return 0;
}
+static int
+set_vector_opts_disab(const char *key __rte_unused,
+ const char *value,
+ void *opaque)
+{
+ bool *dlb2_vector_opts_disabled = opaque;
+
+ if (value == NULL || opaque == NULL) {
+ DLB2_LOG_ERR("NULL pointer\n");
+ return -EINVAL;
+ }
+
+ if ((*value == 'y') || (*value == 'Y'))
+ *dlb2_vector_opts_disabled = true;
+ else
+ *dlb2_vector_opts_disabled = false;
+
+ return 0;
+}
+
static int
set_qid_depth_thresh(const char *key __rte_unused,
const char *value,
const struct rte_event events[],
uint16_t num);
+/* Generate the required bitmask for rotate-style expected QE gen bits.
+ * This requires a pattern of 1's and zeros, starting with expected as
+ * 1 bits, so when hardware writes 0's they're "new". This requires the
+ * ring size to be powers of 2 to wrap correctly.
+ */
+static void
+dlb2_hw_cq_bitmask_init(struct dlb2_port *qm_port, uint32_t cq_depth)
+{
+ uint64_t cq_build_mask = 0;
+ uint32_t i;
+
+ if (cq_depth > 64)
+ return; /* need to fall back to scalar code */
+
+ /*
+ * all 1's in first u64, all zeros in second is correct bit pattern to
+ * start. Special casing == 64 easier than adapting complex loop logic.
+ */
+ if (cq_depth == 64) {
+ qm_port->cq_rolling_mask = 0;
+ qm_port->cq_rolling_mask_2 = -1;
+ return;
+ }
+
+ for (i = 0; i < 64; i += (cq_depth * 2))
+ cq_build_mask |= ((1ULL << cq_depth) - 1) << (i + cq_depth);
+
+ qm_port->cq_rolling_mask = cq_build_mask;
+ qm_port->cq_rolling_mask_2 = cq_build_mask;
+}
+
static int
dlb2_hw_create_ldb_port(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_port *ev_port,
/* starting value of gen bit - it toggles at wrap time */
qm_port->gen_bit = 1;
+ dlb2_hw_cq_bitmask_init(qm_port, qm_port->cq_depth);
+
qm_port->int_armed = false;
/* Save off for later use in info and lookup APIs. */
dequeue_depth,
qm_port->credits);
}
+
+ qm_port->use_scalar = false;
+
+#if (!defined RTE_ARCH_X86_64)
+ qm_port->use_scalar = true;
+#else
+ if ((qm_port->cq_depth > 64) ||
+ (!rte_is_power_of_2(qm_port->cq_depth)) ||
+ (dlb2->vector_opts_disabled == true))
+ qm_port->use_scalar = true;
+#endif
+
rte_spinlock_unlock(&handle->resource_lock);
return 0;
qm_port->gen_bit_shift = __builtin_popcount(qm_port->cq_depth_mask);
/* starting value of gen bit - it toggles at wrap time */
qm_port->gen_bit = 1;
+ dlb2_hw_cq_bitmask_init(qm_port, qm_port->cq_depth);
qm_port->int_armed = false;
dequeue_depth,
credit_high_watermark);
}
+
+#if (!defined RTE_ARCH_X86_64)
+ qm_port->use_scalar = true;
+#else
+ if ((qm_port->cq_depth > 64) ||
+ (!rte_is_power_of_2(qm_port->cq_depth)) ||
+ (dlb2->vector_opts_disabled == true))
+ qm_port->use_scalar = true;
+#endif
+
rte_spinlock_unlock(&handle->resource_lock);
return 0;
int j = 0;
/* Zero-out QEs */
- qm_port->qe4[0].cmd_byte = 0;
- qm_port->qe4[1].cmd_byte = 0;
- qm_port->qe4[2].cmd_byte = 0;
- qm_port->qe4[3].cmd_byte = 0;
