vhost: fix dequeue zero copy with virtio1
[dpdk.git] / lib / librte_vhost / virtio_net.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <stdbool.h>
7 #include <linux/virtio_net.h>
8
9 #include <rte_mbuf.h>
10 #include <rte_memcpy.h>
11 #include <rte_ether.h>
12 #include <rte_ip.h>
13 #include <rte_vhost.h>
14 #include <rte_tcp.h>
15 #include <rte_udp.h>
16 #include <rte_sctp.h>
17 #include <rte_arp.h>
18
19 #include "iotlb.h"
20 #include "vhost.h"
21
22 #define MAX_PKT_BURST 32
23
24 #define MAX_BATCH_LEN 256
25
26 static bool
27 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
28 {
29         return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
30 }
31
32 static __rte_always_inline void
33 do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
34                           uint16_t to, uint16_t from, uint16_t size)
35 {
36         rte_memcpy(&vq->used->ring[to],
37                         &vq->shadow_used_ring[from],
38                         size * sizeof(struct vring_used_elem));
39         vhost_log_used_vring(dev, vq,
40                         offsetof(struct vring_used, ring[to]),
41                         size * sizeof(struct vring_used_elem));
42 }
43
44 static __rte_always_inline void
45 flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
46 {
47         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
48
49         if (used_idx + vq->shadow_used_idx <= vq->size) {
50                 do_flush_shadow_used_ring(dev, vq, used_idx, 0,
51                                           vq->shadow_used_idx);
52         } else {
53                 uint16_t size;
54
55                 /* update used ring interval [used_idx, vq->size] */
56                 size = vq->size - used_idx;
57                 do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
58
59                 /* update the left half used ring interval [0, left_size] */
60                 do_flush_shadow_used_ring(dev, vq, 0, size,
61                                           vq->shadow_used_idx - size);
62         }
63         vq->last_used_idx += vq->shadow_used_idx;
64
65         rte_smp_wmb();
66
67         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
68         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
69                 sizeof(vq->used->idx));
70 }
71
72 static __rte_always_inline void
73 update_shadow_used_ring(struct vhost_virtqueue *vq,
74                          uint16_t desc_idx, uint16_t len)
75 {
76         uint16_t i = vq->shadow_used_idx++;
77
78         vq->shadow_used_ring[i].id  = desc_idx;
79         vq->shadow_used_ring[i].len = len;
80 }
81
82 static inline void
83 do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
84 {
85         struct batch_copy_elem *elem = vq->batch_copy_elems;
86         uint16_t count = vq->batch_copy_nb_elems;
87         int i;
88
89         for (i = 0; i < count; i++) {
90                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
91                 vhost_log_write(dev, elem[i].log_addr, elem[i].len);
92                 PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
93         }
94 }
95
96 static inline void
97 do_data_copy_dequeue(struct vhost_virtqueue *vq)
98 {
99         struct batch_copy_elem *elem = vq->batch_copy_elems;
100         uint16_t count = vq->batch_copy_nb_elems;
101         int i;
102
103         for (i = 0; i < count; i++)
104                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
105 }
106
107 /* avoid write operation when necessary, to lessen cache issues */
108 #define ASSIGN_UNLESS_EQUAL(var, val) do {      \
109         if ((var) != (val))                     \
110                 (var) = (val);                  \
111 } while (0)
112
113 static void
114 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
115 {
116         uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
117
118         if (m_buf->ol_flags & PKT_TX_TCP_SEG)
119                 csum_l4 |= PKT_TX_TCP_CKSUM;
120
121         if (csum_l4) {
122                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
123                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
124
125                 switch (csum_l4) {
126                 case PKT_TX_TCP_CKSUM:
127                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
128                                                 cksum));
129                         break;
130                 case PKT_TX_UDP_CKSUM:
131                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
132                                                 dgram_cksum));
133                         break;
134                 case PKT_TX_SCTP_CKSUM:
135                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
136                                                 cksum));
137                         break;
138                 }
139         } else {
140                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
141                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
142                 ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
143         }
144
145         /* IP cksum verification cannot be bypassed, then calculate here */
146         if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
147                 struct ipv4_hdr *ipv4_hdr;
148
149                 ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
150                                                    m_buf->l2_len);
151                 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
152         }
153
154         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
155                 if (m_buf->ol_flags & PKT_TX_IPV4)
156                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
157                 else
158                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
159                 net_hdr->gso_size = m_buf->tso_segsz;
160                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
161                                         + m_buf->l4_len;
162         } else {
163                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
164                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
165                 ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
166         }
167 }
168
169 static __rte_always_inline int
170 copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
171                   struct vring_desc *descs, struct rte_mbuf *m,
172                   uint16_t desc_idx, uint32_t size)
173 {
174         uint32_t desc_avail, desc_offset;
175         uint32_t mbuf_avail, mbuf_offset;
176         uint32_t cpy_len;
177         struct vring_desc *desc;
178         uint64_t desc_addr;
179         /* A counter to avoid desc dead loop chain */
180         uint16_t nr_desc = 1;
181         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
182         uint16_t copy_nb = vq->batch_copy_nb_elems;
183         int error = 0;
184
185         desc = &descs[desc_idx];
186         desc_addr = vhost_iova_to_vva(dev, vq, desc->addr,
187                                         desc->len, VHOST_ACCESS_RW);
188         /*
189          * Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
190          * performance issue with some versions of gcc (4.8.4 and 5.3.0) which
191          * otherwise stores offset on the stack instead of in a register.
