mbuf: dump outer VLAN
[dpdk.git] / lib / mempool / rte_mempool.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright(c) 2016 6WIND S.A.
4  */
5
6 #ifndef _RTE_MEMPOOL_H_
7 #define _RTE_MEMPOOL_H_
8
9 /**
10  * @file
11  * RTE Mempool.
12  *
13  * A memory pool is an allocator of fixed-size object. It is
14  * identified by its name, and uses a ring to store free objects. It
15  * provides some other optional services, like a per-core object
16  * cache, and an alignment helper to ensure that objects are padded
17  * to spread them equally on all RAM channels, ranks, and so on.
18  *
19  * Objects owned by a mempool should never be added in another
20  * mempool. When an object is freed using rte_mempool_put() or
21  * equivalent, the object data is not modified; the user can save some
22  * meta-data in the object data and retrieve them when allocating a
23  * new object.
24  *
25  * Note: the mempool implementation is not preemptible. An lcore must not be
26  * interrupted by another task that uses the same mempool (because it uses a
27  * ring which is not preemptible). Also, usual mempool functions like
28  * rte_mempool_get() or rte_mempool_put() are designed to be called from an EAL
29  * thread due to the internal per-lcore cache. Due to the lack of caching,
30  * rte_mempool_get() or rte_mempool_put() performance will suffer when called
31  * by unregistered non-EAL threads. Instead, unregistered non-EAL threads
32  * should call rte_mempool_generic_get() or rte_mempool_generic_put() with a
33  * user cache created with rte_mempool_cache_create().
34  */
35
36 #include <stdio.h>
37 #include <stdint.h>
38 #include <inttypes.h>
39
40 #include <rte_config.h>
41 #include <rte_spinlock.h>
42 #include <rte_debug.h>
43 #include <rte_lcore.h>
44 #include <rte_branch_prediction.h>
45 #include <rte_ring.h>
46 #include <rte_memcpy.h>
47 #include <rte_common.h>
48
49 #include "rte_mempool_trace_fp.h"
50
51 #ifdef __cplusplus
52 extern "C" {
53 #endif
54
55 #define RTE_MEMPOOL_HEADER_COOKIE1  0xbadbadbadadd2e55ULL /**< Header cookie. */
56 #define RTE_MEMPOOL_HEADER_COOKIE2  0xf2eef2eedadd2e55ULL /**< Header cookie. */
57 #define RTE_MEMPOOL_TRAILER_COOKIE  0xadd2e55badbadbadULL /**< Trailer cookie.*/
58
59 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
60 /**
61  * A structure that stores the mempool statistics (per-lcore).
62  * Note: Cache stats (put_cache_bulk/objs, get_cache_bulk/objs) are not
63  * captured since they can be calculated from other stats.
64  * For example: put_cache_objs = put_objs - put_common_pool_objs.
65  */
66 struct rte_mempool_debug_stats {
67         uint64_t put_bulk;             /**< Number of puts. */
68         uint64_t put_objs;             /**< Number of objects successfully put. */
69         uint64_t put_common_pool_bulk; /**< Number of bulks enqueued in common pool. */
70         uint64_t put_common_pool_objs; /**< Number of objects enqueued in common pool. */
71         uint64_t get_common_pool_bulk; /**< Number of bulks dequeued from common pool. */
72         uint64_t get_common_pool_objs; /**< Number of objects dequeued from common pool. */
73         uint64_t get_success_bulk;     /**< Successful allocation number. */
74         uint64_t get_success_objs;     /**< Objects successfully allocated. */
75         uint64_t get_fail_bulk;        /**< Failed allocation number. */
76         uint64_t get_fail_objs;        /**< Objects that failed to be allocated. */
77         uint64_t get_success_blks;     /**< Successful allocation number of contiguous blocks. */
78         uint64_t get_fail_blks;        /**< Failed allocation number of contiguous blocks. */
79 } __rte_cache_aligned;
80 #endif
81
82 /**
83  * A structure that stores a per-core object cache.
84  */
85 struct rte_mempool_cache {
86         uint32_t size;        /**< Size of the cache */
87         uint32_t flushthresh; /**< Threshold before we flush excess elements */
88         uint32_t len;         /**< Current cache count */
89         /*
90          * Cache is allocated to this size to allow it to overflow in certain
91          * cases to avoid needless emptying of cache.
92          */
93         void *objs[RTE_MEMPOOL_CACHE_MAX_SIZE * 3]; /**< Cache objects */
94 } __rte_cache_aligned;
95
96 /**
97  * A structure that stores the size of mempool elements.
98  */
99 struct rte_mempool_objsz {
100         uint32_t elt_size;     /**< Size of an element. */
101         uint32_t header_size;  /**< Size of header (before elt). */
102         uint32_t trailer_size; /**< Size of trailer (after elt). */
103         uint32_t total_size;
104         /**< Total size of an object (header + elt + trailer). */
105 };
106
107 /**< Maximum length of a memory pool's name. */
108 #define RTE_MEMPOOL_NAMESIZE (RTE_RING_NAMESIZE - \
109                               sizeof(RTE_MEMPOOL_MZ_PREFIX) + 1)
110 #define RTE_MEMPOOL_MZ_PREFIX "MP_"
111
112 /* "MP_<name>" */
113 #define RTE_MEMPOOL_MZ_FORMAT   RTE_MEMPOOL_MZ_PREFIX "%s"
114
115 #define MEMPOOL_PG_SHIFT_MAX \
116         RTE_DEPRECATED(MEMPOOL_PG_SHIFT_MAX) (sizeof(uintptr_t) * CHAR_BIT - 1)
117
118 /** Deprecated. Mempool over one chunk of physically continuous memory */
119 #define MEMPOOL_PG_NUM_DEFAULT  RTE_DEPRECATED(MEMPOOL_PG_NUM_DEFAULT) 1
120
121 #ifndef RTE_MEMPOOL_ALIGN
122 /**
123  * Alignment of elements inside mempool.
124  */
125 #define RTE_MEMPOOL_ALIGN       RTE_CACHE_LINE_SIZE
126 #endif
127
128 #define RTE_MEMPOOL_ALIGN_MASK  (RTE_MEMPOOL_ALIGN - 1)
129
130 /**
131  * Mempool object header structure
132  *
133  * Each object stored in mempools are prefixed by this header structure,
134  * it allows to retrieve the mempool pointer from the object and to
135  * iterate on all objects attached to a mempool. When debug is enabled,
136  * a cookie is also added in this structure preventing corruptions and
137  * double-frees.
138  */
139 struct rte_mempool_objhdr {
140         RTE_STAILQ_ENTRY(rte_mempool_objhdr) next; /**< Next in list. */
141         struct rte_mempool *mp;          /**< The mempool owning the object. */
142         rte_iova_t iova;                 /**< IO address of the object. */
143 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
144         uint64_t cookie;                 /**< Debug cookie. */
145 #endif
146 };
147
148 /**
149  * A list of object headers type
150  */
151 RTE_STAILQ_HEAD(rte_mempool_objhdr_list, rte_mempool_objhdr);
152
153 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
154
155 /**
156  * Mempool object trailer structure
157  *
158  * In debug mode, each object stored in mempools are suffixed by this
159  * trailer structure containing a cookie preventing memory corruptions.
160  */
161 struct rte_mempool_objtlr {
162         uint64_t cookie;                 /**< Debug cookie. */
163 };
164
165 #endif
166
167 /**
168  * A list of memory where objects are stored
169  */
170 RTE_STAILQ_HEAD(rte_mempool_memhdr_list, rte_mempool_memhdr);
171
172 /**
173  * Callback used to free a memory chunk
174  */
175 typedef void (rte_mempool_memchunk_free_cb_t)(struct rte_mempool_memhdr *memhdr,
176         void *opaque);
177
178 /**
179  * Mempool objects memory header structure
180  *
181  * The memory chunks where objects are stored. Each chunk is virtually
182  * and physically contiguous.
183  */
184 struct rte_mempool_memhdr {
185         RTE_STAILQ_ENTRY(rte_mempool_memhdr) next; /**< Next in list. */
186         struct rte_mempool *mp;  /**< The mempool owning the chunk */
187         void *addr;              /**< Virtual address of the chunk */
188         rte_iova_t iova;         /**< IO address of the chunk */
189         size_t len;              /**< length of the chunk */
190         rte_mempool_memchunk_free_cb_t *free_cb; /**< Free callback */
191         void *opaque;            /**< Argument passed to the free callback */
192 };
193
194 /**
195  * Additional information about the mempool
196  *
197  * The structure is cache-line aligned to avoid ABI breakages in
198  * a number of cases when something small is added.
199  */
200 struct rte_mempool_info {
201         /** Number of objects in the contiguous block */
202         unsigned int contig_block_size;
203 } __rte_cache_aligned;
204
205 /**
206  * The RTE mempool structure.
