RTE_LOG_REGISTER(acc100_logtype, pmd.bb.acc100, NOTICE);
#endif
+/* Write to MMIO register address */
+static inline void
+mmio_write(void *addr, uint32_t value)
+{
+ *((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
+}
+
+/* Write a register of a ACC100 device */
+static inline void
+acc100_reg_write(struct acc100_device *d, uint32_t offset, uint32_t payload)
+{
+ void *reg_addr = RTE_PTR_ADD(d->mmio_base, offset);
+ mmio_write(reg_addr, payload);
+ usleep(ACC100_LONG_WAIT);
+}
+
/* Read a register of a ACC100 device */
static inline uint32_t
acc100_reg_read(struct acc100_device *d, uint32_t offset)
return rte_le_to_cpu_32(ret);
}
+/* Basic Implementation of Log2 for exact 2^N */
+static inline uint32_t
+log2_basic(uint32_t value)
+{
+ return (value == 0) ? 0 : rte_bsf32(value);
+}
+
+/* Calculate memory alignment offset assuming alignment is 2^N */
+static inline uint32_t
+calc_mem_alignment_offset(void *unaligned_virt_mem, uint32_t alignment)
+{
+ rte_iova_t unaligned_phy_mem = rte_malloc_virt2iova(unaligned_virt_mem);
+ return (uint32_t)(alignment -
+ (unaligned_phy_mem & (alignment-1)));
+}
+
/* Calculate the offset of the enqueue register */
static inline uint32_t
queue_offset(bool pf_device, uint8_t vf_id, uint8_t qgrp_id, uint16_t aq_id)
acc100_conf->q_dl_5g.aq_depth_log2);
}
-/* Free 64MB memory used for software rings */
+static void
+free_base_addresses(void **base_addrs, int size)
+{
+ int i;
+ for (i = 0; i < size; i++)
+ rte_free(base_addrs[i]);
+}
+
+static inline uint32_t
+get_desc_len(void)
+{
+ return sizeof(union acc100_dma_desc);
+}
+
+/* Allocate the 2 * 64MB block for the sw rings */
static int
-acc100_dev_close(struct rte_bbdev *dev __rte_unused)
+alloc_2x64mb_sw_rings_mem(struct rte_bbdev *dev, struct acc100_device *d,
+ int socket)
{
+ uint32_t sw_ring_size = ACC100_SIZE_64MBYTE;
+ d->sw_rings_base = rte_zmalloc_socket(dev->device->driver->name,
+ 2 * sw_ring_size, RTE_CACHE_LINE_SIZE, socket);
+ if (d->sw_rings_base == NULL) {
+ rte_bbdev_log(ERR, "Failed to allocate memory for %s:%u",
+ dev->device->driver->name,
+ dev->data->dev_id);
+ return -ENOMEM;
+ }
+ uint32_t next_64mb_align_offset = calc_mem_alignment_offset(
+ d->sw_rings_base, ACC100_SIZE_64MBYTE);
+ d->sw_rings = RTE_PTR_ADD(d->sw_rings_base, next_64mb_align_offset);
+ d->sw_rings_iova = rte_malloc_virt2iova(d->sw_rings_base) +
+ next_64mb_align_offset;
+ d->sw_ring_size = ACC100_MAX_QUEUE_DEPTH * get_desc_len();
+ d->sw_ring_max_depth = ACC100_MAX_QUEUE_DEPTH;
+
+ return 0;
+}
+
+/* Attempt to allocate minimised memory space for sw rings */
+static void
+alloc_sw_rings_min_mem(struct rte_bbdev *dev, struct acc100_device *d,
+ uint16_t num_queues, int socket)
+{
+ rte_iova_t sw_rings_base_iova, next_64mb_align_addr_iova;
+ uint32_t next_64mb_align_offset;
+ rte_iova_t sw_ring_iova_end_addr;
+ void *base_addrs[ACC100_SW_RING_MEM_ALLOC_ATTEMPTS];
+ void *sw_rings_base;