+ _mm_storeu_si128((void *)&qm_port->qe4[0], _mm_setzero_si128());
+ _mm_storeu_si128((void *)&qm_port->qe4[1], _mm_setzero_si128());
+ _mm_storeu_si128((void *)&qm_port->qe4[2], _mm_setzero_si128());
+ _mm_storeu_si128((void *)&qm_port->qe4[3], _mm_setzero_si128());
+
for (; j < DLB2_NUM_QES_PER_CACHE_LINE && (i + j) < n; j++) {
int16_t thresh = qm_port->token_pop_thresh;
sw_credit_update:
/* each release returns one credit */
- if (!ev_port->outstanding_releases) {
+ if (unlikely(!ev_port->outstanding_releases)) {
DLB2_LOG_ERR("%s: Outstanding releases underflowed.\n",
__func__);
return;
return 0;
}
-static inline int
+static __rte_noinline int
dlb2_process_dequeue_qes(struct dlb2_eventdev_port *ev_port,
struct dlb2_port *qm_port,
struct rte_event *events,
cq_addr = dlb2_port[qm_port->id][PORT_TYPE(qm_port)].cq_base;
- idx = qm_port->cq_idx;
-
+ idx = qm_port->cq_idx_unmasked & qm_port->cq_depth_mask;
/* Load the next 4 QEs */
addr[0] = (uintptr_t)&cq_addr[idx];
addr[1] = (uintptr_t)&cq_addr[(idx + 4) & qm_port->cq_depth_mask];
return __builtin_popcount(gen_bits);
}
+static inline void
+_process_deq_qes_vec_impl(struct dlb2_port *qm_port,
+ struct rte_event *events,
+ __m128i v_qe_3,
+ __m128i v_qe_2,
+ __m128i v_qe_1,
+ __m128i v_qe_0,
+ __m128i v_qe_meta,
+ __m128i v_qe_status,
+ uint32_t valid_events)
+{
+ /* Look up the event QIDs, using the hardware QIDs to index the
+ * port's QID mapping.
+ *
+ * Each v_qe_[0-4] is just a 16-byte load of the whole QE. It is
+ * passed along in registers as the QE data is required later.
+ *
+ * v_qe_meta is an u32 unpack of all 4x QEs. A.k.a, it contains one
+ * 32-bit slice of each QE, so makes up a full SSE register. This
+ * allows parallel processing of 4x QEs in a single register.
+ */
+
+ __m128i v_qid_done = {0};
+ int hw_qid0 = _mm_extract_epi8(v_qe_meta, 2);
+ int hw_qid1 = _mm_extract_epi8(v_qe_meta, 6);
+ int hw_qid2 = _mm_extract_epi8(v_qe_meta, 10);
+ int hw_qid3 = _mm_extract_epi8(v_qe_meta, 14);
+
+ int ev_qid0 = qm_port->qid_mappings[hw_qid0];
+ int ev_qid1 = qm_port->qid_mappings[hw_qid1];
+ int ev_qid2 = qm_port->qid_mappings[hw_qid2];
+ int ev_qid3 = qm_port->qid_mappings[hw_qid3];
+
+ v_qid_done = _mm_insert_epi8(v_qid_done, ev_qid0, 2);
+ v_qid_done = _mm_insert_epi8(v_qid_done, ev_qid1, 6);
+ v_qid_done = _mm_insert_epi8(v_qid_done, ev_qid2, 10);
+ v_qid_done = _mm_insert_epi8(v_qid_done, ev_qid3, 14);
+
+ /* Schedule field remapping using byte shuffle
+ * - Full byte containing sched field handled here (op, rsvd are zero)
+ * - Note sanitizing the register requires two masking ANDs:
+ * 1) to strip prio/msg_type from byte for correct shuffle lookup
+ * 2) to strip any non-sched-field lanes from any results to OR later
+ * - Final byte result is >> 10 to another byte-lane inside the u32.
+ * This makes the final combination OR easier to make the rte_event.
