mbuf: dump outer VLAN
[dpdk.git] / lib / reorder / rte_reorder.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4
5 #include <string.h>
6
7 #include <rte_string_fns.h>
8 #include <rte_log.h>
9 #include <rte_mbuf.h>
10 #include <rte_mbuf_dyn.h>
11 #include <rte_eal_memconfig.h>
12 #include <rte_errno.h>
13 #include <rte_malloc.h>
14 #include <rte_tailq.h>
15
16 #include "rte_reorder.h"
17
18 TAILQ_HEAD(rte_reorder_list, rte_tailq_entry);
19
20 static struct rte_tailq_elem rte_reorder_tailq = {
21         .name = "RTE_REORDER",
22 };
23 EAL_REGISTER_TAILQ(rte_reorder_tailq)
24
25 #define NO_FLAGS 0
26 #define RTE_REORDER_PREFIX "RO_"
27 #define RTE_REORDER_NAMESIZE 32
28
29 /* Macros for printing using RTE_LOG */
30 #define RTE_LOGTYPE_REORDER     RTE_LOGTYPE_USER1
31
32 #define RTE_REORDER_SEQN_DYNFIELD_NAME "rte_reorder_seqn_dynfield"
33 int rte_reorder_seqn_dynfield_offset = -1;
34
35 /* A generic circular buffer */
36 struct cir_buffer {
37         unsigned int size;   /**< Number of entries that can be stored */
38         unsigned int mask;   /**< [buffer_size - 1]: used for wrap-around */
39         unsigned int head;   /**< insertion point in buffer */
40         unsigned int tail;   /**< extraction point in buffer */
41         struct rte_mbuf **entries;
42 } __rte_cache_aligned;
43
44 /* The reorder buffer data structure itself */
45 struct rte_reorder_buffer {
46         char name[RTE_REORDER_NAMESIZE];
47         uint32_t min_seqn;  /**< Lowest seq. number that can be in the buffer */
48         unsigned int memsize; /**< memory area size of reorder buffer */
49         struct cir_buffer ready_buf; /**< temp buffer for dequeued entries */
50         struct cir_buffer order_buf; /**< buffer used to reorder entries */
51         int is_initialized;
52 } __rte_cache_aligned;
53
54 static void
55 rte_reorder_free_mbufs(struct rte_reorder_buffer *b);
56
57 struct rte_reorder_buffer *
58 rte_reorder_init(struct rte_reorder_buffer *b, unsigned int bufsize,
59                 const char *name, unsigned int size)
60 {
61         const unsigned int min_bufsize = sizeof(*b) +
62                                         (2 * size * sizeof(struct rte_mbuf *));
63
64         if (b == NULL) {
65                 RTE_LOG(ERR, REORDER, "Invalid reorder buffer parameter:"
66                                         " NULL\n");
67                 rte_errno = EINVAL;
68                 return NULL;
69         }
70         if (!rte_is_power_of_2(size)) {
71                 RTE_LOG(ERR, REORDER, "Invalid reorder buffer size"
72                                 " - Not a power of 2\n");
73                 rte_errno = EINVAL;
74                 return NULL;
75         }
76         if (name == NULL) {
77                 RTE_LOG(ERR, REORDER, "Invalid reorder buffer name ptr:"
78                                         " NULL\n");
79                 rte_errno = EINVAL;
80                 return NULL;
81         }
82         if (bufsize < min_bufsize) {
83                 RTE_LOG(ERR, REORDER, "Invalid reorder buffer memory size: %u, "
84                         "minimum required: %u\n", bufsize, min_bufsize);
85                 rte_errno = EINVAL;
86                 return NULL;
87         }
88
89         memset(b, 0, bufsize);
90         strlcpy(b->name, name, sizeof(b->name));
91         b->memsize = bufsize;
92         b->order_buf.size = b->ready_buf.size = size;
93         b->order_buf.mask = b->ready_buf.mask = size - 1;
94         b->ready_buf.entries = (void *)&b[1];
95         b->order_buf.entries = RTE_PTR_ADD(&b[1],
96                         size * sizeof(b->ready_buf.entries[0]));
97
98         return b;
99 }
100
101 struct rte_reorder_buffer*
102 rte_reorder_create(const char *name, unsigned socket_id, unsigned int size)
103 {
104         struct rte_reorder_buffer *b = NULL;
105         struct rte_tailq_entry *te;
106         struct rte_reorder_list *reorder_list;
107         const unsigned int bufsize = sizeof(struct rte_reorder_buffer) +