207  */
208 struct rte_mempool {
209         char name[RTE_MEMPOOL_NAMESIZE]; /**< Name of mempool. */
210         RTE_STD_C11
211         union {
212                 void *pool_data;         /**< Ring or pool to store objects. */
213                 uint64_t pool_id;        /**< External mempool identifier. */
214         };
215         void *pool_config;               /**< optional args for ops alloc. */
216         const struct rte_memzone *mz;    /**< Memzone where pool is alloc'd. */
217         unsigned int flags;              /**< Flags of the mempool. */
218         int socket_id;                   /**< Socket id passed at create. */
219         uint32_t size;                   /**< Max size of the mempool. */
220         uint32_t cache_size;
221         /**< Size of per-lcore default local cache. */
222
223         uint32_t elt_size;               /**< Size of an element. */
224         uint32_t header_size;            /**< Size of header (before elt). */
225         uint32_t trailer_size;           /**< Size of trailer (after elt). */
226
227         unsigned private_data_size;      /**< Size of private data. */
228         /**
229          * Index into rte_mempool_ops_table array of mempool ops
230          * structs, which contain callback function pointers.
231          * We're using an index here rather than pointers to the callbacks
232          * to facilitate any secondary processes that may want to use
233          * this mempool.
234          */
235         int32_t ops_index;
236
237         struct rte_mempool_cache *local_cache; /**< Per-lcore local cache */
238
239         uint32_t populated_size;         /**< Number of populated objects. */
240         struct rte_mempool_objhdr_list elt_list; /**< List of objects in pool */
241         uint32_t nb_mem_chunks;          /**< Number of memory chunks */
242         struct rte_mempool_memhdr_list mem_list; /**< List of memory chunks */
243
244 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
245         /** Per-lcore statistics. */
246         struct rte_mempool_debug_stats stats[RTE_MAX_LCORE];
247 #endif
248 }  __rte_cache_aligned;
249
250 /** Spreading among memory channels not required. */
251 #define RTE_MEMPOOL_F_NO_SPREAD         0x0001
252 /**
253  * Backward compatibility synonym for RTE_MEMPOOL_F_NO_SPREAD.
254  * To be deprecated.
255  */
256 #define MEMPOOL_F_NO_SPREAD             RTE_MEMPOOL_F_NO_SPREAD
257 /** Do not align objects on cache lines. */
258 #define RTE_MEMPOOL_F_NO_CACHE_ALIGN    0x0002
259 /**
260  * Backward compatibility synonym for RTE_MEMPOOL_F_NO_CACHE_ALIGN.
261  * To be deprecated.
262  */
263 #define MEMPOOL_F_NO_CACHE_ALIGN        RTE_MEMPOOL_F_NO_CACHE_ALIGN
264 /** Default put is "single-producer". */
265 #define RTE_MEMPOOL_F_SP_PUT            0x0004
266 /**
267  * Backward compatibility synonym for RTE_MEMPOOL_F_SP_PUT.
268  * To be deprecated.
269  */
270 #define MEMPOOL_F_SP_PUT                RTE_MEMPOOL_F_SP_PUT
271 /** Default get is "single-consumer". */
272 #define RTE_MEMPOOL_F_SC_GET            0x0008
273 /**
274  * Backward compatibility synonym for RTE_MEMPOOL_F_SC_GET.
275  * To be deprecated.
276  */
277 #define MEMPOOL_F_SC_GET                RTE_MEMPOOL_F_SC_GET
278 /** Internal: pool is created. */
279 #define RTE_MEMPOOL_F_POOL_CREATED      0x0010
280 /** Don't need IOVA contiguous objects. */
281 #define RTE_MEMPOOL_F_NO_IOVA_CONTIG    0x0020
282 /**
283  * Backward compatibility synonym for RTE_MEMPOOL_F_NO_IOVA_CONTIG.
284  * To be deprecated.
285  */
286 #define MEMPOOL_F_NO_IOVA_CONTIG        RTE_MEMPOOL_F_NO_IOVA_CONTIG
287 /** Internal: no object from the pool can be used for device IO (DMA). */
288 #define RTE_MEMPOOL_F_NON_IO            0x0040
289
290 /**
291  * This macro lists all the mempool flags an application may request.
292  */
293 #define RTE_MEMPOOL_VALID_USER_FLAGS (RTE_MEMPOOL_F_NO_SPREAD \
294         | RTE_MEMPOOL_F_NO_CACHE_ALIGN \
295         | RTE_MEMPOOL_F_SP_PUT \
296         | RTE_MEMPOOL_F_SC_GET \
297         | RTE_MEMPOOL_F_NO_IOVA_CONTIG \
298         )
299 /**
300  * @internal When debug is enabled, store some statistics.
301  *
302  * @param mp
303  *   Pointer to the memory pool.
304  * @param name
305  *   Name of the statistics field to increment in the memory pool.
306  * @param n
307  *   Number to add to the object-oriented statistics.
308  */
309 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
310 #define RTE_MEMPOOL_STAT_ADD(mp, name, n) do {                  \
311                 unsigned __lcore_id = rte_lcore_id();           \
312                 if (__lcore_id < RTE_MAX_LCORE) {               \
313                         mp->stats[__lcore_id].name += n;        \
314                 }                                               \
315         } while (0)
316 #else
317 #define RTE_MEMPOOL_STAT_ADD(mp, name, n) do {} while (0)
318 #endif
319
320 /**
321  * @internal Calculate the size of the mempool header.
322  *
323  * @param mp
324  *   Pointer to the memory pool.
325  * @param cs
326  *   Size of the per-lcore cache.
327  */
328 #define RTE_MEMPOOL_HEADER_SIZE(mp, cs) \
329         (sizeof(*(mp)) + (((cs) == 0) ? 0 : \
330         (sizeof(struct rte_mempool_cache) * RTE_MAX_LCORE)))
331
332 /** Deprecated. Use RTE_MEMPOOL_HEADER_SIZE() for internal purposes only. */
333 #define MEMPOOL_HEADER_SIZE(mp, cs) \
334         RTE_DEPRECATED(MEMPOOL_HEADER_SIZE) RTE_MEMPOOL_HEADER_SIZE(mp, cs)
335
336 /* return the header of a mempool object (internal) */
337 static inline struct rte_mempool_objhdr *
338 rte_mempool_get_header(void *obj)
339 {
340         return (struct rte_mempool_objhdr *)RTE_PTR_SUB(obj,
341                 sizeof(struct rte_mempool_objhdr));
342 }
343
344 /**
345  * Return a pointer to the mempool owning this object.
346  *
347  * @param obj
348  *   An object that is owned by a pool. If this is not the case,
349  *   the behavior is undefined.
350  * @return
351  *   A pointer to the mempool structure.
352  */
353 static inline struct rte_mempool *rte_mempool_from_obj(void *obj)
354 {
355         struct rte_mempool_objhdr *hdr = rte_mempool_get_header(obj);
356         return hdr->mp;
357 }
358
359 /* return the trailer of a mempool object (internal) */
360 static inline struct rte_mempool_objtlr *rte_mempool_get_trailer(void *obj)
361 {
362         struct rte_mempool *mp = rte_mempool_from_obj(obj);
363         return (struct rte_mempool_objtlr *)RTE_PTR_ADD(obj, mp->elt_size);
364 }
365
366 /**
367  * @internal Check and update cookies or panic.
368  *
369  * @param mp
370  *   Pointer to the memory pool.
371  * @param obj_table_const
372  *   Pointer to a table of void * pointers (objects).
373  * @param n
374  *   Index of object in object table.
375  * @param free
376  *   - 0: object is supposed to be allocated, mark it as free
377  *   - 1: object is supposed to be free, mark it as allocated
378  *   - 2: just check that cookie is valid (free or allocated)
379  */
380 void rte_mempool_check_cookies(const struct rte_mempool *mp,
381         void * const *obj_table_const, unsigned n, int free);
382
383 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
384 #define RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table_const, n, free) \
385         rte_mempool_check_cookies(mp, obj_table_const, n, free)
386 #else
387 #define RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table_const, n, free) do {} while (0)
388 #endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
389
390 /**
391  * @internal Check contiguous object blocks and update cookies or panic.
392  *
393  * @param mp
394  *   Pointer to the memory pool.
395  * @param first_obj_table_const
396  *   Pointer to a table of void * pointers (first object of the contiguous
397  *   object blocks).
398  * @param n
399  *   Number of contiguous object blocks.
400  * @param free
401  *   - 0: object is supposed to be allocated, mark it as free
402  *   - 1: object is supposed to be free, mark it as allocated
403  *   - 2: just check that cookie is valid (free or allocated)
404  */
405 void rte_mempool_contig_blocks_check_cookies(const struct rte_mempool *mp,
406         void * const *first_obj_table_const, unsigned int n, int free);
407
408 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
409 #define RTE_MEMPOOL_CONTIG_BLOCKS_CHECK_COOKIES(mp, first_obj_table_const, n, \
410                                                 free) \
411         rte_mempool_contig_blocks_check_cookies(mp, first_obj_table_const, n, \
412                                                 free)
413 #else
414 #define RTE_MEMPOOL_CONTIG_BLOCKS_CHECK_COOKIES(mp, first_obj_table_const, n, \
415                                                 free) \
416         do {} while (0)
417 #endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
418
419 #define RTE_MEMPOOL_OPS_NAMESIZE 32 /**< Max length of ops struct name. */
420
421 /**
422  * Prototype for implementation specific data provisioning function.
423  *
424  * The function should provide the implementation specific memory for
425  * use by the other mempool ops functions in a given mempool ops struct.
