mem: fix allocating all free hugepages
[dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
index fe31746..1220677 100644 (file)
@@ -1,13 +1,13 @@
 /*-
  *   BSD LICENSE
- * 
+ *
  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
  *   All rights reserved.
- * 
+ *
  *   Redistribution and use in source and binary forms, with or without
  *   modification, are permitted provided that the following conditions
  *   are met:
- * 
+ *
  *     * Redistributions of source code must retain the above copyright
  *       notice, this list of conditions and the following disclaimer.
  *     * Redistributions in binary form must reproduce the above copyright
@@ -17,7 +17,7 @@
  *     * Neither the name of Intel Corporation nor the names of its
  *       contributors may be used to endorse or promote products derived
  *       from this software without specific prior written permission.
- * 
+ *
  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -61,6 +61,7 @@
  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  */
 
+#define _FILE_OFFSET_BITS 64
 #include <errno.h>
 #include <stdarg.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <sys/ioctl.h>
 #include <sys/time.h>
+#include <signal.h>
+#include <setjmp.h>
 
 #include <rte_log.h>
 #include <rte_memory.h>
 #include <rte_memzone.h>
 #include <rte_launch.h>
-#include <rte_tailq.h>
 #include <rte_eal.h>
 #include <rte_eal_memconfig.h>
 #include <rte_per_lcore.h>
 #include "eal_filesystem.h"
 #include "eal_hugepages.h"
 
+#ifdef RTE_LIBRTE_XEN_DOM0
+int rte_xen_dom0_supported(void)
+{
+       return internal_config.xen_dom0_support;
+}
+#endif
+
 /**
  * @file
  * Huge page mapping under linux
 
 static uint64_t baseaddr_offset;
 
+static unsigned proc_pagemap_readable;
+
 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
 
-static uint64_t
-get_physaddr(void * virtaddr)
+static void
+test_proc_pagemap_readable(void)
+{
+       int fd = open("/proc/self/pagemap", O_RDONLY);
+
+       if (fd < 0) {
+               RTE_LOG(ERR, EAL,
+                       "Cannot open /proc/self/pagemap: %s. "
+                       "virt2phys address translation will not work\n",
+                       strerror(errno));
+               return;
+       }
+
+       /* Is readable */
+       close(fd);
+       proc_pagemap_readable = 1;
+}
+
+/* Lock page in physical memory and prevent from swapping. */
+int
+rte_mem_lock_page(const void *virt)
+{
+       unsigned long virtual = (unsigned long)virt;
+       int page_size = getpagesize();
+       unsigned long aligned = (virtual & ~ (page_size - 1));
+       return mlock((void*)aligned, page_size);
+}
+
+/*
+ * Get physical address of any mapped virtual address in the current process.
+ */
+phys_addr_t
+rte_mem_virt2phy(const void *virtaddr)
 {
        int fd;
        uint64_t page, physaddr;
        unsigned long virt_pfn;
        int page_size;
+       off_t offset;
+
+       /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
+       if (!proc_pagemap_readable)
+               return RTE_BAD_PHYS_ADDR;
 
        /* standard page size */
        page_size = getpagesize();
@@ -128,30 +175,30 @@ get_physaddr(void * virtaddr)
        if (fd < 0) {
                RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
                        __func__, strerror(errno));
-               return (uint64_t) -1;
+               return RTE_BAD_PHYS_ADDR;
        }
 
-       off_t offset;
        virt_pfn = (unsigned long)virtaddr / page_size;
        offset = sizeof(uint64_t) * virt_pfn;
        if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
                RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
                                __func__, strerror(errno));
                close(fd);
-               return (uint64_t) -1;
+               return RTE_BAD_PHYS_ADDR;
        }
        if (read(fd, &page, sizeof(uint64_t)) < 0) {
                RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
                                __func__, strerror(errno));
                close(fd);
-               return (uint64_t) -1;
+               return RTE_BAD_PHYS_ADDR;
        }
 
