net/iavf: fix VLAN insertion
[dpdk.git] / drivers / net / i40e / i40e_rxtx_vec_sse.c
index b95cc8e..497b240 100644 (file)
@@ -1,38 +1,9 @@
-/*-
- *   BSD LICENSE
- *
- *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
- *   All rights reserved.
- *
- *   Redistribution and use in source and binary forms, with or without
- *   modification, are permitted provided that the following conditions
- *   are met:
- *
- *     * Redistributions of source code must retain the above copyright
- *       notice, this list of conditions and the following disclaimer.
- *     * Redistributions in binary form must reproduce the above copyright
- *       notice, this list of conditions and the following disclaimer in
- *       the documentation and/or other materials provided with the
- *       distribution.
- *     * Neither the name of Intel Corporation nor the names of its
- *       contributors may be used to endorse or promote products derived
- *       from this software without specific prior written permission.
- *
- *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2010-2015 Intel Corporation
  */
 
 #include <stdint.h>
-#include <rte_ethdev.h>
+#include <ethdev_driver.h>
 #include <rte_malloc.h>
 
 #include "base/i40e_prototype.h"
@@ -82,23 +53,13 @@ i40e_rxq_rearm(struct i40e_rx_queue *rxq)
        /* Initialize the mbufs in vector, process 2 mbufs in one loop */
        for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
                __m128i vaddr0, vaddr1;
-               uintptr_t p0, p1;
 
                mb0 = rxep[0].mbuf;
                mb1 = rxep[1].mbuf;
 
-                /* Flush mbuf with pkt template.
-                * Data to be rearmed is 6 bytes long.
-                * Though, RX will overwrite ol_flags that are coming next
-                * anyway. So overwrite whole 8 bytes with one load:
-                * 6 bytes of rearm_data plus first 2 bytes of ol_flags.
-                */
-               p0 = (uintptr_t)&mb0->rearm_data;
-               *(uint64_t *)p0 = rxq->mbuf_initializer;
-               p1 = (uintptr_t)&mb1->rearm_data;
-               *(uint64_t *)p1 = rxq->mbuf_initializer;
-
-               /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
+               /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
+               RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
+                               offsetof(struct rte_mbuf, buf_addr) + 8);
                vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
                vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
 
@@ -125,20 +86,138 @@ i40e_rxq_rearm(struct i40e_rx_queue *rxq)
                             (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
 