108                                         (2 * size * sizeof(struct rte_mbuf *));
109         static const struct rte_mbuf_dynfield reorder_seqn_dynfield_desc = {
110                 .name = RTE_REORDER_SEQN_DYNFIELD_NAME,
111                 .size = sizeof(rte_reorder_seqn_t),
112                 .align = __alignof__(rte_reorder_seqn_t),
113         };
114
115         reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list);
116
117         /* Check user arguments. */
118         if (!rte_is_power_of_2(size)) {
119                 RTE_LOG(ERR, REORDER, "Invalid reorder buffer size"
120                                 " - Not a power of 2\n");
121                 rte_errno = EINVAL;
122                 return NULL;
123         }
124         if (name == NULL) {
125                 RTE_LOG(ERR, REORDER, "Invalid reorder buffer name ptr:"
126                                         " NULL\n");
127                 rte_errno = EINVAL;
128                 return NULL;
129         }
130
131         rte_reorder_seqn_dynfield_offset =
132                 rte_mbuf_dynfield_register(&reorder_seqn_dynfield_desc);
133         if (rte_reorder_seqn_dynfield_offset < 0) {
134                 RTE_LOG(ERR, REORDER, "Failed to register mbuf field for reorder sequence number\n");
135                 rte_errno = ENOMEM;
136                 return NULL;
137         }
138
139         rte_mcfg_tailq_write_lock();
140
141         /* guarantee there's no existing */
142         TAILQ_FOREACH(te, reorder_list, next) {
143                 b = (struct rte_reorder_buffer *) te->data;
144                 if (strncmp(name, b->name, RTE_REORDER_NAMESIZE) == 0)
145                         break;
146         }
147         if (te != NULL)
148                 goto exit;
149
150         /* allocate tailq entry */
151         te = rte_zmalloc("REORDER_TAILQ_ENTRY", sizeof(*te), 0);
152         if (te == NULL) {
153                 RTE_LOG(ERR, REORDER, "Failed to allocate tailq entry\n");
154                 rte_errno = ENOMEM;
155                 b = NULL;
156                 goto exit;
157         }
158
159         /* Allocate memory to store the reorder buffer structure. */
160         b = rte_zmalloc_socket("REORDER_BUFFER", bufsize, 0, socket_id);
161         if (b == NULL) {
162                 RTE_LOG(ERR, REORDER, "Memzone allocation failed\n");
163                 rte_errno = ENOMEM;
164                 rte_free(te);
165         } else {
166                 rte_reorder_init(b, bufsize, name, size);
167                 te->data = (void *)b;
168                 TAILQ_INSERT_TAIL(reorder_list, te, next);
169         }
170
171 exit:
172         rte_mcfg_tailq_write_unlock();
173         return b;
174 }
175
176 void
177 rte_reorder_reset(struct rte_reorder_buffer *b)
178 {
179         char name[RTE_REORDER_NAMESIZE];
180
181         rte_reorder_free_mbufs(b);
182         strlcpy(name, b->name, sizeof(name));
183         /* No error checking as current values should be valid */
184         rte_reorder_init(b, b->memsize, name, b->order_buf.size);
185 }
186
187 static void
188 rte_reorder_free_mbufs(struct rte_reorder_buffer *b)
189 {
190         unsigned i;
191
192         /* Free up the mbufs of order buffer & ready buffer */
193         for (i = 0; i < b->order_buf.size; i++) {
194                 rte_pktmbuf_free(b->order_buf.entries[i]);
195                 rte_pktmbuf_free(b->ready_buf.entries[i]);
196         }
197 }
198
199 void
200 rte_reorder_free(struct rte_reorder_buffer *b)
201 {
202         struct rte_reorder_list *reorder_list;
203         struct rte_tailq_entry *te;
204
205         /* Check user arguments. */
206         if (b == NULL)
207                 return;
208
209         reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list);
210
211         rte_mcfg_tailq_write_lock();
212
213         /* find our tailq entry */
214         TAILQ_FOREACH(te, reorder_list, next) {
215                 if (te->data == (void *) b)
216                         break;
