   = stats->gotc;
805 }
806
807 static void
808 eth_em_stats_reset(struct rte_eth_dev *dev)
809 {
810         struct e1000_hw_stats *hw_stats =
811                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
812
813         /* HW registers are cleared on read */
814         eth_em_stats_get(dev, NULL);
815
816         /* Reset software totals */
817         memset(hw_stats, 0, sizeof(*hw_stats));
818 }
819
820 static uint32_t
821 em_get_max_pktlen(const struct e1000_hw *hw)
822 {
823         switch (hw->mac.type) {
824         case e1000_82571:
825         case e1000_82572:
826         case e1000_ich9lan:
827         case e1000_ich10lan:
828         case e1000_pch2lan:
829         case e1000_82574:
830         case e1000_80003es2lan: /* 9K Jumbo Frame size */
831                 return (0x2412);
832         case e1000_pchlan:
833                 return (0x1000);
834         /* Adapters that do not support jumbo frames */
835         case e1000_82583:
836         case e1000_ich8lan:
837                 return (ETHER_MAX_LEN);
838         default:
839                 return (MAX_JUMBO_FRAME_SIZE);
840         }
841 }
842
843 static void
844 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
845 {
846         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
847
848         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
849         dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
850         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
851
852         /*
853          * Starting with 631xESB hw supports 2 TX/RX queues per port.
854          * Unfortunatelly, all these nics have just one TX context.
855          * So we have few choises for TX:
856          * - Use just one TX queue.
857          * - Allow cksum offload only for one TX queue.
858          * - Don't allow TX cksum offload at all.
859          * For now, option #1 was chosen.
860          * To use second RX queue we have to use extended RX descriptor
861          * (Multiple Receive Queues are mutually exclusive with UDP
862          * fragmentation and are not supported when a legacy receive
863          * descriptor format is used).
864          * Which means separate RX routinies - as legacy nics (82540, 82545)
865          * don't support extended RXD.
866          * To avoid it we support just one RX queue for now (no RSS).
867          */
868
869         dev_info->max_rx_queues = 1;
870         dev_info->max_tx_queues = 1;
871 }
872
873 /* return 0 means link status changed, -1 means not changed */
874 static int
875 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
876 {
877         struct e1000_hw *hw =
878                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
879         struct rte_eth_link link, old;
880         int link_check, count;
881
882         link_check = 0;
883         hw->mac.get_link_status = 1;
884
885         /* possible wait-to-complete in up to 9 seconds */
886         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
887                 /* Read the real link status */
888                 switch (hw->phy.media_type) {
889                 case e1000_media_type_copper:
890                         /* Do the work to read phy */
891                         e1000_check_for_link(hw);
892                         link_check = !hw->mac.get_link_status;
893                         break;
894
895                 case e1000_media_type_fiber:
896                         e1000_check_for_link(hw);
897                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
898                                         E1000_STATUS_LU);
899                         break;
900
901                 case e1000_media_type_internal_serdes:
902                         e1000_check_for_link(hw);
903                         link_check = hw->mac.serdes_has_link;
904                         break;
905
906                 default:
907                         break;
908                 }
909                 if (link_check || wait_to_complete == 0)
910                         break;
911                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
912         }
913         memset(&link, 0, sizeof(link));
914         rte_em_dev_atomic_read_link_status(dev, &link);
915         old = link;
916
917         /* Now we check if a transition has happened */
918         if (link_check && (link.link_status == 0)) {
919                 hw->mac.ops.get_link_up_info(hw, &link.link_speed,
920                         &link.link_duplex);
921                 link.link_status = 1;
922         } else if (!link_check && (link.link_status == 1)) {
923                 link.link_speed = 0;
924                 link.link_duplex = 0;
925                 link.link_status = 0;
926         }
927         rte_em_dev_atomic_write_link_status(dev, &link);
928
929         /* not changed */
930         if (old.link_status == link.link_status)
931                 return -1;
932
933         /* changed */
934         return 0;
935 }
936
937 /*
938  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
939  * For ASF and Pass Through versions of f/w this means
940  * that the driver is loaded. For AMT version type f/w
941  * this means that the network i/f is open.
942  */
943 static void
944 em_hw_control_acquire(struct e1000_hw *hw)
945 {
946         uint32_t ctrl_ext, swsm;
947
948         /* Let firmware know the driver has taken over */
949         if (hw->mac.type == e1000_82573) {
950                 swsm = E1000_READ_REG(hw, E1000_SWSM);
951                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
952
953         } else {
954                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
955                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
956                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
957         }
958 }
959
960 /*
961  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
962  * For ASF and Pass Through versions of f/w this means that the
963  * driver is no longer loaded. For AMT versions of the
964  * f/w this means that the network i/f is closed.