426  * E.g. the default ops provides an instance of the rte_ring for this purpose.
427  * it will most likely point to a different type of data structure, and
428  * will be transparent to the application programmer.
429  * This function should set mp->pool_data.
430  */
431 typedef int (*rte_mempool_alloc_t)(struct rte_mempool *mp);
432
433 /**
434  * Free the opaque private data pointed to by mp->pool_data pointer.
435  */
436 typedef void (*rte_mempool_free_t)(struct rte_mempool *mp);
437
438 /**
439  * Enqueue an object into the external pool.
440  */
441 typedef int (*rte_mempool_enqueue_t)(struct rte_mempool *mp,
442                 void * const *obj_table, unsigned int n);
443
444 /**
445  * Dequeue an object from the external pool.
446  */
447 typedef int (*rte_mempool_dequeue_t)(struct rte_mempool *mp,
448                 void **obj_table, unsigned int n);
449
450 /**
451  * Dequeue a number of contiguous object blocks from the external pool.
452  */
453 typedef int (*rte_mempool_dequeue_contig_blocks_t)(struct rte_mempool *mp,
454                  void **first_obj_table, unsigned int n);
455
456 /**
457  * Return the number of available objects in the external pool.
458  */
459 typedef unsigned (*rte_mempool_get_count)(const struct rte_mempool *mp);
460
461 /**
462  * Calculate memory size required to store given number of objects.
463  *
464  * If mempool objects are not required to be IOVA-contiguous
465  * (the flag RTE_MEMPOOL_F_NO_IOVA_CONTIG is set), min_chunk_size defines
466  * virtually contiguous chunk size. Otherwise, if mempool objects must
467  * be IOVA-contiguous (the flag RTE_MEMPOOL_F_NO_IOVA_CONTIG is clear),
468  * min_chunk_size defines IOVA-contiguous chunk size.
469  *
470  * @param[in] mp
471  *   Pointer to the memory pool.
472  * @param[in] obj_num
473  *   Number of objects.
474  * @param[in] pg_shift
475  *   LOG2 of the physical pages size. If set to 0, ignore page boundaries.
476  * @param[out] min_chunk_size
477  *   Location for minimum size of the memory chunk which may be used to
478  *   store memory pool objects.
479  * @param[out] align
480  *   Location for required memory chunk alignment.
481  * @return
482  *   Required memory size.
483  */
484 typedef ssize_t (*rte_mempool_calc_mem_size_t)(const struct rte_mempool *mp,
485                 uint32_t obj_num,  uint32_t pg_shift,
486                 size_t *min_chunk_size, size_t *align);
487
488 /**
489  * @internal Helper to calculate memory size required to store given
490  * number of objects.
491  *
492  * This function is internal to mempool library and mempool drivers.
493  *
494  * If page boundaries may be ignored, it is just a product of total
495  * object size including header and trailer and number of objects.
496  * Otherwise, it is a number of pages required to store given number of
497  * objects without crossing page boundary.
498  *
499  * Note that if object size is bigger than page size, then it assumes
500  * that pages are grouped in subsets of physically continuous pages big
501  * enough to store at least one object.
502  *
503  * Minimum size of memory chunk is the total element size.
504  * Required memory chunk alignment is the cache line size.
505  *
506  * @param[in] mp
507  *   A pointer to the mempool structure.
508  * @param[in] obj_num
509  *   Number of objects to be added in mempool.
510  * @param[in] pg_shift
511  *   LOG2 of the physical pages size. If set to 0, ignore page boundaries.
512  * @param[in] chunk_reserve
513  *   Amount of memory that must be reserved at the beginning of each page,
514  *   or at the beginning of the memory area if pg_shift is 0.
515  * @param[out] min_chunk_size
516  *   Location for minimum size of the memory chunk which may be used to
517  *   store memory pool objects.
518  * @param[out] align
519  *   Location for required memory chunk alignment.
520  * @return
521  *   Required memory size.
522  */
523 ssize_t rte_mempool_op_calc_mem_size_helper(const struct rte_mempool *mp,
524                 uint32_t obj_num, uint32_t pg_shift, size_t chunk_reserve,
525                 size_t *min_chunk_size, size_t *align);
526
527 /**
528  * Default way to calculate memory size required to store given number of
529  * objects.
530  *
531  * Equivalent to rte_mempool_op_calc_mem_size_helper(mp, obj_num, pg_shift,
532  * 0, min_chunk_size, align).
533  */
534 ssize_t rte_mempool_op_calc_mem_size_default(const struct rte_mempool *mp,
535                 uint32_t obj_num, uint32_t pg_shift,
536                 size_t *min_chunk_size, size_t *align);
537
538 /**
539  * Function to be called for each populated object.
540  *
541  * @param[in] mp
542  *   A pointer to the mempool structure.
543  * @param[in] opaque
544  *   An opaque pointer passed to iterator.
545  * @param[in] vaddr
546  *   Object virtual address.
547  * @param[in] iova
548  *   Input/output virtual address of the object or RTE_BAD_IOVA.
549  */
550 typedef void (rte_mempool_populate_obj_cb_t)(struct rte_mempool *mp,
551                 void *opaque, void *vaddr, rte_iova_t iova);
552
553 /**
554  * Populate memory pool objects using provided memory chunk.
555  *
556  * Populated objects should be enqueued to the pool, e.g. using
557  * rte_mempool_ops_enqueue_bulk().
558  *
559  * If the given IO address is unknown (iova = RTE_BAD_IOVA),
560  * the chunk doesn't need to be physically contiguous (only virtually),
561  * and allocated objects may span two pages.
562  *
563  * @param[in] mp
564  *   A pointer to the mempool structure.
565  * @param[in] max_objs
566  *   Maximum number of objects to be populated.
567  * @param[in] vaddr
568  *   The virtual address of memory that should be used to store objects.
569  * @param[in] iova
570  *   The IO address
571  * @param[in] len
572  *   The length of memory in bytes.
573  * @param[in] obj_cb
574  *   Callback function to be executed for each populated object.
575  * @param[in] obj_cb_arg
576  *   An opaque pointer passed to the callback function.
577  * @return
578  *   The number of objects added on success.
579  *   On error, no objects are populated and a negative errno is returned.
580  */
581 typedef int (*rte_mempool_populate_t)(struct rte_mempool *mp,
582                 unsigned int max_objs,
583                 void *vaddr, rte_iova_t iova, size_t len,
584                 rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
585
586 /**
587  * Align objects on addresses multiple of total_elt_sz.
588  */
589 #define RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ 0x0001
590
591 /**
592  * @internal Helper to populate memory pool object using provided memory
593  * chunk: just slice objects one by one, taking care of not
594  * crossing page boundaries.
595  *
596  * If RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ is set in flags, the addresses
597  * of object headers will be aligned on a multiple of total_elt_sz.
598  * This feature is used by octeontx hardware.
599  *
600  * This function is internal to mempool library and mempool drivers.
601  *
602  * @param[in] mp
603  *   A pointer to the mempool structure.
604  * @param[in] flags
605  *   Logical OR of following flags:
606  *   - RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ: align objects on addresses
607  *     multiple of total_elt_sz.
608  * @param[in] max_objs
609  *   Maximum number of objects to be added in mempool.
610  * @param[in] vaddr
611  *   The virtual address of memory that should be used to store objects.
612  * @param[in] iova
613  *   The IO address corresponding to vaddr, or RTE_BAD_IOVA.
614  * @param[in] len
615  *   The length of memory in bytes.
616  * @param[in] obj_cb
617  *   Callback function to be executed for each populated object.
618  * @param[in] obj_cb_arg
619  *   An opaque pointer passed to the callback function.
620  * @return
621  *   The number of objects added in mempool.
622  */
623 int rte_mempool_op_populate_helper(struct rte_mempool *mp,
624                 unsigned int flags, unsigned int max_objs,
625                 void *vaddr, rte_iova_t iova, size_t len,
626                 rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
627
628 /**
629  * Default way to populate memory pool object using provided memory chunk.
630  *
631  * Equivalent to rte_mempool_op_populate_helper(mp, 0, max_objs, vaddr, iova,
632  * len, obj_cb, obj_cb_arg).
633  */
634 int rte_mempool_op_populate_default(struct rte_mempool *mp,
635                 unsigned int max_objs,
636                 void *vaddr, rte_iova_t iova, size_t len,
637                 rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
638
639 /**
640  * Get some additional information about a mempool.
641  */
642 typedef int (*rte_mempool_get_info_t)(const struct rte_mempool *mp,
643                 struct rte_mempool_info *info);
644
645
646 /** Structure defining mempool operations structure */
647 struct rte_mempool_ops {
648         char name[RTE_MEMPOOL_OPS_NAMESIZE]; /**< Name of mempool ops struct. */
649         rte_mempool_alloc_t alloc;       /**< Allocate private data. */
650         rte_mempool_free_t free;         /**< Free the external pool. */
651         rte_mempool_enqueue_t enqueue;   /**< Enqueue an object. */
652         rte_mempool_dequeue_t dequeue;   /**< Dequeue an object. */
653         rte_mempool_get_count get_count; /**< Get qty of available objs. */
654         /**
655          * Optional callback to calculate memory size required to
656          * store specified number of objects.