        /* Update the tail pointer on the NIC */
-       I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
+       I40E_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
+}
+
+#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
+/* SSE version of FDIR mark extraction for 4 32B descriptors at a time */
+static inline __m128i
+descs_to_fdir_32b(volatile union i40e_rx_desc *rxdp, struct rte_mbuf **rx_pkt)
+{
+       /* 32B descriptors: Load 2nd half of descriptors for FDIR ID data */
+       __m128i desc0_qw23, desc1_qw23, desc2_qw23, desc3_qw23;
+       desc0_qw23 = _mm_loadu_si128((__m128i *)&(rxdp + 0)->wb.qword2);
+       desc1_qw23 = _mm_loadu_si128((__m128i *)&(rxdp + 1)->wb.qword2);
+       desc2_qw23 = _mm_loadu_si128((__m128i *)&(rxdp + 2)->wb.qword2);
+       desc3_qw23 = _mm_loadu_si128((__m128i *)&(rxdp + 3)->wb.qword2);
+
+       /* FDIR ID data: move last u32 of each desc to 4 u32 lanes */
+       __m128i v_unpack_01, v_unpack_23;
+       v_unpack_01 = _mm_unpackhi_epi32(desc0_qw23, desc1_qw23);
+       v_unpack_23 = _mm_unpackhi_epi32(desc2_qw23, desc3_qw23);
+       __m128i v_fdir_ids = _mm_unpackhi_epi64(v_unpack_01, v_unpack_23);
+
+       /* Extended Status: extract from each lower 32 bits, to u32 lanes */
+       v_unpack_01 = _mm_unpacklo_epi32(desc0_qw23, desc1_qw23);
+       v_unpack_23 = _mm_unpacklo_epi32(desc2_qw23, desc3_qw23);
+       __m128i v_flt_status = _mm_unpacklo_epi64(v_unpack_01, v_unpack_23);
+
+       /* Shift u32 left and right to "mask away" bits not required.
+        * Data required is 4:5 (zero based), so left shift by 26 (32-6)
+        * and then right shift by 30 (32 - 2 bits required).
+        */
+       v_flt_status = _mm_slli_epi32(v_flt_status, 26);
+       v_flt_status = _mm_srli_epi32(v_flt_status, 30);
+
+       /* Generate constant 1 in all u32 lanes and compare */
+       RTE_BUILD_BUG_ON(I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID != 1);
+       __m128i v_zeros = _mm_setzero_si128();
+       __m128i v_ffff = _mm_cmpeq_epi32(v_zeros, v_zeros);
+       __m128i v_u32_one = _mm_srli_epi32(v_ffff, 31);
+
+       /* per desc mask, bits set if FDIR ID is valid */
+       __m128i v_fd_id_mask = _mm_cmpeq_epi32(v_flt_status, v_u32_one);
+
+       /* Mask ID data to zero if the FD_ID bit not set in desc */
+       v_fdir_ids = _mm_and_si128(v_fdir_ids, v_fd_id_mask);
+
+       /* Extract and store as u32. No advantage to combining into SSE
+        * stores, there are no surrounding stores to around fdir.hi
+        */
+       rx_pkt[0]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 0);
+       rx_pkt[1]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 1);
+       rx_pkt[2]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 2);
+       rx_pkt[3]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 3);
+
+       /* convert fdir_id_mask into a single bit, then shift as required for
+        * correct location in the mbuf->olflags
+        */
+       const uint32_t FDIR_ID_BIT_SHIFT = 13;
+       RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << FDIR_ID_BIT_SHIFT));
+       v_fd_id_mask = _mm_srli_epi32(v_fd_id_mask, 31);
+       v_fd_id_mask = _mm_slli_epi32(v_fd_id_mask, FDIR_ID_BIT_SHIFT);
+
+       /* The returned value must be combined into each mbuf. This is already
+        * being done for RSS and VLAN mbuf olflags, so return bits to OR in.
+        */
+       return v_fd_id_mask;
 }
 
-/* Handling the offload flags (olflags) field takes computation
- * time when receiving packets. Therefore we provide a flag to disable
- * the processing of the olflags field when they are not needed. This
- * gives improved performance, at the cost of losing the offload info
- * in the received packet
+#else /* 32 or 16B FDIR ID handling */
+
+/* Handle 16B descriptor FDIR ID flag setting based on FLM. See scalar driver
+ * for scalar implementation of the same functionality.
  */
-#ifdef RTE_LIBRTE_I40E_RX_OLFLAGS_ENABLE
+static inline __m128i
+descs_to_fdir_16b(__m128i fltstat, __m128i descs[4], struct rte_mbuf **rx_pkt)
+{
+       /* unpack filter-status data from descriptors */
+       __m128i v_tmp_01 = _mm_unpacklo_epi32(descs[0], descs[1]);
+       __m128i v_tmp_23 = _mm_unpacklo_epi32(descs[2], descs[3]);
+       __m128i v_fdir_ids = _mm_unpackhi_epi64(v_tmp_01, v_tmp_23);
+
+       /* Generate one bit in each u32 lane */
+       __m128i v_zeros = _mm_setzero_si128();
+       __m128i v_ffff = _mm_cmpeq_epi32(v_zeros, v_zeros);
+       __m128i v_111_mask = _mm_srli_epi32(v_ffff, 29);
+       __m128i v_11_mask = _mm_srli_epi32(v_ffff, 30);
+
+       /* Top lane ones mask for FDIR isolation */
+       __m128i v_desc_fdir_mask = _mm_insert_epi32(v_zeros, UINT32_MAX, 1);
+
+       /* Compare and mask away FDIR ID data if bit not set */
+       __m128i v_u32_bits = _mm_and_si128(v_111_mask, fltstat);
+       __m128i v_fdir_id_mask = _mm_cmpeq_epi32(v_u32_bits, v_11_mask);
+       v_fdir_ids = _mm_and_si128(v_fdir_id_mask, v_fdir_ids);
+
+       /* Store data to fdir.hi in mbuf */
+       rx_pkt[0]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 0);
+       rx_pkt[1]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 1);
+       rx_pkt[2]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 2);
+       rx_pkt[3]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 3);
+
+       /* Move fdir_id_mask to correct lane, blend RSS to zero on hits */
+       __m128i v_desc3_shift = _mm_alignr_epi8(v_zeros, v_fdir_id_mask, 8);
+       __m128i v_desc3_mask = _mm_and_si128(v_desc_fdir_mask, v_desc3_shift);
+       descs[3] = _mm_blendv_epi8(descs[3], _mm_setzero_si128(), v_desc3_mask);
+
+       __m128i v_desc2_shift = _mm_alignr_epi8(v_zeros, v_fdir_id_mask, 4);
+       __m128i v_desc2_mask = _mm_and_si128(v_desc_fdir_mask, v_desc2_shift);
+       descs[2] = _mm_blendv_epi8(descs[2], _mm_setzero_si128(), v_desc2_mask);
+
+       __m128i v_desc1_shift = v_fdir_id_mask;
+       __m128i v_desc1_mask = _mm_and_si128(v_desc_fdir_mask, v_desc1_shift);
+       descs[1] = _mm_blendv_epi8(descs[1], _mm_setzero_si128(), v_desc1_mask);
+
+       __m128i v_desc0_shift = _mm_alignr_epi8(v_fdir_id_mask, v_zeros, 12);
+       __m128i v_desc0_mask = _mm_and_si128(v_desc_fdir_mask, v_desc0_shift);
+       descs[0] = _mm_blendv_epi8(descs[0], _mm_setzero_si128(), v_desc0_mask);
+
+       /* Shift to 1 or 0 bit per u32 lane, then to RTE_MBUF_F_RX_FDIR_ID offset */
+       const uint32_t FDIR_ID_BIT_SHIFT = 13;
+       RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << FDIR_ID_BIT_SHIFT));
+       __m128i v_mask_one_bit = _mm_srli_epi32(v_fdir_id_mask, 31);
+       return _mm_slli_epi32(v_mask_one_bit, FDIR_ID_BIT_SHIFT);
+}
+#endif
 