965  */
966 static void
967 em_hw_control_release(struct e1000_hw *hw)
968 {
969         uint32_t ctrl_ext, swsm;
970
971         /* Let firmware taken over control of h/w */
972         if (hw->mac.type == e1000_82573) {
973                 swsm = E1000_READ_REG(hw, E1000_SWSM);
974                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
975         } else {
976                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
977                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
978                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
979         }
980 }
981
982 /*
983  * Bit of a misnomer, what this really means is
984  * to enable OS management of the system... aka
985  * to disable special hardware management features.
986  */
987 static void
988 em_init_manageability(struct e1000_hw *hw)
989 {
990         if (e1000_enable_mng_pass_thru(hw)) {
991                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
992                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
993
994                 /* disable hardware interception of ARP */
995                 manc &= ~(E1000_MANC_ARP_EN);
996
997                 /* enable receiving management packets to the host */
998                 manc |= E1000_MANC_EN_MNG2HOST;
999                 manc2h |= 1 << 5;  /* Mng Port 623 */
1000                 manc2h |= 1 << 6;  /* Mng Port 664 */
1001                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1002                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1003         }
1004 }
1005
1006 /*
1007  * Give control back to hardware management
1008  * controller if there is one.
1009  */
1010 static void
1011 em_release_manageability(struct e1000_hw *hw)
1012 {
1013         uint32_t manc;
1014
1015         if (e1000_enable_mng_pass_thru(hw)) {
1016                 manc = E1000_READ_REG(hw, E1000_MANC);
1017
1018                 /* re-enable hardware interception of ARP */
1019                 manc |= E1000_MANC_ARP_EN;
1020                 manc &= ~E1000_MANC_EN_MNG2HOST;
1021
1022                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1023         }
1024 }
1025
1026 static void
1027 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1028 {
1029         struct e1000_hw *hw =
1030                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1031         uint32_t rctl;
1032
1033         rctl = E1000_READ_REG(hw, E1000_RCTL);
1034         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1035         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1036 }
1037
1038 static void
1039 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1040 {
1041         struct e1000_hw *hw =
1042                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1043         uint32_t rctl;
1044
1045         rctl = E1000_READ_REG(hw, E1000_RCTL);
1046         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1047         if (dev->data->all_multicast == 1)
1048                 rctl |= E1000_RCTL_MPE;
1049         else
1050                 rctl &= (~E1000_RCTL_MPE);
1051         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1052 }
1053
1054 static void
1055 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1056 {
1057         struct e1000_hw *hw =
1058                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1059         uint32_t rctl;
1060
1061         rctl = E1000_READ_REG(hw, E1000_RCTL);
1062         rctl |= E1000_RCTL_MPE;
1063         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1064 }
1065
1066 static void
1067 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1068 {
1069         struct e1000_hw *hw =
1070                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1071         uint32_t rctl;
1072
1073         if (dev->data->promiscuous == 1)
1074                 return; /* must remain in all_multicast mode */
1075         rctl = E1000_READ_REG(hw, E1000_RCTL);
1076         rctl &= (~E1000_RCTL_MPE);
1077         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1078 }
1079
1080 static int
1081 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1082 {
1083         struct e1000_hw *hw =
1084                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1085         struct e1000_vfta * shadow_vfta =
1086                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1087         uint32_t vfta;
1088         uint32_t vid_idx;
1089         uint32_t vid_bit;
1090
1091         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1092                               E1000_VFTA_ENTRY_MASK);
1093         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1094         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1095         if (on)
1096                 vfta |= vid_bit;
1097         else
1098                 vfta &= ~vid_bit;
