4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 #include <sys/types.h>
40 #include <sys/queue.h>
45 #include <rte_common.h>
46 #include <rte_byteorder.h>
48 #include <rte_memory.h>
49 #include <rte_memcpy.h>
51 #include <rte_launch.h>
52 #include <rte_atomic.h>
53 #include <rte_cycles.h>
54 #include <rte_prefetch.h>
55 #include <rte_lcore.h>
56 #include <rte_per_lcore.h>
57 #include <rte_branch_prediction.h>
58 #include <rte_interrupts.h>
60 #include <rte_random.h>
61 #include <rte_debug.h>
62 #include <rte_ether.h>
63 #include <rte_ethdev.h>
64 #include <rte_mempool.h>
66 #include <rte_malloc.h>
67 #include <rte_fbk_hash.h>
70 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1
74 #define MCAST_CLONE_PORTS 2
75 #define MCAST_CLONE_SEGS 2
77 #define PKT_MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE
78 #define NB_PKT_MBUF 8192
80 #define HDR_MBUF_DATA_SIZE (2 * RTE_PKTMBUF_HEADROOM)
81 #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS)
83 #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2)
85 /* allow max jumbo frame 9.5 KB */
86 #define JUMBO_FRAME_MAX_SIZE 0x2600
88 #define MAX_PKT_BURST 32
89 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
91 /* Configure how many packets ahead to prefetch, when reading packets */
92 #define PREFETCH_OFFSET 3
95 * Construct Ethernet multicast address from IPv4 multicast address.
96 * Citing RFC 1112, section 6.4:
97 * "An IP host group address is mapped to an Ethernet multicast address
98 * by placing the low-order 23-bits of the IP address into the low-order
99 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)."
101 #define ETHER_ADDR_FOR_IPV4_MCAST(x) \
102 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16)
105 * Configurable number of RX/TX ring descriptors
107 #define RTE_TEST_RX_DESC_DEFAULT 128
108 #define RTE_TEST_TX_DESC_DEFAULT 512
109 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
110 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
112 /* ethernet addresses of ports */
113 static struct ether_addr ports_eth_addr[MAX_PORTS];
115 /* mask of enabled ports */
116 static uint32_t enabled_port_mask = 0;
118 static uint16_t nb_ports;
120 static int rx_queue_per_lcore = 1;
124 struct rte_mbuf *m_table[MAX_PKT_BURST];
127 #define MAX_RX_QUEUE_PER_LCORE 16
128 #define MAX_TX_QUEUE_PER_PORT 16
129 struct lcore_queue_conf {
132 uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
133 uint16_t tx_queue_id[MAX_PORTS];
134 struct mbuf_table tx_mbufs[MAX_PORTS];
135 } __rte_cache_aligned;
136 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
138 static struct rte_eth_conf port_conf = {
140 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
142 .header_split = 0, /**< Header Split disabled */
143 .hw_ip_checksum = 0, /**< IP checksum offload disabled */
144 .hw_vlan_filter = 0, /**< VLAN filtering disabled */
145 .jumbo_frame = 1, /**< Jumbo Frame Support enabled */
146 .hw_strip_crc = 1, /**< CRC stripped by hardware */
149 .mq_mode = ETH_MQ_TX_NONE,
153 static struct rte_mempool *packet_pool, *header_pool, *clone_pool;
157 static struct rte_fbk_hash_params mcast_hash_params = {
158 .name = "MCAST_HASH",
160 .entries_per_bucket = 4,
166 struct rte_fbk_hash_table *mcast_hash = NULL;
168 struct mcast_group_params {
173 static struct mcast_group_params mcast_group_table[] = {
174 {IPv4(224,0,0,101), 0x1},
175 {IPv4(224,0,0,102), 0x2},
176 {IPv4(224,0,0,103), 0x3},
177 {IPv4(224,0,0,104), 0x4},
178 {IPv4(224,0,0,105), 0x5},
179 {IPv4(224,0,0,106), 0x6},
180 {IPv4(224,0,0,107), 0x7},
181 {IPv4(224,0,0,108), 0x8},
182 {IPv4(224,0,0,109), 0x9},
183 {IPv4(224,0,0,110), 0xA},
184 {IPv4(224,0,0,111), 0xB},
185 {IPv4(224,0,0,112), 0xC},
186 {IPv4(224,0,0,113), 0xD},
187 {IPv4(224,0,0,114), 0xE},
188 {IPv4(224,0,0,115), 0xF},
191 #define N_MCAST_GROUPS \
192 (sizeof (mcast_group_table) / sizeof (mcast_group_table[0]))
195 /* Send burst of packets on an output interface */
197 send_burst(struct lcore_queue_conf *qconf, uint16_t port)
199 struct rte_mbuf **m_table;
203 queueid = qconf->tx_queue_id[port];
204 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
205 n = qconf->tx_mbufs[port].len;
207 ret = rte_eth_tx_burst(port, queueid, m_table, n);
208 while (unlikely (ret < n)) {
209 rte_pktmbuf_free(m_table[ret]);
213 qconf->tx_mbufs[port].len = 0;
216 /* Get number of bits set. */
217 static inline uint32_t
222 for (n = 0; v != 0; v &= v - 1, n++)
229 * Create the output multicast packet based on the given input packet.