 static inline void
-desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
+desc_to_olflags_v(struct i40e_rx_queue *rxq, volatile union i40e_rx_desc *rxdp,
+                 __m128i descs[4], struct rte_mbuf **rx_pkts)
 {
+       const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
+       __m128i rearm0, rearm1, rearm2, rearm3;
+
        __m128i vlan0, vlan1, rss, l3_l4e;
 
        /* mask everything except RSS, flow director and VLAN flags
@@ -149,43 +228,46 @@ desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
                        0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804);
 
        const __m128i cksum_mask = _mm_set_epi32(
-                       PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
-                       PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
-                       PKT_RX_EIP_CKSUM_BAD,
-                       PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
-                       PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
-                       PKT_RX_EIP_CKSUM_BAD,
-                       PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
-                       PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
-                       PKT_RX_EIP_CKSUM_BAD,
-                       PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
-                       PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
-                       PKT_RX_EIP_CKSUM_BAD);
+                       RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
+                       RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+                       RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
+                       RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
+                       RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+                       RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
+                       RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
+                       RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+                       RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
+                       RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
+                       RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+                       RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD);
 
        /* map rss and vlan type to rss hash and vlan flag */
        const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
                        0, 0, 0, 0,
-                       0, 0, 0, PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
+                       0, 0, 0, RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
                        0, 0, 0, 0);
 
        const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
                        0, 0, 0, 0,
-                       PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
-                       0, 0, PKT_RX_FDIR, 0);
+                       RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR, RTE_MBUF_F_RX_RSS_HASH, 0, 0,
+                       0, 0, RTE_MBUF_F_RX_FDIR, 0);
 
        const __m128i l3_l4e_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
                        /* shift right 1 bit to make sure it not exceed 255 */
-                       (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
-                        PKT_RX_IP_CKSUM_BAD) >> 1,
-                       (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
-                        PKT_RX_L4_CKSUM_BAD) >> 1,
-                       (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
-                       (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
-                       (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
-                       (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
-                       PKT_RX_IP_CKSUM_BAD >> 1,
-                       (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
-
+                       (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD  |
+                        RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+                       (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD  |
+                        RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+                       (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+                        RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+                       (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+                        RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+                       (RTE_MBUF_F_RX_L4_CKSUM_BAD  | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+                       (RTE_MBUF_F_RX_L4_CKSUM_BAD  | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+                       (RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+                       (RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1);
+
+       /* Unpack "status" from quadword 1, bits 0:32 */
        vlan0 = _mm_unpackhi_epi32(descs[0], descs[1]);
        vlan1 = _mm_unpackhi_epi32(descs[2], descs[3]);
        vlan0 = _mm_unpacklo_epi64(vlan0, vlan1);
@@ -193,8 +275,8 @@ desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
        vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
        vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);
 