+ */
+ __m128i v_sched_done;
+ __m128i v_sched_bits;
+ {
+ static const uint8_t sched_type_map[16] = {
+ [DLB2_SCHED_ATOMIC] = RTE_SCHED_TYPE_ATOMIC,
+ [DLB2_SCHED_UNORDERED] = RTE_SCHED_TYPE_PARALLEL,
+ [DLB2_SCHED_ORDERED] = RTE_SCHED_TYPE_ORDERED,
+ [DLB2_SCHED_DIRECTED] = RTE_SCHED_TYPE_ATOMIC,
+ };
+ static const uint8_t sched_and_mask[16] = {
+ 0x00, 0x00, 0x00, 0x03,
+ 0x00, 0x00, 0x00, 0x03,
+ 0x00, 0x00, 0x00, 0x03,
+ 0x00, 0x00, 0x00, 0x03,
+ };
+ const __m128i v_sched_map = _mm_loadu_si128(
+ (const __m128i *)sched_type_map);
+ __m128i v_sched_mask = _mm_loadu_si128(
+ (const __m128i *)&sched_and_mask);
+ v_sched_bits = _mm_and_si128(v_qe_meta, v_sched_mask);
+ __m128i v_sched_remapped = _mm_shuffle_epi8(v_sched_map,
+ v_sched_bits);
+ __m128i v_preshift = _mm_and_si128(v_sched_remapped,
+ v_sched_mask);
+ v_sched_done = _mm_srli_epi32(v_preshift, 10);
+ }
+
+ /* Priority handling
+ * - QE provides 3 bits of priority
+ * - Shift << 3 to move to MSBs for byte-prio in rte_event
+ * - Mask bits to avoid pollution, leaving only 3 prio MSBs in reg
+ */
+ __m128i v_prio_done;
+ {
+ static const uint8_t prio_mask[16] = {
+ 0x00, 0x00, 0x00, 0x07 << 5,
+ 0x00, 0x00, 0x00, 0x07 << 5,
+ 0x00, 0x00, 0x00, 0x07 << 5,
+ 0x00, 0x00, 0x00, 0x07 << 5,
+ };
+ __m128i v_prio_mask = _mm_loadu_si128(
+ (const __m128i *)prio_mask);
+ __m128i v_prio_shifted = _mm_slli_epi32(v_qe_meta, 3);
+ v_prio_done = _mm_and_si128(v_prio_shifted, v_prio_mask);
+ }
+
+ /* Event Sub/Type handling:
+ * we want to keep the lower 12 bits of each QE. Shift up by 20 bits
+ * to get the sub/ev type data into rte_event location, clearing the
+ * lower 20 bits in the process.
+ */
+ __m128i v_types_done;
+ {
+ static const uint8_t event_mask[16] = {
+ 0x0f, 0x00, 0x00, 0x00,
+ 0x0f, 0x00, 0x00, 0x00,
+ 0x0f, 0x00, 0x00, 0x00,
+ 0x0f, 0x00, 0x00, 0x00,
+ };
+ static const uint8_t sub_event_mask[16] = {
+ 0xff, 0x00, 0x00, 0x00,
+ 0xff, 0x00, 0x00, 0x00,
+ 0xff, 0x00, 0x00, 0x00,
+ 0xff, 0x00, 0x00, 0x00,
+ };
+ static const uint8_t flow_mask[16] = {
+ 0xff, 0xff, 0x00, 0x00,
+ 0xff, 0xff, 0x00, 0x00,
+ 0xff, 0xff, 0x00, 0x00,
+ 0xff, 0xff, 0x00, 0x00,
+ };
+ __m128i v_event_mask = _mm_loadu_si128(
+ (const __m128i *)event_mask);
+ __m128i v_sub_event_mask = _mm_loadu_si128(
+ (const __m128i *)sub_event_mask);
+ __m128i v_flow_mask = _mm_loadu_si128(
+ (const __m128i *)flow_mask);
+ __m128i v_sub = _mm_srli_epi32(v_qe_meta, 8);
+ v_sub = _mm_and_si128(v_sub, v_sub_event_mask);
+ __m128i v_type = _mm_and_si128(v_qe_meta, v_event_mask);
+ v_type = _mm_slli_epi32(v_type, 8);
+ v_types_done = _mm_or_si128(v_type, v_sub);
+ v_types_done = _mm_slli_epi32(v_types_done, 20);
+ __m128i v_flow = _mm_and_si128(v_qe_status, v_flow_mask);
+ v_types_done = _mm_or_si128(v_types_done, v_flow);
+ }
+
+ /* Combine QID, Sched and Prio fields, then Shift >> 8 bits to align
+ * with the rte_event, allowing unpacks to move/blend with payload.
