vhost: add power monitor API
[dpdk.git] / doc / guides / sample_app_ug / timer.rst
index c572db5..d8c6d9a 100644 (file)
@@ -21,7 +21,7 @@ To run the example in linux environment:
 
 .. code-block:: console
 
-    $ ./build/timer -l 0-3 -n 4
+    $ ./<build_dir>/examples/dpdk-timer -l 0-3 -n 4
 
 Refer to the *DPDK Getting Started Guide* for general information on running applications and
 the Environment Abstraction Layer (EAL) options.
@@ -36,55 +36,29 @@ Initialization and Main Loop
 
 In addition to EAL initialization, the timer subsystem must be initialized, by calling the rte_timer_subsystem_init() function.
 
-.. code-block:: c
-
-    /* init EAL */
-
-    ret = rte_eal_init(argc, argv);
-    if (ret < 0)
-        rte_panic("Cannot init EAL\n");
-
-    /* init RTE timer library */
-
-    rte_timer_subsystem_init();
+.. literalinclude:: ../../../examples/timer/main.c
+    :language: c
+    :start-after: Init EAL. 8<
+    :end-before: >8 End of init EAL.
+    :dedent: 1
 
 After timer creation (see the next paragraph), the main loop is
 executed on each worker lcore using the well-known
 rte_eal_remote_launch() and also on the main.
 
-.. code-block:: c
-
-    /* call lcore_mainloop() on every worker lcore  */
-    RTE_LCORE_FOREACH_WORKER(lcore_id) {
-        rte_eal_remote_launch(lcore_mainloop, NULL, lcore_id);
-    }
-
-    /* call it on main lcore too */
-
-    (void) lcore_mainloop(NULL);
+.. literalinclude:: ../../../examples/timer/main.c
+    :language: c
+    :start-after: Call lcore_mainloop() on every worker lcore. 8<
+    :end-before: >8 End of call lcore_mainloop() on every worker lcore.
+    :dedent: 1
 
 The main loop is very simple in this example:
 
-.. code-block:: c
-
-    while (1) {
-        /*
-         *   Call the timer handler on each core: as we don't
-         *   need a very precise timer, so only call
-         *   rte_timer_manage() every ~10ms (at 2 GHz). In a real
-         *   application, this will enhance performances as
-         *   reading the HPET timer is not efficient.
-        */
-
-        cur_tsc = rte_rdtsc();
-
-        diff_tsc = cur_tsc - prev_tsc;
-
-        if (diff_tsc > TIMER_RESOLUTION_CYCLES) {
-            rte_timer_manage();
-            prev_tsc = cur_tsc;
-        }
-    }
+.. literalinclude:: ../../../examples/timer/main.c
+    :language: c
+    :start-after: Main loop. 8<
+    :end-before: >8 End of main loop.
+    :dedent: 1
 
 As explained in the comment, it is better to use the TSC register (as it is a per-lcore register) to check if the
 rte_timer_manage() function must be called or not.
@@ -96,12 +70,11 @@ Managing Timers
 In the main() function, the two timers are initialized.
 This call to rte_timer_init() is necessary before doing any other operation on the timer structure.
 
-.. code-block:: c
-
-    /* init timer structures */
-
-    rte_timer_init(&timer0);
-    rte_timer_init(&timer1);
+.. literalinclude:: ../../../examples/timer/main.c
+    :language: c
+    :start-after: Init timer structures. 8<
+    :end-before: >8 End of init timer structures.
+    :dedent: 1
 
 Then, the two timers are configured:
 
@@ -113,64 +86,24 @@ Then, the two timers are configured:
     The SINGLE flag means that the timer expires only once and must be reloaded manually if required.
     The callback function is timer1_cb().
 
-.. code-block:: c
-
-    /* load timer0, every second, on main lcore, reloaded automatically */
-
-    hz = rte_get_hpet_hz();
-
-    lcore_id = rte_lcore_id();
-
-    rte_timer_reset(&timer0, hz, PERIODICAL, lcore_id, timer0_cb, NULL);
-
-    /* load timer1, every second/3, on next lcore, reloaded manually */
-
-    lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
-
-    rte_timer_reset(&timer1, hz/3, SINGLE, lcore_id, timer1_cb, NULL);
+.. literalinclude:: ../../../examples/timer/main.c
+    :language: c
+    :start-after: Load timer0, every second, on main lcore, reloaded automatically. 8<
+    :end-before: >8 End of two timers configured.
+    :dedent: 1
 
 The callback for the first timer (timer0) only displays a message until a global counter reaches 20 (after 20 seconds).
 In this case, the timer is stopped using the rte_timer_stop() function.
 
-.. code-block:: c
-
-    /* timer0 callback */
-
-    static void
-    timer0_cb(__rte_unused struct rte_timer *tim, __rte_unused void *arg)
-    {
-        static unsigned counter = 0;
-
-        unsigned lcore_id = rte_lcore_id();
-
-        printf("%s() on lcore %u\n", FUNCTION , lcore_id);
-
-        /* this timer is automatically reloaded until we decide to stop it, when counter reaches 20. */
-
-        if ((counter ++) == 20)
-            rte_timer_stop(tim);
-    }
+.. literalinclude:: ../../../examples/timer/main.c
+    :language: c
+    :start-after: timer0 callback. 8<
+    :end-before: >8 End of timer0 callback.
 
 The callback for the second timer (timer1) displays a message and reloads the timer on the next lcore, using the
 rte_timer_reset() function:
 
-.. code-block:: c
-
-    /* timer1 callback */
-
-    static void
-    timer1_cb(__rte_unused struct rte_timer *tim, __rte_unused void *arg)
-    {
-        unsigned lcore_id = rte_lcore_id();
-        uint64_t hz;
-
-        printf("%s() on lcore %u\\n", FUNCTION , lcore_id);
-
-        /* reload it on another lcore */
-
-        hz = rte_get_hpet_hz();
-
-        lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
-
-        rte_timer_reset(&timer1, hz/3, SINGLE, lcore_id, timer1_cb, NULL);
-    }
+.. literalinclude:: ../../../examples/timer/main.c
+    :language: c
+    :start-after: timer1 callback. 8<
+    :end-before: >8 End of timer1 callback.