230 * There are two approaches for creating outgoing packet, though both
231 * are based on data zero-copy idea, they differ in few details:
232 * First one creates a clone of the input packet, e.g - walk though all
233 * segments of the input packet, and for each of them create a new packet
234 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone()
235 * for more details). Then new mbuf is allocated for the packet header
236 * and is prepended to the 'clone' mbuf.
237 * Second approach doesn't make a clone, it just increment refcnt for all
238 * input packet segments. Then it allocates new mbuf for the packet header
239 * and prepends it to the input packet.
240 * Basically first approach reuses only input packet's data, but creates
241 * it's own copy of packet's metadata. Second approach reuses both input's
242 * packet data and metadata.
243 * The advantage of first approach - is that each outgoing packet has it's
244 * own copy of metadata, so we can safely modify data pointer of the
245 * input packet. That allows us to skip creation if the output packet for
246 * the last destination port, but instead modify input packet's header inplace,
247 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times.
248 * The advantage of second approach - less work for each outgoing packet,
249 * e.g: we skip "clone" operation completely. Though it comes with a price -
250 * input packet's metadata has to be intact. So for N destination ports we
251 * need to invoke mcast_out_pkt N times.
252 * So for small number of outgoing ports (and segments in the input packet)
253 * first approach will be faster.
254 * As number of outgoing ports (and/or input segments) will grow,
255 * second way will become more preferable.
260 * Control which of the two approaches described above should be used:
261 * - 0 - use second approach:
262 * Don't "clone" input packet.
263 * Prepend new header directly to the input packet
264 * - 1 - use first approach:
265 * Make a "clone" of input packet first.
266 * Prepend new header to the clone of the input packet
268 * - The pointer to the new outgoing packet.
269 * - NULL if operation failed.
271 static inline struct rte_mbuf *
272 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone)
274 struct rte_mbuf *hdr;
276 /* Create new mbuf for the header. */
277 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL))
280 /* If requested, then make a new clone packet. */
281 if (use_clone != 0 &&
282 unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) {
283 rte_pktmbuf_free(hdr);
287 /* prepend new header */
291 /* update header's fields */
292 hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len);
293 hdr->nb_segs = (uint8_t)(pkt->nb_segs + 1);
295 /* copy metadata from source packet*/
296 hdr->port = pkt->port;
297 hdr->vlan_tci = pkt->vlan_tci;
298 hdr->vlan_tci_outer = pkt->vlan_tci_outer;
299 hdr->tx_offload = pkt->tx_offload;
300 hdr->hash = pkt->hash;
302 hdr->ol_flags = pkt->ol_flags;
304 __rte_mbuf_sanity_check(hdr, 1);
309 * Write new Ethernet header to the outgoing packet,
310 * and put it into the outgoing queue for the given port.
313 mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr,
314 struct lcore_queue_conf *qconf, uint16_t port)
316 struct ether_hdr *ethdr;
319 /* Construct Ethernet header. */
320 ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr));
321 RTE_ASSERT(ethdr != NULL);
323 ether_addr_copy(dest_addr, ðdr->d_addr);
324 ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr);
325 ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);
327 /* Put new packet into the output queue */
328 len = qconf->tx_mbufs[port].len;
329 qconf->tx_mbufs[port].m_table[len] = pkt;
330 qconf->tx_mbufs[port].len = ++len;
332 /* Transmit packets */
333 if (unlikely(MAX_PKT_BURST == len))
334 send_burst(qconf, port);
337 /* Multicast forward of the input packet */
339 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf)
342 struct ipv4_hdr *iphdr;
343 uint32_t dest_addr, port_mask, port_num, use_clone;
348 struct ether_addr as_addr;
351 /* Remove the Ethernet header from the input packet */
352 iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr));
353 RTE_ASSERT(iphdr != NULL);
355 dest_addr = rte_be_to_cpu_32(iphdr->dst_addr);
358 * Check that it is a valid multicast address and
359 * we have some active ports assigned to it.