-       rss = _mm_srli_epi32(vlan1, 11);
-       rss = _mm_shuffle_epi8(rss_flags, rss);
+       const __m128i desc_fltstat = _mm_srli_epi32(vlan1, 11);
+       rss = _mm_shuffle_epi8(rss_flags, desc_fltstat);
 
        l3_l4e = _mm_srli_epi32(vlan1, 22);
        l3_l4e = _mm_shuffle_epi8(l3_l4e_flags, l3_l4e);
@@ -206,19 +288,49 @@ desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
        vlan0 = _mm_or_si128(vlan0, rss);
        vlan0 = _mm_or_si128(vlan0, l3_l4e);
 
-       rx_pkts[0]->ol_flags = _mm_extract_epi16(vlan0, 0);
-       rx_pkts[1]->ol_flags = _mm_extract_epi16(vlan0, 2);
-       rx_pkts[2]->ol_flags = _mm_extract_epi16(vlan0, 4);
-       rx_pkts[3]->ol_flags = _mm_extract_epi16(vlan0, 6);
-}
+       /* Extract FDIR ID only if FDIR is enabled to avoid useless work */
+       if (rxq->fdir_enabled) {
+#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
+               __m128i v_fdir_ol_flags = descs_to_fdir_32b(rxdp, rx_pkts);
 #else
-#define desc_to_olflags_v(desc, rx_pkts) do {} while (0)
+               (void)rxdp; /* rxdp not required for 16B desc mode */
+               __m128i v_fdir_ol_flags = descs_to_fdir_16b(desc_fltstat,
+                                                           descs, rx_pkts);
 #endif
+               /* OR in ol_flag bits after descriptor speicific extraction */
+               vlan0 = _mm_or_si128(vlan0, v_fdir_ol_flags);
+       }
+
+       /*
+        * At this point, we have the 4 sets of flags in the low 16-bits
+        * of each 32-bit value in vlan0.
+        * We want to extract these, and merge them with the mbuf init data
+        * so we can do a single 16-byte write to the mbuf to set the flags
+        * and all the other initialization fields. Extracting the
+        * appropriate flags means that we have to do a shift and blend for
+        * each mbuf before we do the write.
+        */
+       rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 8), 0x10);
+       rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 4), 0x10);
+       rearm2 = _mm_blend_epi16(mbuf_init, vlan0, 0x10);
+       rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(vlan0, 4), 0x10);
+
+       /* write the rearm data and the olflags in one write */
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
+                       offsetof(struct rte_mbuf, rearm_data) + 8);
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
+                       RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
+       _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
+       _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
+       _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
+       _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
+}
 
 #define PKTLEN_SHIFT     10
 
 static inline void
-desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
+desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
+               uint32_t *ptype_tbl)
 {
        __m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]);
        __m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]);
@@ -226,17 +338,18 @@ desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
        ptype0 = _mm_srli_epi64(ptype0, 30);
        ptype1 = _mm_srli_epi64(ptype1, 30);
 
-       rx_pkts[0]->packet_type = i40e_rxd_pkt_type_mapping(_mm_extract_epi8(ptype0, 0));
-       rx_pkts[1]->packet_type = i40e_rxd_pkt_type_mapping(_mm_extract_epi8(ptype0, 8));
-       rx_pkts[2]->packet_type = i40e_rxd_pkt_type_mapping(_mm_extract_epi8(ptype1, 0));
-       rx_pkts[3]->packet_type = i40e_rxd_pkt_type_mapping(_mm_extract_epi8(ptype1, 8));
+       rx_pkts[0]->packet_type = ptype_tbl[_mm_extract_epi8(ptype0, 0)];
+       rx_pkts[1]->packet_type = ptype_tbl[_mm_extract_epi8(ptype0, 8)];
+       rx_pkts[2]->packet_type = ptype_tbl[_mm_extract_epi8(ptype1, 0)];
+       rx_pkts[3]->packet_type = ptype_tbl[_mm_extract_epi8(ptype1, 8)];
 }
 