        /*
         * the pfn (page frame number) are bits 0-54 (see
         * pagemap.txt in linux Documentation)
         */
-       physaddr = ((page & 0x7fffffffffffffULL) * page_size);
+       physaddr = ((page & 0x7fffffffffffffULL) * page_size)
+               + ((unsigned long)virtaddr % page_size);
        close(fd);
        return physaddr;
 }
@@ -167,8 +214,8 @@ find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
        phys_addr_t addr;
 
        for (i = 0; i < hpi->num_pages[0]; i++) {
-               addr = get_physaddr(hugepg_tbl[i].orig_va);
-               if (addr == (phys_addr_t) -1)
+               addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
+               if (addr == RTE_BAD_PHYS_ADDR)
                        return -1;
                hugepg_tbl[i].physaddr = addr;
        }
@@ -206,7 +253,7 @@ aslr_enabled(void)
 }
 
 /*
- * Try to mmap *size bytes in /dev/zero. If it is succesful, return the
+ * Try to mmap *size bytes in /dev/zero. If it is successful, return the
  * pointer to the mmap'd area and keep *size unmodified. Else, retry
  * with a smaller zone: decrease *size by hugepage_sz until it reaches
  * 0. In this case, return NULL. Note: this function returns an address
@@ -225,7 +272,7 @@ get_virtual_area(size_t *size, size_t hugepage_sz)
        }
        else addr = NULL;
 
-       RTE_LOG(INFO, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
+       RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
 
        fd = open("/dev/zero", O_RDONLY);
        if (fd < 0){
@@ -241,7 +288,8 @@ get_virtual_area(size_t *size, size_t hugepage_sz)
 
        if (addr == MAP_FAILED) {
                close(fd);
-               RTE_LOG(INFO, EAL, "Cannot get a virtual area\n");
+               RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
+                       strerror(errno));
                return NULL;
        }
 
@@ -254,7 +302,7 @@ get_virtual_area(size_t *size, size_t hugepage_sz)
        aligned_addr &= (~(hugepage_sz - 1));
        addr = (void *)(aligned_addr);
 
-       RTE_LOG(INFO, EAL, "Virtual area found at %p (size = 0x%zx)\n",
+       RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
                addr, *size);
 
        /* increment offset */
@@ -263,6 +311,22 @@ get_virtual_area(size_t *size, size_t hugepage_sz)
        return addr;
 }
 
+static sigjmp_buf huge_jmpenv;
+
+static void huge_sigbus_handler(int signo __rte_unused)
+{
+       siglongjmp(huge_jmpenv, 1);
+}
+
+/* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
+ * non-static local variable in the stack frame calling sigsetjmp might be
+ * clobbered by a call to longjmp.
+ */
+static int huge_wrap_sigsetjmp(void)
+{
+       return sigsetjmp(huge_jmpenv, 1);
+}
+
 /*
  * Mmap all hugepages of hugepage table: it first open a file in
  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
@@ -270,7 +334,7 @@ get_virtual_area(size_t *size, size_t hugepage_sz)
  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
  * map continguous physical blocks in contiguous virtual blocks.
  */
-static int
+static unsigned
 map_all_hugepages(struct hugepage_file *hugepg_tbl,
                struct hugepage_info *hpi, int orig)
 {
@@ -285,7 +349,7 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl,
 #endif
 
        for (i = 0; i < hpi->num_pages[0]; i++) {
-               size_t hugepage_sz = hpi->hugepage_sz;
+               uint64_t hugepage_sz = hpi->hugepage_sz;
 
                if (orig) {
                        hugepg_tbl[i].file_id = i;
@@ -301,11 +365,12 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl,
 #endif
                        hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
                }
-#ifndef RTE_ARCH_X86_64
-               /* for 32-bit systems, don't remap 1G pages, just reuse original
-                * map address as final map address.
+#ifndef RTE_ARCH_64
+               /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
+                * original map address as final map address.
                 */
-               else if (hugepage_sz == RTE_PGSIZE_1G){
+               else if ((hugepage_sz == RTE_PGSIZE_1G)
+                       || (hugepage_sz == RTE_PGSIZE_16G)) {
                        hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
                        hugepg_tbl[i].orig_va = NULL;
                        continue;
@@ -320,9 +385,17 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl,
                         * physical block: count the number of
                         * contiguous physical pages. */
                        for (j = i+1; j < hpi->num_pages[0] ; j++) {
+#ifdef RTE_ARCH_PPC_64
+                               /* The physical addresses are sorted in
+                                * descending order on PPC64 */
+                               if (hugepg_tbl[j].physaddr !=
+                                   hugepg_tbl[j-1].physaddr - hugepage_sz)
+                                       break;
+#else
                                if (hugepg_tbl[j].physaddr !=
                                    hugepg_tbl[j-1].physaddr + hugepage_sz)
                                        break;
+#endif
                        }
                        num_pages = j - i;
                        vma_len = num_pages * hugepage_sz;
@@ -339,34 +412,56 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl,
                /* try to create hugepage file */
                fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0755);
                if (fd < 0) {
-                       RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__,
+                       RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
                                        strerror(errno));
-                       return -1;
+                       return i;
                }
 