+ */
+ __m128i v_q_s_p_done;
+ {
+ __m128i v_qid_sched = _mm_or_si128(v_qid_done, v_sched_done);
+ __m128i v_q_s_prio = _mm_or_si128(v_qid_sched, v_prio_done);
+ v_q_s_p_done = _mm_srli_epi32(v_q_s_prio, 8);
+ }
+
+ __m128i v_unpk_ev_23, v_unpk_ev_01, v_ev_2, v_ev_3, v_ev_0, v_ev_1;
+
+ /* Unpack evs into u64 metadata, then indiv events */
+ v_unpk_ev_23 = _mm_unpackhi_epi32(v_types_done, v_q_s_p_done);
+ v_unpk_ev_01 = _mm_unpacklo_epi32(v_types_done, v_q_s_p_done);
+
+ switch (valid_events) {
+ case 4:
+ v_ev_3 = _mm_blend_epi16(v_unpk_ev_23, v_qe_3, 0x0F);
+ v_ev_3 = _mm_alignr_epi8(v_ev_3, v_ev_3, 8);
+ _mm_storeu_si128((__m128i *)&events[3], v_ev_3);
+ /* fallthrough */
+ case 3:
+ v_ev_2 = _mm_unpacklo_epi64(v_unpk_ev_23, v_qe_2);
+ _mm_storeu_si128((__m128i *)&events[2], v_ev_2);
+ /* fallthrough */
+ case 2:
+ v_ev_1 = _mm_blend_epi16(v_unpk_ev_01, v_qe_1, 0x0F);
+ v_ev_1 = _mm_alignr_epi8(v_ev_1, v_ev_1, 8);
+ _mm_storeu_si128((__m128i *)&events[1], v_ev_1);
+ /* fallthrough */
+ case 1:
+ v_ev_0 = _mm_unpacklo_epi64(v_unpk_ev_01, v_qe_0);
+ _mm_storeu_si128((__m128i *)&events[0], v_ev_0);
+ }
+}
+
+static __rte_always_inline int
+dlb2_recv_qe_sparse_vec(struct dlb2_port *qm_port, void *events,
+ uint32_t max_events)
+{
+ /* Using unmasked idx for perf, and masking manually */
+ uint16_t idx = qm_port->cq_idx_unmasked;
+ volatile struct dlb2_dequeue_qe *cq_addr;
+
+ cq_addr = dlb2_port[qm_port->id][PORT_TYPE(qm_port)].cq_base;
+
+ uintptr_t qe_ptr_3 = (uintptr_t)&cq_addr[(idx + 12) &
+ qm_port->cq_depth_mask];
+ uintptr_t qe_ptr_2 = (uintptr_t)&cq_addr[(idx + 8) &
+ qm_port->cq_depth_mask];
+ uintptr_t qe_ptr_1 = (uintptr_t)&cq_addr[(idx + 4) &
+ qm_port->cq_depth_mask];
+ uintptr_t qe_ptr_0 = (uintptr_t)&cq_addr[(idx + 0) &
+ qm_port->cq_depth_mask];
+
+ /* Load QEs from CQ: use compiler barriers to avoid load reordering */
+ __m128i v_qe_3 = _mm_loadu_si128((const __m128i *)qe_ptr_3);
+ rte_compiler_barrier();
+ __m128i v_qe_2 = _mm_loadu_si128((const __m128i *)qe_ptr_2);
+ rte_compiler_barrier();
+ __m128i v_qe_1 = _mm_loadu_si128((const __m128i *)qe_ptr_1);
+ rte_compiler_barrier();
+ __m128i v_qe_0 = _mm_loadu_si128((const __m128i *)qe_ptr_0);
+
+ /* Generate the pkt_shuffle mask;
+ * - Avoids load in otherwise load-heavy section of code
+ * - Moves bytes 3,7,11,15 (gen bit bytes) to LSB bytes in XMM
+ */
+ const uint32_t stat_shuf_bytes = (15 << 24) | (11 << 16) | (7 << 8) | 3;
+ __m128i v_zeros = _mm_setzero_si128();
+ __m128i v_ffff = _mm_cmpeq_epi8(v_zeros, v_zeros);
+ __m128i v_stat_shuf_mask = _mm_insert_epi32(v_ffff, stat_shuf_bytes, 0);
+
+ /* Extract u32 components required from the QE
+ * - QE[64 to 95 ] for metadata (qid, sched, prio, event type, ...)
