1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright 2014 6WIND S.A.
13 * The mbuf library provides the ability to create and destroy buffers
14 * that may be used by the RTE application to store message
15 * buffers. The message buffers are stored in a mempool, using the
16 * RTE mempool library.
18 * The preferred way to create a mbuf pool is to use
19 * rte_pktmbuf_pool_create(). However, in some situations, an
20 * application may want to have more control (ex: populate the pool with
21 * specific memory), in this case it is possible to use functions from
22 * rte_mempool. See how rte_pktmbuf_pool_create() is implemented for
25 * This library provides an API to allocate/free packet mbufs, which are
26 * used to carry network packets.
28 * To understand the concepts of packet buffers or mbufs, you
29 * should read "TCP/IP Illustrated, Volume 2: The Implementation,
30 * Addison-Wesley, 1995, ISBN 0-201-63354-X from Richard Stevens"
31 * http://www.kohala.com/start/tcpipiv2.html
35 #include <rte_compat.h>
36 #include <rte_common.h>
37 #include <rte_config.h>
38 #include <rte_mempool.h>
39 #include <rte_memory.h>
40 #include <rte_prefetch.h>
41 #include <rte_branch_prediction.h>
42 #include <rte_byteorder.h>
43 #include <rte_mbuf_ptype.h>
44 #include <rte_mbuf_core.h>
51 * Get the name of a RX offload flag
54 * The mask describing the flag.
56 * The name of this flag, or NULL if it's not a valid RX flag.
58 const char *rte_get_rx_ol_flag_name(uint64_t mask);
61 * Dump the list of RX offload flags in a buffer
64 * The mask describing the RX flags.
68 * The length of the buffer.
70 * 0 on success, (-1) on error.
72 int rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
75 * Get the name of a TX offload flag
78 * The mask describing the flag. Usually only one bit must be set.
79 * Several bits can be given if they belong to the same mask.
82 * The name of this flag, or NULL if it's not a valid TX flag.
84 const char *rte_get_tx_ol_flag_name(uint64_t mask);
87 * Dump the list of TX offload flags in a buffer
90 * The mask describing the TX flags.
94 * The length of the buffer.
96 * 0 on success, (-1) on error.
98 int rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
101 * Prefetch the first part of the mbuf
103 * The first 64 bytes of the mbuf corresponds to fields that are used early
104 * in the receive path. If the cache line of the architecture is higher than
105 * 64B, the second part will also be prefetched.
108 * The pointer to the mbuf.
111 rte_mbuf_prefetch_part1(struct rte_mbuf *m)
113 rte_prefetch0(&m->cacheline0);
117 * Prefetch the second part of the mbuf
119 * The next 64 bytes of the mbuf corresponds to fields that are used in the
120 * transmit path. If the cache line of the architecture is higher than 64B,
121 * this function does nothing as it is expected that the full mbuf is
125 * The pointer to the mbuf.
128 rte_mbuf_prefetch_part2(struct rte_mbuf *m)
130 #if RTE_CACHE_LINE_SIZE == 64
131 rte_prefetch0(&m->cacheline1);
138 static inline uint16_t rte_pktmbuf_priv_size(struct rte_mempool *mp);
141 * Return the IO address of the beginning of the mbuf data
144 * The pointer to the mbuf.
146 * The IO address of the beginning of the mbuf data
148 static inline rte_iova_t
149 rte_mbuf_data_iova(const struct rte_mbuf *mb)
151 return mb->buf_iova + mb->data_off;
155 * Return the default IO address of the beginning of the mbuf data
157 * This function is used by drivers in their receive function, as it
158 * returns the location where data should be written by the NIC, taking
159 * the default headroom in account.
162 * The pointer to the mbuf.
164 * The IO address of the beginning of the mbuf data
166 static inline rte_iova_t
167 rte_mbuf_data_iova_default(const struct rte_mbuf *mb)
169 return mb->buf_iova + RTE_PKTMBUF_HEADROOM;
173 * Return the mbuf owning the data buffer address of an indirect mbuf.
176 * The pointer to the indirect mbuf.
178 * The address of the direct mbuf corresponding to buffer_addr.
180 static inline struct rte_mbuf *
181 rte_mbuf_from_indirect(struct rte_mbuf *mi)
183 return (struct rte_mbuf *)RTE_PTR_SUB(mi->buf_addr, sizeof(*mi) + mi->priv_size);
187 * Return address of buffer embedded in the given mbuf.
189 * The return value shall be same as mb->buf_addr if the mbuf is already
190 * initialized and direct. However, this API is useful if mempool of the
191 * mbuf is already known because it doesn't need to access mbuf contents in
192 * order to get the mempool pointer.
195 * @b EXPERIMENTAL: This API may change without prior notice.
196 * This will be used by rte_mbuf_to_baddr() which has redundant code once
197 * experimental tag is removed.
200 * The pointer to the mbuf.
202 * The pointer to the mempool of the mbuf.
204 * The pointer of the mbuf buffer.
208 rte_mbuf_buf_addr(struct rte_mbuf *mb, struct rte_mempool *mp)
210 return (char *)mb + sizeof(*mb) + rte_pktmbuf_priv_size(mp);
214 * Return the default address of the beginning of the mbuf data.
217 * @b EXPERIMENTAL: This API may change without prior notice.
220 * The pointer to the mbuf.
222 * The pointer of the beginning of the mbuf data.
226 rte_mbuf_data_addr_default(__rte_unused struct rte_mbuf *mb)
228 /* gcc complains about calling this experimental function even
229 * when not using it. Hide it with ALLOW_EXPERIMENTAL_API.
231 #ifdef ALLOW_EXPERIMENTAL_API
232 return rte_mbuf_buf_addr(mb, mb->pool) + RTE_PKTMBUF_HEADROOM;
239 * Return address of buffer embedded in the given mbuf.
241 * @note: Accessing mempool pointer of a mbuf is expensive because the
242 * pointer is stored in the 2nd cache line of mbuf. If mempool is known, it
243 * is better not to reference the mempool pointer in mbuf but calling
244 * rte_mbuf_buf_addr() would be more efficient.
247 * The pointer to the mbuf.
249 * The address of the data buffer owned by the mbuf.
252 rte_mbuf_to_baddr(struct rte_mbuf *md)
254 #ifdef ALLOW_EXPERIMENTAL_API
255 return rte_mbuf_buf_addr(md, md->pool);
258 buffer_addr = (char *)md + sizeof(*md) + rte_pktmbuf_priv_size(md->pool);
264 * Return the starting address of the private data area embedded in
267 * Note that no check is made to ensure that a private data area
268 * actually exists in the supplied mbuf.
271 * The pointer to the mbuf.
273 * The starting address of the private data area of the given mbuf.
277 rte_mbuf_to_priv(struct rte_mbuf *m)
279 return RTE_PTR_ADD(m, sizeof(struct rte_mbuf));
283 * Private data in case of pktmbuf pool.
285 * A structure that contains some pktmbuf_pool-specific data that are
286 * appended after the mempool structure (in private data).