+               /* map the segment, and populate page tables,
+                * the kernel fills this segment with zeros */
                virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
-                               MAP_SHARED, fd, 0);
+                               MAP_SHARED | MAP_POPULATE, fd, 0);
                if (virtaddr == MAP_FAILED) {
-                       RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__,
+                       RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
                                        strerror(errno));
                        close(fd);
-                       return -1;
+                       return i;
                }
 
                if (orig) {
                        hugepg_tbl[i].orig_va = virtaddr;
-                       memset(virtaddr, 0, hugepage_sz);
                }
                else {
                        hugepg_tbl[i].final_va = virtaddr;
                }
 
+               if (orig) {
+                       /* In linux, hugetlb limitations, like cgroup, are
+                        * enforced at fault time instead of mmap(), even
+                        * with the option of MAP_POPULATE. Kernel will send
+                        * a SIGBUS signal. To avoid to be killed, save stack
+                        * environment here, if SIGBUS happens, we can jump
+                        * back here.
+                        */
+                       if (huge_wrap_sigsetjmp()) {
+                               RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
+                                       "hugepages of size %u MB\n",
+                                       (unsigned)(hugepage_sz / 0x100000));
+                               munmap(virtaddr, hugepage_sz);
+                               close(fd);
+                               unlink(hugepg_tbl[i].filepath);
+                               return i;
+                       }
+                       *(int *)virtaddr = 0;
+               }
+
+
                /* set shared flock on the file. */
                if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
-                       RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n",
+                       RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
                                __func__, strerror(errno));
                        close(fd);
-                       return -1;
+                       return i;
                }
 
                close(fd);
@@ -374,7 +469,8 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl,
                vma_addr = (char *)vma_addr + hugepage_sz;
                vma_len -= hugepage_sz;
        }
-       return 0;
+
+       return i;
 }
 
 #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
@@ -397,11 +493,12 @@ remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
 
        while (i < hpi->num_pages[0]) {
 
-#ifndef RTE_ARCH_X86_64
-               /* for 32-bit systems, don't remap 1G pages, just reuse original
-                * map address as final map address.
+#ifndef RTE_ARCH_64
+               /* for 32-bit systems, don't remap 1G pages and 16G pages,
+                * just reuse original map address as final map address.
                 */
-               if (hugepage_sz == RTE_PGSIZE_1G){
+               if ((hugepage_sz == RTE_PGSIZE_1G)
+                       || (hugepage_sz == RTE_PGSIZE_16G)) {
                        hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
                        hugepg_tbl[i].orig_va = NULL;
                        i++;
@@ -413,8 +510,17 @@ remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
                 * physical block: count the number of
                 * contiguous physical pages. */
                for (j = i+1; j < hpi->num_pages[0] ; j++) {
-                       if (hugepg_tbl[j].physaddr != hugepg_tbl[j-1].physaddr + hugepage_sz)
+#ifdef RTE_ARCH_PPC_64
+                       /* The physical addresses are sorted in descending
+                        * order on PPC64 */
+                       if (hugepg_tbl[j].physaddr !=
+                               hugepg_tbl[j-1].physaddr - hugepage_sz)
+                               break;
+#else
+                       if (hugepg_tbl[j].physaddr !=
+                               hugepg_tbl[j-1].physaddr + hugepage_sz)
                                break;
+#endif
                }
                num_pages = j - i;
                vma_len = num_pages * hugepage_sz;
@@ -464,22 +570,16 @@ remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
 