+ int i = 0;
+ uint32_t q_sw_ring_size = ACC100_MAX_QUEUE_DEPTH * get_desc_len();
+ uint32_t dev_sw_ring_size = q_sw_ring_size * num_queues;
+
+ /* Find an aligned block of memory to store sw rings */
+ while (i < ACC100_SW_RING_MEM_ALLOC_ATTEMPTS) {
+ /*
+ * sw_ring allocated memory is guaranteed to be aligned to
+ * q_sw_ring_size at the condition that the requested size is
+ * less than the page size
+ */
+ sw_rings_base = rte_zmalloc_socket(
+ dev->device->driver->name,
+ dev_sw_ring_size, q_sw_ring_size, socket);
+
+ if (sw_rings_base == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate memory for %s:%u",
+ dev->device->driver->name,
+ dev->data->dev_id);
+ break;
+ }
+
+ sw_rings_base_iova = rte_malloc_virt2iova(sw_rings_base);
+ next_64mb_align_offset = calc_mem_alignment_offset(
+ sw_rings_base, ACC100_SIZE_64MBYTE);
+ next_64mb_align_addr_iova = sw_rings_base_iova +
+ next_64mb_align_offset;
+ sw_ring_iova_end_addr = sw_rings_base_iova + dev_sw_ring_size;
+
+ /* Check if the end of the sw ring memory block is before the
+ * start of next 64MB aligned mem address
+ */
+ if (sw_ring_iova_end_addr < next_64mb_align_addr_iova) {
+ d->sw_rings_iova = sw_rings_base_iova;
+ d->sw_rings = sw_rings_base;
+ d->sw_rings_base = sw_rings_base;
+ d->sw_ring_size = q_sw_ring_size;
+ d->sw_ring_max_depth = ACC100_MAX_QUEUE_DEPTH;
+ break;
+ }
+ /* Store the address of the unaligned mem block */
+ base_addrs[i] = sw_rings_base;
+ i++;
+ }
+
+ /* Free all unaligned blocks of mem allocated in the loop */
+ free_base_addresses(base_addrs, i);
+}
+
+
+/* Allocate 64MB memory used for all software rings */
+static int
+acc100_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
+{
+ uint32_t phys_low, phys_high, payload;
+ struct acc100_device *d = dev->data->dev_private;
+ const struct acc100_registry_addr *reg_addr;
+
+ if (d->pf_device && !d->acc100_conf.pf_mode_en) {
+ rte_bbdev_log(NOTICE,
+ "%s has PF mode disabled. This PF can't be used.",
+ dev->data->name);
+ return -ENODEV;
+ }
+
+ alloc_sw_rings_min_mem(dev, d, num_queues, socket_id);
+
+ /* If minimal memory space approach failed, then allocate
+ * the 2 * 64MB block for the sw rings
+ */
+ if (d->sw_rings == NULL)
+ alloc_2x64mb_sw_rings_mem(dev, d, socket_id);
+
+ if (d->sw_rings == NULL) {
+ rte_bbdev_log(NOTICE,
+ "Failure allocating sw_rings memory");
+ return -ENODEV;
+ }
+
+ /* Configure ACC100 with the base address for DMA descriptor rings
+ * Same descriptor rings used for UL and DL DMA Engines
+ * Note : Assuming only VF0 bundle is used for PF mode
+ */
+ phys_high = (uint32_t)(d->sw_rings_iova >> 32);
+ phys_low = (uint32_t)(d->sw_rings_iova & ~(ACC100_SIZE_64MBYTE-1));
+
+ /* Choose correct registry addresses for the device type */
+ if (d->pf_device)
+ reg_addr = &pf_reg_addr;
+ else
+ reg_addr = &vf_reg_addr;
+
+ /* Read the populated cfg from ACC100 registers */
+ fetch_acc100_config(dev);
+