288 struct rte_pktmbuf_pool_private {
289 uint16_t mbuf_data_room_size; /**< Size of data space in each mbuf. */
290 uint16_t mbuf_priv_size; /**< Size of private area in each mbuf. */
291 uint32_t flags; /**< reserved for future use. */
295 * Return the flags from private data in an mempool structure.
298 * A pointer to the mempool structure.
300 * The flags from the private data structure.
302 static inline uint32_t
303 rte_pktmbuf_priv_flags(struct rte_mempool *mp)
305 struct rte_pktmbuf_pool_private *mbp_priv;
307 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
308 return mbp_priv->flags;
312 * When set, pktmbuf mempool will hold only mbufs with pinned external
313 * buffer. The external buffer will be attached to the mbuf at the
314 * memory pool creation and will never be detached by the mbuf free calls.
315 * mbuf should not contain any room for data after the mbuf structure.
317 #define RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF (1 << 0)
320 * Returns non zero if given mbuf has a pinned external buffer, or zero
321 * otherwise. The pinned external buffer is allocated at pool creation
322 * time and should not be freed on mbuf freeing.
324 * External buffer is a user-provided anonymous buffer.
326 #define RTE_MBUF_HAS_PINNED_EXTBUF(mb) \
327 (rte_pktmbuf_priv_flags(mb->pool) & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF)
329 #ifdef RTE_LIBRTE_MBUF_DEBUG
331 /** check mbuf type in debug mode */
332 #define __rte_mbuf_sanity_check(m, is_h) rte_mbuf_sanity_check(m, is_h)
334 #else /* RTE_LIBRTE_MBUF_DEBUG */
336 /** check mbuf type in debug mode */
337 #define __rte_mbuf_sanity_check(m, is_h) do { } while (0)
339 #endif /* RTE_LIBRTE_MBUF_DEBUG */
341 #ifdef RTE_MBUF_REFCNT_ATOMIC
344 * Reads the value of an mbuf's refcnt.
348 * Reference count number.
350 static inline uint16_t
351 rte_mbuf_refcnt_read(const struct rte_mbuf *m)
353 return __atomic_load_n(&m->refcnt, __ATOMIC_RELAXED);
357 * Sets an mbuf's refcnt to a defined value.
364 rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
366 __atomic_store_n(&m->refcnt, new_value, __ATOMIC_RELAXED);
370 static inline uint16_t
371 __rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
373 return __atomic_add_fetch(&m->refcnt, (uint16_t)value,
378 * Adds given value to an mbuf's refcnt and returns its new value.
382 * Value to add/subtract
386 static inline uint16_t
387 rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
390 * The atomic_add is an expensive operation, so we don't want to
391 * call it in the case where we know we are the unique holder of
392 * this mbuf (i.e. ref_cnt == 1). Otherwise, an atomic
393 * operation has to be used because concurrent accesses on the
394 * reference counter can occur.
396 if (likely(rte_mbuf_refcnt_read(m) == 1)) {
398 rte_mbuf_refcnt_set(m, (uint16_t)value);
399 return (uint16_t)value;
402 return __rte_mbuf_refcnt_update(m, value);
405 #else /* ! RTE_MBUF_REFCNT_ATOMIC */
408 static inline uint16_t
409 __rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
411 m->refcnt = (uint16_t)(m->refcnt + value);
416 * Adds given value to an mbuf's refcnt and returns its new value.
418 static inline uint16_t
419 rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
421 return __rte_mbuf_refcnt_update(m, value);
425 * Reads the value of an mbuf's refcnt.
427 static inline uint16_t
428 rte_mbuf_refcnt_read(const struct rte_mbuf *m)
434 * Sets an mbuf's refcnt to the defined value.
437 rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
439 m->refcnt = new_value;
442 #endif /* RTE_MBUF_REFCNT_ATOMIC */
445 * Reads the refcnt of an external buffer.
448 * Shared data of the external buffer.
450 * Reference count number.
452 static inline uint16_t
453 rte_mbuf_ext_refcnt_read(const struct rte_mbuf_ext_shared_info *shinfo)
455 return __atomic_load_n(&shinfo->refcnt, __ATOMIC_RELAXED);
459 * Set refcnt of an external buffer.
462 * Shared data of the external buffer.
467 rte_mbuf_ext_refcnt_set(struct rte_mbuf_ext_shared_info *shinfo,
470 __atomic_store_n(&shinfo->refcnt, new_value, __ATOMIC_RELAXED);
474 * Add given value to refcnt of an external buffer and return its new
478 * Shared data of the external buffer.
480 * Value to add/subtract
484 static inline uint16_t
485 rte_mbuf_ext_refcnt_update(struct rte_mbuf_ext_shared_info *shinfo,
488 if (likely(rte_mbuf_ext_refcnt_read(shinfo) == 1)) {
490 rte_mbuf_ext_refcnt_set(shinfo, (uint16_t)value);
491 return (uint16_t)value;
494 return __atomic_add_fetch(&shinfo->refcnt, (uint16_t)value,
499 #define RTE_MBUF_PREFETCH_TO_FREE(m) do { \
506 * Sanity checks on an mbuf.
508 * Check the consistency of the given mbuf. The function will cause a
509 * panic if corruption is detected.
512 * The mbuf to be checked.
514 * True if the mbuf is a packet header, false if it is a sub-segment
515 * of a packet (in this case, some fields like nb_segs are not checked)
518 rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header);
521 * Sanity checks on a mbuf.
523 * Almost like rte_mbuf_sanity_check(), but this function gives the reason
524 * if corruption is detected rather than panic.
527 * The mbuf to be checked.
529 * True if the mbuf is a packet header, false if it is a sub-segment
530 * of a packet (in this case, some fields like nb_segs are not checked)
532 * A reference to a string pointer where to store the reason why a mbuf is
533 * considered invalid.
535 * - 0 if no issue has been found, reason is left untouched.
536 * - -1 if a problem is detected, reason then points to a string describing
537 * the reason why the mbuf is deemed invalid.
540 int rte_mbuf_check(const struct rte_mbuf *m, int is_header,
541 const char **reason);
544 * Sanity checks on a reinitialized mbuf in debug mode.
546 * Check the consistency of the given reinitialized mbuf.
547 * The function will cause a panic if corruption is detected.
549 * Check that the mbuf is properly reinitialized (refcnt=1, next=NULL,
550 * nb_segs=1), as done by rte_pktmbuf_prefree_seg().
553 * The mbuf to be checked.
555 static __rte_always_inline void
556 __rte_mbuf_raw_sanity_check(__rte_unused const struct rte_mbuf *m)
558 RTE_ASSERT(rte_mbuf_refcnt_read(m) == 1);
559 RTE_ASSERT(m->next == NULL);
560 RTE_ASSERT(m->nb_segs == 1);
561 __rte_mbuf_sanity_check(m, 0);
564 /** For backwards compatibility. */
565 #define MBUF_RAW_ALLOC_CHECK(m) __rte_mbuf_raw_sanity_check(m)
568 * Allocate an uninitialized mbuf from mempool *mp*.