192          */
193         if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr) {
194                 error = -1;
195                 goto out;
196         }
197
198         rte_prefetch0((void *)(uintptr_t)desc_addr);
199
200         virtio_enqueue_offload(m, (struct virtio_net_hdr *)(uintptr_t)desc_addr);
201         vhost_log_write(dev, desc->addr, dev->vhost_hlen);
202         PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
203
204         desc_offset = dev->vhost_hlen;
205         desc_avail  = desc->len - dev->vhost_hlen;
206
207         mbuf_avail  = rte_pktmbuf_data_len(m);
208         mbuf_offset = 0;
209         while (mbuf_avail != 0 || m->next != NULL) {
210                 /* done with current mbuf, fetch next */
211                 if (mbuf_avail == 0) {
212                         m = m->next;
213
214                         mbuf_offset = 0;
215                         mbuf_avail  = rte_pktmbuf_data_len(m);
216                 }
217
218                 /* done with current desc buf, fetch next */
219                 if (desc_avail == 0) {
220                         if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
221                                 /* Room in vring buffer is not enough */
222                                 error = -1;
223                                 goto out;
224                         }
225                         if (unlikely(desc->next >= size || ++nr_desc > size)) {
226                                 error = -1;
227                                 goto out;
228                         }
229
230                         desc = &descs[desc->next];
231                         desc_addr = vhost_iova_to_vva(dev, vq, desc->addr,
232                                                         desc->len,
233                                                         VHOST_ACCESS_RW);
234                         if (unlikely(!desc_addr)) {
235                                 error = -1;
236                                 goto out;
237                         }
238
239                         desc_offset = 0;
240                         desc_avail  = desc->len;
241                 }
242
243                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
244                 if (likely(cpy_len > MAX_BATCH_LEN || copy_nb >= vq->size)) {
245                         rte_memcpy((void *)((uintptr_t)(desc_addr +
246                                                         desc_offset)),
247                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
248                                 cpy_len);
249                         vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
250                         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
251                                      cpy_len, 0);
252                 } else {
253                         batch_copy[copy_nb].dst =
254                                 (void *)((uintptr_t)(desc_addr + desc_offset));
255                         batch_copy[copy_nb].src =
256                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
257                         batch_copy[copy_nb].log_addr = desc->addr + desc_offset;
258                         batch_copy[copy_nb].len = cpy_len;
259                         copy_nb++;
260                 }
261
262                 mbuf_avail  -= cpy_len;
263                 mbuf_offset += cpy_len;
264                 desc_avail  -= cpy_len;
265                 desc_offset += cpy_len;
266         }
267
268 out:
269         vq->batch_copy_nb_elems = copy_nb;
270
271         return error;
272 }
273
274 /**
275  * This function adds buffers to the virtio devices RX virtqueue. Buffers can
276  * be received from the physical port or from another virtio device. A packet
277  * count is returned to indicate the number of packets that are successfully
278  * added to the RX queue. This function works when the mbuf is scattered, but
279  * it doesn't support the mergeable feature.
280  */
281 static __rte_always_inline uint32_t
282 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
283               struct rte_mbuf **pkts, uint32_t count)
284 {
285         struct vhost_virtqueue *vq;
286         uint16_t avail_idx, free_entries, start_idx;
287         uint16_t desc_indexes[MAX_PKT_BURST];
288         struct vring_desc *descs;
289         uint16_t used_idx;
290         uint32_t i, sz;
291
292         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
293         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
294                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
295                         dev->vid, __func__, queue_id);
296                 return 0;
297         }
298
299         vq = dev->virtqueue[queue_id];
300         if (unlikely(vq->enabled == 0))
301                 return 0;
302
303         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
304                 vhost_user_iotlb_rd_lock(vq);
305
306         if (unlikely(vq->access_ok == 0)) {
307                 if (unlikely(vring_translate(dev, vq) < 0)) {
308                         count = 0;
309                         goto out;
310                 }
311         }
312
313         avail_idx = *((volatile uint16_t *)&vq->avail->idx);
314         start_idx = vq->last_used_idx;
315         free_entries = avail_idx - start_idx;
316         count = RTE_MIN(count, free_entries);
317         count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
318         if (count == 0)
319                 goto out;
320
321         LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
322                 dev->vid, start_idx, start_idx + count);
323
324         vq->batch_copy_nb_elems = 0;
325
326         /* Retrieve all of the desc indexes first to avoid caching issues. */
327         rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
328         for (i = 0; i < count; i++) {
329                 used_idx = (start_idx + i) & (vq->size - 1);
330                 desc_indexes[i] = vq->avail->ring[used_idx];
331                 vq->used->ring[used_idx].id = desc_indexes[i];
332                 vq->used->ring[used_idx].len = pkts[i]->pkt_len +
333                                                dev->vhost_hlen;
334                 vhost_log_used_vring(dev, vq,
335                         offsetof(struct vring_used, ring[used_idx]),
336                         sizeof(vq->used->ring[used_idx]));
337         }
338
339         rte_prefetch0(&vq->desc[desc_indexes[0]]);
340         for (i = 0; i < count; i++) {
341                 uint16_t desc_idx = desc_indexes[i];
342                 int err;
343
344                 if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
345                         descs = (struct vring_desc *)(uintptr_t)
346                                 vhost_iova_to_vva(dev,
