4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 #include "rte_approx.h"
39 * Based on paper "Approximating Rational Numbers by Fractions" by Michal
40 * Forisek forisek@dcs.fmph.uniba.sk
42 * Given a rational number alpha with 0 < alpha < 1 and a precision d, the goal
43 * is to find positive integers p, q such that alpha - d < p/q < alpha + d, and
46 * http://people.ksp.sk/~misof/publications/2007approx.pdf
49 /* fraction comparison: compare (a/b) and (c/d) */
50 static inline uint32_t
51 less(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
56 static inline uint32_t
57 less_or_equal(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
62 /* check whether a/b is a valid approximation */
63 static inline uint32_t
64 matches(uint32_t a, uint32_t b,
65 uint32_t alpha_num, uint32_t d_num, uint32_t denum)
67 if (less_or_equal(a, b, alpha_num - d_num, denum))
70 if (less(a ,b, alpha_num + d_num, denum))
77 find_exact_solution_left(uint32_t p_a, uint32_t q_a, uint32_t p_b, uint32_t q_b,
78 uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
80 uint32_t k_num = denum * p_b - (alpha_num + d_num) * q_b;
81 uint32_t k_denum = (alpha_num + d_num) * q_a - denum * p_a;
82 uint32_t k = (k_num / k_denum) + 1;
89 find_exact_solution_right(uint32_t p_a, uint32_t q_a, uint32_t p_b, uint32_t q_b,
90 uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
92 uint32_t k_num = - denum * p_b + (alpha_num - d_num) * q_b;
93 uint32_t k_denum = - (alpha_num - d_num) * q_a + denum * p_a;
94 uint32_t k = (k_num / k_denum) + 1;
101 find_best_rational_approximation(uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
103 uint32_t p_a, q_a, p_b, q_b;
105 /* check assumptions on the inputs */
106 if (!((0 < d_num) && (d_num < alpha_num) && (alpha_num < denum) && (d_num + alpha_num < denum))) {
110 /* set initial bounds for the search */
117 uint32_t new_p_a, new_q_a, new_p_b, new_q_b;
118 uint32_t x_num, x_denum, x;
121 /* compute the number of steps to the left */
122 x_num = denum * p_b - alpha_num * q_b;
123 x_denum = - denum * p_a + alpha_num * q_a;
124 x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */
126 /* check whether we have a valid approximation */
127 aa = matches(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum);
128 bb = matches(p_b + (x-1) * p_a, q_b + (x - 1) * q_a, alpha_num, d_num, denum);
130 find_exact_solution_left(p_a, q_a, p_b, q_b, alpha_num, d_num, denum, p, q);
134 /* update the interval */
135 new_p_a = p_b + (x - 1) * p_a ;
136 new_q_a = q_b + (x - 1) * q_a;
137 new_p_b = p_b + x * p_a ;
138 new_q_b = q_b + x * q_a;
145 /* compute the number of steps to the right */
146 x_num = alpha_num * q_b - denum * p_b;
147 x_denum = - alpha_num * q_a + denum * p_a;
148 x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */
150 /* check whether we have a valid approximation */
151 aa = matches(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum);
152 bb = matches(p_b + (x - 1) * p_a, q_b + (x - 1) * q_a, alpha_num, d_num, denum);
154 find_exact_solution_right(p_a, q_a, p_b, q_b, alpha_num, d_num, denum, p, q);
158 /* update the interval */
159 new_p_a = p_b + (x - 1) * p_a;
160 new_q_a = q_b + (x - 1) * q_a;
161 new_p_b = p_b + x * p_a;
162 new_q_b = q_b + x * q_a;
171 int rte_approx(double alpha, double d, uint32_t *p, uint32_t *q)
173 uint32_t alpha_num, d_num, denum;
175 /* Check input arguments */
176 if (!((0.0 < d) && (d < alpha) && (alpha < 1.0))) {
180 if ((p == NULL) || (q == NULL)) {
184 /* Compute alpha_num, d_num and denum */
191 alpha_num = (uint32_t) alpha;
192 d_num = (uint32_t) d;
194 /* Perform approximation */
195 return find_best_rational_approximation(alpha_num, d_num, denum, p, q);