4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 #include <sys/queue.h>
44 #include <rte_interrupts.h>
45 #include <rte_byteorder.h>
46 #include <rte_common.h>
48 #include <rte_debug.h>
50 #include <rte_memory.h>
51 #include <rte_memcpy.h>
52 #include <rte_memzone.h>
53 #include <rte_launch.h>
54 #include <rte_tailq.h>
56 #include <rte_per_lcore.h>
57 #include <rte_lcore.h>
58 #include <rte_atomic.h>
59 #include <rte_branch_prediction.h>
61 #include <rte_mempool.h>
62 #include <rte_malloc.h>
64 #include <rte_ether.h>
65 #include <rte_ethdev.h>
66 #include <rte_prefetch.h>
71 #include <rte_string_fns.h>
73 #include "e1000_logs.h"
74 #include "e1000/e1000_api.h"
75 #include "e1000_ethdev.h"
76 #include "e1000/e1000_osdep.h"
78 #define E1000_TXD_VLAN_SHIFT 16
80 #define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
82 static inline struct rte_mbuf *
83 rte_rxmbuf_alloc(struct rte_mempool *mp)
87 m = __rte_mbuf_raw_alloc(mp);
88 __rte_mbuf_sanity_check_raw(m, 0);
92 #define RTE_MBUF_DATA_DMA_ADDR(mb) \
93 (uint64_t) ((mb)->buf_physaddr + (mb)->data_off)
95 #define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
96 (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
99 * Structure associated with each descriptor of the RX ring of a RX queue.
102 struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
106 * Structure associated with each descriptor of the TX ring of a TX queue.
109 struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
110 uint16_t next_id; /**< Index of next descriptor in ring. */
111 uint16_t last_id; /**< Index of last scattered descriptor. */
115 * Structure associated with each RX queue.
118 struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
119 volatile struct e1000_rx_desc *rx_ring; /**< RX ring virtual address. */
120 uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
121 volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
122 volatile uint32_t *rdh_reg_addr; /**< RDH register address. */
123 struct em_rx_entry *sw_ring; /**< address of RX software ring. */
124 struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
125 struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
126 uint16_t nb_rx_desc; /**< number of RX descriptors. */
127 uint16_t rx_tail; /**< current value of RDT register. */
128 uint16_t nb_rx_hold; /**< number of held free RX desc. */
129 uint16_t rx_free_thresh; /**< max free RX desc to hold. */
130 uint16_t queue_id; /**< RX queue index. */
131 uint8_t port_id; /**< Device port identifier. */
132 uint8_t pthresh; /**< Prefetch threshold register. */
133 uint8_t hthresh; /**< Host threshold register. */
134 uint8_t wthresh; /**< Write-back threshold register. */
135 uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
139 * Hardware context number
142 EM_CTX_0 = 0, /**< CTX0 */
143 EM_CTX_NUM = 1, /**< CTX NUM */
146 /** Offload features */
147 union em_vlan_macip {
150 uint16_t l3_len:9; /**< L3 (IP) Header Length. */
151 uint16_t l2_len:7; /**< L2 (MAC) Header Length. */
153 /**< VLAN Tag Control Identifier (CPU order). */
158 * Compare mask for vlan_macip_len.data,
159 * should be in sync with em_vlan_macip.f layout.
161 #define TX_VLAN_CMP_MASK 0xFFFF0000 /**< VLAN length - 16-bits. */
162 #define TX_MAC_LEN_CMP_MASK 0x0000FE00 /**< MAC length - 7-bits. */
163 #define TX_IP_LEN_CMP_MASK 0x000001FF /**< IP length - 9-bits. */
164 /** MAC+IP length. */
165 #define TX_MACIP_LEN_CMP_MASK (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK)
168 * Structure to check if new context need be built
171 uint64_t flags; /**< ol_flags related to context build. */
172 uint32_t cmp_mask; /**< compare mask */
173 union em_vlan_macip hdrlen; /**< L2 and L3 header lenghts */
177 * Structure associated with each TX queue.
180 volatile struct e1000_data_desc *tx_ring; /**< TX ring address */
181 uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
182 struct em_tx_entry *sw_ring; /**< virtual address of SW ring. */
183 volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
184 uint16_t nb_tx_desc; /**< number of TX descriptors. */
185 uint16_t tx_tail; /**< Current value of TDT register. */
186 uint16_t tx_free_thresh;/**< minimum TX before freeing. */
187 /**< Number of TX descriptors to use before RS bit is set. */
188 uint16_t tx_rs_thresh;
189 /** Number of TX descriptors used since RS bit was set. */
191 /** Index to last TX descriptor to have been cleaned. */
192 uint16_t last_desc_cleaned;
193 /** Total number of TX descriptors ready to be allocated. */
195 uint16_t queue_id; /**< TX queue index. */
196 uint8_t port_id; /**< Device port identifier. */
197 uint8_t pthresh; /**< Prefetch threshold register. */
198 uint8_t hthresh; /**< Host threshold register. */
199 uint8_t wthresh; /**< Write-back threshold register. */
200 struct em_ctx_info ctx_cache;
201 /**< Hardware context history.*/
205 #define RTE_PMD_USE_PREFETCH
208 #ifdef RTE_PMD_USE_PREFETCH
209 #define rte_em_prefetch(p) rte_prefetch0(p)
211 #define rte_em_prefetch(p) do {} while(0)
214 #ifdef RTE_PMD_PACKET_PREFETCH
215 #define rte_packet_prefetch(p) rte_prefetch1(p)
217 #define rte_packet_prefetch(p) do {} while(0)
220 #ifndef DEFAULT_TX_FREE_THRESH
221 #define DEFAULT_TX_FREE_THRESH 32
222 #endif /* DEFAULT_TX_FREE_THRESH */
224 #ifndef DEFAULT_TX_RS_THRESH
225 #define DEFAULT_TX_RS_THRESH 32
226 #endif /* DEFAULT_TX_RS_THRESH */
229 /*********************************************************************
233 **********************************************************************/
236 * Populates TX context descriptor.
239 em_set_xmit_ctx(struct em_tx_queue* txq,
240 volatile struct e1000_context_desc *ctx_txd,
242 union em_vlan_macip hdrlen)
244 uint32_t cmp_mask, cmd_len;
245 uint16_t ipcse, l2len;
246 struct e1000_context_desc ctx;
249 cmd_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C;
251 l2len = hdrlen.f.l2_len;
252 ipcse = (uint16_t)(l2len + hdrlen.f.l3_len);
254 /* setup IPCS* fields */
255 ctx.lower_setup.ip_fields.ipcss = (uint8_t)l2len;
256 ctx.lower_setup.ip_fields.ipcso = (uint8_t)(l2len +
257 offsetof(struct ipv4_hdr, hdr_checksum));
260 * When doing checksum or TCP segmentation with IPv6 headers,
261 * IPCSE field should be set t0 0.