347                                                 vq, vq->desc[desc_idx].addr,
348                                                 vq->desc[desc_idx].len,
349                                                 VHOST_ACCESS_RO);
350                         if (unlikely(!descs)) {
351                                 count = i;
352                                 break;
353                         }
354
355                         desc_idx = 0;
356                         sz = vq->desc[desc_idx].len / sizeof(*descs);
357                 } else {
358                         descs = vq->desc;
359                         sz = vq->size;
360                 }
361
362                 err = copy_mbuf_to_desc(dev, vq, descs, pkts[i], desc_idx, sz);
363                 if (unlikely(err)) {
364                         count = i;
365                         break;
366                 }
367
368                 if (i + 1 < count)
369                         rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
370         }
371
372         do_data_copy_enqueue(dev, vq);
373
374         rte_smp_wmb();
375
376         *(volatile uint16_t *)&vq->used->idx += count;
377         vq->last_used_idx += count;
378         vhost_log_used_vring(dev, vq,
379                 offsetof(struct vring_used, idx),
380                 sizeof(vq->used->idx));
381
382         /* flush used->idx update before we read avail->flags. */
383         rte_mb();
384
385         /* Kick the guest if necessary. */
386         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
387                         && (vq->callfd >= 0))
388                 eventfd_write(vq->callfd, (eventfd_t)1);
389 out:
390         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
391                 vhost_user_iotlb_rd_unlock(vq);
392
393         return count;
394 }
395
396 static __rte_always_inline int
397 fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
398                          uint32_t avail_idx, uint32_t *vec_idx,
399                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
400                          uint16_t *desc_chain_len)
401 {
402         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
403         uint32_t vec_id = *vec_idx;
404         uint32_t len    = 0;
405         struct vring_desc *descs = vq->desc;
406
407         *desc_chain_head = idx;
408
409         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
410                 descs = (struct vring_desc *)(uintptr_t)
411                         vhost_iova_to_vva(dev, vq, vq->desc[idx].addr,
412                                                 vq->desc[idx].len,
413                                                 VHOST_ACCESS_RO);
414                 if (unlikely(!descs))
415                         return -1;
416
417                 idx = 0;
418         }
419
420         while (1) {
421                 if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
422                         return -1;
423
424                 len += descs[idx].len;
425                 buf_vec[vec_id].buf_addr = descs[idx].addr;
426                 buf_vec[vec_id].buf_len  = descs[idx].len;
427                 buf_vec[vec_id].desc_idx = idx;
428                 vec_id++;
429
430                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
431                         break;
432
433                 idx = descs[idx].next;
434         }
435
436         *desc_chain_len = len;
437         *vec_idx = vec_id;
438
439         return 0;
440 }
441
442 /*
443  * Returns -1 on fail, 0 on success
444  */
445 static inline int
446 reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
447                                 uint32_t size, struct buf_vector *buf_vec,
448                                 uint16_t *num_buffers, uint16_t avail_head)
449 {
450         uint16_t cur_idx;
451         uint32_t vec_idx = 0;
452         uint16_t tries = 0;
453
454         uint16_t head_idx = 0;
455         uint16_t len = 0;
456
457         *num_buffers = 0;
458         cur_idx  = vq->last_avail_idx;
459
460         while (size > 0) {
461                 if (unlikely(cur_idx == avail_head))
462                         return -1;
463
464                 if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
465                                                 &head_idx, &len) < 0))
466                         return -1;
467                 len = RTE_MIN(len, size);
468                 update_shadow_used_ring(vq, head_idx, len);
469                 size -= len;
470
471                 cur_idx++;
472                 tries++;
473                 *num_buffers += 1;
474
475                 /*
476                  * if we tried all available ring items, and still
477                  * can't get enough buf, it means something abnormal
478                  * happened.
479                  */
480                 if (unlikely(tries >= vq->size))
481                         return -1;
482         }
483
484         return 0;
485 }
486
487 static __rte_always_inline int
488 copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
489                             struct rte_mbuf *m, struct buf_vector *buf_vec,
490                             uint16_t num_buffers)
491 {
492         uint32_t vec_idx = 0;
493         uint64_t desc_addr;
494         uint32_t mbuf_offset, mbuf_avail;
495         uint32_t desc_offset, desc_avail;
496         uint32_t cpy_len;
497         uint64_t hdr_addr, hdr_phys_addr;
498         struct rte_mbuf *hdr_mbuf;
499         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
500         uint16_t copy_nb = vq->batch_copy_nb_elems;
501         int error = 0;
502
503         if (unlikely(m == NULL)) {
504                 error = -1;
505                 goto out;
506         }
507
508         desc_addr = vhost_iova_to_vva(dev, vq, buf_vec[vec_idx].buf_addr,
509                                                 buf_vec[vec_idx].buf_len,
510                                                 VHOST_ACCESS_RW);
511         if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr) {
512                 error = -1;
513                 goto out;
514         }
515
516         hdr_mbuf = m;
517         hdr_addr = desc_addr;
518         hdr_phys_addr = buf_vec[vec_idx].buf_addr;
519         rte_prefetch0((void *)(uintptr_t)hdr_addr);
520
521         LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
522                 dev->vid, num_buffers);
523
524         desc_avail  = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
525         desc_offset = dev->vhost_hlen;
526
527         mbuf_avail  = rte_pktmbuf_data_len(m);
528         mbuf_offset = 0;
529         while (mbuf_avail != 0 || m->next != NULL) {
530                 /* done with current desc buf, get the next one */
531                 if (desc_avail == 0) {