657          */
658         rte_mempool_calc_mem_size_t calc_mem_size;
659         /**
660          * Optional callback to populate mempool objects using
661          * provided memory chunk.
662          */
663         rte_mempool_populate_t populate;
664         /**
665          * Get mempool info
666          */
667         rte_mempool_get_info_t get_info;
668         /**
669          * Dequeue a number of contiguous object blocks.
670          */
671         rte_mempool_dequeue_contig_blocks_t dequeue_contig_blocks;
672 } __rte_cache_aligned;
673
674 #define RTE_MEMPOOL_MAX_OPS_IDX 16  /**< Max registered ops structs */
675
676 /**
677  * Structure storing the table of registered ops structs, each of which contain
678  * the function pointers for the mempool ops functions.
679  * Each process has its own storage for this ops struct array so that
680  * the mempools can be shared across primary and secondary processes.
681  * The indices used to access the array are valid across processes, whereas
682  * any function pointers stored directly in the mempool struct would not be.
683  * This results in us simply having "ops_index" in the mempool struct.
684  */
685 struct rte_mempool_ops_table {
686         rte_spinlock_t sl;     /**< Spinlock for add/delete. */
687         uint32_t num_ops;      /**< Number of used ops structs in the table. */
688         /**
689          * Storage for all possible ops structs.
690          */
691         struct rte_mempool_ops ops[RTE_MEMPOOL_MAX_OPS_IDX];
692 } __rte_cache_aligned;
693
694 /** Array of registered ops structs. */
695 extern struct rte_mempool_ops_table rte_mempool_ops_table;
696
697 /**
698  * @internal Get the mempool ops struct from its index.
699  *
700  * @param ops_index
701  *   The index of the ops struct in the ops struct table. It must be a valid
702  *   index: (0 <= idx < num_ops).
703  * @return
704  *   The pointer to the ops struct in the table.
705  */
706 static inline struct rte_mempool_ops *
707 rte_mempool_get_ops(int ops_index)
708 {
709         RTE_VERIFY((ops_index >= 0) && (ops_index < RTE_MEMPOOL_MAX_OPS_IDX));
710
711         return &rte_mempool_ops_table.ops[ops_index];
712 }
713
714 /**
715  * @internal Wrapper for mempool_ops alloc callback.
716  *
717  * @param mp
718  *   Pointer to the memory pool.
719  * @return
720  *   - 0: Success; successfully allocated mempool pool_data.
721  *   - <0: Error; code of alloc function.
722  */
723 int
724 rte_mempool_ops_alloc(struct rte_mempool *mp);
725
726 /**
727  * @internal Wrapper for mempool_ops dequeue callback.
728  *
729  * @param mp
730  *   Pointer to the memory pool.
731  * @param obj_table
732  *   Pointer to a table of void * pointers (objects).
733  * @param n
734  *   Number of objects to get.
735  * @return
736  *   - 0: Success; got n objects.
737  *   - <0: Error; code of dequeue function.
738  */
739 static inline int
740 rte_mempool_ops_dequeue_bulk(struct rte_mempool *mp,
741                 void **obj_table, unsigned n)
742 {
743         struct rte_mempool_ops *ops;
744         int ret;
745
746         rte_mempool_trace_ops_dequeue_bulk(mp, obj_table, n);
747         ops = rte_mempool_get_ops(mp->ops_index);
748         ret = ops->dequeue(mp, obj_table, n);
749         if (ret == 0) {
750                 RTE_MEMPOOL_STAT_ADD(mp, get_common_pool_bulk, 1);
751                 RTE_MEMPOOL_STAT_ADD(mp, get_common_pool_objs, n);
752         }
753         return ret;
754 }
755
756 /**
757  * @internal Wrapper for mempool_ops dequeue_contig_blocks callback.
758  *
759  * @param[in] mp
760  *   Pointer to the memory pool.
761  * @param[out] first_obj_table
762  *   Pointer to a table of void * pointers (first objects).
763  * @param[in] n
764  *   Number of blocks to get.
765  * @return
766  *   - 0: Success; got n objects.
767  *   - <0: Error; code of dequeue function.
768  */
769 static inline int
770 rte_mempool_ops_dequeue_contig_blocks(struct rte_mempool *mp,
771                 void **first_obj_table, unsigned int n)
772 {
773         struct rte_mempool_ops *ops;
774
775         ops = rte_mempool_get_ops(mp->ops_index);
776         RTE_ASSERT(ops->dequeue_contig_blocks != NULL);
777         rte_mempool_trace_ops_dequeue_contig_blocks(mp, first_obj_table, n);
778         return ops->dequeue_contig_blocks(mp, first_obj_table, n);
779 }
780
781 /**
782  * @internal wrapper for mempool_ops enqueue callback.
783  *
784  * @param mp
785  *   Pointer to the memory pool.
786  * @param obj_table
787  *   Pointer to a table of void * pointers (objects).
788  * @param n
789  *   Number of objects to put.
790  * @return
791  *   - 0: Success; n objects supplied.
792  *   - <0: Error; code of enqueue function.
793  */
794 static inline int
795 rte_mempool_ops_enqueue_bulk(struct rte_mempool *mp, void * const *obj_table,
796                 unsigned n)
797 {
798         struct rte_mempool_ops *ops;
799
800         RTE_MEMPOOL_STAT_ADD(mp, put_common_pool_bulk, 1);
801         RTE_MEMPOOL_STAT_ADD(mp, put_common_pool_objs, n);
802         rte_mempool_trace_ops_enqueue_bulk(mp, obj_table, n);
803         ops = rte_mempool_get_ops(mp->ops_index);
804         return ops->enqueue(mp, obj_table, n);
805 }
806
807 /**
808  * @internal wrapper for mempool_ops get_count callback.
809  *
810  * @param mp
811  *   Pointer to the memory pool.
812  * @return
813  *   The number of available objects in the external pool.
814  */
815 unsigned
816 rte_mempool_ops_get_count(const struct rte_mempool *mp);
817
818 /**
819  * @internal wrapper for mempool_ops calc_mem_size callback.
820  * API to calculate size of memory required to store specified number of
821  * object.
822  *
823  * @param[in] mp
824  *   Pointer to the memory pool.
825  * @param[in] obj_num
826  *   Number of objects.
827  * @param[in] pg_shift
828  *   LOG2 of the physical pages size. If set to 0, ignore page boundaries.
829  * @param[out] min_chunk_size
830  *   Location for minimum size of the memory chunk which may be used to
831  *   store memory pool objects.
832  * @param[out] align
833  *   Location for required memory chunk alignment.
834  * @return
835  *   Required memory size aligned at page boundary.
836  */
837 ssize_t rte_mempool_ops_calc_mem_size(const struct rte_mempool *mp,
838                                       uint32_t obj_num, uint32_t pg_shift,
839                                       size_t *min_chunk_size, size_t *align);
840
841 /**
842  * @internal wrapper for mempool_ops populate callback.
843  *
844  * Populate memory pool objects using provided memory chunk.
845  *
846  * @param[in] mp
847  *   A pointer to the mempool structure.
848  * @param[in] max_objs
849  *   Maximum number of objects to be populated.
850  * @param[in] vaddr
851  *   The virtual address of memory that should be used to store objects.
852  * @param[in] iova
853  *   The IO address
854  * @param[in] len
855  *   The length of memory in bytes.
856  * @param[in] obj_cb
857  *   Callback function to be executed for each populated object.
858  * @param[in] obj_cb_arg
859  *   An opaque pointer passed to the callback function.
860  * @return
861  *   The number of objects added on success.
862  *   On error, no objects are populated and a negative errno is returned.
863  */
864 int rte_mempool_ops_populate(struct rte_mempool *mp, unsigned int max_objs,
865                              void *vaddr, rte_iova_t iova, size_t len,
866                              rte_mempool_populate_obj_cb_t *obj_cb,
867                              void *obj_cb_arg);
868
869 /**
870  * Wrapper for mempool_ops get_info callback.
871  *
872  * @param[in] mp
873  *   Pointer to the memory pool.
874  * @param[out] info
875  *   Pointer to the rte_mempool_info structure
876  * @return
877  *   - 0: Success; The mempool driver supports retrieving supplementary
878  *        mempool information
879  *   - -ENOTSUP - doesn't support get_info ops (valid case).
880  */
881 int rte_mempool_ops_get_info(const struct rte_mempool *mp,
882                          struct rte_mempool_info *info);
883
884 /**
885  * @internal wrapper for mempool_ops free callback.
886  *
887  * @param mp
888  *   Pointer to the memory pool.
889  */
890 void
891 rte_mempool_ops_free(struct rte_mempool *mp);
892
893 /**
894  * Set the ops of a mempool.
895  *
896  * This can only be done on a mempool that is not populated, i.e. just after
897  * a call to rte_mempool_create_empty().
898  *
899  * @param mp
900  *   Pointer to the memory pool.
901  * @param name
902  *   Name of the ops structure to use for this mempool.
903  * @param pool_config
904  *   Opaque data that can be passed by the application to the ops functions.
905  * @return
906  *   - 0: Success; the mempool is now using the requested ops functions.
907  *   - -EINVAL - Invalid ops struct name provided.