+ /* Release AXI from PF */
+ if (d->pf_device)
+ acc100_reg_write(d, HWPfDmaAxiControl, 1);
+
+ acc100_reg_write(d, reg_addr->dma_ring_ul5g_hi, phys_high);
+ acc100_reg_write(d, reg_addr->dma_ring_ul5g_lo, phys_low);
+ acc100_reg_write(d, reg_addr->dma_ring_dl5g_hi, phys_high);
+ acc100_reg_write(d, reg_addr->dma_ring_dl5g_lo, phys_low);
+ acc100_reg_write(d, reg_addr->dma_ring_ul4g_hi, phys_high);
+ acc100_reg_write(d, reg_addr->dma_ring_ul4g_lo, phys_low);
+ acc100_reg_write(d, reg_addr->dma_ring_dl4g_hi, phys_high);
+ acc100_reg_write(d, reg_addr->dma_ring_dl4g_lo, phys_low);
+
+ /*
+ * Configure Ring Size to the max queue ring size
+ * (used for wrapping purpose)
+ */
+ payload = log2_basic(d->sw_ring_size / 64);
+ acc100_reg_write(d, reg_addr->ring_size, payload);
+
+ /* Configure tail pointer for use when SDONE enabled */
+ d->tail_ptrs = rte_zmalloc_socket(
+ dev->device->driver->name,
+ ACC100_NUM_QGRPS * ACC100_NUM_AQS * sizeof(uint32_t),
+ RTE_CACHE_LINE_SIZE, socket_id);
+ if (d->tail_ptrs == NULL) {
+ rte_bbdev_log(ERR, "Failed to allocate tail ptr for %s:%u",
+ dev->device->driver->name,
+ dev->data->dev_id);
+ rte_free(d->sw_rings);
+ return -ENOMEM;
+ }
+ d->tail_ptr_iova = rte_malloc_virt2iova(d->tail_ptrs);
+
+ phys_high = (uint32_t)(d->tail_ptr_iova >> 32);
+ phys_low = (uint32_t)(d->tail_ptr_iova);
+ acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_hi, phys_high);
+ acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_lo, phys_low);
+ acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_hi, phys_high);
+ acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_lo, phys_low);
+ acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_hi, phys_high);
+ acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_lo, phys_low);
+ acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_hi, phys_high);
+ acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_lo, phys_low);
+
+ d->harq_layout = rte_zmalloc_socket("HARQ Layout",
+ ACC100_HARQ_LAYOUT * sizeof(*d->harq_layout),
+ RTE_CACHE_LINE_SIZE, dev->data->socket_id);
+ if (d->harq_layout == NULL) {
+ rte_bbdev_log(ERR, "Failed to allocate harq_layout for %s:%u",
+ dev->device->driver->name,
+ dev->data->dev_id);
+ rte_free(d->sw_rings);
+ return -ENOMEM;
+ }
+
+ /* Mark as configured properly */
+ d->configured = true;
+
+ rte_bbdev_log_debug(
+ "ACC100 (%s) configured sw_rings = %p, sw_rings_iova = %#"
+ PRIx64, dev->data->name, d->sw_rings, d->sw_rings_iova);
+
+ return 0;
+}
+
+/* Free memory used for software rings */
+static int
+acc100_dev_close(struct rte_bbdev *dev)
+{
+ struct acc100_device *d = dev->data->dev_private;
+ if (d->sw_rings_base != NULL) {
+ rte_free(d->tail_ptrs);
+ rte_free(d->sw_rings_base);
+ d->sw_rings_base = NULL;
+ }
+ /* Ensure all in flight HW transactions are completed */
+ usleep(ACC100_LONG_WAIT);
+ return 0;
+}
+
+
+/**
+ * Report a ACC100 queue index which is free