263 if (flags & PKT_TX_IP_CKSUM) {
264 ctx.lower_setup.ip_fields.ipcse =
265 (uint16_t)rte_cpu_to_le_16(ipcse - 1);
266 cmd_len |= E1000_TXD_CMD_IP;
267 cmp_mask |= TX_MACIP_LEN_CMP_MASK;
269 ctx.lower_setup.ip_fields.ipcse = 0;
272 /* setup TUCS* fields */
273 ctx.upper_setup.tcp_fields.tucss = (uint8_t)ipcse;
274 ctx.upper_setup.tcp_fields.tucse = 0;
276 switch (flags & PKT_TX_L4_MASK) {
277 case PKT_TX_UDP_CKSUM:
278 ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
279 offsetof(struct udp_hdr, dgram_cksum));
280 cmp_mask |= TX_MACIP_LEN_CMP_MASK;
282 case PKT_TX_TCP_CKSUM:
283 ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
284 offsetof(struct tcp_hdr, cksum));
285 cmd_len |= E1000_TXD_CMD_TCP;
286 cmp_mask |= TX_MACIP_LEN_CMP_MASK;
289 ctx.upper_setup.tcp_fields.tucso = 0;
292 ctx.cmd_and_length = rte_cpu_to_le_32(cmd_len);
293 ctx.tcp_seg_setup.data = 0;
297 txq->ctx_cache.flags = flags;
298 txq->ctx_cache.cmp_mask = cmp_mask;
299 txq->ctx_cache.hdrlen = hdrlen;
303 * Check which hardware context can be used. Use the existing match
304 * or create a new context descriptor.
306 static inline uint32_t
307 what_ctx_update(struct em_tx_queue *txq, uint64_t flags,
308 union em_vlan_macip hdrlen)
310 /* If match with the current context */
311 if (likely (txq->ctx_cache.flags == flags &&
312 ((txq->ctx_cache.hdrlen.data ^ hdrlen.data) &
313 txq->ctx_cache.cmp_mask) == 0))
320 /* Reset transmit descriptors after they have been used */
322 em_xmit_cleanup(struct em_tx_queue *txq)
324 struct em_tx_entry *sw_ring = txq->sw_ring;
325 volatile struct e1000_data_desc *txr = txq->tx_ring;
326 uint16_t last_desc_cleaned = txq->last_desc_cleaned;
327 uint16_t nb_tx_desc = txq->nb_tx_desc;
328 uint16_t desc_to_clean_to;
329 uint16_t nb_tx_to_clean;
331 /* Determine the last descriptor needing to be cleaned */
332 desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
333 if (desc_to_clean_to >= nb_tx_desc)
334 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
336 /* Check to make sure the last descriptor to clean is done */
337 desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
338 if (! (txr[desc_to_clean_to].upper.fields.status & E1000_TXD_STAT_DD))
340 PMD_TX_FREE_LOG(DEBUG,
341 "TX descriptor %4u is not done"
342 "(port=%d queue=%d)",
344 txq->port_id, txq->queue_id);
345 /* Failed to clean any descriptors, better luck next time */
349 /* Figure out how many descriptors will be cleaned */
350 if (last_desc_cleaned > desc_to_clean_to)
351 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
354 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
357 PMD_TX_FREE_LOG(DEBUG,
358 "Cleaning %4u TX descriptors: %4u to %4u "
359 "(port=%d queue=%d)",
360 nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
361 txq->port_id, txq->queue_id);
364 * The last descriptor to clean is done, so that means all the
365 * descriptors from the last descriptor that was cleaned
366 * up to the last descriptor with the RS bit set
367 * are done. Only reset the threshold descriptor.
369 txr[desc_to_clean_to].upper.fields.status = 0;
371 /* Update the txq to reflect the last descriptor that was cleaned */
372 txq->last_desc_cleaned = desc_to_clean_to;
373 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
379 static inline uint32_t
380 tx_desc_cksum_flags_to_upper(uint64_t ol_flags)
382 static const uint32_t l4_olinfo[2] = {0, E1000_TXD_POPTS_TXSM << 8};
383 static const uint32_t l3_olinfo[2] = {0, E1000_TXD_POPTS_IXSM << 8};
386 tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
387 tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
392 eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
395 struct em_tx_queue *txq;
396 struct em_tx_entry *sw_ring;
397 struct em_tx_entry *txe, *txn;
398 volatile struct e1000_data_desc *txr;
399 volatile struct e1000_data_desc *txd;
400 struct rte_mbuf *tx_pkt;
401 struct rte_mbuf *m_seg;
402 uint64_t buf_dma_addr;
404 uint32_t cmd_type_len;
414 union em_vlan_macip hdrlen;
417 sw_ring = txq->sw_ring;
419 tx_id = txq->tx_tail;
420 txe = &sw_ring[tx_id];
422 /* Determine if the descriptor ring needs to be cleaned. */
423 if ((txq->nb_tx_desc - txq->nb_tx_free) > txq->tx_free_thresh) {
424 em_xmit_cleanup(txq);
428 for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
432 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
435 * Determine how many (if any) context descriptors
436 * are needed for offload functionality.
438 ol_flags = tx_pkt->ol_flags;
440 /* If hardware offload required */
441 tx_ol_req = (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK));
443 hdrlen.f.vlan_tci = tx_pkt->vlan_tci;
444 hdrlen.f.l2_len = tx_pkt->l2_len;
445 hdrlen.f.l3_len = tx_pkt->l3_len;
446 /* If new context to be built or reuse the exist ctx. */
447 ctx = what_ctx_update(txq, tx_ol_req, hdrlen);
449 /* Only allocate context descriptor if required*/
450 new_ctx = (ctx == EM_CTX_NUM);
454 * Keep track of how many descriptors are used this loop
455 * This will always be the number of segments + the number of
456 * Context descriptors required to transmit the packet
458 nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
461 * The number of descriptors that must be allocated for a
462 * packet is the number of segments of that packet, plus 1
463 * Context Descriptor for the hardware offload, if any.
464 * Determine the last TX descriptor to allocate in the TX ring
465 * for the packet, starting from the current position (tx_id)
468 tx_last = (uint16_t) (tx_id + nb_used - 1);
471 if (tx_last >= txq->nb_tx_desc)
472 tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
474 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
475 " tx_first=%u tx_last=%u\n",
476 (unsigned) txq->port_id,
477 (unsigned) txq->queue_id,
478 (unsigned) tx_pkt->pkt_len,
483 * Make sure there are enough TX descriptors available to
484 * transmit the entire packet.