570 * This function can be used by PMDs (especially in RX functions) to
571 * allocate an uninitialized mbuf. The driver is responsible of
572 * initializing all the required fields. See rte_pktmbuf_reset().
573 * For standard needs, prefer rte_pktmbuf_alloc().
575 * The caller can expect that the following fields of the mbuf structure
576 * are initialized: buf_addr, buf_iova, buf_len, refcnt=1, nb_segs=1,
577 * next=NULL, pool, priv_size. The other fields must be initialized
581 * The mempool from which mbuf is allocated.
583 * - The pointer to the new mbuf on success.
584 * - NULL if allocation failed.
586 static inline struct rte_mbuf *rte_mbuf_raw_alloc(struct rte_mempool *mp)
590 if (rte_mempool_get(mp, (void **)&m) < 0)
592 __rte_mbuf_raw_sanity_check(m);
597 * Put mbuf back into its original mempool.
599 * The caller must ensure that the mbuf is direct and properly
600 * reinitialized (refcnt=1, next=NULL, nb_segs=1), as done by
601 * rte_pktmbuf_prefree_seg().
603 * This function should be used with care, when optimization is
604 * required. For standard needs, prefer rte_pktmbuf_free() or
605 * rte_pktmbuf_free_seg().
608 * The mbuf to be freed.
610 static __rte_always_inline void
611 rte_mbuf_raw_free(struct rte_mbuf *m)
613 RTE_ASSERT(!RTE_MBUF_CLONED(m) &&
614 (!RTE_MBUF_HAS_EXTBUF(m) || RTE_MBUF_HAS_PINNED_EXTBUF(m)));
615 __rte_mbuf_raw_sanity_check(m);
616 rte_mempool_put(m->pool, m);
620 * The packet mbuf constructor.
622 * This function initializes some fields in the mbuf structure that are
623 * not modified by the user once created (origin pool, buffer start
624 * address, and so on). This function is given as a callback function to
625 * rte_mempool_obj_iter() or rte_mempool_create() at pool creation time.
627 * This function expects that the mempool private area was previously
628 * initialized with rte_pktmbuf_pool_init().
631 * The mempool from which mbufs originate.
633 * A pointer that can be used by the user to retrieve useful information
634 * for mbuf initialization. This pointer is the opaque argument passed to
635 * rte_mempool_obj_iter() or rte_mempool_create().
637 * The mbuf to initialize.
639 * The index of the mbuf in the pool table.
641 void rte_pktmbuf_init(struct rte_mempool *mp, void *opaque_arg,
642 void *m, unsigned i);
645 * A packet mbuf pool constructor.
647 * This function initializes the mempool private data in the case of a
648 * pktmbuf pool. This private data is needed by the driver. The
649 * function must be called on the mempool before it is used, or it
650 * can be given as a callback function to rte_mempool_create() at
651 * pool creation. It can be extended by the user, for example, to
652 * provide another packet size.
654 * The mempool private area size must be at least equal to
655 * sizeof(struct rte_pktmbuf_pool_private).
658 * The mempool from which mbufs originate.
660 * A pointer that can be used by the user to retrieve useful information
661 * for mbuf initialization. This pointer is the opaque argument passed to
662 * rte_mempool_create().
664 void rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg);
667 * Create a mbuf pool.
669 * This function creates and initializes a packet mbuf pool. It is
670 * a wrapper to rte_mempool functions.
673 * The name of the mbuf pool.
675 * The number of elements in the mbuf pool. The optimum size (in terms
676 * of memory usage) for a mempool is when n is a power of two minus one:
679 * Size of the per-core object cache. See rte_mempool_create() for
682 * Size of application private are between the rte_mbuf structure
683 * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
684 * @param data_room_size
685 * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
687 * The socket identifier where the memory should be allocated. The
688 * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
691 * The pointer to the new allocated mempool, on success. NULL on error
692 * with rte_errno set appropriately. Possible rte_errno values include:
693 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
694 * - E_RTE_SECONDARY - function was called from a secondary process instance
695 * - EINVAL - cache size provided is too large, or priv_size is not aligned.
696 * - ENOSPC - the maximum number of memzones has already been allocated
697 * - EEXIST - a memzone with the same name already exists
698 * - ENOMEM - no appropriate memory area found in which to create memzone
701 rte_pktmbuf_pool_create(const char *name, unsigned n,
702 unsigned cache_size, uint16_t priv_size, uint16_t data_room_size,
706 * Create a mbuf pool with a given mempool ops name
708 * This function creates and initializes a packet mbuf pool. It is
709 * a wrapper to rte_mempool functions.
712 * The name of the mbuf pool.
714 * The number of elements in the mbuf pool. The optimum size (in terms
715 * of memory usage) for a mempool is when n is a power of two minus one:
718 * Size of the per-core object cache. See rte_mempool_create() for
721 * Size of application private are between the rte_mbuf structure
722 * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
723 * @param data_room_size
724 * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
726 * The socket identifier where the memory should be allocated. The
727 * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
730 * The mempool ops name to be used for this mempool instead of
731 * default mempool. The value can be *NULL* to use default mempool.
733 * The pointer to the new allocated mempool, on success. NULL on error
734 * with rte_errno set appropriately. Possible rte_errno values include:
735 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
736 * - E_RTE_SECONDARY - function was called from a secondary process instance
737 * - EINVAL - cache size provided is too large, or priv_size is not aligned.
738 * - ENOSPC - the maximum number of memzones has already been allocated
739 * - EEXIST - a memzone with the same name already exists
740 * - ENOMEM - no appropriate memory area found in which to create memzone
743 rte_pktmbuf_pool_create_by_ops(const char *name, unsigned int n,
744 unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
745 int socket_id, const char *ops_name);
747 /** A structure that describes the pinned external buffer segment. */
748 struct rte_pktmbuf_extmem {
749 void *buf_ptr; /**< The virtual address of data buffer. */
750 rte_iova_t buf_iova; /**< The IO address of the data buffer. */
751 size_t buf_len; /**< External buffer length in bytes. */
752 uint16_t elt_size; /**< mbuf element size in bytes. */
756 * Create a mbuf pool with external pinned data buffers.
758 * This function creates and initializes a packet mbuf pool that contains
759 * only mbufs with external buffer. It is a wrapper to rte_mempool functions.
762 * The name of the mbuf pool.
764 * The number of elements in the mbuf pool. The optimum size (in terms
765 * of memory usage) for a mempool is when n is a power of two minus one:
768 * Size of the per-core object cache. See rte_mempool_create() for
771 * Size of application private are between the rte_mbuf structure
772 * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
773 * @param data_room_size
774 * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
776 * The socket identifier where the memory should be allocated. The
777 * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
780 * Pointer to the array of structures describing the external memory
781 * for data buffers. It is caller responsibility to register this memory
782 * with rte_extmem_register() (if needed), map this memory to appropriate
783 * physical device, etc.
785 * Number of elements in the ext_mem array.