+ * - QE[96 to 127] for status (cq gen bit, error)
+ *
+ * Note that stage 1 of the unpacking is re-used for both u32 extracts
+ */
+ __m128i v_qe_02 = _mm_unpackhi_epi32(v_qe_0, v_qe_2);
+ __m128i v_qe_13 = _mm_unpackhi_epi32(v_qe_1, v_qe_3);
+ __m128i v_qe_status = _mm_unpackhi_epi32(v_qe_02, v_qe_13);
+ __m128i v_qe_meta = _mm_unpacklo_epi32(v_qe_02, v_qe_13);
+
+ /* Status byte (gen_bit, error) handling:
+ * - Shuffle to lanes 0,1,2,3, clear all others
+ * - Shift right by 7 for gen bit to MSB, movemask to scalar
+ * - Shift right by 2 for error bit to MSB, movemask to scalar
+ */
+ __m128i v_qe_shuffled = _mm_shuffle_epi8(v_qe_status, v_stat_shuf_mask);
+ __m128i v_qes_shift_gen_bit = _mm_slli_epi32(v_qe_shuffled, 7);
+ int32_t qe_gen_bits = _mm_movemask_epi8(v_qes_shift_gen_bit) & 0xf;
+
+ /* Expected vs Reality of QE Gen bits
+ * - cq_rolling_mask provides expected bits
+ * - QE loads, unpacks/shuffle and movemask provides reality
+ * - XOR of the two gives bitmask of new packets
+ * - POPCNT to get the number of new events
+ */
+ uint64_t rolling = qm_port->cq_rolling_mask & 0xF;
+ uint64_t qe_xor_bits = (qe_gen_bits ^ rolling);
+ uint32_t count_new = __builtin_popcount(qe_xor_bits);
+ count_new = RTE_MIN(count_new, max_events);
+ if (!count_new)
+ return 0;
+
+ /* emulate a 128 bit rotate using 2x 64-bit numbers and bit-shifts */
+
+ uint64_t m_rshift = qm_port->cq_rolling_mask >> count_new;
+ uint64_t m_lshift = qm_port->cq_rolling_mask << (64 - count_new);
+ uint64_t m2_rshift = qm_port->cq_rolling_mask_2 >> count_new;
+ uint64_t m2_lshift = qm_port->cq_rolling_mask_2 << (64 - count_new);
+
+ /* shifted out of m2 into MSB of m */
+ qm_port->cq_rolling_mask = (m_rshift | m2_lshift);
+
+ /* shifted out of m "looped back" into MSB of m2 */
+ qm_port->cq_rolling_mask_2 = (m2_rshift | m_lshift);
+
+ /* Prefetch the next QEs - should run as IPC instead of cycles */
+ rte_prefetch0(&cq_addr[(idx + 16) & qm_port->cq_depth_mask]);
+ rte_prefetch0(&cq_addr[(idx + 20) & qm_port->cq_depth_mask]);
+ rte_prefetch0(&cq_addr[(idx + 24) & qm_port->cq_depth_mask]);
+ rte_prefetch0(&cq_addr[(idx + 28) & qm_port->cq_depth_mask]);
+
+ /* Convert QEs from XMM regs to events and store events directly */
+ _process_deq_qes_vec_impl(qm_port, events, v_qe_3, v_qe_2, v_qe_1,
+ v_qe_0, v_qe_meta, v_qe_status, count_new);
+
+ return count_new;
+}
+
static inline void
dlb2_inc_cq_idx(struct dlb2_port *qm_port, int cnt)
{
uint16_t max_num,
uint64_t dequeue_timeout_ticks)
{
- uint64_t timeout;
uint64_t start_ticks = 0ULL;
struct dlb2_port *qm_port;
int num = 0;
+ bool use_scalar;
+ uint64_t timeout;
qm_port = &ev_port->qm_port;
+ use_scalar = qm_port->use_scalar;
- /* We have a special implementation for waiting. Wait can be:
- * 1) no waiting at all
- * 2) busy poll only
- * 3) wait for interrupt. If wakeup and poll time
- * has expired, then return to caller
- * 4) umonitor/umwait repeatedly up to poll time
- */
-
- /* If configured for per dequeue wait, then use wait value provided
- * to this API. Otherwise we must use the global
- * value from eventdev config time.