908  *   - -EEXIST - mempool already has an ops struct assigned.
909  */
910 int
911 rte_mempool_set_ops_byname(struct rte_mempool *mp, const char *name,
912                 void *pool_config);
913
914 /**
915  * Register mempool operations.
916  *
917  * @param ops
918  *   Pointer to an ops structure to register.
919  * @return
920  *   - >=0: Success; return the index of the ops struct in the table.
921  *   - -EINVAL - some missing callbacks while registering ops struct.
922  *   - -ENOSPC - the maximum number of ops structs has been reached.
923  */
924 int rte_mempool_register_ops(const struct rte_mempool_ops *ops);
925
926 /**
927  * Macro to statically register the ops of a mempool handler.
928  * Note that the rte_mempool_register_ops fails silently here when
929  * more than RTE_MEMPOOL_MAX_OPS_IDX is registered.
930  */
931 #define RTE_MEMPOOL_REGISTER_OPS(ops)                           \
932         RTE_INIT(mp_hdlr_init_##ops)                            \
933         {                                                       \
934                 rte_mempool_register_ops(&ops);                 \
935         }
936
937 /** Deprecated. Use RTE_MEMPOOL_REGISTER_OPS() instead. */
938 #define MEMPOOL_REGISTER_OPS(ops) \
939         RTE_DEPRECATED(MEMPOOL_REGISTER_OPS) RTE_MEMPOOL_REGISTER_OPS(ops)
940
941 /**
942  * An object callback function for mempool.
943  *
944  * Used by rte_mempool_create() and rte_mempool_obj_iter().
945  */
946 typedef void (rte_mempool_obj_cb_t)(struct rte_mempool *mp,
947                 void *opaque, void *obj, unsigned obj_idx);
948 typedef rte_mempool_obj_cb_t rte_mempool_obj_ctor_t; /* compat */
949
950 /**
951  * A memory callback function for mempool.
952  *
953  * Used by rte_mempool_mem_iter().
954  */
955 typedef void (rte_mempool_mem_cb_t)(struct rte_mempool *mp,
956                 void *opaque, struct rte_mempool_memhdr *memhdr,
957                 unsigned mem_idx);
958
959 /**
960  * A mempool constructor callback function.
961  *
962  * Arguments are the mempool and the opaque pointer given by the user in
963  * rte_mempool_create().
964  */
965 typedef void (rte_mempool_ctor_t)(struct rte_mempool *, void *);
966
967 /**
968  * Create a new mempool named *name* in memory.
969  *
970  * This function uses ``rte_memzone_reserve()`` to allocate memory. The
971  * pool contains n elements of elt_size. Its size is set to n.
972  *
973  * @param name
974  *   The name of the mempool.
975  * @param n
976  *   The number of elements in the mempool. The optimum size (in terms of
977  *   memory usage) for a mempool is when n is a power of two minus one:
978  *   n = (2^q - 1).
979  * @param elt_size
980  *   The size of each element.
981  * @param cache_size
982  *   If cache_size is non-zero, the rte_mempool library will try to
983  *   limit the accesses to the common lockless pool, by maintaining a
984  *   per-lcore object cache. This argument must be lower or equal to
985  *   RTE_MEMPOOL_CACHE_MAX_SIZE and n / 1.5. It is advised to choose
986  *   cache_size to have "n modulo cache_size == 0": if this is
987  *   not the case, some elements will always stay in the pool and will
988  *   never be used. The access to the per-lcore table is of course
989  *   faster than the multi-producer/consumer pool. The cache can be
990  *   disabled if the cache_size argument is set to 0; it can be useful to
991  *   avoid losing objects in cache.
992  * @param private_data_size
993  *   The size of the private data appended after the mempool
994  *   structure. This is useful for storing some private data after the
995  *   mempool structure, as is done for rte_mbuf_pool for example.
996  * @param mp_init
997  *   A function pointer that is called for initialization of the pool,
998  *   before object initialization. The user can initialize the private
999  *   data in this function if needed. This parameter can be NULL if
1000  *   not needed.
1001  * @param mp_init_arg
1002  *   An opaque pointer to data that can be used in the mempool
1003  *   constructor function.
1004  * @param obj_init
1005  *   A function pointer that is called for each object at
1006  *   initialization of the pool. The user can set some meta data in
1007  *   objects if needed. This parameter can be NULL if not needed.
1008  *   The obj_init() function takes the mempool pointer, the init_arg,
1009  *   the object pointer and the object number as parameters.
1010  * @param obj_init_arg
1011  *   An opaque pointer to data that can be used as an argument for
1012  *   each call to the object constructor function.
1013  * @param socket_id
1014  *   The *socket_id* argument is the socket identifier in the case of
1015  *   NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
1016  *   constraint for the reserved zone.
1017  * @param flags
1018  *   The *flags* arguments is an OR of following flags:
1019  *   - RTE_MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread
1020  *     between channels in RAM: the pool allocator will add padding
1021  *     between objects depending on the hardware configuration. See
1022  *     Memory alignment constraints for details. If this flag is set,
1023  *     the allocator will just align them to a cache line.
1024  *   - RTE_MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are
1025  *     cache-aligned. This flag removes this constraint, and no
1026  *     padding will be present between objects. This flag implies
1027  *     RTE_MEMPOOL_F_NO_SPREAD.
1028  *   - RTE_MEMPOOL_F_SP_PUT: If this flag is set, the default behavior
1029  *     when using rte_mempool_put() or rte_mempool_put_bulk() is
1030  *     "single-producer". Otherwise, it is "multi-producers".
1031  *   - RTE_MEMPOOL_F_SC_GET: If this flag is set, the default behavior
1032  *     when using rte_mempool_get() or rte_mempool_get_bulk() is
1033  *     "single-consumer". Otherwise, it is "multi-consumers".
1034  *   - RTE_MEMPOOL_F_NO_IOVA_CONTIG: If set, allocated objects won't
1035  *     necessarily be contiguous in IO memory.
1036  * @return
1037  *   The pointer to the new allocated mempool, on success. NULL on error
1038  *   with rte_errno set appropriately. Possible rte_errno values include:
1039  *    - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
1040  *    - E_RTE_SECONDARY - function was called from a secondary process instance
1041  *    - EINVAL - cache size provided is too large or an unknown flag was passed
1042  *    - ENOSPC - the maximum number of memzones has already been allocated
1043  *    - EEXIST - a memzone with the same name already exists
1044  *    - ENOMEM - no appropriate memory area found in which to create memzone
1045  */
1046 struct rte_mempool *
1047 rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
1048                    unsigned cache_size, unsigned private_data_size,
1049                    rte_mempool_ctor_t *mp_init, void *mp_init_arg,
1050                    rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
1051                    int socket_id, unsigned flags);
1052
1053 /**
1054  * Create an empty mempool
1055  *
1056  * The mempool is allocated and initialized, but it is not populated: no
1057  * memory is allocated for the mempool elements. The user has to call
1058  * rte_mempool_populate_*() to add memory chunks to the pool. Once
1059  * populated, the user may also want to initialize each object with
1060  * rte_mempool_obj_iter().
1061  *
1062  * @param name
1063  *   The name of the mempool.
1064  * @param n
1065  *   The maximum number of elements that can be added in the mempool.
1066  *   The optimum size (in terms of memory usage) for a mempool is when n
1067  *   is a power of two minus one: n = (2^q - 1).
1068  * @param elt_size
1069  *   The size of each element.
1070  * @param cache_size
1071  *   Size of the cache. See rte_mempool_create() for details.
1072  * @param private_data_size
1073  *   The size of the private data appended after the mempool
1074  *   structure. This is useful for storing some private data after the
1075  *   mempool structure, as is done for rte_mbuf_pool for example.
1076  * @param socket_id
1077  *   The *socket_id* argument is the socket identifier in the case of
1078  *   NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
1079  *   constraint for the reserved zone.
1080  * @param flags
1081  *   Flags controlling the behavior of the mempool. See
1082  *   rte_mempool_create() for details.
1083  * @return
1084  *   The pointer to the new allocated mempool, on success. NULL on error
1085  *   with rte_errno set appropriately. See rte_mempool_create() for details.
1086  */
1087 struct rte_mempool *
1088 rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
1089         unsigned cache_size, unsigned private_data_size,
1090         int socket_id, unsigned flags);
1091 /**
1092  * Free a mempool
1093  *
1094  * Unlink the mempool from global list, free the memory chunks, and all
1095  * memory referenced by the mempool. The objects must not be used by
1096  * other cores as they will be freed.
1097  *
1098  * @param mp
1099  *   A pointer to the mempool structure.
1100  *   If NULL then, the function does nothing.
1101  */
1102 void
1103 rte_mempool_free(struct rte_mempool *mp);
1104
1105 /**
1106  * Add physically contiguous memory for objects in the pool at init
1107  *
1108  * Add a virtually and physically contiguous memory chunk in the pool
1109  * where objects can be instantiated.
1110  *
1111  * If the given IO address is unknown (iova = RTE_BAD_IOVA),
1112  * the chunk doesn't need to be physically contiguous (only virtually),
1113  * and allocated objects may span two pages.
1114  *
1115  * @param mp
1116  *   A pointer to the mempool structure.