+ * Return 0 to 16k for a valid queue_idx or -1 when no queue is available
+ * Note : Only supporting VF0 Bundle for PF mode
+ */
+static int
+acc100_find_free_queue_idx(struct rte_bbdev *dev,
+ const struct rte_bbdev_queue_conf *conf)
+{
+ struct acc100_device *d = dev->data->dev_private;
+ int op_2_acc[5] = {0, UL_4G, DL_4G, UL_5G, DL_5G};
+ int acc = op_2_acc[conf->op_type];
+ struct rte_acc100_queue_topology *qtop = NULL;
+
+ qtopFromAcc(&qtop, acc, &(d->acc100_conf));
+ if (qtop == NULL)
+ return -1;
+ /* Identify matching QGroup Index which are sorted in priority order */
+ uint16_t group_idx = qtop->first_qgroup_index;
+ group_idx += conf->priority;
+ if (group_idx >= ACC100_NUM_QGRPS ||
+ conf->priority >= qtop->num_qgroups) {
+ rte_bbdev_log(INFO, "Invalid Priority on %s, priority %u",
+ dev->data->name, conf->priority);
+ return -1;
+ }
+ /* Find a free AQ_idx */
+ uint16_t aq_idx;
+ for (aq_idx = 0; aq_idx < qtop->num_aqs_per_groups; aq_idx++) {
+ if (((d->q_assigned_bit_map[group_idx] >> aq_idx) & 0x1) == 0) {
+ /* Mark the Queue as assigned */
+ d->q_assigned_bit_map[group_idx] |= (1 << aq_idx);
+ /* Report the AQ Index */
+ return (group_idx << ACC100_GRP_ID_SHIFT) + aq_idx;
+ }
+ }
+ rte_bbdev_log(INFO, "Failed to find free queue on %s, priority %u",
+ dev->data->name, conf->priority);
+ return -1;
+}
+
+/* Setup ACC100 queue */
+static int
+acc100_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
+ const struct rte_bbdev_queue_conf *conf)
+{
+ struct acc100_device *d = dev->data->dev_private;
+ struct acc100_queue *q;
+ int16_t q_idx;
+
+ /* Allocate the queue data structure. */
+ q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
+ RTE_CACHE_LINE_SIZE, conf->socket);
+ if (q == NULL) {
+ rte_bbdev_log(ERR, "Failed to allocate queue memory");
+ return -ENOMEM;
+ }
+ if (d == NULL) {
+ rte_bbdev_log(ERR, "Undefined device");
+ return -ENODEV;
+ }
+
+ q->d = d;
+ q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
+ q->ring_addr_iova = d->sw_rings_iova + (d->sw_ring_size * queue_id);
+
+ /* Prepare the Ring with default descriptor format */
+ union acc100_dma_desc *desc = NULL;
+ unsigned int desc_idx, b_idx;
+ int fcw_len = (conf->op_type == RTE_BBDEV_OP_LDPC_ENC ?
+ ACC100_FCW_LE_BLEN : (conf->op_type == RTE_BBDEV_OP_TURBO_DEC ?
+ ACC100_FCW_TD_BLEN : ACC100_FCW_LD_BLEN));
+
+ for (desc_idx = 0; desc_idx < d->sw_ring_max_depth; desc_idx++) {
+ desc = q->ring_addr + desc_idx;
+ desc->req.word0 = ACC100_DMA_DESC_TYPE;
+ desc->req.word1 = 0; /**< Timestamp */
+ desc->req.word2 = 0;
+ desc->req.word3 = 0;
+ uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
+ desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
+ desc->req.data_ptrs[0].blen = fcw_len;
+ desc->req.data_ptrs[0].blkid = ACC100_DMA_BLKID_FCW;
+ desc->req.data_ptrs[0].last = 0;
+ desc->req.data_ptrs[0].dma_ext = 0;
+ for (b_idx = 1; b_idx < ACC100_DMA_MAX_NUM_POINTERS - 1;