361 if(!IS_IPV4_MCAST(dest_addr) ||
362 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 ||
363 (port_mask = hash & enabled_port_mask) == 0) {
368 /* Calculate number of destination ports. */
369 port_num = bitcnt(port_mask);
371 /* Should we use rte_pktmbuf_clone() or not. */
372 use_clone = (port_num <= MCAST_CLONE_PORTS &&
373 m->nb_segs <= MCAST_CLONE_SEGS);
375 /* Mark all packet's segments as referenced port_num times */
377 rte_pktmbuf_refcnt_update(m, (uint16_t)port_num);
379 /* construct destination ethernet address */
380 dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr);
382 for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {
384 /* Prepare output packet and send it out. */
385 if ((port_mask & 1) != 0) {
386 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL))
387 mcast_send_pkt(mc, &dst_eth_addr.as_addr,
389 else if (use_clone == 0)
395 * If we making clone packets, then, for the last destination port,
396 * we can overwrite input packet's metadata.
399 mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port);
404 /* Send burst of outgoing packet, if timeout expires. */
406 send_timeout_burst(struct lcore_queue_conf *qconf)
410 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
412 cur_tsc = rte_rdtsc();
413 if (likely (cur_tsc < qconf->tx_tsc + drain_tsc))
416 for (portid = 0; portid < MAX_PORTS; portid++) {
417 if (qconf->tx_mbufs[portid].len != 0)
418 send_burst(qconf, portid);
420 qconf->tx_tsc = cur_tsc;
423 /* main processing loop */
425 main_loop(__rte_unused void *dummy)
427 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
431 struct lcore_queue_conf *qconf;
433 lcore_id = rte_lcore_id();
434 qconf = &lcore_queue_conf[lcore_id];
437 if (qconf->n_rx_queue == 0) {
438 RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n",
443 RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n",
446 for (i = 0; i < qconf->n_rx_queue; i++) {
448 portid = qconf->rx_queue_list[i];
449 RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n",
456 * Read packet from RX queues
458 for (i = 0; i < qconf->n_rx_queue; i++) {
460 portid = qconf->rx_queue_list[i];
461 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
464 /* Prefetch first packets */
465 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
466 rte_prefetch0(rte_pktmbuf_mtod(
467 pkts_burst[j], void *));
470 /* Prefetch and forward already prefetched packets */
471 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
472 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
473 j + PREFETCH_OFFSET], void *));
474 mcast_forward(pkts_burst[j], qconf);
477 /* Forward remaining prefetched packets */
478 for (; j < nb_rx; j++) {
479 mcast_forward(pkts_burst[j], qconf);
483 /* Send out packets from TX queues */
484 send_timeout_burst(qconf);
490 print_usage(const char *prgname)
492 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
493 " -p PORTMASK: hexadecimal bitmask of ports to configure\n"
494 " -q NQ: number of queue (=ports) per lcore (default is 1)\n",
499 parse_portmask(const char *portmask)
504 /* parse hexadecimal string */
505 pm = strtoul(portmask, &end, 16);
506 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
513 parse_nqueue(const char *q_arg)
518 /* parse numerical string */
520 n = strtoul(q_arg, &end, 0);
521 if (errno != 0 || end == NULL || *end != '\0' ||
522 n == 0 || n >= MAX_RX_QUEUE_PER_LCORE)
528 /* Parse the argument given in the command line of the application */
530 parse_args(int argc, char **argv)
535 char *prgname = argv[0];
536 static struct option lgopts[] = {
542 while ((opt = getopt_long(argc, argvopt, "p:q:",
543 lgopts, &option_index)) != EOF) {
548 enabled_port_mask = parse_portmask(optarg);
549 if (enabled_port_mask == 0) {
550 printf("invalid portmask\n");
551 print_usage(prgname);
558 rx_queue_per_lcore = parse_nqueue(optarg);
559 if (rx_queue_per_lcore < 0) {
560 printf("invalid queue number\n");
561 print_usage(prgname);
567 print_usage(prgname);
573 argv[optind-1] = prgname;
576 optind = 1; /* reset getopt lib */
581 print_ethaddr(const char *name, struct ether_addr *eth_addr)
583 char buf[ETHER_ADDR_FMT_SIZE];
584 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
585 printf("%s%s", name, buf);
589 init_mcast_hash(void)
593 mcast_hash_params.socket_id = rte_socket_id();
594 mcast_hash = rte_fbk_hash_create(&mcast_hash_params);
595 if (mcast_hash == NULL){
599 for (i = 0; i < N_MCAST_GROUPS; i ++){
600 if (rte_fbk_hash_add_key(mcast_hash,
601 mcast_group_table[i].ip,
602 mcast_group_table[i].port_mask) < 0) {
610 /* Check the link status of all ports in up to 9s, and print them finally */
612 check_all_ports_link_status(uint16_t port_num, uint32_t port_mask)
614 #define CHECK_INTERVAL 100 /* 100ms */
615 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
617 uint8_t count, all_ports_up, print_flag = 0;