1117  * @param vaddr
1118  *   The virtual address of memory that should be used to store objects.
1119  * @param iova
1120  *   The IO address
1121  * @param len
1122  *   The length of memory in bytes.
1123  * @param free_cb
1124  *   The callback used to free this chunk when destroying the mempool.
1125  * @param opaque
1126  *   An opaque argument passed to free_cb.
1127  * @return
1128  *   The number of objects added on success (strictly positive).
1129  *   On error, the chunk is not added in the memory list of the
1130  *   mempool the following code is returned:
1131  *     (0): not enough room in chunk for one object.
1132  *     (-ENOSPC): mempool is already populated.
1133  *     (-ENOMEM): allocation failure.
1134  */
1135 int rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr,
1136         rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
1137         void *opaque);
1138
1139 /**
1140  * Add virtually contiguous memory for objects in the pool at init
1141  *
1142  * Add a virtually contiguous memory chunk in the pool where objects can
1143  * be instantiated.
1144  *
1145  * @param mp
1146  *   A pointer to the mempool structure.
1147  * @param addr
1148  *   The virtual address of memory that should be used to store objects.
1149  * @param len
1150  *   The length of memory in bytes.
1151  * @param pg_sz
1152  *   The size of memory pages in this virtual area.
1153  * @param free_cb
1154  *   The callback used to free this chunk when destroying the mempool.
1155  * @param opaque
1156  *   An opaque argument passed to free_cb.
1157  * @return
1158  *   The number of objects added on success (strictly positive).
1159  *   On error, the chunk is not added in the memory list of the
1160  *   mempool the following code is returned:
1161  *     (0): not enough room in chunk for one object.
1162  *     (-ENOSPC): mempool is already populated.
1163  *     (-ENOMEM): allocation failure.
1164  */
1165 int
1166 rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
1167         size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
1168         void *opaque);
1169
1170 /**
1171  * Add memory for objects in the pool at init
1172  *
1173  * This is the default function used by rte_mempool_create() to populate
1174  * the mempool. It adds memory allocated using rte_memzone_reserve().
1175  *
1176  * @param mp
1177  *   A pointer to the mempool structure.
1178  * @return
1179  *   The number of objects added on success.
1180  *   On error, the chunk is not added in the memory list of the
1181  *   mempool and a negative errno is returned.
1182  */
1183 int rte_mempool_populate_default(struct rte_mempool *mp);
1184
1185 /**
1186  * Add memory from anonymous mapping for objects in the pool at init
1187  *
1188  * This function mmap an anonymous memory zone that is locked in
1189  * memory to store the objects of the mempool.
1190  *
1191  * @param mp
1192  *   A pointer to the mempool structure.
1193  * @return
1194  *   The number of objects added on success.
1195  *   On error, 0 is returned, rte_errno is set, and the chunk is not added in
1196  *   the memory list of the mempool.
1197  */
1198 int rte_mempool_populate_anon(struct rte_mempool *mp);
1199
1200 /**
1201  * Call a function for each mempool element
1202  *
1203  * Iterate across all objects attached to a rte_mempool and call the
1204  * callback function on it.
1205  *
1206  * @param mp
1207  *   A pointer to an initialized mempool.
1208  * @param obj_cb
1209  *   A function pointer that is called for each object.
1210  * @param obj_cb_arg
1211  *   An opaque pointer passed to the callback function.
1212  * @return
1213  *   Number of objects iterated.
1214  */
1215 uint32_t rte_mempool_obj_iter(struct rte_mempool *mp,
1216         rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg);
1217
1218 /**
1219  * Call a function for each mempool memory chunk
1220  *
1221  * Iterate across all memory chunks attached to a rte_mempool and call
1222  * the callback function on it.
1223  *
1224  * @param mp
1225  *   A pointer to an initialized mempool.
1226  * @param mem_cb
1227  *   A function pointer that is called for each memory chunk.
1228  * @param mem_cb_arg
1229  *   An opaque pointer passed to the callback function.
1230  * @return
1231  *   Number of memory chunks iterated.
1232  */
1233 uint32_t rte_mempool_mem_iter(struct rte_mempool *mp,
1234         rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg);
1235
1236 /**
1237  * Dump the status of the mempool to a file.
1238  *
1239  * @param f
1240  *   A pointer to a file for output
1241  * @param mp
1242  *   A pointer to the mempool structure.
1243  */
1244 void rte_mempool_dump(FILE *f, struct rte_mempool *mp);
1245
1246 /**
1247  * Create a user-owned mempool cache.
1248  *
1249  * This can be used by unregistered non-EAL threads to enable caching when they
1250  * interact with a mempool.
1251  *
1252  * @param size
1253  *   The size of the mempool cache. See rte_mempool_create()'s cache_size
1254  *   parameter description for more information. The same limits and
1255  *   considerations apply here too.
1256  * @param socket_id
1257  *   The socket identifier in the case of NUMA. The value can be
1258  *   SOCKET_ID_ANY if there is no NUMA constraint for the reserved zone.
1259  */
1260 struct rte_mempool_cache *
1261 rte_mempool_cache_create(uint32_t size, int socket_id);
1262
1263 /**
1264  * Free a user-owned mempool cache.
1265  *
1266  * @param cache
1267  *   A pointer to the mempool cache.
1268  */
1269 void
1270 rte_mempool_cache_free(struct rte_mempool_cache *cache);
1271
1272 /**
1273  * Get a pointer to the per-lcore default mempool cache.
1274  *
1275  * @param mp
1276  *   A pointer to the mempool structure.
1277  * @param lcore_id
1278  *   The logical core id.
1279  * @return
1280  *   A pointer to the mempool cache or NULL if disabled or unregistered non-EAL
1281  *   thread.
1282  */
1283 static __rte_always_inline struct rte_mempool_cache *
1284 rte_mempool_default_cache(struct rte_mempool *mp, unsigned lcore_id)
1285 {
1286         if (mp->cache_size == 0)
1287                 return NULL;
1288
1289         if (lcore_id >= RTE_MAX_LCORE)
1290                 return NULL;
1291
1292         rte_mempool_trace_default_cache(mp, lcore_id,
1293                 &mp->local_cache[lcore_id]);
1294         return &mp->local_cache[lcore_id];
1295 }
1296
1297 /**
1298  * Flush a user-owned mempool cache to the specified mempool.
1299  *
1300  * @param cache
1301  *   A pointer to the mempool cache.
1302  * @param mp
1303  *   A pointer to the mempool.
1304  */
1305 static __rte_always_inline void
1306 rte_mempool_cache_flush(struct rte_mempool_cache *cache,
1307                         struct rte_mempool *mp)
1308 {
1309         if (cache == NULL)
1310                 cache = rte_mempool_default_cache(mp, rte_lcore_id());
1311         if (cache == NULL || cache->len == 0)
1312                 return;
1313         rte_mempool_trace_cache_flush(cache, mp);
1314         rte_mempool_ops_enqueue_bulk(mp, cache->objs, cache->len);
1315         cache->len = 0;
1316 }
1317
1318 /**
1319  * @internal Put several objects back in the mempool; used internally.
1320  * @param mp
1321  *   A pointer to the mempool structure.
1322  * @param obj_table
1323  *   A pointer to a table of void * pointers (objects).
1324  * @param n
1325  *   The number of objects to store back in the mempool, must be strictly
1326  *   positive.
1327  * @param cache
1328  *   A pointer to a mempool cache structure. May be NULL if not needed.
1329  */
1330 static __rte_always_inline void
1331 rte_mempool_do_generic_put(struct rte_mempool *mp, void * const *obj_table,
1332                            unsigned int n, struct rte_mempool_cache *cache)
1333 {
1334         void **cache_objs;
1335
1336         /* increment stat now, adding in mempool always success */
1337         RTE_MEMPOOL_STAT_ADD(mp, put_bulk, 1);
1338         RTE_MEMPOOL_STAT_ADD(mp, put_objs, n);
1339
1340         /* No cache provided or if put would overflow mem allocated for cache */
1341         if (unlikely(cache == NULL || n > RTE_MEMPOOL_CACHE_MAX_SIZE))
1342                 goto ring_enqueue;
1343
1344         cache_objs = &cache->objs[cache->len];
1345
1346         /*
1347          * The cache follows the following algorithm
1348          *   1. Add the objects to the cache
1349          *   2. Anything greater than the cache min value (if it crosses the
1350          *   cache flush threshold) is flushed to the ring.
1351          */
1352
1353         /* Add elements back into the cache */
1354         rte_memcpy(&cache_objs[0], obj_table, sizeof(void *) * n);
1355
1356         cache->len += n;
1357
1358         if (cache->len >= cache->flushthresh) {
1359                 rte_mempool_ops_enqueue_bulk(mp, &cache->objs[cache->size],
1360                                 cache->len - cache->size);
1361                 cache->len = cache->size;
1362         }
1363
1364         return;
1365
1366 ring_enqueue:
1367
1368         /* push remaining objects in ring */
1369 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1370         if (rte_mempool_ops_enqueue_bulk(mp, obj_table, n) < 0)
1371                 rte_panic("cannot put objects in mempool\n");
1372 #else
1373         rte_mempool_ops_enqueue_bulk(mp, obj_table, n);
1374 #endif
1375 }
1376
1377
1378 /**
1379  * Put several objects back in the mempool.