217         }
218         if (te == NULL) {
219                 rte_mcfg_tailq_write_unlock();
220                 return;
221         }
222
223         TAILQ_REMOVE(reorder_list, te, next);
224
225         rte_mcfg_tailq_write_unlock();
226
227         rte_reorder_free_mbufs(b);
228
229         rte_free(b);
230         rte_free(te);
231 }
232
233 struct rte_reorder_buffer *
234 rte_reorder_find_existing(const char *name)
235 {
236         struct rte_reorder_buffer *b = NULL;
237         struct rte_tailq_entry *te;
238         struct rte_reorder_list *reorder_list;
239
240         if (name == NULL) {
241                 rte_errno = EINVAL;
242                 return NULL;
243         }
244
245         reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list);
246
247         rte_mcfg_tailq_read_lock();
248         TAILQ_FOREACH(te, reorder_list, next) {
249                 b = (struct rte_reorder_buffer *) te->data;
250                 if (strncmp(name, b->name, RTE_REORDER_NAMESIZE) == 0)
251                         break;
252         }
253         rte_mcfg_tailq_read_unlock();
254
255         if (te == NULL) {
256                 rte_errno = ENOENT;
257                 return NULL;
258         }
259
260         return b;
261 }
262
263 static unsigned
264 rte_reorder_fill_overflow(struct rte_reorder_buffer *b, unsigned n)
265 {
266         /*
267          * 1. Move all ready entries that fit to the ready_buf
268          * 2. check if we meet the minimum needed (n).
269          * 3. If not, then skip any gaps and keep moving.
270          * 4. If at any point the ready buffer is full, stop
271          * 5. Return the number of positions the order_buf head has moved
272          */
273
274         struct cir_buffer *order_buf = &b->order_buf,
275                         *ready_buf = &b->ready_buf;
276
277         unsigned int order_head_adv = 0;
278
279         /*
280          * move at least n packets to ready buffer, assuming ready buffer
281          * has room for those packets.
282          */
283         while (order_head_adv < n &&
284                         ((ready_buf->head + 1) & ready_buf->mask) != ready_buf->tail) {
285
286                 /* if we are blocked waiting on a packet, skip it */
287                 if (order_buf->entries[order_buf->head] == NULL) {
288                         order_buf->head = (order_buf->head + 1) & order_buf->mask;
289                         order_head_adv++;
290                 }
291
292                 /* Move all ready entries that fit to the ready_buf */
293                 while (order_buf->entries[order_buf->head] != NULL) {
294                         ready_buf->entries[ready_buf->head] =
295                                         order_buf->entries[order_buf->head];
296
297                         order_buf->entries[order_buf->head] = NULL;
298                         order_head_adv++;
299
300                         order_buf->head = (order_buf->head + 1) & order_buf->mask;
301
302                         if (((ready_buf->head + 1) & ready_buf->mask) == ready_buf->tail)
303                                 break;
304
305                         ready_buf->head = (ready_buf->head + 1) & ready_buf->mask;
306                 }
307         }
308
309         b->min_seqn += order_head_adv;
310         /* Return the number of positions the order_buf head has moved */
311         return order_head_adv;
312 }
313
314 int
315 rte_reorder_insert(struct rte_reorder_buffer *b, struct rte_mbuf *mbuf)
316 {
317         uint32_t offset, position;
318         struct cir_buffer *order_buf;
319
320         if (b == NULL || mbuf == NULL) {
321                 rte_errno = EINVAL;
322                 return -1;
323         }
324
325         order_buf = &b->order_buf;
326         if (!b->is_initialized) {
327                 b->min_seqn = *rte_reorder_seqn(mbuf);
328                 b->is_initialized = 1;
329         }
330
331         /*
332          * calculate the offset from the head pointer we need to go.