485 * nb_used better be less than or equal to txq->tx_rs_thresh
487 while (unlikely (nb_used > txq->nb_tx_free)) {
488 PMD_TX_FREE_LOG(DEBUG,
489 "Not enough free TX descriptors "
490 "nb_used=%4u nb_free=%4u "
491 "(port=%d queue=%d)",
492 nb_used, txq->nb_tx_free,
493 txq->port_id, txq->queue_id);
495 if (em_xmit_cleanup(txq) != 0) {
496 /* Could not clean any descriptors */
504 * By now there are enough free TX descriptors to transmit
509 * Set common flags of all TX Data Descriptors.
511 * The following bits must be set in all Data Descriptors:
512 * - E1000_TXD_DTYP_DATA
513 * - E1000_TXD_DTYP_DEXT
515 * The following bits must be set in the first Data Descriptor
516 * and are ignored in the other ones:
517 * - E1000_TXD_POPTS_IXSM
518 * - E1000_TXD_POPTS_TXSM
520 * The following bits must be set in the last Data Descriptor
521 * and are ignored in the other ones:
522 * - E1000_TXD_CMD_VLE
523 * - E1000_TXD_CMD_IFCS
525 * The following bits must only be set in the last Data
527 * - E1000_TXD_CMD_EOP
529 * The following bits can be set in any Data Descriptor, but
530 * are only set in the last Data Descriptor:
533 cmd_type_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
537 /* Set VLAN Tag offload fields. */
538 if (ol_flags & PKT_TX_VLAN_PKT) {
539 cmd_type_len |= E1000_TXD_CMD_VLE;
540 popts_spec = tx_pkt->vlan_tci << E1000_TXD_VLAN_SHIFT;
545 * Setup the TX Context Descriptor if required
548 volatile struct e1000_context_desc *ctx_txd;
550 ctx_txd = (volatile struct e1000_context_desc *)
553 txn = &sw_ring[txe->next_id];
554 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
556 if (txe->mbuf != NULL) {
557 rte_pktmbuf_free_seg(txe->mbuf);
561 em_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
564 txe->last_id = tx_last;
565 tx_id = txe->next_id;
570 * Setup the TX Data Descriptor,
571 * This path will go through
572 * whatever new/reuse the context descriptor
574 popts_spec |= tx_desc_cksum_flags_to_upper(ol_flags);
580 txn = &sw_ring[txe->next_id];
582 if (txe->mbuf != NULL)
583 rte_pktmbuf_free_seg(txe->mbuf);
587 * Set up Transmit Data Descriptor.
589 slen = m_seg->data_len;
590 buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
592 txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
593 txd->lower.data = rte_cpu_to_le_32(cmd_type_len | slen);
594 txd->upper.data = rte_cpu_to_le_32(popts_spec);
596 txe->last_id = tx_last;
597 tx_id = txe->next_id;
600 } while (m_seg != NULL);
603 * The last packet data descriptor needs End Of Packet (EOP)
605 cmd_type_len |= E1000_TXD_CMD_EOP;
606 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
607 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
609 /* Set RS bit only on threshold packets' last descriptor */
610 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
611 PMD_TX_FREE_LOG(DEBUG,
612 "Setting RS bit on TXD id="
613 "%4u (port=%d queue=%d)",
614 tx_last, txq->port_id, txq->queue_id);
616 cmd_type_len |= E1000_TXD_CMD_RS;
618 /* Update txq RS bit counters */
621 txd->lower.data |= rte_cpu_to_le_32(cmd_type_len);
627 * Set the Transmit Descriptor Tail (TDT)
629 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
630 (unsigned) txq->port_id, (unsigned) txq->queue_id,
631 (unsigned) tx_id, (unsigned) nb_tx);
632 E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
633 txq->tx_tail = tx_id;
638 /*********************************************************************
642 **********************************************************************/
644 static inline uint64_t
645 rx_desc_status_to_pkt_flags(uint32_t rx_status)
649 /* Check if VLAN present */
650 pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ? PKT_RX_VLAN_PKT : 0);
655 static inline uint64_t
656 rx_desc_error_to_pkt_flags(uint32_t rx_error)
658 uint64_t pkt_flags = 0;
660 if (rx_error & E1000_RXD_ERR_IPE)
661 pkt_flags |= PKT_RX_IP_CKSUM_BAD;
662 if (rx_error & E1000_RXD_ERR_TCPE)
663 pkt_flags |= PKT_RX_L4_CKSUM_BAD;
668 eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
671 volatile struct e1000_rx_desc *rx_ring;
672 volatile struct e1000_rx_desc *rxdp;
673 struct em_rx_queue *rxq;
674 struct em_rx_entry *sw_ring;
675 struct em_rx_entry *rxe;
676 struct rte_mbuf *rxm;
677 struct rte_mbuf *nmb;
678 struct e1000_rx_desc rxd;
690 rx_id = rxq->rx_tail;
691 rx_ring = rxq->rx_ring;
692 sw_ring = rxq->sw_ring;
693 while (nb_rx < nb_pkts) {
695 * The order of operations here is important as the DD status
696 * bit must not be read after any other descriptor fields.
697 * rx_ring and rxdp are pointing to volatile data so the order
698 * of accesses cannot be reordered by the compiler. If they were
699 * not volatile, they could be reordered which could lead to
700 * using invalid descriptor fields when read from rxd.
702 rxdp = &rx_ring[rx_id];
703 status = rxdp->status;
704 if (! (status & E1000_RXD_STAT_DD))
711 * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
712 * likely to be invalid and to be dropped by the various
713 * validation checks performed by the network stack.
715 * Allocate a new mbuf to replenish the RX ring descriptor.
716 * If the allocation fails:
717 * - arrange for that RX descriptor to be the first one
718 * being parsed the next time the receive function is
719 * invoked [on the same queue].
721 * - Stop parsing the RX ring and return immediately.
723 * This policy do not drop the packet received in the RX
724 * descriptor for which the allocation of a new mbuf failed.
725 * Thus, it allows that packet to be later retrieved if
726 * mbuf have been freed in the mean time.
727 * As a side effect, holding RX descriptors instead of
728 * systematically giving them back to the NIC may lead to
729 * RX ring exhaustion situations.
730 * However, the NIC can gracefully prevent such situations
731 * to happen by sending specific "back-pressure" flow control
732 * frames to its peer(s).