1380  *
1381  * @param mp
1382  *   A pointer to the mempool structure.
1383  * @param obj_table
1384  *   A pointer to a table of void * pointers (objects).
1385  * @param n
1386  *   The number of objects to add in the mempool from the obj_table.
1387  * @param cache
1388  *   A pointer to a mempool cache structure. May be NULL if not needed.
1389  */
1390 static __rte_always_inline void
1391 rte_mempool_generic_put(struct rte_mempool *mp, void * const *obj_table,
1392                         unsigned int n, struct rte_mempool_cache *cache)
1393 {
1394         rte_mempool_trace_generic_put(mp, obj_table, n, cache);
1395         RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table, n, 0);
1396         rte_mempool_do_generic_put(mp, obj_table, n, cache);
1397 }
1398
1399 /**
1400  * Put several objects back in the mempool.
1401  *
1402  * This function calls the multi-producer or the single-producer
1403  * version depending on the default behavior that was specified at
1404  * mempool creation time (see flags).
1405  *
1406  * @param mp
1407  *   A pointer to the mempool structure.
1408  * @param obj_table
1409  *   A pointer to a table of void * pointers (objects).
1410  * @param n
1411  *   The number of objects to add in the mempool from obj_table.
1412  */
1413 static __rte_always_inline void
1414 rte_mempool_put_bulk(struct rte_mempool *mp, void * const *obj_table,
1415                      unsigned int n)
1416 {
1417         struct rte_mempool_cache *cache;
1418         cache = rte_mempool_default_cache(mp, rte_lcore_id());
1419         rte_mempool_trace_put_bulk(mp, obj_table, n, cache);
1420         rte_mempool_generic_put(mp, obj_table, n, cache);
1421 }
1422
1423 /**
1424  * Put one object back in the mempool.
1425  *
1426  * This function calls the multi-producer or the single-producer
1427  * version depending on the default behavior that was specified at
1428  * mempool creation time (see flags).
1429  *
1430  * @param mp
1431  *   A pointer to the mempool structure.
1432  * @param obj
1433  *   A pointer to the object to be added.
1434  */
1435 static __rte_always_inline void
1436 rte_mempool_put(struct rte_mempool *mp, void *obj)
1437 {
1438         rte_mempool_put_bulk(mp, &obj, 1);
1439 }
1440
1441 /**
1442  * @internal Get several objects from the mempool; used internally.
1443  * @param mp
1444  *   A pointer to the mempool structure.
1445  * @param obj_table
1446  *   A pointer to a table of void * pointers (objects).
1447  * @param n
1448  *   The number of objects to get, must be strictly positive.
1449  * @param cache
1450  *   A pointer to a mempool cache structure. May be NULL if not needed.
1451  * @return
1452  *   - >=0: Success; number of objects supplied.
1453  *   - <0: Error; code of ring dequeue function.
1454  */
1455 static __rte_always_inline int
1456 rte_mempool_do_generic_get(struct rte_mempool *mp, void **obj_table,
1457                            unsigned int n, struct rte_mempool_cache *cache)
1458 {
1459         int ret;
1460         uint32_t index, len;
1461         void **cache_objs;
1462
1463         /* No cache provided or cannot be satisfied from cache */
1464         if (unlikely(cache == NULL || n >= cache->size))
1465                 goto ring_dequeue;
1466
1467         cache_objs = cache->objs;
1468
1469         /* Can this be satisfied from the cache? */
1470         if (cache->len < n) {
1471                 /* No. Backfill the cache first, and then fill from it */
1472                 uint32_t req = n + (cache->size - cache->len);
1473
1474                 /* How many do we require i.e. number to fill the cache + the request */
1475                 ret = rte_mempool_ops_dequeue_bulk(mp,
1476                         &cache->objs[cache->len], req);
1477                 if (unlikely(ret < 0)) {
1478                         /*
1479                          * In the off chance that we are buffer constrained,
1480                          * where we are not able to allocate cache + n, go to
1481                          * the ring directly. If that fails, we are truly out of
1482                          * buffers.
1483                          */
1484                         goto ring_dequeue;
1485                 }
1486
1487                 cache->len += req;
1488         }
1489
1490         /* Now fill in the response ... */
1491         for (index = 0, len = cache->len - 1; index < n; ++index, len--, obj_table++)
1492                 *obj_table = cache_objs[len];
1493
1494         cache->len -= n;
1495
1496         RTE_MEMPOOL_STAT_ADD(mp, get_success_bulk, 1);
1497         RTE_MEMPOOL_STAT_ADD(mp, get_success_objs, n);
1498
1499         return 0;
1500
1501 ring_dequeue:
1502
1503         /* get remaining objects from ring */
1504         ret = rte_mempool_ops_dequeue_bulk(mp, obj_table, n);
1505
1506         if (ret < 0) {
1507                 RTE_MEMPOOL_STAT_ADD(mp, get_fail_bulk, 1);
1508                 RTE_MEMPOOL_STAT_ADD(mp, get_fail_objs, n);
1509         } else {
1510                 RTE_MEMPOOL_STAT_ADD(mp, get_success_bulk, 1);
1511                 RTE_MEMPOOL_STAT_ADD(mp, get_success_objs, n);
1512         }
1513
1514         return ret;
1515 }
1516
1517 /**
1518  * Get several objects from the mempool.
1519  *
1520  * If cache is enabled, objects will be retrieved first from cache,
1521  * subsequently from the common pool. Note that it can return -ENOENT when
1522  * the local cache and common pool are empty, even if cache from other
1523  * lcores are full.
1524  *
1525  * @param mp
1526  *   A pointer to the mempool structure.
1527  * @param obj_table
1528  *   A pointer to a table of void * pointers (objects) that will be filled.
1529  * @param n
1530  *   The number of objects to get from mempool to obj_table.
1531  * @param cache
1532  *   A pointer to a mempool cache structure. May be NULL if not needed.
1533  * @return
1534  *   - 0: Success; objects taken.
1535  *   - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1536  */
1537 static __rte_always_inline int
1538 rte_mempool_generic_get(struct rte_mempool *mp, void **obj_table,
1539                         unsigned int n, struct rte_mempool_cache *cache)
1540 {
1541         int ret;
1542         ret = rte_mempool_do_generic_get(mp, obj_table, n, cache);
1543         if (ret == 0)
1544                 RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table, n, 1);
1545         rte_mempool_trace_generic_get(mp, obj_table, n, cache);
1546         return ret;
1547 }
1548
1549 /**
1550  * Get several objects from the mempool.
1551  *
1552  * This function calls the multi-consumers or the single-consumer
1553  * version, depending on the default behaviour that was specified at
1554  * mempool creation time (see flags).
1555  *
1556  * If cache is enabled, objects will be retrieved first from cache,
1557  * subsequently from the common pool. Note that it can return -ENOENT when
1558  * the local cache and common pool are empty, even if cache from other
1559  * lcores are full.
1560  *
1561  * @param mp
1562  *   A pointer to the mempool structure.
1563  * @param obj_table
1564  *   A pointer to a table of void * pointers (objects) that will be filled.
1565  * @param n
1566  *   The number of objects to get from the mempool to obj_table.
1567  * @return
1568  *   - 0: Success; objects taken
1569  *   - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1570  */
1571 static __rte_always_inline int
1572 rte_mempool_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned int n)
1573 {
1574         struct rte_mempool_cache *cache;
1575         cache = rte_mempool_default_cache(mp, rte_lcore_id());
1576         rte_mempool_trace_get_bulk(mp, obj_table, n, cache);
1577         return rte_mempool_generic_get(mp, obj_table, n, cache);
1578 }
1579
1580 /**
1581  * Get one object from the mempool.
1582  *
1583  * This function calls the multi-consumers or the single-consumer
1584  * version, depending on the default behavior that was specified at
1585  * mempool creation (see flags).
1586  *
1587  * If cache is enabled, objects will be retrieved first from cache,
1588  * subsequently from the common pool. Note that it can return -ENOENT when
1589  * the local cache and common pool are empty, even if cache from other
1590  * lcores are full.
1591  *
1592  * @param mp
1593  *   A pointer to the mempool structure.
1594  * @param obj_p
1595  *   A pointer to a void * pointer (object) that will be filled.
1596  * @return
1597  *   - 0: Success; objects taken.
1598  *   - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1599  */
1600 static __rte_always_inline int
1601 rte_mempool_get(struct rte_mempool *mp, void **obj_p)
1602 {
1603         return rte_mempool_get_bulk(mp, obj_p, 1);
1604 }
1605
1606 /**
1607  * Get a contiguous blocks of objects from the mempool.
1608  *
1609  * If cache is enabled, consider to flush it first, to reuse objects
1610  * as soon as possible.
1611  *
1612  * The application should check that the driver supports the operation
1613  * by calling rte_mempool_ops_get_info() and checking that `contig_block_size`
1614  * is not zero.
1615  *
1616  * @param mp
1617  *   A pointer to the mempool structure.
1618  * @param first_obj_table
1619  *   A pointer to a pointer to the first object in each block.