787 * The pointer to the new allocated mempool, on success. NULL on error
788 * with rte_errno set appropriately. Possible rte_errno values include:
789 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
790 * - E_RTE_SECONDARY - function was called from a secondary process instance
791 * - EINVAL - cache size provided is too large, or priv_size is not aligned.
792 * - ENOSPC - the maximum number of memzones has already been allocated
793 * - EEXIST - a memzone with the same name already exists
794 * - ENOMEM - no appropriate memory area found in which to create memzone
798 rte_pktmbuf_pool_create_extbuf(const char *name, unsigned int n,
799 unsigned int cache_size, uint16_t priv_size,
800 uint16_t data_room_size, int socket_id,
801 const struct rte_pktmbuf_extmem *ext_mem,
802 unsigned int ext_num);
805 * Get the data room size of mbufs stored in a pktmbuf_pool
807 * The data room size is the amount of data that can be stored in a
808 * mbuf including the headroom (RTE_PKTMBUF_HEADROOM).
811 * The packet mbuf pool.
813 * The data room size of mbufs stored in this mempool.
815 static inline uint16_t
816 rte_pktmbuf_data_room_size(struct rte_mempool *mp)
818 struct rte_pktmbuf_pool_private *mbp_priv;
820 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
821 return mbp_priv->mbuf_data_room_size;
825 * Get the application private size of mbufs stored in a pktmbuf_pool
827 * The private size of mbuf is a zone located between the rte_mbuf
828 * structure and the data buffer where an application can store data
829 * associated to a packet.
832 * The packet mbuf pool.
834 * The private size of mbufs stored in this mempool.
836 static inline uint16_t
837 rte_pktmbuf_priv_size(struct rte_mempool *mp)
839 struct rte_pktmbuf_pool_private *mbp_priv;
841 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
842 return mbp_priv->mbuf_priv_size;
846 * Reset the data_off field of a packet mbuf to its default value.
848 * The given mbuf must have only one segment, which should be empty.
851 * The packet mbuf's data_off field has to be reset.
853 static inline void rte_pktmbuf_reset_headroom(struct rte_mbuf *m)
855 m->data_off = (uint16_t)RTE_MIN((uint16_t)RTE_PKTMBUF_HEADROOM,
856 (uint16_t)m->buf_len);
860 * Reset the fields of a packet mbuf to their default values.
862 * The given mbuf must have only one segment.
865 * The packet mbuf to be reset.
867 static inline void rte_pktmbuf_reset(struct rte_mbuf *m)
873 m->vlan_tci_outer = 0;
875 m->port = RTE_MBUF_PORT_INVALID;
877 m->ol_flags &= EXT_ATTACHED_MBUF;
879 rte_pktmbuf_reset_headroom(m);
882 __rte_mbuf_sanity_check(m, 1);
886 * Allocate a new mbuf from a mempool.
888 * This new mbuf contains one segment, which has a length of 0. The pointer
889 * to data is initialized to have some bytes of headroom in the buffer
890 * (if buffer size allows).
893 * The mempool from which the mbuf is allocated.
895 * - The pointer to the new mbuf on success.
896 * - NULL if allocation failed.
898 static inline struct rte_mbuf *rte_pktmbuf_alloc(struct rte_mempool *mp)
901 if ((m = rte_mbuf_raw_alloc(mp)) != NULL)
902 rte_pktmbuf_reset(m);
907 * Allocate a bulk of mbufs, initialize refcnt and reset the fields to default
911 * The mempool from which mbufs are allocated.
913 * Array of pointers to mbufs
918 * - -ENOENT: Not enough entries in the mempool; no mbufs are retrieved.
920 static inline int rte_pktmbuf_alloc_bulk(struct rte_mempool *pool,
921 struct rte_mbuf **mbufs, unsigned count)
926 rc = rte_mempool_get_bulk(pool, (void **)mbufs, count);
930 /* To understand duff's device on loop unwinding optimization, see
931 * https://en.wikipedia.org/wiki/Duff's_device.
932 * Here while() loop is used rather than do() while{} to avoid extra
933 * check if count is zero.
937 while (idx != count) {
938 __rte_mbuf_raw_sanity_check(mbufs[idx]);
939 rte_pktmbuf_reset(mbufs[idx]);
943 __rte_mbuf_raw_sanity_check(mbufs[idx]);
944 rte_pktmbuf_reset(mbufs[idx]);
948 __rte_mbuf_raw_sanity_check(mbufs[idx]);
949 rte_pktmbuf_reset(mbufs[idx]);
953 __rte_mbuf_raw_sanity_check(mbufs[idx]);
954 rte_pktmbuf_reset(mbufs[idx]);
963 * Initialize shared data at the end of an external buffer before attaching
964 * to a mbuf by ``rte_pktmbuf_attach_extbuf()``. This is not a mandatory
965 * initialization but a helper function to simply spare a few bytes at the
966 * end of the buffer for shared data. If shared data is allocated
967 * separately, this should not be called but application has to properly
968 * initialize the shared data according to its need.
970 * Free callback and its argument is saved and the refcnt is set to 1.
973 * The value of buf_len will be reduced to RTE_PTR_DIFF(shinfo, buf_addr)
974 * after this initialization. This shall be used for
975 * ``rte_pktmbuf_attach_extbuf()``
978 * The pointer to the external buffer.
979 * @param [in,out] buf_len
980 * The pointer to length of the external buffer. Input value must be
981 * larger than the size of ``struct rte_mbuf_ext_shared_info`` and
982 * padding for alignment. If not enough, this function will return NULL.
983 * Adjusted buffer length will be returned through this pointer.
985 * Free callback function to call when the external buffer needs to be
988 * Argument for the free callback function.
991 * A pointer to the initialized shared data on success, return NULL
994 static inline struct rte_mbuf_ext_shared_info *
995 rte_pktmbuf_ext_shinfo_init_helper(void *buf_addr, uint16_t *buf_len,
996 rte_mbuf_extbuf_free_callback_t free_cb, void *fcb_opaque)
998 struct rte_mbuf_ext_shared_info *shinfo;
999 void *buf_end = RTE_PTR_ADD(buf_addr, *buf_len);
1002 addr = RTE_PTR_ALIGN_FLOOR(RTE_PTR_SUB(buf_end, sizeof(*shinfo)),
1004 if (addr <= buf_addr)
1007 shinfo = (struct rte_mbuf_ext_shared_info *)addr;
1008 shinfo->free_cb = free_cb;
1009 shinfo->fcb_opaque = fcb_opaque;
1010 rte_mbuf_ext_refcnt_set(shinfo, 1);
1012 *buf_len = (uint16_t)RTE_PTR_DIFF(shinfo, buf_addr);
1017 * Attach an external buffer to a mbuf.
1019 * User-managed anonymous buffer can be attached to an mbuf. When attaching
1020 * it, corresponding free callback function and its argument should be
1021 * provided via shinfo. This callback function will be called once all the
1022 * mbufs are detached from the buffer (refcnt becomes zero).
1024 * The headroom length of the attaching mbuf will be set to zero and this
1025 * can be properly adjusted after attachment. For example, ``rte_pktmbuf_adj()``
1026 * or ``rte_pktmbuf_reset_headroom()`` might be used.