                        old_addr = vma_addr;
 
-                       /* map new, bigger segment */
+                       /* map new, bigger segment, and populate page tables,
+                        * the kernel fills this segment with zeros */
                        vma_addr = mmap(vma_addr, total_size,
-                                       PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
+                                       PROT_READ | PROT_WRITE, MAP_SHARED | MAP_POPULATE, fd, 0);
 
                        if (vma_addr == MAP_FAILED || vma_addr != old_addr) {
                                RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__, strerror(errno));
                                close(fd);
                                return -1;
                        }
-
-                       /* touch the page. this is needed because kernel postpones mapping
-                        * creation until the first page fault. with this, we pin down
-                        * the page and it is marked as used and gets into process' pagemap.
-                        */
-                       for (offset = 0; offset < total_size; offset += hugepage_sz)
-                               *((volatile uint8_t*) RTE_PTR_ADD(vma_addr, offset));
                }
 
                /* set shared flock on the file. */
@@ -490,12 +590,12 @@ remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
                        return -1;
                }
 
-               rte_snprintf(hugepg_tbl[page_idx].filepath, MAX_HUGEPAGE_PATH, "%s",
+               snprintf(hugepg_tbl[page_idx].filepath, MAX_HUGEPAGE_PATH, "%s",
                                filepath);
 
-               physaddr = get_physaddr(vma_addr);
+               physaddr = rte_mem_virt2phy(vma_addr);
 
-               if (physaddr == (phys_addr_t) -1)
+               if (physaddr == RTE_BAD_PHYS_ADDR)
                        return -1;
 
                hugepg_tbl[page_idx].final_va = vma_addr;
@@ -516,7 +616,7 @@ remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
 
                        expected_physaddr = hugepg_tbl[page_idx].physaddr + offset;
                        page_addr = RTE_PTR_ADD(vma_addr, offset);
-                       physaddr = get_physaddr(page_addr);
+                       physaddr = rte_mem_virt2phy(page_addr);
 
                        if (physaddr != expected_physaddr) {
                                RTE_LOG(ERR, EAL, "Segment sanity check failed: wrong physaddr "
@@ -527,9 +627,6 @@ remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
                        }
                }
 
-               /* zero out the whole segment */
-               memset(hugepg_tbl[page_idx].final_va, 0, total_size);
-
                page_idx++;
        }
 
@@ -571,13 +668,13 @@ find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
 
        f = fopen("/proc/self/numa_maps", "r");
        if (f == NULL) {
-               RTE_LOG(INFO, EAL, "cannot open /proc/self/numa_maps,"
+               RTE_LOG(NOTICE, EAL, "cannot open /proc/self/numa_maps,"
                                " consider that all memory is in socket_id 0\n");
                return 0;
        }
 
-       rte_snprintf(hugedir_str, sizeof(hugedir_str),
-                       "%s/", hpi->hugedir);
+       snprintf(hugedir_str, sizeof(hugedir_str),
+                       "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
 
        /* parse numa map */
        while (fgets(buf, sizeof(buf), f) != NULL) {
@@ -636,49 +733,23 @@ error:
        return -1;
 }
 