532                         vec_idx++;
533                         desc_addr =
534                                 vhost_iova_to_vva(dev, vq,
535                                         buf_vec[vec_idx].buf_addr,
536                                         buf_vec[vec_idx].buf_len,
537                                         VHOST_ACCESS_RW);
538                         if (unlikely(!desc_addr)) {
539                                 error = -1;
540                                 goto out;
541                         }
542
543                         /* Prefetch buffer address. */
544                         rte_prefetch0((void *)(uintptr_t)desc_addr);
545                         desc_offset = 0;
546                         desc_avail  = buf_vec[vec_idx].buf_len;
547                 }
548
549                 /* done with current mbuf, get the next one */
550                 if (mbuf_avail == 0) {
551                         m = m->next;
552
553                         mbuf_offset = 0;
554                         mbuf_avail  = rte_pktmbuf_data_len(m);
555                 }
556
557                 if (hdr_addr) {
558                         struct virtio_net_hdr_mrg_rxbuf *hdr;
559
560                         hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)
561                                 hdr_addr;
562                         virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
563                         ASSIGN_UNLESS_EQUAL(hdr->num_buffers, num_buffers);
564
565                         vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
566                         PRINT_PACKET(dev, (uintptr_t)hdr_addr,
567                                      dev->vhost_hlen, 0);
568
569                         hdr_addr = 0;
570                 }
571
572                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
573
574                 if (likely(cpy_len > MAX_BATCH_LEN || copy_nb >= vq->size)) {
575                         rte_memcpy((void *)((uintptr_t)(desc_addr +
576                                                         desc_offset)),
577                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
578                                 cpy_len);
579                         vhost_log_write(dev,
580                                 buf_vec[vec_idx].buf_addr + desc_offset,
581                                 cpy_len);
582                         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
583                                 cpy_len, 0);
584                 } else {
585                         batch_copy[copy_nb].dst =
586                                 (void *)((uintptr_t)(desc_addr + desc_offset));
587                         batch_copy[copy_nb].src =
588                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
589                         batch_copy[copy_nb].log_addr =
590                                 buf_vec[vec_idx].buf_addr + desc_offset;
591                         batch_copy[copy_nb].len = cpy_len;
592                         copy_nb++;
593                 }
594
595                 mbuf_avail  -= cpy_len;
596                 mbuf_offset += cpy_len;
597                 desc_avail  -= cpy_len;
598                 desc_offset += cpy_len;
599         }
600
601 out:
602         vq->batch_copy_nb_elems = copy_nb;
603
604         return error;
605 }
606
607 static __rte_always_inline uint32_t
608 virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
609         struct rte_mbuf **pkts, uint32_t count)
610 {
611         struct vhost_virtqueue *vq;
612         uint32_t pkt_idx = 0;
613         uint16_t num_buffers;
614         struct buf_vector buf_vec[BUF_VECTOR_MAX];
615         uint16_t avail_head;
616
617         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
618         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
619                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
620                         dev->vid, __func__, queue_id);
621                 return 0;
622         }
623
624         vq = dev->virtqueue[queue_id];
625         if (unlikely(vq->enabled == 0))
626                 return 0;
627
628         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
629                 vhost_user_iotlb_rd_lock(vq);
630
631         if (unlikely(vq->access_ok == 0))
632                 if (unlikely(vring_translate(dev, vq) < 0))
633                         goto out;
634
635         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
636         if (count == 0)
637                 goto out;
638
639         vq->batch_copy_nb_elems = 0;
640
641         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
642
643         vq->shadow_used_idx = 0;
644         avail_head = *((volatile uint16_t *)&vq->avail->idx);
645         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
646                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
647
648                 if (unlikely(reserve_avail_buf_mergeable(dev, vq,
649                                                 pkt_len, buf_vec, &num_buffers,
650                                                 avail_head) < 0)) {
651                         LOG_DEBUG(VHOST_DATA,
652                                 "(%d) failed to get enough desc from vring\n",
653                                 dev->vid);
654                         vq->shadow_used_idx -= num_buffers;
655                         break;
656                 }
657
658                 LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
659                         dev->vid, vq->last_avail_idx,
660                         vq->last_avail_idx + num_buffers);
661
662                 if (copy_mbuf_to_desc_mergeable(dev, vq, pkts[pkt_idx],
663                                                 buf_vec, num_buffers) < 0) {
664                         vq->shadow_used_idx -= num_buffers;
665                         break;
666                 }
667
668                 vq->last_avail_idx += num_buffers;
669         }
670
671         do_data_copy_enqueue(dev, vq);
672
673         if (likely(vq->shadow_used_idx)) {
674                 flush_shadow_used_ring(dev, vq);
675
676                 /* flush used->idx update before we read avail->flags. */
677                 rte_mb();
678
679                 /* Kick the guest if necessary. */
680                 if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
681                                 && (vq->callfd >= 0))
682                         eventfd_write(vq->callfd, (eventfd_t)1);
683         }
684
685 out:
686         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
687                 vhost_user_iotlb_rd_unlock(vq);
688
689         return pkt_idx;
690 }
691
692 uint16_t
693 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