618 struct rte_eth_link link;
620 printf("\nChecking link status");
622 for (count = 0; count <= MAX_CHECK_TIME; count++) {
624 for (portid = 0; portid < port_num; portid++) {
625 if ((port_mask & (1 << portid)) == 0)
627 memset(&link, 0, sizeof(link));
628 rte_eth_link_get_nowait(portid, &link);
629 /* print link status if flag set */
630 if (print_flag == 1) {
631 if (link.link_status)
633 "Port%d Link Up. Speed %u Mbps - %s\n",
634 portid, link.link_speed,
635 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
636 ("full-duplex") : ("half-duplex\n"));
638 printf("Port %d Link Down\n", portid);
641 /* clear all_ports_up flag if any link down */
642 if (link.link_status == ETH_LINK_DOWN) {
647 /* after finally printing all link status, get out */
651 if (all_ports_up == 0) {
654 rte_delay_ms(CHECK_INTERVAL);
657 /* set the print_flag if all ports up or timeout */
658 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
666 main(int argc, char **argv)
668 struct lcore_queue_conf *qconf;
669 struct rte_eth_dev_info dev_info;
670 struct rte_eth_txconf *txconf;
673 unsigned lcore_id = 0, rx_lcore_id = 0;
674 uint32_t n_tx_queue, nb_lcores;
678 ret = rte_eal_init(argc, argv);
680 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
684 /* parse application arguments (after the EAL ones) */
685 ret = parse_args(argc, argv);
687 rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n");
689 /* create the mbuf pools */
690 packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32,
691 0, PKT_MBUF_DATA_SIZE, rte_socket_id());
693 if (packet_pool == NULL)
694 rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n");
696 header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32,
697 0, HDR_MBUF_DATA_SIZE, rte_socket_id());
699 if (header_pool == NULL)
700 rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n");
702 clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32,
703 0, 0, rte_socket_id());
705 if (clone_pool == NULL)
706 rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n");
708 nb_ports = rte_eth_dev_count();
710 rte_exit(EXIT_FAILURE, "No physical ports!\n");
711 if (nb_ports > MAX_PORTS)
712 nb_ports = MAX_PORTS;
714 nb_lcores = rte_lcore_count();
716 /* initialize all ports */
717 for (portid = 0; portid < nb_ports; portid++) {
718 /* skip ports that are not enabled */
719 if ((enabled_port_mask & (1 << portid)) == 0) {
720 printf("Skipping disabled port %d\n", portid);
724 qconf = &lcore_queue_conf[rx_lcore_id];
726 /* limit the frame size to the maximum supported by NIC */
727 rte_eth_dev_info_get(portid, &dev_info);
728 port_conf.rxmode.max_rx_pkt_len = RTE_MIN(
729 dev_info.max_rx_pktlen, port_conf.rxmode.max_rx_pkt_len);
731 /* get the lcore_id for this port */
732 while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
733 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
736 qconf = &lcore_queue_conf[rx_lcore_id];
738 if (rx_lcore_id >= RTE_MAX_LCORE)
739 rte_exit(EXIT_FAILURE, "Not enough cores\n");
741 qconf->rx_queue_list[qconf->n_rx_queue] = portid;
745 printf("Initializing port %d on lcore %u... ", portid,
749 n_tx_queue = nb_lcores;
750 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
751 n_tx_queue = MAX_TX_QUEUE_PER_PORT;
752 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
755 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
758 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
761 rte_exit(EXIT_FAILURE,
762 "Cannot adjust number of descriptors: err=%d, port=%d\n",
765 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
766 print_ethaddr(" Address:", &ports_eth_addr[portid]);
769 /* init one RX queue */
771 printf("rxq=%hu ", queueid);
773 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
774 rte_eth_dev_socket_id(portid),
778 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n",
781 /* init one TX queue per couple (lcore,port) */
784 RTE_LCORE_FOREACH(lcore_id) {
785 if (rte_lcore_is_enabled(lcore_id) == 0)
787 printf("txq=%u,%hu ", lcore_id, queueid);
790 txconf = &dev_info.default_txconf;
791 txconf->txq_flags = 0;
792 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
793 rte_lcore_to_socket_id(lcore_id), txconf);
795 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
796 "port=%d\n", ret, portid);
798 qconf = &lcore_queue_conf[lcore_id];
799 qconf->tx_queue_id[portid] = queueid;
804 ret = rte_eth_dev_start(portid);
806 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
812 check_all_ports_link_status(nb_ports, enabled_port_mask);
814 /* initialize the multicast hash */
815 int retval = init_mcast_hash();
817 rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n");
819 /* launch per-lcore init on every lcore */
820 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
821 RTE_LCORE_FOREACH_SLAVE(lcore_id) {
822 if (rte_eal_wait_lcore(lcore_id) < 0)