-/*
- * Sort the hugepg_tbl by physical address (lower addresses first). We
- * use a slow algorithm, but we won't have millions of pages, and this
- * is only done at init time.
- */
 static int
-sort_by_physaddr(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
+cmp_physaddr(const void *a, const void *b)
 {
-       unsigned i, j;
-       int smallest_idx;
-       uint64_t smallest_addr;
-       struct hugepage_file tmp;
-
-       for (i = 0; i < hpi->num_pages[0]; i++) {
-               smallest_addr = 0;
-               smallest_idx = -1;
-
-               /*
-                * browse all entries starting at 'i', and find the
-                * entry with the smallest addr
-                */
-               for (j=i; j< hpi->num_pages[0]; j++) {
-
-                       if (smallest_addr == 0 ||
-                           hugepg_tbl[j].physaddr < smallest_addr) {
-                               smallest_addr = hugepg_tbl[j].physaddr;
-                               smallest_idx = j;
-                       }
-               }
-
-               /* should not happen */
-               if (smallest_idx == -1) {
-                       RTE_LOG(ERR, EAL, "%s(): error in physaddr sorting\n", __func__);
-                       return -1;
-               }
-
-               /* swap the 2 entries in the table */
-               memcpy(&tmp, &hugepg_tbl[smallest_idx], sizeof(struct hugepage_file));
-               memcpy(&hugepg_tbl[smallest_idx], &hugepg_tbl[i],
-                               sizeof(struct hugepage_file));
-               memcpy(&hugepg_tbl[i], &tmp, sizeof(struct hugepage_file));
-       }
-       return 0;
+#ifndef RTE_ARCH_PPC_64
+       const struct hugepage_file *p1 = (const struct hugepage_file *)a;
+       const struct hugepage_file *p2 = (const struct hugepage_file *)b;
+#else
+       /* PowerPC needs memory sorted in reverse order from x86 */
+       const struct hugepage_file *p1 = (const struct hugepage_file *)b;
+       const struct hugepage_file *p2 = (const struct hugepage_file *)a;
+#endif
+       if (p1->physaddr < p2->physaddr)
+               return -1;
+       else if (p1->physaddr > p2->physaddr)
+               return 1;
+       else
+               return 0;
 }
 
 /*
@@ -723,6 +794,30 @@ copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
        return 0;
 }
 
+static int
+unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
+               unsigned num_hp_info)
+{
+       unsigned socket, size;
+       int page, nrpages = 0;
+
+       /* get total number of hugepages */
+       for (size = 0; size < num_hp_info; size++)
+               for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
+                       nrpages +=
+                       internal_config.hugepage_info[size].num_pages[socket];
+
+       for (page = 0; page < nrpages; page++) {
+               struct hugepage_file *hp = &hugepg_tbl[page];
+
+               if (hp->final_va != NULL && unlink(hp->filepath)) {
+                       RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
+                               __func__, hp->filepath, strerror(errno));
+               }
+       }
+       return 0;
+}
+
 /*
  * unmaps hugepages that are not going to be used. since we originally allocate
  * ALL hugepages (not just those we need), additional unmapping needs to be done.
@@ -842,7 +937,7 @@ get_socket_mem_size(int socket)
                        size += hpi->hugepage_sz * hpi->num_pages[socket];
        }
 
-       return (size);
+       return size;
 }
 
 /*
@@ -866,13 +961,53 @@ calc_num_pages_per_socket(uint64_t * memory,
        if (num_hp_info == 0)
                return -1;
 
-       for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
-               /* if specific memory amounts per socket weren't requested */
-               if (internal_config.force_sockets == 0) {
+       /* if specific memory amounts per socket weren't requested */
+       if (internal_config.force_sockets == 0) {
+               int cpu_per_socket[RTE_MAX_NUMA_NODES];
+               size_t default_size, total_size;
+               unsigned lcore_id;
+
+               /* Compute number of cores per socket */
+               memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
+               RTE_LCORE_FOREACH(lcore_id) {
+                       cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
+               }
+
+               /*
+                * Automatically spread requested memory amongst detected sockets according
+                * to number of cores from cpu mask present on each socket
+                */
+               total_size = internal_config.memory;
+               for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
+
+                       /* Set memory amount per socket */
+                       default_size = (internal_config.memory * cpu_per_socket[socket])
+                                       / rte_lcore_count();
+
+                       /* Limit to maximum available memory on socket */
+                       default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
+
+                       /* Update sizes */
+                       memory[socket] = default_size;
+                       total_size -= default_size;
+               }
+
+               /*
+                * If some memory is remaining, try to allocate it by getting all
+                * available memory from sockets, one after the other
+                */
+               for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
                        /* take whatever is available */
-                       memory[socket] = RTE_MIN(get_socket_mem_size(socket),
-                                       total_mem);
+                       default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
+                                              total_size);
+
+                       /* Update sizes */
+                       memory[socket] += default_size;
+                       total_size -= default_size;
                }
+       }
+
+       for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
                /* skips if the memory on specific socket wasn't requested */
                for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
                        hp_used[i].hugedir = hp_info[i].hugedir;
@@ -923,7 +1058,7 @@ calc_num_pages_per_socket(uint64_t * memory,
                                        0x100000);
                        available = requested -
                                        ((unsigned) (memory[socket] / 0x100000));
-                       RTE_LOG(INFO, EAL, "Not enough memory available on socket %u! "
+                       RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
                                        "Requested: %uMB, available: %uMB\n", socket,
                                        requested, available);
                        return -1;
@@ -934,13 +1069,58 @@ calc_num_pages_per_socket(uint64_t * memory,
        if (total_mem > 0) {
                requested = (unsigned) (internal_config.memory / 0x100000);
                available = requested - (unsigned) (total_mem / 0x100000);
-               RTE_LOG(INFO, EAL, "Not enough memory available! Requested: %uMB,"
+               RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
                                " available: %uMB\n", requested, available);
                return -1;
        }
        return total_num_pages;
 }
 