734 PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u "
735 "status=0x%x pkt_len=%u\n",
736 (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
737 (unsigned) rx_id, (unsigned) status,
738 (unsigned) rte_le_to_cpu_16(rxd.length));
740 nmb = rte_rxmbuf_alloc(rxq->mb_pool);
742 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
744 (unsigned) rxq->port_id,
745 (unsigned) rxq->queue_id);
746 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
751 rxe = &sw_ring[rx_id];
753 if (rx_id == rxq->nb_rx_desc)
756 /* Prefetch next mbuf while processing current one. */
757 rte_em_prefetch(sw_ring[rx_id].mbuf);
760 * When next RX descriptor is on a cache-line boundary,
761 * prefetch the next 4 RX descriptors and the next 8 pointers
764 if ((rx_id & 0x3) == 0) {
765 rte_em_prefetch(&rx_ring[rx_id]);
766 rte_em_prefetch(&sw_ring[rx_id]);
769 /* Rearm RXD: attach new mbuf and reset status to zero. */
774 rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
775 rxdp->buffer_addr = dma_addr;
779 * Initialize the returned mbuf.
780 * 1) setup generic mbuf fields:
781 * - number of segments,
784 * - RX port identifier.
785 * 2) integrate hardware offload data, if any:
787 * - IP checksum flag,
788 * - VLAN TCI, if any,
791 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.length) -
793 rxm->data_off = RTE_PKTMBUF_HEADROOM;
794 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
797 rxm->pkt_len = pkt_len;
798 rxm->data_len = pkt_len;
799 rxm->port = rxq->port_id;
801 rxm->ol_flags = rx_desc_status_to_pkt_flags(status);
802 rxm->ol_flags = rxm->ol_flags |
803 rx_desc_error_to_pkt_flags(rxd.errors);
805 /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
806 rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
809 * Store the mbuf address into the next entry of the array
810 * of returned packets.
812 rx_pkts[nb_rx++] = rxm;
814 rxq->rx_tail = rx_id;
817 * If the number of free RX descriptors is greater than the RX free
818 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
820 * Update the RDT with the value of the last processed RX descriptor
821 * minus 1, to guarantee that the RDT register is never equal to the
822 * RDH register, which creates a "full" ring situtation from the
823 * hardware point of view...
825 nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
826 if (nb_hold > rxq->rx_free_thresh) {
827 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
828 "nb_hold=%u nb_rx=%u\n",
829 (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
830 (unsigned) rx_id, (unsigned) nb_hold,
832 rx_id = (uint16_t) ((rx_id == 0) ?
833 (rxq->nb_rx_desc - 1) : (rx_id - 1));
834 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
837 rxq->nb_rx_hold = nb_hold;
842 eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
845 struct em_rx_queue *rxq;
846 volatile struct e1000_rx_desc *rx_ring;
847 volatile struct e1000_rx_desc *rxdp;
848 struct em_rx_entry *sw_ring;
849 struct em_rx_entry *rxe;
850 struct rte_mbuf *first_seg;
851 struct rte_mbuf *last_seg;
852 struct rte_mbuf *rxm;
853 struct rte_mbuf *nmb;
854 struct e1000_rx_desc rxd;
855 uint64_t dma; /* Physical address of mbuf data buffer */
866 rx_id = rxq->rx_tail;
867 rx_ring = rxq->rx_ring;
868 sw_ring = rxq->sw_ring;
871 * Retrieve RX context of current packet, if any.
873 first_seg = rxq->pkt_first_seg;
874 last_seg = rxq->pkt_last_seg;
876 while (nb_rx < nb_pkts) {
879 * The order of operations here is important as the DD status
880 * bit must not be read after any other descriptor fields.
881 * rx_ring and rxdp are pointing to volatile data so the order
882 * of accesses cannot be reordered by the compiler. If they were
883 * not volatile, they could be reordered which could lead to
884 * using invalid descriptor fields when read from rxd.
886 rxdp = &rx_ring[rx_id];
887 status = rxdp->status;
888 if (! (status & E1000_RXD_STAT_DD))
895 * Allocate a new mbuf to replenish the RX ring descriptor.
896 * If the allocation fails:
897 * - arrange for that RX descriptor to be the first one
898 * being parsed the next time the receive function is
899 * invoked [on the same queue].
901 * - Stop parsing the RX ring and return immediately.
903 * This policy does not drop the packet received in the RX
904 * descriptor for which the allocation of a new mbuf failed.
905 * Thus, it allows that packet to be later retrieved if
906 * mbuf have been freed in the mean time.
907 * As a side effect, holding RX descriptors instead of
908 * systematically giving them back to the NIC may lead to
909 * RX ring exhaustion situations.
910 * However, the NIC can gracefully prevent such situations
911 * to happen by sending specific "back-pressure" flow control
912 * frames to its peer(s).
914 PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u "
915 "status=0x%x data_len=%u\n",
916 (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
917 (unsigned) rx_id, (unsigned) status,
918 (unsigned) rte_le_to_cpu_16(rxd.length));
920 nmb = rte_rxmbuf_alloc(rxq->mb_pool);
922 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
923 "queue_id=%u\n", (unsigned) rxq->port_id,
924 (unsigned) rxq->queue_id);
925 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
930 rxe = &sw_ring[rx_id];
932 if (rx_id == rxq->nb_rx_desc)
935 /* Prefetch next mbuf while processing current one. */
936 rte_em_prefetch(sw_ring[rx_id].mbuf);
939 * When next RX descriptor is on a cache-line boundary,
940 * prefetch the next 4 RX descriptors and the next 8 pointers
943 if ((rx_id & 0x3) == 0) {
944 rte_em_prefetch(&rx_ring[rx_id]);
945 rte_em_prefetch(&sw_ring[rx_id]);
949 * Update RX descriptor with the physical address of the new
950 * data buffer of the new allocated mbuf.
954 dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
955 rxdp->buffer_addr = dma;
959 * Set data length & data buffer address of mbuf.
961 data_len = rte_le_to_cpu_16(rxd.length);
962 rxm->data_len = data_len;
963 rxm->data_off = RTE_PKTMBUF_HEADROOM;
966 * If this is the first buffer of the received packet,
967 * set the pointer to the first mbuf of the packet and
968 * initialize its context.
969 * Otherwise, update the total length and the number of segments
970 * of the current scattered packet, and update the pointer to
971 * the last mbuf of the current packet.
973 if (first_seg == NULL) {
975 first_seg->pkt_len = data_len;
976 first_seg->nb_segs = 1;
978 first_seg->pkt_len += data_len;
979 first_seg->nb_segs++;
980 last_seg->next = rxm;
984 * If this is not the last buffer of the received packet,
985 * update the pointer to the last mbuf of the current scattered
986 * packet and continue to parse the RX ring.