1099         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1100
1101         /* update local VFTA copy */
1102         shadow_vfta->vfta[vid_idx] = vfta;
1103
1104         return 0;
1105 }
1106
1107 static void
1108 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1109 {
1110         struct e1000_hw *hw =
1111                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1112         uint32_t reg;
1113
1114         /* Filter Table Disable */
1115         reg = E1000_READ_REG(hw, E1000_RCTL);
1116         reg &= ~E1000_RCTL_CFIEN;
1117         reg &= ~E1000_RCTL_VFE;
1118         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1119 }
1120
1121 static void
1122 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1123 {
1124         struct e1000_hw *hw =
1125                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1126         struct e1000_vfta * shadow_vfta =
1127                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1128         uint32_t reg;
1129         int i;
1130
1131         /* Filter Table Enable, CFI not used for packet acceptance */
1132         reg = E1000_READ_REG(hw, E1000_RCTL);
1133         reg &= ~E1000_RCTL_CFIEN;
1134         reg |= E1000_RCTL_VFE;
1135         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1136
1137         /* restore vfta from local copy */
1138         for (i = 0; i < IGB_VFTA_SIZE; i++)
1139                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1140 }
1141
1142 static void
1143 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1144 {
1145         struct e1000_hw *hw =
1146                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1147         uint32_t reg;
1148
1149         /* VLAN Mode Disable */
1150         reg = E1000_READ_REG(hw, E1000_CTRL);
1151         reg &= ~E1000_CTRL_VME;
1152         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1153
1154 }
1155
1156 static void
1157 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1158 {
1159         struct e1000_hw *hw =
1160                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1161         uint32_t reg;
1162
1163         /* VLAN Mode Enable */
1164         reg = E1000_READ_REG(hw, E1000_CTRL);
1165         reg |= E1000_CTRL_VME;
1166         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1167 }
1168
1169 static void
1170 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1171 {
1172         if(mask & ETH_VLAN_STRIP_MASK){
1173                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1174                         em_vlan_hw_strip_enable(dev);
1175                 else
1176                         em_vlan_hw_strip_disable(dev);
1177         }
1178         
1179         if(mask & ETH_VLAN_FILTER_MASK){
1180                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1181                         em_vlan_hw_filter_enable(dev);
1182                 else
1183                         em_vlan_hw_filter_disable(dev);
1184         }
1185 }
1186
1187 static void
1188 em_intr_disable(struct e1000_hw *hw)
1189 {
1190         E1000_WRITE_REG(hw, E1000_IMC, ~0);
1191 }
1192
1193 /**
1194  * It enables the interrupt mask and then enable the interrupt.
1195  *
1196  * @param dev
1197  *  Pointer to struct rte_eth_dev.
1198  *
1199  * @return
1200  *  - On success, zero.
1201  *  - On failure, a negative value.
1202  */
1203 static int
1204 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1205 {
1206         struct e1000_hw *hw =
1207                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1208
1209         E1000_WRITE_REG(hw, E1000_IMS, E1000_ICR_LSC);
1210         rte_intr_enable(&(dev->pci_dev->intr_handle));
1211         return (0);
1212 }
1213
1214 /*
1215  * It reads ICR and gets interrupt causes, check it and set a bit flag
1216  * to update link status.
1217  *
1218  * @param dev
1219  *  Pointer to struct rte_eth_dev.
1220  *
1221  * @return
1222  *  - On success, zero.
1223  *  - On failure, a negative value.
1224  */
1225 static int
1226 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1227 {
1228         uint32_t icr;
1229         struct e1000_hw *hw =
1230                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1231         struct e1000_interrupt *intr =
1232                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1233
1234         /* read-on-clear nic registers here */
1235         icr = E1000_READ_REG(hw, E1000_ICR);
1236         if (icr & E1000_ICR_LSC) {
1237                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1238         }
1239
1240         return 0;
1241 }
1242
1243 /*
1244  * It executes link_update after knowing an interrupt is prsent.
1245  *
1246  * @param dev
1247  *  Pointer to struct rte_eth_dev.
1248  *
1249  * @return
1250  *  - On success, zero.
1251  *  - On failure, a negative value.