694         struct rte_mbuf **pkts, uint16_t count)
695 {
696         struct virtio_net *dev = get_device(vid);
697
698         if (!dev)
699                 return 0;
700
701         if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
702                 return virtio_dev_merge_rx(dev, queue_id, pkts, count);
703         else
704                 return virtio_dev_rx(dev, queue_id, pkts, count);
705 }
706
707 static inline bool
708 virtio_net_with_host_offload(struct virtio_net *dev)
709 {
710         if (dev->features &
711                         ((1ULL << VIRTIO_NET_F_CSUM) |
712                          (1ULL << VIRTIO_NET_F_HOST_ECN) |
713                          (1ULL << VIRTIO_NET_F_HOST_TSO4) |
714                          (1ULL << VIRTIO_NET_F_HOST_TSO6) |
715                          (1ULL << VIRTIO_NET_F_HOST_UFO)))
716                 return true;
717
718         return false;
719 }
720
721 static void
722 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
723 {
724         struct ipv4_hdr *ipv4_hdr;
725         struct ipv6_hdr *ipv6_hdr;
726         void *l3_hdr = NULL;
727         struct ether_hdr *eth_hdr;
728         uint16_t ethertype;
729
730         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
731
732         m->l2_len = sizeof(struct ether_hdr);
733         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
734
735         if (ethertype == ETHER_TYPE_VLAN) {
736                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
737
738                 m->l2_len += sizeof(struct vlan_hdr);
739                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
740         }
741
742         l3_hdr = (char *)eth_hdr + m->l2_len;
743
744         switch (ethertype) {
745         case ETHER_TYPE_IPv4:
746                 ipv4_hdr = l3_hdr;
747                 *l4_proto = ipv4_hdr->next_proto_id;
748                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
749                 *l4_hdr = (char *)l3_hdr + m->l3_len;
750                 m->ol_flags |= PKT_TX_IPV4;
751                 break;
752         case ETHER_TYPE_IPv6:
753                 ipv6_hdr = l3_hdr;
754                 *l4_proto = ipv6_hdr->proto;
755                 m->l3_len = sizeof(struct ipv6_hdr);
756                 *l4_hdr = (char *)l3_hdr + m->l3_len;
757                 m->ol_flags |= PKT_TX_IPV6;
758                 break;
759         default:
760                 m->l3_len = 0;
761                 *l4_proto = 0;
762                 *l4_hdr = NULL;
763                 break;
764         }
765 }
766
767 static __rte_always_inline void
768 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
769 {
770         uint16_t l4_proto = 0;
771         void *l4_hdr = NULL;
772         struct tcp_hdr *tcp_hdr = NULL;
773
774         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
775                 return;
776
777         parse_ethernet(m, &l4_proto, &l4_hdr);
778         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
779                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
780                         switch (hdr->csum_offset) {
781                         case (offsetof(struct tcp_hdr, cksum)):
782                                 if (l4_proto == IPPROTO_TCP)
783                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
784                                 break;
785                         case (offsetof(struct udp_hdr, dgram_cksum)):
786                                 if (l4_proto == IPPROTO_UDP)
787                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
788                                 break;
789                         case (offsetof(struct sctp_hdr, cksum)):
790                                 if (l4_proto == IPPROTO_SCTP)
791                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
792                                 break;
793                         default:
794                                 break;
795                         }
796                 }
797         }
798
799         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
800                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
801                 case VIRTIO_NET_HDR_GSO_TCPV4:
802                 case VIRTIO_NET_HDR_GSO_TCPV6:
803                         tcp_hdr = l4_hdr;
804                         m->ol_flags |= PKT_TX_TCP_SEG;
805                         m->tso_segsz = hdr->gso_size;
806                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
807                         break;
808                 default:
809                         RTE_LOG(WARNING, VHOST_DATA,
810                                 "unsupported gso type %u.\n", hdr->gso_type);
811                         break;
812                 }
813         }
814 }
815
816 #define RARP_PKT_SIZE   64
817
818 static int
819 make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
820 {
821         struct ether_hdr *eth_hdr;
822         struct arp_hdr  *rarp;
823
824         if (rarp_mbuf->buf_len < 64) {
825                 RTE_LOG(WARNING, VHOST_DATA,
826                         "failed to make RARP; mbuf size too small %u (< %d)\n",
827                         rarp_mbuf->buf_len, RARP_PKT_SIZE);
828                 return -1;
829         }
830
831         /* Ethernet header. */
832         eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
833         memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
834         ether_addr_copy(mac, &eth_hdr->s_addr);
835         eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
836
837         /* RARP header. */
838         rarp = (struct arp_hdr *)(eth_hdr + 1);
839         rarp->arp_hrd = htons(ARP_HRD_ETHER);
840         rarp->arp_pro = htons(ETHER_TYPE_IPv4);
841         rarp->arp_hln = ETHER_ADDR_LEN;
842         rarp->arp_pln = 4;
843         rarp->arp_op  = htons(ARP_OP_REVREQUEST);
844
845         ether_addr_copy(mac, &rarp->arp_data.arp_sha);
846         ether_addr_copy(mac, &rarp->arp_data.arp_tha);
847         memset(&rarp->arp_data.arp_sip, 0x00, 4);
848         memset(&rarp->arp_data.arp_tip, 0x00, 4);
849
850         rarp_mbuf->pkt_len  = rarp_mbuf->data_len = RARP_PKT_SIZE;
851
852         return 0;
853 }
854
855 static __rte_always_inline void
856 put_zmbuf(struct zcopy_mbuf *zmbuf)
857 {
858         zmbuf->in_use = 0;
859 }
860
861 static __rte_always_inline int
862 copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
863                   struct vring_desc *descs, uint16_t max_desc,
864                   struct rte_mbuf *m, uint16_t desc_idx,
865                   struct rte_mempool *mbuf_pool)
866 {
867         struct vring_desc *desc;
868         uint64_t desc_addr;
869         uint32_t desc_avail, desc_offset;
870         uint32_t mbuf_avail, mbuf_offset;
871         uint32_t cpy_len;
872         struct rte_mbuf *cur = m, *prev = m;