- /*
+/**
+ * vPMD raw receive routine, only accept(nb_pkts >= RTE_I40E_DESCS_PER_LOOP)
+ *
  * Notice:
  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
- * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
- *   numbers of DD bits
+ * - floor align nb_pkts to a RTE_I40E_DESCS_PER_LOOP power-of-two
  */
 static inline uint16_t
 _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
@@ -248,6 +361,7 @@ _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
        int pos;
        uint64_t var;
        __m128i shuf_msk;
+       uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
 
        __m128i crc_adjust = _mm_set_epi16(
                                0, 0, 0,    /* ignore non-length fields */
@@ -256,11 +370,17 @@ _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
                                -rxq->crc_len, /* sub crc on pkt_len */
                                0, 0            /* ignore pkt_type field */
                        );
+       /*
+        * compile-time check the above crc_adjust layout is correct.
+        * NOTE: the first field (lowest address) is given last in set_epi16
+        * call above.
+        */
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
        __m128i dd_check, eop_check;
 
-       /* nb_pkts shall be less equal than RTE_I40E_MAX_RX_BURST */
-       nb_pkts = RTE_MIN(nb_pkts, RTE_I40E_MAX_RX_BURST);
-
        /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
        nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
 
@@ -300,6 +420,19 @@ _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
                0xFF, 0xFF,  /* pkt_type set as unknown */
                0xFF, 0xFF  /*pkt_type set as unknown */
                );
+       /*
+        * Compile-time verify the shuffle mask
+        * NOTE: some field positions already verified above, but duplicated
+        * here for completeness in case of future modifications.
+        */
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
 
        /* Cache is empty -> need to scan the buffer rings, but first move
         * the next 'n' mbufs into the cache
@@ -320,30 +453,38 @@ _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
                __m128i descs[RTE_I40E_DESCS_PER_LOOP];
                __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
                __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
-               __m128i mbp1, mbp2; /* two mbuf pointer in one XMM reg. */
+               /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
+               __m128i mbp1;
+#if defined(RTE_ARCH_X86_64)
+               __m128i mbp2;
+#endif
 
-               /* B.1 load 1 mbuf point */
+               /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
                mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
                /* Read desc statuses backwards to avoid race condition */
-               /* A.1 load 4 pkts desc */
+               /* A.1 load desc[3] */
                descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
                rte_compiler_barrier();
 
-               /* B.2 copy 2 mbuf point into rx_pkts  */
+               /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
                _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
 
-               /* B.1 load 1 mbuf point */
+#if defined(RTE_ARCH_X86_64)
+               /* B.1 load 2 64 bit mbuf points */
                mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos+2]);
+#endif
 
+               /* A.1 load desc[2-0] */
                descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
                rte_compiler_barrier();
-               /* B.1 load 2 mbuf point */
                descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
                rte_compiler_barrier();
                descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
 
+#if defined(RTE_ARCH_X86_64)
                /* B.2 copy 2 mbuf point into rx_pkts  */
                _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
+#endif
 
                if (split_packet) {
                        rte_mbuf_prefetch_part2(rx_pkts[pos]);
@@ -363,16 +504,16 @@ _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
                descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
                descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);
 
-               /* D.1 pkt 3,4 convert format from desc to pktmbuf */
-               pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
-               pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
-
                /* C.1 4=>2 filter staterr info only */
                sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
                /* C.1 4=>2 filter staterr info only */
                sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
 
-               desc_to_olflags_v(descs, &rx_pkts[pos]);
+               desc_to_olflags_v(rxq, rxdp, descs, &rx_pkts[pos]);
+
+               /* D.1 pkt 3,4 convert format from desc to pktmbuf */
+               pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
+               pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
 