988 if (! (status & E1000_RXD_STAT_EOP)) {
994 * This is the last buffer of the received packet.
995 * If the CRC is not stripped by the hardware:
996 * - Subtract the CRC length from the total packet length.
997 * - If the last buffer only contains the whole CRC or a part
998 * of it, free the mbuf associated to the last buffer.
999 * If part of the CRC is also contained in the previous
1000 * mbuf, subtract the length of that CRC part from the
1001 * data length of the previous mbuf.
1004 if (unlikely(rxq->crc_len > 0)) {
1005 first_seg->pkt_len -= ETHER_CRC_LEN;
1006 if (data_len <= ETHER_CRC_LEN) {
1007 rte_pktmbuf_free_seg(rxm);
1008 first_seg->nb_segs--;
1009 last_seg->data_len = (uint16_t)
1010 (last_seg->data_len -
1011 (ETHER_CRC_LEN - data_len));
1012 last_seg->next = NULL;
1015 (uint16_t) (data_len - ETHER_CRC_LEN);
1019 * Initialize the first mbuf of the returned packet:
1020 * - RX port identifier,
1021 * - hardware offload data, if any:
1022 * - IP checksum flag,
1025 first_seg->port = rxq->port_id;
1027 first_seg->ol_flags = rx_desc_status_to_pkt_flags(status);
1028 first_seg->ol_flags = first_seg->ol_flags |
1029 rx_desc_error_to_pkt_flags(rxd.errors);
1031 /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
1032 rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
1034 /* Prefetch data of first segment, if configured to do so. */
1035 rte_packet_prefetch((char *)first_seg->buf_addr +
1036 first_seg->data_off);
1039 * Store the mbuf address into the next entry of the array
1040 * of returned packets.
1042 rx_pkts[nb_rx++] = first_seg;
1045 * Setup receipt context for a new packet.
1051 * Record index of the next RX descriptor to probe.
1053 rxq->rx_tail = rx_id;
1056 * Save receive context.
1058 rxq->pkt_first_seg = first_seg;
1059 rxq->pkt_last_seg = last_seg;
1062 * If the number of free RX descriptors is greater than the RX free
1063 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1065 * Update the RDT with the value of the last processed RX descriptor
1066 * minus 1, to guarantee that the RDT register is never equal to the
1067 * RDH register, which creates a "full" ring situtation from the
1068 * hardware point of view...
1070 nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1071 if (nb_hold > rxq->rx_free_thresh) {
1072 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1073 "nb_hold=%u nb_rx=%u\n",
1074 (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1075 (unsigned) rx_id, (unsigned) nb_hold,
1077 rx_id = (uint16_t) ((rx_id == 0) ?
1078 (rxq->nb_rx_desc - 1) : (rx_id - 1));
1079 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1082 rxq->nb_rx_hold = nb_hold;
1087 * Rings setup and release.
1089 * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
1090 * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
1091 * This will also optimize cache line size effect.
1092 * H/W supports up to cache line size 128.
1094 #define EM_ALIGN 128
1097 * Maximum number of Ring Descriptors.
1099 * Since RDLEN/TDLEN should be multiple of 128 bytes, the number of ring
1100 * desscriptors should meet the following condition:
1101 * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
1103 #define EM_MIN_RING_DESC 32
1104 #define EM_MAX_RING_DESC 4096
1106 #define EM_MAX_BUF_SIZE 16384
1107 #define EM_RCTL_FLXBUF_STEP 1024
1109 static const struct rte_memzone *
1110 ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
1111 uint16_t queue_id, uint32_t ring_size, int socket_id)
1113 const struct rte_memzone *mz;
1114 char z_name[RTE_MEMZONE_NAMESIZE];
1116 snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
1117 dev->driver->pci_drv.name, ring_name, dev->data->port_id,
1120 if ((mz = rte_memzone_lookup(z_name)) != 0)
1123 #ifdef RTE_LIBRTE_XEN_DOM0
1124 return rte_memzone_reserve_bounded(z_name, ring_size,
1125 socket_id, 0, CACHE_LINE_SIZE, RTE_PGSIZE_2M);
1127 return rte_memzone_reserve(z_name, ring_size, socket_id, 0);
1132 em_tx_queue_release_mbufs(struct em_tx_queue *txq)
1136 if (txq->sw_ring != NULL) {
1137 for (i = 0; i != txq->nb_tx_desc; i++) {
1138 if (txq->sw_ring[i].mbuf != NULL) {
1139 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1140 txq->sw_ring[i].mbuf = NULL;
1147 em_tx_queue_release(struct em_tx_queue *txq)
1150 em_tx_queue_release_mbufs(txq);
1151 rte_free(txq->sw_ring);
1157 eth_em_tx_queue_release(void *txq)
1159 em_tx_queue_release(txq);
1162 /* (Re)set dynamic em_tx_queue fields to defaults */
1164 em_reset_tx_queue(struct em_tx_queue *txq)
1166 uint16_t i, nb_desc, prev;
1167 static const struct e1000_data_desc txd_init = {
1168 .upper.fields = {.status = E1000_TXD_STAT_DD},
1171 nb_desc = txq->nb_tx_desc;
1173 /* Initialize ring entries */
1175 prev = (uint16_t) (nb_desc - 1);
1177 for (i = 0; i < nb_desc; i++) {
1178 txq->tx_ring[i] = txd_init;
1179 txq->sw_ring[i].mbuf = NULL;
1180 txq->sw_ring[i].last_id = i;
1181 txq->sw_ring[prev].next_id = i;
1186 * Always allow 1 descriptor to be un-allocated to avoid
1187 * a H/W race condition
1189 txq->nb_tx_free = (uint16_t)(nb_desc - 1);
1190 txq->last_desc_cleaned = (uint16_t)(nb_desc - 1);
1191 txq->nb_tx_used = 0;
1194 memset((void*)&txq->ctx_cache, 0, sizeof (txq->ctx_cache));
1198 eth_em_tx_queue_setup(struct rte_eth_dev *dev,
1201 unsigned int socket_id,
1202 const struct rte_eth_txconf *tx_conf)
1204 const struct rte_memzone *tz;
1205 struct em_tx_queue *txq;
1206 struct e1000_hw *hw;
1208 uint16_t tx_rs_thresh, tx_free_thresh;
1210 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1213 * Validate number of transmit descriptors.