873         struct virtio_net_hdr *hdr = NULL;
874         /* A counter to avoid desc dead loop chain */
875         uint32_t nr_desc = 1;
876         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
877         uint16_t copy_nb = vq->batch_copy_nb_elems;
878         int error = 0;
879
880         desc = &descs[desc_idx];
881         if (unlikely((desc->len < dev->vhost_hlen)) ||
882                         (desc->flags & VRING_DESC_F_INDIRECT)) {
883                 error = -1;
884                 goto out;
885         }
886
887         desc_addr = vhost_iova_to_vva(dev,
888                                         vq, desc->addr,
889                                         desc->len,
890                                         VHOST_ACCESS_RO);
891         if (unlikely(!desc_addr)) {
892                 error = -1;
893                 goto out;
894         }
895
896         if (virtio_net_with_host_offload(dev)) {
897                 hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
898                 rte_prefetch0(hdr);
899         }
900
901         /*
902          * A virtio driver normally uses at least 2 desc buffers
903          * for Tx: the first for storing the header, and others
904          * for storing the data.
905          */
906         if (likely((desc->len == dev->vhost_hlen) &&
907                    (desc->flags & VRING_DESC_F_NEXT) != 0)) {
908                 desc = &descs[desc->next];
909                 if (unlikely(desc->flags & VRING_DESC_F_INDIRECT)) {
910                         error = -1;
911                         goto out;
912                 }
913
914                 desc_addr = vhost_iova_to_vva(dev,
915                                                         vq, desc->addr,
916                                                         desc->len,
917                                                         VHOST_ACCESS_RO);
918                 if (unlikely(!desc_addr)) {
919                         error = -1;
920                         goto out;
921                 }
922
923                 desc_offset = 0;
924                 desc_avail  = desc->len;
925                 nr_desc    += 1;
926         } else {
927                 desc_avail  = desc->len - dev->vhost_hlen;
928                 desc_offset = dev->vhost_hlen;
929         }
930
931         rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
932
933         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
934
935         mbuf_offset = 0;
936         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
937         while (1) {
938                 uint64_t hpa;
939
940                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
941
942                 /*
943                  * A desc buf might across two host physical pages that are
944                  * not continuous. In such case (gpa_to_hpa returns 0), data
945                  * will be copied even though zero copy is enabled.
946                  */
947                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
948                                         desc->addr + desc_offset, cpy_len)))) {
949                         cur->data_len = cpy_len;
950                         cur->data_off = 0;
951                         cur->buf_addr = (void *)(uintptr_t)(desc_addr
952                                 + desc_offset);
953                         cur->buf_iova = hpa;
954
955                         /*
956                          * In zero copy mode, one mbuf can only reference data
957                          * for one or partial of one desc buff.
958                          */
959                         mbuf_avail = cpy_len;
960                 } else {
961                         if (likely(cpy_len > MAX_BATCH_LEN ||
962                                    copy_nb >= vq->size ||
963                                    (hdr && cur == m))) {
964                                 rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
965                                                                    mbuf_offset),
966                                            (void *)((uintptr_t)(desc_addr +
967                                                                 desc_offset)),
968                                            cpy_len);
969                         } else {
970                                 batch_copy[copy_nb].dst =
971                                         rte_pktmbuf_mtod_offset(cur, void *,
972                                                                 mbuf_offset);
973                                 batch_copy[copy_nb].src =
974                                         (void *)((uintptr_t)(desc_addr +
975                                                              desc_offset));
976                                 batch_copy[copy_nb].len = cpy_len;
977                                 copy_nb++;
978                         }
979                 }
980
981                 mbuf_avail  -= cpy_len;
982                 mbuf_offset += cpy_len;
983                 desc_avail  -= cpy_len;
984                 desc_offset += cpy_len;
985
986                 /* This desc reaches to its end, get the next one */
987                 if (desc_avail == 0) {
988                         if ((desc->flags & VRING_DESC_F_NEXT) == 0)
989                                 break;
990
991                         if (unlikely(desc->next >= max_desc ||
992                                      ++nr_desc > max_desc)) {
993                                 error = -1;
994                                 goto out;
995                         }
996                         desc = &descs[desc->next];
997                         if (unlikely(desc->flags & VRING_DESC_F_INDIRECT)) {
998                                 error = -1;
999                                 goto out;
1000                         }
1001
1002                         desc_addr = vhost_iova_to_vva(dev,
1003                                                         vq, desc->addr,
1004                                                         desc->len,
1005                                                         VHOST_ACCESS_RO);
1006                         if (unlikely(!desc_addr)) {
1007                                 error = -1;
1008                                 goto out;
1009                         }
1010
1011                         rte_prefetch0((void *)(uintptr_t)desc_addr);
1012
1013                         desc_offset = 0;
1014                         desc_avail  = desc->len;
1015
1016                         PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
1017                 }
1018
1019                 /*
1020                  * This mbuf reaches to its end, get a new one
1021                  * to hold more data.