                /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
                pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
@@ -416,7 +557,7 @@ _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
                        /* and with mask to extract bits, flipping 1-0 */
                        __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
                        /* the staterr values are not in order, as the count
-                        * count of dd bits doesn't care. However, for end of
+                        * of dd bits doesn't care. However, for end of
                         * packet tracking, we do care, so shuffle. This also
                         * compresses the 32-bit values to 8-bit
                         */
@@ -424,12 +565,6 @@ _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
                        /* store the resulting 32-bit value */
                        *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
                        split_packet += RTE_I40E_DESCS_PER_LOOP;
-
-                       /* zero-out next pointers */
-                       rx_pkts[pos]->next = NULL;
-                       rx_pkts[pos + 1]->next = NULL;
-                       rx_pkts[pos + 2]->next = NULL;
-                       rx_pkts[pos + 3]->next = NULL;
                }
 
                /* C.3 calc available number of desc */
@@ -441,7 +576,7 @@ _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
                                 pkt_mb2);
                _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
                                 pkt_mb1);
-               desc_to_ptype_v(descs, &rx_pkts[pos]);
+               desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
                /* C.4 calc avaialbe number of desc */
                var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
                nb_pkts_recd += var;
@@ -470,15 +605,15 @@ i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
        return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
 }
 
- /* vPMD receive routine that reassembles scattered packets
+/**
+ * vPMD receive routine that reassembles single burst of 32 scattered packets
+ *
  * Notice:
  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
- * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
- *   numbers of DD bits
  */
-uint16_t
-i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
-                            uint16_t nb_pkts)
+static uint16_t
+i40e_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
+                             uint16_t nb_pkts)
 {
 
        struct i40e_rx_queue *rxq = rx_queue;
@@ -507,11 +642,38 @@ i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
                        i++;
                if (i == nb_bufs)
                        return nb_bufs;
+               rxq->pkt_first_seg = rx_pkts[i];
        }
        return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
                &split_flags[i]);
 }
 
+/**
+ * vPMD receive routine that reassembles scattered packets.
+ */
+uint16_t
+i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
+                            uint16_t nb_pkts)
+{
+       uint16_t retval = 0;
+
+       while (nb_pkts > RTE_I40E_VPMD_RX_BURST) {
+               uint16_t burst;
+
+               burst = i40e_recv_scattered_burst_vec(rx_queue,
+                                                     rx_pkts + retval,
+                                                     RTE_I40E_VPMD_RX_BURST);
+               retval += burst;
+               nb_pkts -= burst;
+               if (burst < RTE_I40E_VPMD_RX_BURST)
+                       return retval;
+       }
+
+       return retval + i40e_recv_scattered_burst_vec(rx_queue,
+                                                     rx_pkts + retval,
+                                                     nb_pkts);
+}
+
 static inline void
 vtx1(volatile struct i40e_tx_desc *txdp,
                struct rte_mbuf *pkt, uint64_t flags)
@@ -521,7 +683,7 @@ vtx1(volatile struct i40e_tx_desc *txdp,
                        ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
 
        __m128i descriptor = _mm_set_epi64x(high_qw,
-                               pkt->buf_physaddr + pkt->data_off);
+                               pkt->buf_iova + pkt->data_off);
        _mm_store_si128((__m128i *)txdp, descriptor);
 }
 
@@ -536,8 +698,8 @@ vtx(volatile struct i40e_tx_desc *txdp,
 }
 
 uint16_t
-i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
-                  uint16_t nb_pkts)
+i40e_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
+                         uint16_t nb_pkts)
 {
        struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
        volatile struct i40e_tx_desc *txdp;
@@ -597,37 +759,31 @@ i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
 
        txq->tx_tail = tx_id;
 
-       I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
+       I40E_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
 
        return nb_pkts;
 }
 
-void __attribute__((cold))
+void __rte_cold
 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
 {
        _i40e_rx_queue_release_mbufs_vec(rxq);
 }
 
-int __attribute__((cold))
+int __rte_cold
 i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
 {
        return i40e_rxq_vec_setup_default(rxq);
 }
 
-int __attribute__((cold))
+int __rte_cold
 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
 {
        return 0;
 }
 
-int __attribute__((cold))
+int __rte_cold
 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
 {
-#ifndef RTE_LIBRTE_IEEE1588
-       /* need SSE4.1 support */
-       if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
-               return -1;
-#endif
-
        return i40e_rx_vec_dev_conf_condition_check_default(dev);
 }