- */
if (!dlb2->global_dequeue_wait)
timeout = dequeue_timeout_ticks;
else
start_ticks = rte_get_timer_cycles();
+ use_scalar = use_scalar || (max_num & 0x3);
+
while (num < max_num) {
struct dlb2_dequeue_qe qes[DLB2_NUM_QES_PER_CACHE_LINE];
int num_avail;
-
- /* Copy up to 4 QEs from the current cache line into qes */
- num_avail = dlb2_recv_qe_sparse(qm_port, qes);
-
- /* But don't process more than the user requested */
- num_avail = RTE_MIN(num_avail, max_num - num);
-
- dlb2_inc_cq_idx(qm_port, num_avail << 2);
-
- if (num_avail == DLB2_NUM_QES_PER_CACHE_LINE)
- num += dlb2_process_dequeue_four_qes(ev_port,
- qm_port,
- &events[num],
- &qes[0]);
- else if (num_avail)
- num += dlb2_process_dequeue_qes(ev_port,
- qm_port,
- &events[num],
- &qes[0],
- num_avail);
- else if ((timeout == 0) || (num > 0))
- /* Not waiting in any form, or 1+ events received? */
- break;
- else if (dlb2_dequeue_wait(dlb2, ev_port, qm_port,
- timeout, start_ticks))
- break;
+ if (use_scalar) {
+ num_avail = dlb2_recv_qe_sparse(qm_port, qes);
+ num_avail = RTE_MIN(num_avail, max_num - num);
+ dlb2_inc_cq_idx(qm_port, num_avail << 2);
+ if (num_avail == DLB2_NUM_QES_PER_CACHE_LINE)
+ num += dlb2_process_dequeue_four_qes(ev_port,
+ qm_port,
+ &events[num],
+ &qes[0]);
+ else if (num_avail)
+ num += dlb2_process_dequeue_qes(ev_port,
+ qm_port,
+ &events[num],
+ &qes[0],
+ num_avail);
+ } else { /* !use_scalar */
+ num_avail = dlb2_recv_qe_sparse_vec(qm_port,
+ &events[num],
+ max_num - num);
+ num += num_avail;
+ dlb2_inc_cq_idx(qm_port, num_avail << 2);
+ DLB2_INC_STAT(ev_port->stats.traffic.rx_ok, num_avail);
+ }
+ if (!num_avail) {
+ if (num > 0)
+ break;
+ else if (dlb2_dequeue_wait(dlb2, ev_port, qm_port,
+ timeout, start_ticks))
+ break;
+ }
}
qm_port->owed_tokens += num;
dlb2->poll_interval = dlb2_args->poll_interval;
dlb2->sw_credit_quanta = dlb2_args->sw_credit_quanta;
dlb2->default_depth_thresh = dlb2_args->default_depth_thresh;
+ dlb2->vector_opts_disabled = dlb2_args->vector_opts_disabled;
err = dlb2_iface_open(&dlb2->qm_instance, name);
if (err < 0) {
DLB2_POLL_INTERVAL_ARG,
DLB2_SW_CREDIT_QUANTA_ARG,
DLB2_DEPTH_THRESH_ARG,
+ DLB2_VECTOR_OPTS_DISAB_ARG,
NULL };
if (params != NULL && params[0] != '\0') {
return ret;
}
+ ret = rte_kvargs_process(kvlist,
+ DLB2_VECTOR_OPTS_DISAB_ARG,
+ set_vector_opts_disab,
+ &dlb2_args->vector_opts_disabled);
+ if (ret != 0) {
+ DLB2_LOG_ERR("%s: Error parsing vector opts disabled",
+ name);
+ rte_kvargs_free(kvlist);
+ return ret;
+ }
+
rte_kvargs_free(kvlist);
}
}