1028 * Similarly, the packet length is initialized to 0. If the buffer contains
1029 * data, the user has to adjust ``data_len`` and the ``pkt_len`` field of
1030 * the mbuf accordingly.
1032 * More mbufs can be attached to the same external buffer by
1033 * ``rte_pktmbuf_attach()`` once the external buffer has been attached by
1036 * Detachment can be done by either ``rte_pktmbuf_detach_extbuf()`` or
1037 * ``rte_pktmbuf_detach()``.
1039 * Memory for shared data must be provided and user must initialize all of
1040 * the content properly, especially free callback and refcnt. The pointer
1041 * of shared data will be stored in m->shinfo.
1042 * ``rte_pktmbuf_ext_shinfo_init_helper`` can help to simply spare a few
1043 * bytes at the end of buffer for the shared data, store free callback and
1044 * its argument and set the refcnt to 1. The following is an example:
1046 * struct rte_mbuf_ext_shared_info *shinfo =
1047 * rte_pktmbuf_ext_shinfo_init_helper(buf_addr, &buf_len,
1048 * free_cb, fcb_arg);
1049 * rte_pktmbuf_attach_extbuf(m, buf_addr, buf_iova, buf_len, shinfo);
1050 * rte_pktmbuf_reset_headroom(m);
1051 * rte_pktmbuf_adj(m, data_len);
1053 * Attaching an external buffer is quite similar to mbuf indirection in
1054 * replacing buffer addresses and length of a mbuf, but a few differences:
1055 * - When an indirect mbuf is attached, refcnt of the direct mbuf would be
1056 * 2 as long as the direct mbuf itself isn't freed after the attachment.
1057 * In such cases, the buffer area of a direct mbuf must be read-only. But
1058 * external buffer has its own refcnt and it starts from 1. Unless
1059 * multiple mbufs are attached to a mbuf having an external buffer, the
1060 * external buffer is writable.
1061 * - There's no need to allocate buffer from a mempool. Any buffer can be
1062 * attached with appropriate free callback and its IO address.
1063 * - Smaller metadata is required to maintain shared data such as refcnt.
1066 * The pointer to the mbuf.
1068 * The pointer to the external buffer.
1070 * IO address of the external buffer.
1072 * The size of the external buffer.
1074 * User-provided memory for shared data of the external buffer.
1077 rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr,
1078 rte_iova_t buf_iova, uint16_t buf_len,
1079 struct rte_mbuf_ext_shared_info *shinfo)
1081 /* mbuf should not be read-only */
1082 RTE_ASSERT(RTE_MBUF_DIRECT(m) && rte_mbuf_refcnt_read(m) == 1);
1083 RTE_ASSERT(shinfo->free_cb != NULL);
1085 m->buf_addr = buf_addr;
1086 m->buf_iova = buf_iova;
1087 m->buf_len = buf_len;
1092 m->ol_flags |= EXT_ATTACHED_MBUF;
1097 * Detach the external buffer attached to a mbuf, same as
1098 * ``rte_pktmbuf_detach()``
1101 * The mbuf having external buffer.
1103 #define rte_pktmbuf_detach_extbuf(m) rte_pktmbuf_detach(m)
1106 * Copy dynamic fields from msrc to mdst.
1109 * The destination mbuf.
1114 rte_mbuf_dynfield_copy(struct rte_mbuf *mdst, const struct rte_mbuf *msrc)
1116 memcpy(&mdst->dynfield1, msrc->dynfield1, sizeof(mdst->dynfield1));
1121 __rte_pktmbuf_copy_hdr(struct rte_mbuf *mdst, const struct rte_mbuf *msrc)
1123 mdst->port = msrc->port;
1124 mdst->vlan_tci = msrc->vlan_tci;
1125 mdst->vlan_tci_outer = msrc->vlan_tci_outer;
1126 mdst->tx_offload = msrc->tx_offload;
1127 mdst->hash = msrc->hash;
1128 mdst->packet_type = msrc->packet_type;
1129 rte_mbuf_dynfield_copy(mdst, msrc);
1133 * Attach packet mbuf to another packet mbuf.
1135 * If the mbuf we are attaching to isn't a direct buffer and is attached to
1136 * an external buffer, the mbuf being attached will be attached to the
1137 * external buffer instead of mbuf indirection.
1139 * Otherwise, the mbuf will be indirectly attached. After attachment we
1140 * refer the mbuf we attached as 'indirect', while mbuf we attached to as
1141 * 'direct'. The direct mbuf's reference counter is incremented.
1143 * Right now, not supported:
1144 * - attachment for already indirect mbuf (e.g. - mi has to be direct).
1145 * - mbuf we trying to attach (mi) is used by someone else
1146 * e.g. it's reference counter is greater then 1.
1149 * The indirect packet mbuf.
1151 * The packet mbuf we're attaching to.
1153 static inline void rte_pktmbuf_attach(struct rte_mbuf *mi, struct rte_mbuf *m)
1155 RTE_ASSERT(RTE_MBUF_DIRECT(mi) &&
1156 rte_mbuf_refcnt_read(mi) == 1);
1158 if (RTE_MBUF_HAS_EXTBUF(m)) {
1159 rte_mbuf_ext_refcnt_update(m->shinfo, 1);
1160 mi->ol_flags = m->ol_flags;
1161 mi->shinfo = m->shinfo;
1163 /* if m is not direct, get the mbuf that embeds the data */
1164 rte_mbuf_refcnt_update(rte_mbuf_from_indirect(m), 1);
1165 mi->priv_size = m->priv_size;
1166 mi->ol_flags = m->ol_flags | IND_ATTACHED_MBUF;
1169 __rte_pktmbuf_copy_hdr(mi, m);
1171 mi->data_off = m->data_off;
1172 mi->data_len = m->data_len;
1173 mi->buf_iova = m->buf_iova;
1174 mi->buf_addr = m->buf_addr;
1175 mi->buf_len = m->buf_len;
1178 mi->pkt_len = mi->data_len;
1181 __rte_mbuf_sanity_check(mi, 1);
1182 __rte_mbuf_sanity_check(m, 0);
1186 * @internal used by rte_pktmbuf_detach().
1188 * Decrement the reference counter of the external buffer. When the
1189 * reference counter becomes 0, the buffer is freed by pre-registered
1193 __rte_pktmbuf_free_extbuf(struct rte_mbuf *m)
1195 RTE_ASSERT(RTE_MBUF_HAS_EXTBUF(m));
1196 RTE_ASSERT(m->shinfo != NULL);
1198 if (rte_mbuf_ext_refcnt_update(m->shinfo, -1) == 0)
1199 m->shinfo->free_cb(m->buf_addr, m->shinfo->fcb_opaque);
1203 * @internal used by rte_pktmbuf_detach().
1205 * Decrement the direct mbuf's reference counter. When the reference
1206 * counter becomes 0, the direct mbuf is freed.