+static inline size_t
+eal_get_hugepage_mem_size(void)
+{
+       uint64_t size = 0;
+       unsigned i, j;
+
+       for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
+               struct hugepage_info *hpi = &internal_config.hugepage_info[i];
+               if (hpi->hugedir != NULL) {
+                       for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
+                               size += hpi->hugepage_sz * hpi->num_pages[j];
+                       }
+               }
+       }
+
+       return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
+}
+
+static struct sigaction huge_action_old;
+static int huge_need_recover;
+
+static void
+huge_register_sigbus(void)
+{
+       sigset_t mask;
+       struct sigaction action;
+
+       sigemptyset(&mask);
+       sigaddset(&mask, SIGBUS);
+       action.sa_flags = 0;
+       action.sa_mask = mask;
+       action.sa_handler = huge_sigbus_handler;
+
+       huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
+}
+
+static void
+huge_recover_sigbus(void)
+{
+       if (huge_need_recover) {
+               sigaction(SIGBUS, &huge_action_old, NULL);
+               huge_need_recover = 0;
+       }
+}
+
 /*
  * Prepare physical memory mapping: fill configuration structure with
  * these infos, return 0 on success.
@@ -952,7 +1132,7 @@ calc_num_pages_per_socket(uint64_t * memory,
  *  6. unmap the first mapping
  *  7. fill memsegs in configuration with contiguous zones
  */
-static int
+int
 rte_eal_hugepage_init(void)
 {
        struct rte_mem_config *mcfg;
@@ -969,16 +1149,25 @@ rte_eal_hugepage_init(void)
        int new_pages_count[MAX_HUGEPAGE_SIZES];
 #endif
 
+       test_proc_pagemap_readable();
+
        memset(used_hp, 0, sizeof(used_hp));
 
        /* get pointer to global configuration */
        mcfg = rte_eal_get_configuration()->mem_config;
 
-       /* for debug purposes, hugetlbfs can be disabled */
+       /* hugetlbfs can be disabled */
        if (internal_config.no_hugetlbfs) {
-               addr = malloc(internal_config.memory);
+               addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
+                       MAP_LOCKED | MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
+               if (addr == MAP_FAILED) {
+                       RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
+                                       strerror(errno));
+                       return -1;
+               }
                mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr;
                mcfg->memseg[0].addr = addr;
+               mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
                mcfg->memseg[0].len = internal_config.memory;
                mcfg->memseg[0].socket_id = 0;
                return 0;
@@ -995,7 +1184,6 @@ rte_eal_hugepage_init(void)
 #endif
        }
 
-
        /* calculate total number of hugepages available. at this point we haven't
         * yet started sorting them so they all are on socket 0 */
        for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
@@ -1019,8 +1207,11 @@ rte_eal_hugepage_init(void)
 
        hp_offset = 0; /* where we start the current page size entries */
 
+       huge_register_sigbus();
+
        /* map all hugepages and sort them */
        for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
+               unsigned pages_old, pages_new;
                struct hugepage_info *hpi;
 
                /*
@@ -1034,10 +1225,28 @@ rte_eal_hugepage_init(void)
                        continue;
 