1252  */
1253 static int
1254 eth_em_interrupt_action(struct rte_eth_dev *dev)
1255 {
1256         struct e1000_hw *hw =
1257                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1258         struct e1000_interrupt *intr =
1259                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1260         uint32_t tctl, rctl;
1261         struct rte_eth_link link;
1262         int ret;
1263
1264         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1265                 return -1;
1266
1267         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1268         rte_intr_enable(&(dev->pci_dev->intr_handle));
1269
1270         /* set get_link_status to check register later */
1271         hw->mac.get_link_status = 1;
1272         ret = eth_em_link_update(dev, 0);
1273
1274         /* check if link has changed */
1275         if (ret < 0)
1276                 return 0;
1277
1278         memset(&link, 0, sizeof(link));
1279         rte_em_dev_atomic_read_link_status(dev, &link);
1280         if (link.link_status) {
1281                 PMD_INIT_LOG(INFO,
1282                         " Port %d: Link Up - speed %u Mbps - %s\n",
1283                         dev->data->port_id, (unsigned)link.link_speed,
1284                         link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1285                                 "full-duplex" : "half-duplex");
1286         } else {
1287                 PMD_INIT_LOG(INFO, " Port %d: Link Down\n",
1288                                         dev->data->port_id);
1289         }
1290         PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
1291                                 dev->pci_dev->addr.domain,
1292                                 dev->pci_dev->addr.bus,
1293                                 dev->pci_dev->addr.devid,
1294                                 dev->pci_dev->addr.function);
1295         tctl = E1000_READ_REG(hw, E1000_TCTL);
1296         rctl = E1000_READ_REG(hw, E1000_RCTL);
1297         if (link.link_status) {
1298                 /* enable Tx/Rx */
1299                 tctl |= E1000_TCTL_EN;
1300                 rctl |= E1000_RCTL_EN;
1301         } else {
1302                 /* disable Tx/Rx */
1303                 tctl &= ~E1000_TCTL_EN;
1304                 rctl &= ~E1000_RCTL_EN;
1305         }
1306         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1307         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1308         E1000_WRITE_FLUSH(hw);
1309
1310         return 0;
1311 }
1312
1313 /**
1314  * Interrupt handler which shall be registered at first.
1315  *
1316  * @param handle
1317  *  Pointer to interrupt handle.
1318  * @param param
1319  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1320  *
1321  * @return
1322  *  void
1323  */
1324 static void
1325 eth_em_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
1326                                                         void *param)
1327 {
1328         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1329
1330         eth_em_interrupt_get_status(dev);
1331         eth_em_interrupt_action(dev);
1332         _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
1333 }
1334
1335 static int
1336 eth_em_led_on(struct rte_eth_dev *dev)
1337 {
1338         struct e1000_hw *hw;
1339
1340         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1341         return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1342 }
1343
1344 static int
1345 eth_em_led_off(struct rte_eth_dev *dev)
1346 {
1347         struct e1000_hw *hw;
1348
1349         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1350         return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1351 }
1352
1353 static int
1354 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1355 {
1356         struct e1000_hw *hw;
1357         int err;
1358         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1359                 e1000_fc_none,
1360                 e1000_fc_rx_pause,
1361                 e1000_fc_tx_pause,
1362                 e1000_fc_full
1363         };
1364         uint32_t rx_buf_size;
1365         uint32_t max_high_water;
1366         uint32_t rctl;
1367
1368         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1369         rx_buf_size = em_get_rx_buffer_size(hw);
1370         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x \n", rx_buf_size);
1371
1372         /* At least reserve one Ethernet frame for watermark */
1373         max_high_water = rx_buf_size - ETHER_MAX_LEN;
1374         if ((fc_conf->high_water > max_high_water) ||
1375                 (fc_conf->high_water < fc_conf->low_water)) {
1376                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value \n");
1377                 PMD_INIT_LOG(ERR, "high water must <= 0x%x \n", max_high_water);
1378                 return (-EINVAL);
1379         }
1380
1381         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1382         hw->fc.pause_time     = fc_conf->pause_time;
1383         hw->fc.high_water     = fc_conf->high_water;
1384         hw->fc.low_water      = fc_conf->low_water;
1385         hw->fc.send_xon       = fc_conf->send_xon;
1386
1387         err = e1000_setup_link_generic(hw);
1388         if (err == E1000_SUCCESS) {
1389
1390                 /* check if we want to forward MAC frames - driver doesn't have native
1391                  * capability to do that, so we'll write the registers ourselves */
1392
1393                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1394
1395                 /* set or clear MFLCN.PMCF bit depending on configuration */
1396                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1397                         rctl |= E1000_RCTL_PMCF;
1398                 else
1399                         rctl &= ~E1000_RCTL_PMCF;
1400
1401                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1402                 E1000_WRITE_FLUSH(hw);
1403
1404                 return 0;
1405         }
1406
1407         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x \n", err);
1408         return (-EIO);
1409 }
1410
1411 static void
1412 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1413                 uint32_t index, __rte_unused uint32_t pool)
1414 {
1415         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1416
1417         e1000_rar_set(hw, mac_addr->addr_bytes, index);
1418 }
1419
1420 static void
1421 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1422 {
1423         uint8_t addr[ETHER_ADDR_LEN];
1424         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1425
1426         memset(addr, 0, sizeof(addr));
1427
1428         e1000_rar_set(hw, addr, index);
1429 }