1620  * @param n
1621  *   The number of blocks to get from mempool.
1622  * @return
1623  *   - 0: Success; blocks taken.
1624  *   - -ENOBUFS: Not enough entries in the mempool; no object is retrieved.
1625  *   - -EOPNOTSUPP: The mempool driver does not support block dequeue
1626  */
1627 static __rte_always_inline int
1628 rte_mempool_get_contig_blocks(struct rte_mempool *mp,
1629                               void **first_obj_table, unsigned int n)
1630 {
1631         int ret;
1632
1633         ret = rte_mempool_ops_dequeue_contig_blocks(mp, first_obj_table, n);
1634         if (ret == 0) {
1635                 RTE_MEMPOOL_STAT_ADD(mp, get_success_bulk, 1);
1636                 RTE_MEMPOOL_STAT_ADD(mp, get_success_blks, n);
1637                 RTE_MEMPOOL_CONTIG_BLOCKS_CHECK_COOKIES(mp, first_obj_table, n,
1638                                                         1);
1639         } else {
1640                 RTE_MEMPOOL_STAT_ADD(mp, get_fail_bulk, 1);
1641                 RTE_MEMPOOL_STAT_ADD(mp, get_fail_blks, n);
1642         }
1643
1644         rte_mempool_trace_get_contig_blocks(mp, first_obj_table, n);
1645         return ret;
1646 }
1647
1648 /**
1649  * Return the number of entries in the mempool.
1650  *
1651  * When cache is enabled, this function has to browse the length of
1652  * all lcores, so it should not be used in a data path, but only for
1653  * debug purposes. User-owned mempool caches are not accounted for.
1654  *
1655  * @param mp
1656  *   A pointer to the mempool structure.
1657  * @return
1658  *   The number of entries in the mempool.
1659  */
1660 unsigned int rte_mempool_avail_count(const struct rte_mempool *mp);
1661
1662 /**
1663  * Return the number of elements which have been allocated from the mempool
1664  *
1665  * When cache is enabled, this function has to browse the length of
1666  * all lcores, so it should not be used in a data path, but only for
1667  * debug purposes.
1668  *
1669  * @param mp
1670  *   A pointer to the mempool structure.
1671  * @return
1672  *   The number of free entries in the mempool.
1673  */
1674 unsigned int
1675 rte_mempool_in_use_count(const struct rte_mempool *mp);
1676
1677 /**
1678  * Test if the mempool is full.
1679  *
1680  * When cache is enabled, this function has to browse the length of all
1681  * lcores, so it should not be used in a data path, but only for debug
1682  * purposes. User-owned mempool caches are not accounted for.
1683  *
1684  * @param mp
1685  *   A pointer to the mempool structure.
1686  * @return
1687  *   - 1: The mempool is full.
1688  *   - 0: The mempool is not full.
1689  */
1690 static inline int
1691 rte_mempool_full(const struct rte_mempool *mp)
1692 {
1693         return rte_mempool_avail_count(mp) == mp->size;
1694 }
1695
1696 /**
1697  * Test if the mempool is empty.
1698  *
1699  * When cache is enabled, this function has to browse the length of all
1700  * lcores, so it should not be used in a data path, but only for debug
1701  * purposes. User-owned mempool caches are not accounted for.
1702  *
1703  * @param mp
1704  *   A pointer to the mempool structure.
1705  * @return
1706  *   - 1: The mempool is empty.
1707  *   - 0: The mempool is not empty.
1708  */
1709 static inline int
1710 rte_mempool_empty(const struct rte_mempool *mp)
1711 {
1712         return rte_mempool_avail_count(mp) == 0;
1713 }
1714
1715 /**
1716  * Return the IO address of elt, which is an element of the pool mp.
1717  *
1718  * @param elt
1719  *   A pointer (virtual address) to the element of the pool.
1720  * @return
1721  *   The IO address of the elt element.
1722  *   If the mempool was created with RTE_MEMPOOL_F_NO_IOVA_CONTIG, the
1723  *   returned value is RTE_BAD_IOVA.
1724  */
1725 static inline rte_iova_t
1726 rte_mempool_virt2iova(const void *elt)
1727 {
1728         const struct rte_mempool_objhdr *hdr;
1729         hdr = (const struct rte_mempool_objhdr *)RTE_PTR_SUB(elt,
1730                 sizeof(*hdr));
1731         return hdr->iova;
1732 }
1733
1734 /**
1735  * Check the consistency of mempool objects.
1736  *
1737  * Verify the coherency of fields in the mempool structure. Also check
1738  * that the cookies of mempool objects (even the ones that are not
1739  * present in pool) have a correct value. If not, a panic will occur.
1740  *
1741  * @param mp
1742  *   A pointer to the mempool structure.
1743  */
1744 void rte_mempool_audit(struct rte_mempool *mp);
1745
1746 /**
1747  * Return a pointer to the private data in an mempool structure.
1748  *
1749  * @param mp
1750  *   A pointer to the mempool structure.
1751  * @return
1752  *   A pointer to the private data.
1753  */
1754 static inline void *rte_mempool_get_priv(struct rte_mempool *mp)
1755 {
1756         return (char *)mp +
1757                 RTE_MEMPOOL_HEADER_SIZE(mp, mp->cache_size);
1758 }
1759
1760 /**
1761  * Dump the status of all mempools on the console
1762  *
1763  * @param f
1764  *   A pointer to a file for output
1765  */
1766 void rte_mempool_list_dump(FILE *f);
1767
1768 /**
1769  * Search a mempool from its name
1770  *
1771  * @param name
1772  *   The name of the mempool.
1773  * @return
1774  *   The pointer to the mempool matching the name, or NULL if not found.
1775  *   NULL on error
1776  *   with rte_errno set appropriately. Possible rte_errno values include:
1777  *    - ENOENT - required entry not available to return.
1778  *
1779  */
1780 struct rte_mempool *rte_mempool_lookup(const char *name);
1781
1782 /**
1783  * Get the header, trailer and total size of a mempool element.
1784  *
1785  * Given a desired size of the mempool element and mempool flags,
1786  * calculates header, trailer, body and total sizes of the mempool object.
1787  *
1788  * @param elt_size
1789  *   The size of each element, without header and trailer.
1790  * @param flags
1791  *   The flags used for the mempool creation.
1792  *   Consult rte_mempool_create() for more information about possible values.
1793  *   The size of each element.
1794  * @param sz
1795  *   The calculated detailed size the mempool object. May be NULL.
1796  * @return
1797  *   Total size of the mempool object.
1798  */
1799 uint32_t rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
1800         struct rte_mempool_objsz *sz);
1801
1802 /**
1803  * Walk list of all memory pools
1804  *
1805  * @param func
1806  *   Iterator function
1807  * @param arg
1808  *   Argument passed to iterator
1809  */
1810 void rte_mempool_walk(void (*func)(struct rte_mempool *, void *arg),
1811                       void *arg);
1812
1813 /**
1814  * @internal Get page size used for mempool object allocation.
1815  * This function is internal to mempool library and mempool drivers.
1816  */
1817 int
1818 rte_mempool_get_page_size(struct rte_mempool *mp, size_t *pg_sz);
1819
1820 /**
1821  * Mempool event type.
1822  * @internal
1823  */
1824 enum rte_mempool_event {
1825         /** Occurs after a mempool is fully populated. */
1826         RTE_MEMPOOL_EVENT_READY = 0,
1827         /** Occurs before the destruction of a mempool begins. */
1828         RTE_MEMPOOL_EVENT_DESTROY = 1,
1829 };
1830
1831 /**
1832  * @internal
1833  * Mempool event callback.
1834  *
1835  * rte_mempool_event_callback_register() may be called from within the callback,
1836  * but the callbacks registered this way will not be invoked for the same event.
1837  * rte_mempool_event_callback_unregister() may only be safely called
1838  * to remove the running callback.
1839  */
1840 typedef void (rte_mempool_event_callback)(
1841                 enum rte_mempool_event event,
1842                 struct rte_mempool *mp,
1843                 void *user_data);
1844
1845 /**
1846  * @internal
1847  * Register a callback function invoked on mempool life cycle event.
1848  * The function will be invoked in the process
1849  * that performs an action which triggers the callback.
1850  *
1851  * @param func
1852  *   Callback function.
1853  * @param user_data
1854  *   User data.
1855  *
1856  * @return
1857  *   0 on success, negative on failure and rte_errno is set.
1858  */
1859 __rte_internal
1860 int
1861 rte_mempool_event_callback_register(rte_mempool_event_callback *func,
1862                                     void *user_data);
1863
1864 /**
1865  * @internal
1866  * Unregister a callback added with rte_mempool_event_callback_register().
1867  * @p func and @p user_data must exactly match registration parameters.
1868  *
1869  * @param func
1870  *   Callback function.
1871  * @param user_data
1872  *   User data.
1873  *
1874  * @return
1875  *   0 on success, negative on failure and rte_errno is set.
1876  */
1877 __rte_internal
1878 int
1879 rte_mempool_event_callback_unregister(rte_mempool_event_callback *func,
1880                                       void *user_data);
1881
1882 #ifdef __cplusplus
1883 }
1884 #endif
1885
1886 #endif /* _RTE_MEMPOOL_H_ */