1209 __rte_pktmbuf_free_direct(struct rte_mbuf *m)
1211 struct rte_mbuf *md;
1213 RTE_ASSERT(RTE_MBUF_CLONED(m));
1215 md = rte_mbuf_from_indirect(m);
1217 if (rte_mbuf_refcnt_update(md, -1) == 0) {
1220 rte_mbuf_refcnt_set(md, 1);
1221 rte_mbuf_raw_free(md);
1226 * Detach a packet mbuf from external buffer or direct buffer.
1228 * - decrement refcnt and free the external/direct buffer if refcnt
1230 * - restore original mbuf address and length values.
1231 * - reset pktmbuf data and data_len to their default values.
1233 * All other fields of the given packet mbuf will be left intact.
1235 * If the packet mbuf was allocated from the pool with pinned
1236 * external buffers the rte_pktmbuf_detach does nothing with the
1237 * mbuf of this kind, because the pinned buffers are not supposed
1241 * The indirect attached packet mbuf.
1243 static inline void rte_pktmbuf_detach(struct rte_mbuf *m)
1245 struct rte_mempool *mp = m->pool;
1246 uint32_t mbuf_size, buf_len;
1249 if (RTE_MBUF_HAS_EXTBUF(m)) {
1251 * The mbuf has the external attached buffer,
1252 * we should check the type of the memory pool where
1253 * the mbuf was allocated from to detect the pinned
1256 uint32_t flags = rte_pktmbuf_priv_flags(mp);
1258 if (flags & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) {
1260 * The pinned external buffer should not be
1261 * detached from its backing mbuf, just exit.
1265 __rte_pktmbuf_free_extbuf(m);
1267 __rte_pktmbuf_free_direct(m);
1269 priv_size = rte_pktmbuf_priv_size(mp);
1270 mbuf_size = (uint32_t)(sizeof(struct rte_mbuf) + priv_size);
1271 buf_len = rte_pktmbuf_data_room_size(mp);
1273 m->priv_size = priv_size;
1274 m->buf_addr = (char *)m + mbuf_size;
1275 m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
1276 m->buf_len = (uint16_t)buf_len;
1277 rte_pktmbuf_reset_headroom(m);
1283 * @internal Handle the packet mbufs with attached pinned external buffer
1284 * on the mbuf freeing:
1286 * - return zero if reference counter in shinfo is one. It means there is
1287 * no more reference to this pinned buffer and mbuf can be returned to
1290 * - otherwise (if reference counter is not one), decrement reference
1291 * counter and return non-zero value to prevent freeing the backing mbuf.
1293 * Returns non zero if mbuf should not be freed.
1295 static inline int __rte_pktmbuf_pinned_extbuf_decref(struct rte_mbuf *m)
1297 struct rte_mbuf_ext_shared_info *shinfo;
1299 /* Clear flags, mbuf is being freed. */
1300 m->ol_flags = EXT_ATTACHED_MBUF;
1303 /* Optimize for performance - do not dec/reinit */
1304 if (likely(rte_mbuf_ext_refcnt_read(shinfo) == 1))
1308 * Direct usage of add primitive to avoid
1309 * duplication of comparing with one.
1311 if (likely(__atomic_add_fetch(&shinfo->refcnt, (uint16_t)-1,
1315 /* Reinitialize counter before mbuf freeing. */
1316 rte_mbuf_ext_refcnt_set(shinfo, 1);
1321 * Decrease reference counter and unlink a mbuf segment
1323 * This function does the same than a free, except that it does not
1324 * return the segment to its pool.
1325 * It decreases the reference counter, and if it reaches 0, it is
1326 * detached from its parent for an indirect mbuf.
1329 * The mbuf to be unlinked
1331 * - (m) if it is the last reference. It can be recycled or freed.
1332 * - (NULL) if the mbuf still has remaining references on it.
1334 static __rte_always_inline struct rte_mbuf *
1335 rte_pktmbuf_prefree_seg(struct rte_mbuf *m)
1337 __rte_mbuf_sanity_check(m, 0);
1339 if (likely(rte_mbuf_refcnt_read(m) == 1)) {
1341 if (!RTE_MBUF_DIRECT(m)) {
1342 rte_pktmbuf_detach(m);
1343 if (RTE_MBUF_HAS_EXTBUF(m) &&
1344 RTE_MBUF_HAS_PINNED_EXTBUF(m) &&
1345 __rte_pktmbuf_pinned_extbuf_decref(m))
1349 if (m->next != NULL) {
1356 } else if (__rte_mbuf_refcnt_update(m, -1) == 0) {
1358 if (!RTE_MBUF_DIRECT(m)) {
1359 rte_pktmbuf_detach(m);
1360 if (RTE_MBUF_HAS_EXTBUF(m) &&
1361 RTE_MBUF_HAS_PINNED_EXTBUF(m) &&
1362 __rte_pktmbuf_pinned_extbuf_decref(m))
1366 if (m->next != NULL) {
1370 rte_mbuf_refcnt_set(m, 1);
1378 * Free a segment of a packet mbuf into its original mempool.
1380 * Free an mbuf, without parsing other segments in case of chained
1384 * The packet mbuf segment to be freed.
1386 static __rte_always_inline void
1387 rte_pktmbuf_free_seg(struct rte_mbuf *m)
1389 m = rte_pktmbuf_prefree_seg(m);
1390 if (likely(m != NULL))
1391 rte_mbuf_raw_free(m);
1395 * Free a packet mbuf back into its original mempool.
1397 * Free an mbuf, and all its segments in case of chained buffers. Each
1398 * segment is added back into its original mempool.
1401 * The packet mbuf to be freed. If NULL, the function does nothing.
1403 static inline void rte_pktmbuf_free(struct rte_mbuf *m)
1405 struct rte_mbuf *m_next;
1408 __rte_mbuf_sanity_check(m, 1);
1412 rte_pktmbuf_free_seg(m);
1418 * Free a bulk of packet mbufs back into their original mempools.
1420 * Free a bulk of mbufs, and all their segments in case of chained buffers.
1421 * Each segment is added back into its original mempool.
1424 * Array of pointers to packet mbufs.
1425 * The array may contain NULL pointers.
1430 void rte_pktmbuf_free_bulk(struct rte_mbuf **mbufs, unsigned int count);
1433 * Create a "clone" of the given packet mbuf.
1435 * Walks through all segments of the given packet mbuf, and for each of them:
1436 * - Creates a new packet mbuf from the given pool.
1437 * - Attaches newly created mbuf to the segment.
1438 * Then updates pkt_len and nb_segs of the "clone" packet mbuf to match values
1439 * from the original packet mbuf.
1442 * The packet mbuf to be cloned.
1444 * The mempool from which the "clone" mbufs are allocated.
1446 * - The pointer to the new "clone" mbuf on success.
1447 * - NULL if allocation fails.
1450 rte_pktmbuf_clone(struct rte_mbuf *md, struct rte_mempool *mp);
1453 * Create a full copy of a given packet mbuf.
1455 * Copies all the data from a given packet mbuf to a newly allocated
1456 * set of mbufs. The private data are is not copied.