1022                  */
1023                 if (mbuf_avail == 0) {
1024                         cur = rte_pktmbuf_alloc(mbuf_pool);
1025                         if (unlikely(cur == NULL)) {
1026                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
1027                                         "allocate memory for mbuf.\n");
1028                                 error = -1;
1029                                 goto out;
1030                         }
1031                         if (unlikely(dev->dequeue_zero_copy))
1032                                 rte_mbuf_refcnt_update(cur, 1);
1033
1034                         prev->next = cur;
1035                         prev->data_len = mbuf_offset;
1036                         m->nb_segs += 1;
1037                         m->pkt_len += mbuf_offset;
1038                         prev = cur;
1039
1040                         mbuf_offset = 0;
1041                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
1042                 }
1043         }
1044
1045         prev->data_len = mbuf_offset;
1046         m->pkt_len    += mbuf_offset;
1047
1048         if (hdr)
1049                 vhost_dequeue_offload(hdr, m);
1050
1051 out:
1052         vq->batch_copy_nb_elems = copy_nb;
1053
1054         return error;
1055 }
1056
1057 static __rte_always_inline void
1058 update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
1059                  uint32_t used_idx, uint32_t desc_idx)
1060 {
1061         vq->used->ring[used_idx].id  = desc_idx;
1062         vq->used->ring[used_idx].len = 0;
1063         vhost_log_used_vring(dev, vq,
1064                         offsetof(struct vring_used, ring[used_idx]),
1065                         sizeof(vq->used->ring[used_idx]));
1066 }
1067
1068 static __rte_always_inline void
1069 update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
1070                 uint32_t count)
1071 {
1072         if (unlikely(count == 0))
1073                 return;
1074
1075         rte_smp_wmb();
1076         rte_smp_rmb();
1077
1078         vq->used->idx += count;
1079         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
1080                         sizeof(vq->used->idx));
1081
1082         /* Kick guest if required. */
1083         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
1084                         && (vq->callfd >= 0))
1085                 eventfd_write(vq->callfd, (eventfd_t)1);
1086 }
1087
1088 static __rte_always_inline struct zcopy_mbuf *
1089 get_zmbuf(struct vhost_virtqueue *vq)
1090 {
1091         uint16_t i;
1092         uint16_t last;
1093         int tries = 0;
1094
1095         /* search [last_zmbuf_idx, zmbuf_size) */
1096         i = vq->last_zmbuf_idx;
1097         last = vq->zmbuf_size;
1098
1099 again:
1100         for (; i < last; i++) {
1101                 if (vq->zmbufs[i].in_use == 0) {
1102                         vq->last_zmbuf_idx = i + 1;
1103                         vq->zmbufs[i].in_use = 1;
1104                         return &vq->zmbufs[i];
1105                 }
1106         }
1107
1108         tries++;
1109         if (tries == 1) {
1110                 /* search [0, last_zmbuf_idx) */
1111                 i = 0;
1112                 last = vq->last_zmbuf_idx;
1113                 goto again;
1114         }
1115
1116         return NULL;
1117 }
1118
1119 static __rte_always_inline bool
1120 mbuf_is_consumed(struct rte_mbuf *m)
1121 {
1122         while (m) {
1123                 if (rte_mbuf_refcnt_read(m) > 1)
1124                         return false;
1125                 m = m->next;
1126         }
1127
1128         return true;
1129 }
1130
1131 uint16_t
1132 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
1133         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1134 {
1135         struct virtio_net *dev;
1136         struct rte_mbuf *rarp_mbuf = NULL;
1137         struct vhost_virtqueue *vq;
1138         uint32_t desc_indexes[MAX_PKT_BURST];
1139         uint32_t used_idx;
1140         uint32_t i = 0;
1141         uint16_t free_entries;
1142         uint16_t avail_idx;
1143
1144         dev = get_device(vid);
1145         if (!dev)
1146                 return 0;
1147
1148         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
1149                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1150                         dev->vid, __func__, queue_id);
1151                 return 0;
1152         }
1153
1154         vq = dev->virtqueue[queue_id];
1155         if (unlikely(vq->enabled == 0))
1156                 return 0;
1157
1158         vq->batch_copy_nb_elems = 0;
1159
1160         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1161                 vhost_user_iotlb_rd_lock(vq);
1162
1163         if (unlikely(vq->access_ok == 0))
1164                 if (unlikely(vring_translate(dev, vq) < 0))
1165                         goto out;
1166
1167         if (unlikely(dev->dequeue_zero_copy)) {
1168                 struct zcopy_mbuf *zmbuf, *next;
1169                 int nr_updated = 0;
1170
1171                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1172                      zmbuf != NULL; zmbuf = next) {
1173                         next = TAILQ_NEXT(zmbuf, next);
1174
1175                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1176                                 used_idx = vq->last_used_idx++ & (vq->size - 1);
1177                                 update_used_ring(dev, vq, used_idx,
1178                                                  zmbuf->desc_idx);
1179                                 nr_updated += 1;
1180
1181                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1182                                 rte_pktmbuf_free(zmbuf->mbuf);
1183                                 put_zmbuf(zmbuf);
1184                                 vq->nr_zmbuf -= 1;
1185                         }
1186                 }
1187
1188                 update_used_idx(dev, vq, nr_updated);
1189         }
1190
1191         /*
1192          * Construct a RARP broadcast packet, and inject it to the "pkts"
1193          * array, to looks like that guest actually send such packet.