                /* map all hugepages available */
-               if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 1) < 0){
-                       RTE_LOG(DEBUG, EAL, "Failed to mmap %u MB hugepages\n",
-                                       (unsigned)(hpi->hugepage_sz / 0x100000));
+               pages_old = hpi->num_pages[0];
+               pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, 1);
+               if (pages_new < pages_old) {
+#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
+                       RTE_LOG(ERR, EAL,
+                               "%d not %d hugepages of size %u MB allocated\n",
+                               pages_new, pages_old,
+                               (unsigned)(hpi->hugepage_sz / 0x100000));
                        goto fail;
+#else
+                       RTE_LOG(DEBUG, EAL,
+                               "%d not %d hugepages of size %u MB allocated\n",
+                               pages_new, pages_old,
+                               (unsigned)(hpi->hugepage_sz / 0x100000));
+
+                       int pages = pages_old - pages_new;
+
+                       nr_hugepages -= pages;
+                       hpi->num_pages[0] = pages_new;
+                       if (pages_new == 0)
+                               continue;
+#endif
                }
 
                /* find physical addresses and sockets for each hugepage */
@@ -1053,8 +1262,8 @@ rte_eal_hugepage_init(void)
                        goto fail;
                }
 
-               if (sort_by_physaddr(&tmp_hp[hp_offset], hpi) < 0)
-                       goto fail;
+               qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
+                     sizeof(struct hugepage_file), cmp_physaddr);
 
 #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
                /* remap all hugepages into single file segments */
@@ -1069,8 +1278,9 @@ rte_eal_hugepage_init(void)
                hp_offset += new_pages_count[i];
 #else
                /* remap all hugepages */
-               if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) < 0){
-                       RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n",
+               if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) !=
+                   hpi->num_pages[0]) {
+                       RTE_LOG(ERR, EAL, "Failed to remap %u MB pages\n",
                                        (unsigned)(hpi->hugepage_sz / 0x100000));
                        goto fail;
                }
@@ -1084,6 +1294,11 @@ rte_eal_hugepage_init(void)
 #endif
        }
 
+       huge_recover_sigbus();
+
+       if (internal_config.memory == 0 && internal_config.force_sockets == 0)
+               internal_config.memory = eal_get_hugepage_mem_size();
+
 #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
        nr_hugefiles = 0;
        for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
@@ -1104,7 +1319,9 @@ rte_eal_hugepage_init(void)
                int socket = tmp_hp[i].socket_id;
 
                /* find a hugepage info with right size and increment num_pages */
-               for (j = 0; j < (int) internal_config.num_hugepage_sizes; j++) {
+               const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
+                               (int)internal_config.num_hugepage_sizes);
+               for (j = 0; j < nb_hpsizes; j++) {
                        if (tmp_hp[i].size ==
                                        internal_config.hugepage_info[j].hugepage_sz) {
 #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
@@ -1134,13 +1351,13 @@ rte_eal_hugepage_init(void)
        for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
                for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
                        if (used_hp[i].num_pages[j] > 0) {
-                               RTE_LOG(INFO, EAL,
-                                               "Requesting %u pages of size %uMB"
-                                               " from socket %i\n",
-                                               used_hp[i].num_pages[j],
-                                               (unsigned)
-                                                       (used_hp[i].hugepage_sz / 0x100000),
-                                               j);
+                               RTE_LOG(DEBUG, EAL,
+                                       "Requesting %u pages of size %uMB"
+                                       " from socket %i\n",
+                                       used_hp[i].num_pages[j],
+                                       (unsigned)
+                                       (used_hp[i].hugepage_sz / 0x100000),
+                                       j);
                        }
                }
        }
@@ -1176,6 +1393,13 @@ rte_eal_hugepage_init(void)
                goto fail;
        }
 
+       /* free the hugepage backing files */
+       if (internal_config.hugepage_unlink &&
+               unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
+               RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
+               goto fail;
+       }
+
        /* free the temporary hugepage table */
        free(tmp_hp);
        tmp_hp = NULL;
@@ -1199,12 +1423,25 @@ rte_eal_hugepage_init(void)
                        new_memseg = 1;
                else if (hugepage[i].size != hugepage[i-1].size)
                        new_memseg = 1;
+
+#ifdef RTE_ARCH_PPC_64
+               /* On PPC64 architecture, the mmap always start from higher
+                * virtual address to lower address. Here, both the physical
+                * address and virtual address are in descending order */
+               else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
+                   hugepage[i].size)
+                       new_memseg = 1;
+               else if (((unsigned long)hugepage[i-1].final_va -
+                   (unsigned long)hugepage[i].final_va) != hugepage[i].size)
+                       new_memseg = 1;
+#else
                else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
                    hugepage[i].size)
                        new_memseg = 1;
                else if (((unsigned long)hugepage[i].final_va -
                    (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
                        new_memseg = 1;
+#endif
 