1214 * It must not exceed hardware maximum, and must be multiple
1217 if (((nb_desc * sizeof(*txq->tx_ring)) % EM_ALIGN) != 0 ||
1218 (nb_desc > EM_MAX_RING_DESC) ||
1219 (nb_desc < EM_MIN_RING_DESC)) {
1223 tx_free_thresh = tx_conf->tx_free_thresh;
1224 if (tx_free_thresh == 0)
1225 tx_free_thresh = (uint16_t)RTE_MIN(nb_desc / 4,
1226 DEFAULT_TX_FREE_THRESH);
1228 tx_rs_thresh = tx_conf->tx_rs_thresh;
1229 if (tx_rs_thresh == 0)
1230 tx_rs_thresh = (uint16_t)RTE_MIN(tx_free_thresh,
1231 DEFAULT_TX_RS_THRESH);
1233 if (tx_free_thresh >= (nb_desc - 3)) {
1234 PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
1235 "number of TX descriptors minus 3. "
1236 "(tx_free_thresh=%u port=%d queue=%d)",
1237 (unsigned int)tx_free_thresh,
1238 (int)dev->data->port_id, (int)queue_idx);
1241 if (tx_rs_thresh > tx_free_thresh) {
1242 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
1243 "tx_free_thresh. (tx_free_thresh=%u "
1244 "tx_rs_thresh=%u port=%d queue=%d)",
1245 (unsigned int)tx_free_thresh,
1246 (unsigned int)tx_rs_thresh,
1247 (int)dev->data->port_id,
1253 * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
1254 * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
1255 * by the NIC and all descriptors are written back after the NIC
1256 * accumulates WTHRESH descriptors.
1258 if (tx_conf->tx_thresh.wthresh != 0 && tx_rs_thresh != 1) {
1259 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
1260 "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
1261 "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
1262 (int)dev->data->port_id, (int)queue_idx);
1266 /* Free memory prior to re-allocation if needed... */
1267 if (dev->data->tx_queues[queue_idx] != NULL) {
1268 em_tx_queue_release(dev->data->tx_queues[queue_idx]);
1269 dev->data->tx_queues[queue_idx] = NULL;
1273 * Allocate TX ring hardware descriptors. A memzone large enough to
1274 * handle the maximum ring size is allocated in order to allow for
1275 * resizing in later calls to the queue setup function.
1277 tsize = sizeof (txq->tx_ring[0]) * EM_MAX_RING_DESC;
1278 if ((tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx, tsize,
1279 socket_id)) == NULL)
1282 /* Allocate the tx queue data structure. */
1283 if ((txq = rte_zmalloc("ethdev TX queue", sizeof(*txq),
1284 CACHE_LINE_SIZE)) == NULL)
1287 /* Allocate software ring */
1288 if ((txq->sw_ring = rte_zmalloc("txq->sw_ring",
1289 sizeof(txq->sw_ring[0]) * nb_desc,
1290 CACHE_LINE_SIZE)) == NULL) {
1291 em_tx_queue_release(txq);
1295 txq->nb_tx_desc = nb_desc;
1296 txq->tx_free_thresh = tx_free_thresh;
1297 txq->tx_rs_thresh = tx_rs_thresh;
1298 txq->pthresh = tx_conf->tx_thresh.pthresh;
1299 txq->hthresh = tx_conf->tx_thresh.hthresh;
1300 txq->wthresh = tx_conf->tx_thresh.wthresh;
1301 txq->queue_id = queue_idx;
1302 txq->port_id = dev->data->port_id;
1304 txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx));
1305 #ifndef RTE_LIBRTE_XEN_DOM0
1306 txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
1308 txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
1310 txq->tx_ring = (struct e1000_data_desc *) tz->addr;
1312 PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
1313 txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
1315 em_reset_tx_queue(txq);
1317 dev->data->tx_queues[queue_idx] = txq;
1322 em_rx_queue_release_mbufs(struct em_rx_queue *rxq)
1326 if (rxq->sw_ring != NULL) {
1327 for (i = 0; i != rxq->nb_rx_desc; i++) {
1328 if (rxq->sw_ring[i].mbuf != NULL) {
1329 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
1330 rxq->sw_ring[i].mbuf = NULL;
1337 em_rx_queue_release(struct em_rx_queue *rxq)
1340 em_rx_queue_release_mbufs(rxq);
1341 rte_free(rxq->sw_ring);
1347 eth_em_rx_queue_release(void *rxq)
1349 em_rx_queue_release(rxq);
1352 /* Reset dynamic em_rx_queue fields back to defaults */
1354 em_reset_rx_queue(struct em_rx_queue *rxq)
1357 rxq->nb_rx_hold = 0;
1358 rxq->pkt_first_seg = NULL;
1359 rxq->pkt_last_seg = NULL;
1363 eth_em_rx_queue_setup(struct rte_eth_dev *dev,
1366 unsigned int socket_id,
1367 const struct rte_eth_rxconf *rx_conf,
1368 struct rte_mempool *mp)
1370 const struct rte_memzone *rz;
1371 struct em_rx_queue *rxq;
1372 struct e1000_hw *hw;
1375 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1378 * Validate number of receive descriptors.