1459 * The packet mbuf to be copiedd.
1461 * The mempool from which the "clone" mbufs are allocated.
1463 * The number of bytes to skip before copying.
1464 * If the mbuf does not have that many bytes, it is an error
1465 * and NULL is returned.
1467 * The upper limit on bytes to copy. Passing UINT32_MAX
1468 * means all data (after offset).
1470 * - The pointer to the new "clone" mbuf on success.
1471 * - NULL if allocation fails.
1475 rte_pktmbuf_copy(const struct rte_mbuf *m, struct rte_mempool *mp,
1476 uint32_t offset, uint32_t length);
1479 * Adds given value to the refcnt of all packet mbuf segments.
1481 * Walks through all segments of given packet mbuf and for each of them
1482 * invokes rte_mbuf_refcnt_update().
1485 * The packet mbuf whose refcnt to be updated.
1487 * The value to add to the mbuf's segments refcnt.
1489 static inline void rte_pktmbuf_refcnt_update(struct rte_mbuf *m, int16_t v)
1491 __rte_mbuf_sanity_check(m, 1);
1494 rte_mbuf_refcnt_update(m, v);
1495 } while ((m = m->next) != NULL);
1499 * Get the headroom in a packet mbuf.
1504 * The length of the headroom.
1506 static inline uint16_t rte_pktmbuf_headroom(const struct rte_mbuf *m)
1508 __rte_mbuf_sanity_check(m, 0);
1513 * Get the tailroom of a packet mbuf.
1518 * The length of the tailroom.
1520 static inline uint16_t rte_pktmbuf_tailroom(const struct rte_mbuf *m)
1522 __rte_mbuf_sanity_check(m, 0);
1523 return (uint16_t)(m->buf_len - rte_pktmbuf_headroom(m) -
1528 * Get the last segment of the packet.
1533 * The last segment of the given mbuf.
1535 static inline struct rte_mbuf *rte_pktmbuf_lastseg(struct rte_mbuf *m)
1537 __rte_mbuf_sanity_check(m, 1);
1538 while (m->next != NULL)
1544 * A macro that returns the length of the packet.
1546 * The value can be read or assigned.
1551 #define rte_pktmbuf_pkt_len(m) ((m)->pkt_len)
1554 * A macro that returns the length of the segment.
1556 * The value can be read or assigned.
1561 #define rte_pktmbuf_data_len(m) ((m)->data_len)
1564 * Prepend len bytes to an mbuf data area.
1566 * Returns a pointer to the new
1567 * data start address. If there is not enough headroom in the first
1568 * segment, the function will return NULL, without modifying the mbuf.
1573 * The amount of data to prepend (in bytes).
1575 * A pointer to the start of the newly prepended data, or
1576 * NULL if there is not enough headroom space in the first segment
1578 static inline char *rte_pktmbuf_prepend(struct rte_mbuf *m,
1581 __rte_mbuf_sanity_check(m, 1);
1583 if (unlikely(len > rte_pktmbuf_headroom(m)))
1586 /* NB: elaborating the subtraction like this instead of using
1587 * -= allows us to ensure the result type is uint16_t
1588 * avoiding compiler warnings on gcc 8.1 at least */
1589 m->data_off = (uint16_t)(m->data_off - len);
1590 m->data_len = (uint16_t)(m->data_len + len);
1591 m->pkt_len = (m->pkt_len + len);
1593 return (char *)m->buf_addr + m->data_off;
1597 * Append len bytes to an mbuf.
1599 * Append len bytes to an mbuf and return a pointer to the start address
1600 * of the added data. If there is not enough tailroom in the last
1601 * segment, the function will return NULL, without modifying the mbuf.
1606 * The amount of data to append (in bytes).
1608 * A pointer to the start of the newly appended data, or
1609 * NULL if there is not enough tailroom space in the last segment
1611 static inline char *rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
1614 struct rte_mbuf *m_last;
1616 __rte_mbuf_sanity_check(m, 1);
1618 m_last = rte_pktmbuf_lastseg(m);
1619 if (unlikely(len > rte_pktmbuf_tailroom(m_last)))
1622 tail = (char *)m_last->buf_addr + m_last->data_off + m_last->data_len;
1623 m_last->data_len = (uint16_t)(m_last->data_len + len);
1624 m->pkt_len = (m->pkt_len + len);
1625 return (char*) tail;
1629 * Remove len bytes at the beginning of an mbuf.
1631 * Returns a pointer to the start address of the new data area. If the
1632 * length is greater than the length of the first segment, then the
1633 * function will fail and return NULL, without modifying the mbuf.
1638 * The amount of data to remove (in bytes).
1640 * A pointer to the new start of the data.
1642 static inline char *rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len)
1644 __rte_mbuf_sanity_check(m, 1);
1646 if (unlikely(len > m->data_len))
1649 /* NB: elaborating the addition like this instead of using
1650 * += allows us to ensure the result type is uint16_t
1651 * avoiding compiler warnings on gcc 8.1 at least */
1652 m->data_len = (uint16_t)(m->data_len - len);
1653 m->data_off = (uint16_t)(m->data_off + len);
1654 m->pkt_len = (m->pkt_len - len);
1655 return (char *)m->buf_addr + m->data_off;
1659 * Remove len bytes of data at the end of the mbuf.
1661 * If the length is greater than the length of the last segment, the
1662 * function will fail and return -1 without modifying the mbuf.
1667 * The amount of data to remove (in bytes).
1672 static inline int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len)
1674 struct rte_mbuf *m_last;
1676 __rte_mbuf_sanity_check(m, 1);
1678 m_last = rte_pktmbuf_lastseg(m);
1679 if (unlikely(len > m_last->data_len))
1682 m_last->data_len = (uint16_t)(m_last->data_len - len);
1683 m->pkt_len = (m->pkt_len - len);
1688 * Test if mbuf data is contiguous.
1693 * - 1, if all data is contiguous (one segment).
1694 * - 0, if there is several segments.
1696 static inline int rte_pktmbuf_is_contiguous(const struct rte_mbuf *m)
1698 __rte_mbuf_sanity_check(m, 1);
1699 return m->nb_segs == 1;
1703 * @internal used by rte_pktmbuf_read().
1705 const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off,
1706 uint32_t len, void *buf);
1709 * Read len data bytes in a mbuf at specified offset.
1711 * If the data is contiguous, return the pointer in the mbuf data, else
1712 * copy the data in the buffer provided by the user and return its
1716 * The pointer to the mbuf.
1718 * The offset of the data in the mbuf.
1720 * The amount of bytes to read.
1722 * The buffer where data is copied if it is not contiguous in mbuf
1723 * data. Its length should be at least equal to the len parameter.
1725 * The pointer to the data, either in the mbuf if it is contiguous,
1726 * or in the user buffer. If mbuf is too small, NULL is returned.