                if (new_memseg) {
                        j += 1;
@@ -1223,6 +1460,12 @@ rte_eal_hugepage_init(void)
                }
                /* continuation of previous memseg */
                else {
+#ifdef RTE_ARCH_PPC_64
+               /* Use the phy and virt address of the last page as segment
+                * address for IBM Power architecture */
+                       mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
+                       mcfg->memseg[j].addr = hugepage[i].final_va;
+#endif
                        mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
                }
                hugepage[i].memseg_id = j;
@@ -1236,14 +1479,14 @@ rte_eal_hugepage_init(void)
                        "of memory.\n",
                        i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
                        RTE_MAX_MEMSEG);
-               return (-ENOMEM);
+               return -ENOMEM;
        }
 
        return 0;
 
 fail:
-       if (tmp_hp)
-               free(tmp_hp);
+       huge_recover_sigbus();
+       free(tmp_hp);
        return -1;
 }
 
@@ -1265,11 +1508,11 @@ getFileSize(int fd)
  * configuration and finds the hugepages which form that segment, mapping them
  * in order to form a contiguous block in the virtual memory space
  */
-static int
+int
 rte_eal_hugepage_attach(void)
 {
        const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
-       const struct hugepage_file *hp = NULL;
+       struct hugepage_file *hp = NULL;
        unsigned num_hp = 0;
        unsigned i, s = 0; /* s used to track the segment number */
        off_t size;
@@ -1282,10 +1525,12 @@ rte_eal_hugepage_attach(void)
                                "into secondary processes\n");
        }
 
+       test_proc_pagemap_readable();
+
        if (internal_config.xen_dom0_support) {
 #ifdef RTE_LIBRTE_XEN_DOM0
                if (rte_xen_dom0_memory_attach() < 0) {
-                       RTE_LOG(ERR, EAL,"Failed to attach memory setments of primay "
+                       RTE_LOG(ERR, EAL, "Failed to attach memory segments of primary "
                                        "process\n");
                        return -1;
                }
@@ -1349,7 +1594,7 @@ rte_eal_hugepage_attach(void)
 
        size = getFileSize(fd_hugepage);
        hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
-       if (hp == NULL) {
+       if (hp == MAP_FAILED) {
                RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
                goto error;
        }
@@ -1413,48 +1658,22 @@ rte_eal_hugepage_attach(void)
                s++;
        }
        /* unmap the hugepage config file, since we are done using it */
-       munmap((void *)(uintptr_t)hp, size);
+       munmap(hp, size);
        close(fd_zero);
        close(fd_hugepage);
        return 0;
 
 error:
+       s = 0;
+       while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0) {
+               munmap(mcfg->memseg[s].addr, mcfg->memseg[s].len);
+               s++;
+       }
+       if (hp != NULL && hp != MAP_FAILED)
+               munmap(hp, size);
        if (fd_zero >= 0)
                close(fd_zero);
        if (fd_hugepage >= 0)
                close(fd_hugepage);
        return -1;
 }
-
-static int
-rte_eal_memdevice_init(void)
-{
-       struct rte_config *config;
-
-       if (rte_eal_process_type() == RTE_PROC_SECONDARY)
-               return 0;
-
-       config = rte_eal_get_configuration();
-       config->mem_config->nchannel = internal_config.force_nchannel;
-       config->mem_config->nrank = internal_config.force_nrank;
-
-       return 0;
-}
-
-
-/* init memory subsystem */
-int
-rte_eal_memory_init(void)
-{
-       RTE_LOG(INFO, EAL, "Setting up memory...\n");
-       const int retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
-                       rte_eal_hugepage_init() :
-                       rte_eal_hugepage_attach();
-       if (retval < 0)
-               return -1;
-
-       if (internal_config.no_shconf == 0 && rte_eal_memdevice_init() < 0)
-               return -1;
-
-       return 0;
-}