1379 * It must not exceed hardware maximum, and must be multiple
1382 if (((nb_desc * sizeof(rxq->rx_ring[0])) % EM_ALIGN) != 0 ||
1383 (nb_desc > EM_MAX_RING_DESC) ||
1384 (nb_desc < EM_MIN_RING_DESC)) {
1389 * EM devices don't support drop_en functionality
1391 if (rx_conf->rx_drop_en) {
1392 PMD_INIT_LOG(ERR, "drop_en functionality not supported by "
1397 /* Free memory prior to re-allocation if needed. */
1398 if (dev->data->rx_queues[queue_idx] != NULL) {
1399 em_rx_queue_release(dev->data->rx_queues[queue_idx]);
1400 dev->data->rx_queues[queue_idx] = NULL;
1403 /* Allocate RX ring for max possible mumber of hardware descriptors. */
1404 rsize = sizeof (rxq->rx_ring[0]) * EM_MAX_RING_DESC;
1405 if ((rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, rsize,
1406 socket_id)) == NULL)
1409 /* Allocate the RX queue data structure. */
1410 if ((rxq = rte_zmalloc("ethdev RX queue", sizeof(*rxq),
1411 CACHE_LINE_SIZE)) == NULL)
1414 /* Allocate software ring. */
1415 if ((rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
1416 sizeof (rxq->sw_ring[0]) * nb_desc,
1417 CACHE_LINE_SIZE)) == NULL) {
1418 em_rx_queue_release(rxq);
1423 rxq->nb_rx_desc = nb_desc;
1424 rxq->pthresh = rx_conf->rx_thresh.pthresh;
1425 rxq->hthresh = rx_conf->rx_thresh.hthresh;
1426 rxq->wthresh = rx_conf->rx_thresh.wthresh;
1427 rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1428 rxq->queue_id = queue_idx;
1429 rxq->port_id = dev->data->port_id;
1430 rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
1433 rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx));
1434 rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(queue_idx));
1435 #ifndef RTE_LIBRTE_XEN_DOM0
1436 rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
1438 rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
1440 rxq->rx_ring = (struct e1000_rx_desc *) rz->addr;
1442 PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
1443 rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
1445 dev->data->rx_queues[queue_idx] = rxq;
1446 em_reset_rx_queue(rxq);
1452 eth_em_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1454 #define EM_RXQ_SCAN_INTERVAL 4
1455 volatile struct e1000_rx_desc *rxdp;
1456 struct em_rx_queue *rxq;
1459 if (rx_queue_id >= dev->data->nb_rx_queues) {
1460 PMD_RX_LOG(DEBUG,"Invalid RX queue_id=%d\n", rx_queue_id);
1464 rxq = dev->data->rx_queues[rx_queue_id];
1465 rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1467 while ((desc < rxq->nb_rx_desc) &&
1468 (rxdp->status & E1000_RXD_STAT_DD)) {
1469 desc += EM_RXQ_SCAN_INTERVAL;
1470 rxdp += EM_RXQ_SCAN_INTERVAL;
1471 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1472 rxdp = &(rxq->rx_ring[rxq->rx_tail +
1473 desc - rxq->nb_rx_desc]);
1480 eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset)
1482 volatile struct e1000_rx_desc *rxdp;
1483 struct em_rx_queue *rxq = rx_queue;
1486 if (unlikely(offset >= rxq->nb_rx_desc))
1488 desc = rxq->rx_tail + offset;
1489 if (desc >= rxq->nb_rx_desc)
1490 desc -= rxq->nb_rx_desc;
1492 rxdp = &rxq->rx_ring[desc];
1493 return !!(rxdp->status & E1000_RXD_STAT_DD);
1497 em_dev_clear_queues(struct rte_eth_dev *dev)
1500 struct em_tx_queue *txq;
1501 struct em_rx_queue *rxq;
1503 for (i = 0; i < dev->data->nb_tx_queues; i++) {
1504 txq = dev->data->tx_queues[i];
1506 em_tx_queue_release_mbufs(txq);
1507 em_reset_tx_queue(txq);
1511 for (i = 0; i < dev->data->nb_rx_queues; i++) {
1512 rxq = dev->data->rx_queues[i];
1514 em_rx_queue_release_mbufs(rxq);
1515 em_reset_rx_queue(rxq);
1521 * Takes as input/output parameter RX buffer size.
1522 * Returns (BSIZE | BSEX | FLXBUF) fields of RCTL register.
1525 em_rctl_bsize(__rte_unused enum e1000_mac_type hwtyp, uint32_t *bufsz)
1528 * For BSIZE & BSEX all configurable sizes are:
1529 * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
1530 * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
1531 * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
1532 * 2048: rctl |= E1000_RCTL_SZ_2048;
1533 * 1024: rctl |= E1000_RCTL_SZ_1024;
1534 * 512: rctl |= E1000_RCTL_SZ_512;
1535 * 256: rctl |= E1000_RCTL_SZ_256;
1537 static const struct {
1540 } bufsz_to_rctl[] = {
1541 {16384, (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX)},
1542 {8192, (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX)},
1543 {4096, (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX)},
1544 {2048, E1000_RCTL_SZ_2048},
1545 {1024, E1000_RCTL_SZ_1024},
1546 {512, E1000_RCTL_SZ_512},
1547 {256, E1000_RCTL_SZ_256},
1551 uint32_t rctl_bsize;
1553 rctl_bsize = *bufsz;
1556 * Starting from 82571 it is possible to specify RX buffer size
1557 * by RCTL.FLXBUF. When this field is different from zero, the
1558 * RX buffer size = RCTL.FLXBUF * 1K
1559 * (e.g. t is possible to specify RX buffer size 1,2,...,15KB).
1560 * It is working ok on real HW, but by some reason doesn't work
1561 * on VMware emulated 82574L.
1562 * So for now, always use BSIZE/BSEX to setup RX buffer size.
1563 * If you don't plan to use it on VMware emulated 82574L and
1564 * would like to specify RX buffer size in 1K granularity,
1565 * uncomment the following lines:
1566 * ***************************************************************
1567 * if (hwtyp >= e1000_82571 && hwtyp <= e1000_82574 &&
1568 * rctl_bsize >= EM_RCTL_FLXBUF_STEP) {
1569 * rctl_bsize /= EM_RCTL_FLXBUF_STEP;
1570 * *bufsz = rctl_bsize;
1571 * return (rctl_bsize << E1000_RCTL_FLXBUF_SHIFT &
1572 * E1000_RCTL_FLXBUF_MASK);
1574 * ***************************************************************
1577 for (i = 0; i != sizeof(bufsz_to_rctl) / sizeof(bufsz_to_rctl[0]);
1579 if (rctl_bsize >= bufsz_to_rctl[i].bufsz) {
1580 *bufsz = bufsz_to_rctl[i].bufsz;
1581 return (bufsz_to_rctl[i].rctl);
1585 /* Should never happen. */
1590 em_alloc_rx_queue_mbufs(struct em_rx_queue *rxq)
1592 struct em_rx_entry *rxe = rxq->sw_ring;
1595 static const struct e1000_rx_desc rxd_init = {
1599 /* Initialize software ring entries */
1600 for (i = 0; i < rxq->nb_rx_desc; i++) {
1601 volatile struct e1000_rx_desc *rxd;
1602 struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
1605 PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
1606 "queue_id=%hu\n", rxq->queue_id);
1610 dma_addr = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
1612 /* Clear HW ring memory */
1613 rxq->rx_ring[i] = rxd_init;
1615 rxd = &rxq->rx_ring[i];
1616 rxd->buffer_addr = dma_addr;
1623 /*********************************************************************
1625 * Enable receive unit.
1627 **********************************************************************/
1629 eth_em_rx_init(struct rte_eth_dev *dev)
1631 struct e1000_hw *hw;
1632 struct em_rx_queue *rxq;
1636 uint32_t rctl_bsize;
1640 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1643 * Make sure receives are disabled while setting
1644 * up the descriptor ring.