1194          *
1195          * Check user_send_rarp() for more information.
1196          *
1197          * broadcast_rarp shares a cacheline in the virtio_net structure
1198          * with some fields that are accessed during enqueue and
1199          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1200          * result in false sharing between enqueue and dequeue.
1201          *
1202          * Prevent unnecessary false sharing by reading broadcast_rarp first
1203          * and only performing cmpset if the read indicates it is likely to
1204          * be set.
1205          */
1206
1207         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1208                         rte_atomic16_cmpset((volatile uint16_t *)
1209                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1210
1211                 rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
1212                 if (rarp_mbuf == NULL) {
1213                         RTE_LOG(ERR, VHOST_DATA,
1214                                 "Failed to allocate memory for mbuf.\n");
1215                         return 0;
1216                 }
1217
1218                 if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
1219                         rte_pktmbuf_free(rarp_mbuf);
1220                         rarp_mbuf = NULL;
1221                 } else {
1222                         count -= 1;
1223                 }
1224         }
1225
1226         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1227                         vq->last_avail_idx;
1228         if (free_entries == 0)
1229                 goto out;
1230
1231         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1232
1233         /* Prefetch available and used ring */
1234         avail_idx = vq->last_avail_idx & (vq->size - 1);
1235         used_idx  = vq->last_used_idx  & (vq->size - 1);
1236         rte_prefetch0(&vq->avail->ring[avail_idx]);
1237         rte_prefetch0(&vq->used->ring[used_idx]);
1238
1239         count = RTE_MIN(count, MAX_PKT_BURST);
1240         count = RTE_MIN(count, free_entries);
1241         LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1242                         dev->vid, count);
1243
1244         /* Retrieve all of the head indexes first to avoid caching issues. */
1245         for (i = 0; i < count; i++) {
1246                 avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
1247                 used_idx  = (vq->last_used_idx  + i) & (vq->size - 1);
1248                 desc_indexes[i] = vq->avail->ring[avail_idx];
1249
1250                 if (likely(dev->dequeue_zero_copy == 0))
1251                         update_used_ring(dev, vq, used_idx, desc_indexes[i]);
1252         }
1253
1254         /* Prefetch descriptor index. */
1255         rte_prefetch0(&vq->desc[desc_indexes[0]]);
1256         for (i = 0; i < count; i++) {
1257                 struct vring_desc *desc;
1258                 uint16_t sz, idx;
1259                 int err;
1260
1261                 if (likely(i + 1 < count))
1262                         rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
1263
1264                 if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
1265                         desc = (struct vring_desc *)(uintptr_t)
1266                                 vhost_iova_to_vva(dev, vq,
1267                                                 vq->desc[desc_indexes[i]].addr,
1268                                                 sizeof(*desc),
1269                                                 VHOST_ACCESS_RO);
1270                         if (unlikely(!desc))
1271                                 break;
1272
1273                         rte_prefetch0(desc);
1274                         sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
1275                         idx = 0;
1276                 } else {
1277                         desc = vq->desc;
1278                         sz = vq->size;
1279                         idx = desc_indexes[i];
1280                 }
1281
1282                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1283                 if (unlikely(pkts[i] == NULL)) {
1284                         RTE_LOG(ERR, VHOST_DATA,
1285                                 "Failed to allocate memory for mbuf.\n");
1286                         break;
1287                 }
1288
1289                 err = copy_desc_to_mbuf(dev, vq, desc, sz, pkts[i], idx,
1290                                         mbuf_pool);
1291                 if (unlikely(err)) {
1292                         rte_pktmbuf_free(pkts[i]);
1293                         break;
1294                 }
1295
1296                 if (unlikely(dev->dequeue_zero_copy)) {
1297                         struct zcopy_mbuf *zmbuf;
1298
1299                         zmbuf = get_zmbuf(vq);
1300                         if (!zmbuf) {
1301                                 rte_pktmbuf_free(pkts[i]);
1302                                 break;
1303                         }
1304                         zmbuf->mbuf = pkts[i];
1305                         zmbuf->desc_idx = desc_indexes[i];
1306
1307                         /*
1308                          * Pin lock the mbuf; we will check later to see
1309                          * whether the mbuf is freed (when we are the last
1310                          * user) or not. If that's the case, we then could
1311                          * update the used ring safely.
1312                          */
1313                         rte_mbuf_refcnt_update(pkts[i], 1);
1314
1315                         vq->nr_zmbuf += 1;
1316                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1317                 }
1318         }
1319         vq->last_avail_idx += i;
1320
1321         if (likely(dev->dequeue_zero_copy == 0)) {
1322                 do_data_copy_dequeue(vq);
1323                 vq->last_used_idx += i;
1324                 update_used_idx(dev, vq, i);
1325         }
1326
1327 out:
1328         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1329                 vhost_user_iotlb_rd_unlock(vq);
1330
1331         if (unlikely(rarp_mbuf != NULL)) {
1332                 /*
1333                  * Inject it to the head of "pkts" array, so that switch's mac
1334                  * learning table will get updated first.
1335                  */
1336                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1337                 pkts[0] = rarp_mbuf;
1338                 i += 1;
1339         }
1340
1341         return i;
1342 }