1728 static inline const void *rte_pktmbuf_read(const struct rte_mbuf *m,
1729 uint32_t off, uint32_t len, void *buf)
1731 if (likely(off + len <= rte_pktmbuf_data_len(m)))
1732 return rte_pktmbuf_mtod_offset(m, char *, off);
1734 return __rte_pktmbuf_read(m, off, len, buf);
1738 * Chain an mbuf to another, thereby creating a segmented packet.
1740 * Note: The implementation will do a linear walk over the segments to find
1741 * the tail entry. For cases when there are many segments, it's better to
1742 * chain the entries manually.
1745 * The head of the mbuf chain (the first packet)
1747 * The mbuf to put last in the chain
1751 * - -EOVERFLOW, if the chain segment limit exceeded
1753 static inline int rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail)
1755 struct rte_mbuf *cur_tail;
1757 /* Check for number-of-segments-overflow */
1758 if (head->nb_segs + tail->nb_segs > RTE_MBUF_MAX_NB_SEGS)
1761 /* Chain 'tail' onto the old tail */
1762 cur_tail = rte_pktmbuf_lastseg(head);
1763 cur_tail->next = tail;
1765 /* accumulate number of segments and total length.
1766 * NB: elaborating the addition like this instead of using
1767 * -= allows us to ensure the result type is uint16_t
1768 * avoiding compiler warnings on gcc 8.1 at least */
1769 head->nb_segs = (uint16_t)(head->nb_segs + tail->nb_segs);
1770 head->pkt_len += tail->pkt_len;
1772 /* pkt_len is only set in the head */
1773 tail->pkt_len = tail->data_len;
1780 * @b EXPERIMENTAL: This API may change without prior notice.
1782 * For given input values generate raw tx_offload value.
1783 * Note that it is caller responsibility to make sure that input parameters
1784 * don't exceed maximum bit-field values.
1794 * outer_l3_len value.
1796 * outer_l2_len value.
1800 * raw tx_offload value.
1802 static __rte_always_inline uint64_t
1803 rte_mbuf_tx_offload(uint64_t il2, uint64_t il3, uint64_t il4, uint64_t tso,
1804 uint64_t ol3, uint64_t ol2, uint64_t unused)
1806 return il2 << RTE_MBUF_L2_LEN_OFS |
1807 il3 << RTE_MBUF_L3_LEN_OFS |
1808 il4 << RTE_MBUF_L4_LEN_OFS |
1809 tso << RTE_MBUF_TSO_SEGSZ_OFS |
1810 ol3 << RTE_MBUF_OUTL3_LEN_OFS |
1811 ol2 << RTE_MBUF_OUTL2_LEN_OFS |
1812 unused << RTE_MBUF_TXOFLD_UNUSED_OFS;
1816 * Validate general requirements for Tx offload in mbuf.
1818 * This function checks correctness and completeness of Tx offload settings.
1821 * The packet mbuf to be validated.
1823 * 0 if packet is valid
1826 rte_validate_tx_offload(const struct rte_mbuf *m)
1828 uint64_t ol_flags = m->ol_flags;
1830 /* Does packet set any of available offloads? */
1831 if (!(ol_flags & PKT_TX_OFFLOAD_MASK))
1834 /* IP checksum can be counted only for IPv4 packet */
1835 if ((ol_flags & PKT_TX_IP_CKSUM) && (ol_flags & PKT_TX_IPV6))
1838 /* IP type not set when required */
1839 if (ol_flags & (PKT_TX_L4_MASK | PKT_TX_TCP_SEG))
1840 if (!(ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)))
1843 /* Check requirements for TSO packet */
1844 if (ol_flags & PKT_TX_TCP_SEG)
1845 if ((m->tso_segsz == 0) ||
1846 ((ol_flags & PKT_TX_IPV4) &&
1847 !(ol_flags & PKT_TX_IP_CKSUM)))
1850 /* PKT_TX_OUTER_IP_CKSUM set for non outer IPv4 packet. */
1851 if ((ol_flags & PKT_TX_OUTER_IP_CKSUM) &&
1852 !(ol_flags & PKT_TX_OUTER_IPV4))
1859 * @internal used by rte_pktmbuf_linearize().
1861 int __rte_pktmbuf_linearize(struct rte_mbuf *mbuf);
1864 * Linearize data in mbuf.
1866 * This function moves the mbuf data in the first segment if there is enough
1867 * tailroom. The subsequent segments are unchained and freed.
1876 rte_pktmbuf_linearize(struct rte_mbuf *mbuf)
1878 if (rte_pktmbuf_is_contiguous(mbuf))
1880 return __rte_pktmbuf_linearize(mbuf);
1884 * Dump an mbuf structure to a file.
1886 * Dump all fields for the given packet mbuf and all its associated
1887 * segments (in the case of a chained buffer).
1890 * A pointer to a file for output
1894 * If dump_len != 0, also dump the "dump_len" first data bytes of
1897 void rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len);
1900 * Get the value of mbuf sched queue_id field.
1902 static inline uint32_t
1903 rte_mbuf_sched_queue_get(const struct rte_mbuf *m)
1905 return m->hash.sched.queue_id;
1909 * Get the value of mbuf sched traffic_class field.
1911 static inline uint8_t
1912 rte_mbuf_sched_traffic_class_get(const struct rte_mbuf *m)
1914 return m->hash.sched.traffic_class;
1918 * Get the value of mbuf sched color field.
1920 static inline uint8_t
1921 rte_mbuf_sched_color_get(const struct rte_mbuf *m)
1923 return m->hash.sched.color;
1927 * Get the values of mbuf sched queue_id, traffic_class and color.
1932 * Returns the queue id
1933 * @param traffic_class
1934 * Returns the traffic class id
1936 * Returns the colour id
1939 rte_mbuf_sched_get(const struct rte_mbuf *m, uint32_t *queue_id,
1940 uint8_t *traffic_class,
1943 struct rte_mbuf_sched sched = m->hash.sched;
1945 *queue_id = sched.queue_id;
1946 *traffic_class = sched.traffic_class;
1947 *color = sched.color;
1951 * Set the mbuf sched queue_id to the defined value.
1954 rte_mbuf_sched_queue_set(struct rte_mbuf *m, uint32_t queue_id)
1956 m->hash.sched.queue_id = queue_id;
1960 * Set the mbuf sched traffic_class id to the defined value.
1963 rte_mbuf_sched_traffic_class_set(struct rte_mbuf *m, uint8_t traffic_class)
1965 m->hash.sched.traffic_class = traffic_class;
1969 * Set the mbuf sched color id to the defined value.
1972 rte_mbuf_sched_color_set(struct rte_mbuf *m, uint8_t color)
1974 m->hash.sched.color = color;
1978 * Set the mbuf sched queue_id, traffic_class and color.
1983 * Queue id value to be set
1984 * @param traffic_class
1985 * Traffic class id value to be set
1987 * Color id to be set
1990 rte_mbuf_sched_set(struct rte_mbuf *m, uint32_t queue_id,
1991 uint8_t traffic_class,
1994 m->hash.sched = (struct rte_mbuf_sched){
1995 .queue_id = queue_id,
1996 .traffic_class = traffic_class,
2006 #endif /* _RTE_MBUF_H_ */