1646 rctl = E1000_READ_REG(hw, E1000_RCTL);
1647 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
1649 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
1651 /* Disable extended descriptor type. */
1652 rfctl &= ~E1000_RFCTL_EXTEN;
1653 /* Disable accelerated acknowledge */
1654 if (hw->mac.type == e1000_82574)
1655 rfctl |= E1000_RFCTL_ACK_DIS;
1657 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
1660 * XXX TEMPORARY WORKAROUND: on some systems with 82573
1661 * long latencies are observed, like Lenovo X60. This
1662 * change eliminates the problem, but since having positive
1663 * values in RDTR is a known source of problems on other
1664 * platforms another solution is being sought.
1666 if (hw->mac.type == e1000_82573)
1667 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
1669 dev->rx_pkt_burst = (eth_rx_burst_t)eth_em_recv_pkts;
1671 /* Determine RX bufsize. */
1672 rctl_bsize = EM_MAX_BUF_SIZE;
1673 for (i = 0; i < dev->data->nb_rx_queues; i++) {
1674 struct rte_pktmbuf_pool_private *mbp_priv;
1677 rxq = dev->data->rx_queues[i];
1678 mbp_priv = rte_mempool_get_priv(rxq->mb_pool);
1679 buf_size = mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM;
1680 rctl_bsize = RTE_MIN(rctl_bsize, buf_size);
1683 rctl |= em_rctl_bsize(hw->mac.type, &rctl_bsize);
1685 /* Configure and enable each RX queue. */
1686 for (i = 0; i < dev->data->nb_rx_queues; i++) {
1690 rxq = dev->data->rx_queues[i];
1692 /* Allocate buffers for descriptor rings and setup queue */
1693 ret = em_alloc_rx_queue_mbufs(rxq);
1698 * Reset crc_len in case it was changed after queue setup by a
1702 (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
1705 bus_addr = rxq->rx_ring_phys_addr;
1706 E1000_WRITE_REG(hw, E1000_RDLEN(i),
1708 sizeof(*rxq->rx_ring));
1709 E1000_WRITE_REG(hw, E1000_RDBAH(i),
1710 (uint32_t)(bus_addr >> 32));
1711 E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
1713 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
1714 E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
1716 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
1717 rxdctl &= 0xFE000000;
1718 rxdctl |= rxq->pthresh & 0x3F;
1719 rxdctl |= (rxq->hthresh & 0x3F) << 8;
1720 rxdctl |= (rxq->wthresh & 0x3F) << 16;
1721 rxdctl |= E1000_RXDCTL_GRAN;
1722 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
1725 * Due to EM devices not having any sort of hardware
1726 * limit for packet length, jumbo frame of any size
1727 * can be accepted, thus we have to enable scattered
1728 * rx if jumbo frames are enabled (or if buffer size
1729 * is too small to accommodate non-jumbo packets)
1730 * to avoid splitting packets that don't fit into
1733 if (dev->data->dev_conf.rxmode.jumbo_frame ||
1734 rctl_bsize < ETHER_MAX_LEN) {
1736 (eth_rx_burst_t)eth_em_recv_scattered_pkts;
1737 dev->data->scattered_rx = 1;
1741 if (dev->data->dev_conf.rxmode.enable_scatter) {
1742 dev->rx_pkt_burst = eth_em_recv_scattered_pkts;
1743 dev->data->scattered_rx = 1;
1747 * Setup the Checksum Register.
1748 * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
1750 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
1752 if (dev->data->dev_conf.rxmode.hw_ip_checksum)
1753 rxcsum |= E1000_RXCSUM_IPOFL;
1755 rxcsum &= ~E1000_RXCSUM_IPOFL;
1756 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
1758 /* No MRQ or RSS support for now */
1760 /* Set early receive threshold on appropriate hw */
1761 if ((hw->mac.type == e1000_ich9lan ||
1762 hw->mac.type == e1000_pch2lan ||
1763 hw->mac.type == e1000_ich10lan) &&
1764 dev->data->dev_conf.rxmode.jumbo_frame == 1) {
1765 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
1766 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
1767 E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13));
1770 if (hw->mac.type == e1000_pch2lan) {
1771 if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
1772 e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
1774 e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
1777 /* Setup the Receive Control Register. */
1778 if (dev->data->dev_conf.rxmode.hw_strip_crc)
1779 rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
1781 rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
1783 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1784 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1785 E1000_RCTL_RDMTS_HALF |
1786 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1788 /* Make sure VLAN Filters are off. */
1789 rctl &= ~E1000_RCTL_VFE;
1790 /* Don't store bad packets. */
1791 rctl &= ~E1000_RCTL_SBP;
1792 /* Legacy descriptor type. */
1793 rctl &= ~E1000_RCTL_DTYP_MASK;
1796 * Configure support of jumbo frames, if any.
1798 if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
1799 rctl |= E1000_RCTL_LPE;
1801 rctl &= ~E1000_RCTL_LPE;
1803 /* Enable Receives. */
1804 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1809 /*********************************************************************
1811 * Enable transmit unit.
1813 **********************************************************************/
1815 eth_em_tx_init(struct rte_eth_dev *dev)
1817 struct e1000_hw *hw;
1818 struct em_tx_queue *txq;
1823 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1825 /* Setup the Base and Length of the Tx Descriptor Rings. */
1826 for (i = 0; i < dev->data->nb_tx_queues; i++) {
1829 txq = dev->data->tx_queues[i];
1830 bus_addr = txq->tx_ring_phys_addr;
1831 E1000_WRITE_REG(hw, E1000_TDLEN(i),
1833 sizeof(*txq->tx_ring));
1834 E1000_WRITE_REG(hw, E1000_TDBAH(i),
1835 (uint32_t)(bus_addr >> 32));
1836 E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
1838 /* Setup the HW Tx Head and Tail descriptor pointers. */
1839 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1840 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1842 /* Setup Transmit threshold registers. */
1843 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
1845 * bit 22 is reserved, on some models should always be 0,
1846 * on others - always 1.
1848 txdctl &= E1000_TXDCTL_COUNT_DESC;
1849 txdctl |= txq->pthresh & 0x3F;
1850 txdctl |= (txq->hthresh & 0x3F) << 8;
1851 txdctl |= (txq->wthresh & 0x3F) << 16;
1852 txdctl |= E1000_TXDCTL_GRAN;
1853 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1856 /* Program the Transmit Control Register. */
1857 tctl = E1000_READ_REG(hw, E1000_TCTL);
1858 tctl &= ~E1000_TCTL_CT;
1859 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
1860 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
1862 /* This write will effectively turn on the transmit unit. */
1863 E1000_WRITE_REG(hw, E1000_TCTL, tctl);