333          * The subtraction takes care of the sequence number wrapping.
334          * For example (using 16-bit for brevity):
335          *      min_seqn  = 0xFFFD
336          *      mbuf_seqn = 0x0010
337          *      offset    = 0x0010 - 0xFFFD = 0x13
338          */
339         offset = *rte_reorder_seqn(mbuf) - b->min_seqn;
340
341         /*
342          * action to take depends on offset.
343          * offset < buffer->size: the mbuf fits within the current window of
344          *    sequence numbers we can reorder. EXPECTED CASE.
345          * offset > buffer->size: the mbuf is outside the current window. There
346          *    are a number of cases to consider:
347          *    1. The packet sequence is just outside the window, then we need
348          *       to see about shifting the head pointer and taking any ready
349          *       to return packets out of the ring. If there was a delayed
350          *       or dropped packet preventing drains from shifting the window
351          *       this case will skip over the dropped packet instead, and any
352          *       packets dequeued here will be returned on the next drain call.
353          *    2. The packet sequence number is vastly outside our window, taken
354          *       here as having offset greater than twice the buffer size. In
355          *       this case, the packet is probably an old or late packet that
356          *       was previously skipped, so just enqueue the packet for
357          *       immediate return on the next drain call, or else return error.
358          */
359         if (offset < b->order_buf.size) {
360                 position = (order_buf->head + offset) & order_buf->mask;
361                 order_buf->entries[position] = mbuf;
362         } else if (offset < 2 * b->order_buf.size) {
363                 if (rte_reorder_fill_overflow(b, offset + 1 - order_buf->size)
364                                 < (offset + 1 - order_buf->size)) {
365                         /* Put in handling for enqueue straight to output */
366                         rte_errno = ENOSPC;
367                         return -1;
368                 }
369                 offset = *rte_reorder_seqn(mbuf) - b->min_seqn;
370                 position = (order_buf->head + offset) & order_buf->mask;
371                 order_buf->entries[position] = mbuf;
372         } else {
373                 /* Put in handling for enqueue straight to output */
374                 rte_errno = ERANGE;
375                 return -1;
376         }
377         return 0;
378 }
379
380 unsigned int
381 rte_reorder_drain(struct rte_reorder_buffer *b, struct rte_mbuf **mbufs,
382                 unsigned max_mbufs)
383 {
384         unsigned int drain_cnt = 0;
385
386         struct cir_buffer *order_buf = &b->order_buf,
387                         *ready_buf = &b->ready_buf;
388
389         /* Try to fetch requested number of mbufs from ready buffer */
390         while ((drain_cnt < max_mbufs) && (ready_buf->tail != ready_buf->head)) {
391                 mbufs[drain_cnt++] = ready_buf->entries[ready_buf->tail];
392                 ready_buf->tail = (ready_buf->tail + 1) & ready_buf->mask;
393         }
394
395         /*
396          * If requested number of buffers not fetched from ready buffer, fetch
397          * remaining buffers from order buffer
398          */
399         while ((drain_cnt < max_mbufs) &&
400                         (order_buf->entries[order_buf->head] != NULL)) {
401                 mbufs[drain_cnt++] = order_buf->entries[order_buf->head];
402                 order_buf->entries[order_buf->head] = NULL;
403                 b->min_seqn++;
404                 order_buf->head = (order_buf->head + 1) & order_buf->mask;
405         }
406
407         return drain_cnt;
408 }