+ b_idx++) {
+ desc->req.data_ptrs[b_idx].blkid = ACC100_DMA_BLKID_IN;
+ desc->req.data_ptrs[b_idx].last = 1;
+ desc->req.data_ptrs[b_idx].dma_ext = 0;
+ b_idx++;
+ desc->req.data_ptrs[b_idx].blkid =
+ ACC100_DMA_BLKID_OUT_ENC;
+ desc->req.data_ptrs[b_idx].last = 1;
+ desc->req.data_ptrs[b_idx].dma_ext = 0;
+ }
+ /* Preset some fields of LDPC FCW */
+ desc->req.fcw_ld.FCWversion = ACC100_FCW_VER;
+ desc->req.fcw_ld.gain_i = 1;
+ desc->req.fcw_ld.gain_h = 1;
+ }
+
+ q->lb_in = rte_zmalloc_socket(dev->device->driver->name,
+ RTE_CACHE_LINE_SIZE,
+ RTE_CACHE_LINE_SIZE, conf->socket);
+ if (q->lb_in == NULL) {
+ rte_bbdev_log(ERR, "Failed to allocate lb_in memory");
+ rte_free(q);
+ return -ENOMEM;
+ }
+ q->lb_in_addr_iova = rte_malloc_virt2iova(q->lb_in);
+ q->lb_out = rte_zmalloc_socket(dev->device->driver->name,
+ RTE_CACHE_LINE_SIZE,
+ RTE_CACHE_LINE_SIZE, conf->socket);
+ if (q->lb_out == NULL) {
+ rte_bbdev_log(ERR, "Failed to allocate lb_out memory");
+ rte_free(q->lb_in);
+ rte_free(q);
+ return -ENOMEM;
+ }
+ q->lb_out_addr_iova = rte_malloc_virt2iova(q->lb_out);
+
+ /*
+ * Software queue ring wraps synchronously with the HW when it reaches
+ * the boundary of the maximum allocated queue size, no matter what the
+ * sw queue size is. This wrapping is guarded by setting the wrap_mask
+ * to represent the maximum queue size as allocated at the time when
+ * the device has been setup (in configure()).
+ *
+ * The queue depth is set to the queue size value (conf->queue_size).
+ * This limits the occupancy of the queue at any point of time, so that
+ * the queue does not get swamped with enqueue requests.
+ */
+ q->sw_ring_depth = conf->queue_size;
+ q->sw_ring_wrap_mask = d->sw_ring_max_depth - 1;
+
+ q->op_type = conf->op_type;
+
+ q_idx = acc100_find_free_queue_idx(dev, conf);
+ if (q_idx == -1) {
+ rte_free(q->lb_in);
+ rte_free(q->lb_out);
+ rte_free(q);
+ return -1;
+ }
+
+ q->qgrp_id = (q_idx >> ACC100_GRP_ID_SHIFT) & 0xF;
+ q->vf_id = (q_idx >> ACC100_VF_ID_SHIFT) & 0x3F;
+ q->aq_id = q_idx & 0xF;
+ q->aq_depth = (conf->op_type == RTE_BBDEV_OP_TURBO_DEC) ?
+ (1 << d->acc100_conf.q_ul_4g.aq_depth_log2) :
+ (1 << d->acc100_conf.q_dl_4g.aq_depth_log2);
+
+ q->mmio_reg_enqueue = RTE_PTR_ADD(d->mmio_base,
+ queue_offset(d->pf_device,
+ q->vf_id, q->qgrp_id, q->aq_id));
+
+ rte_bbdev_log_debug(
+ "Setup dev%u q%u: qgrp_id=%u, vf_id=%u, aq_id=%u, aq_depth=%u, mmio_reg_enqueue=%p",
+ dev->data->dev_id, queue_id, q->qgrp_id, q->vf_id,
+ q->aq_id, q->aq_depth, q->mmio_reg_enqueue);
+
+ dev->data->queues[queue_id].queue_private = q;
+ return 0;
+}
+
+/* Release ACC100 queue */
+static int
+acc100_queue_release(struct rte_bbdev *dev, uint16_t q_id)
+{
+ struct acc100_device *d = dev->data->dev_private;
+ struct acc100_queue *q = dev->data->queues[q_id].queue_private;
+
+ if (q != NULL) {
+ /* Mark the Queue as un-assigned */
+ d->q_assigned_bit_map[q->qgrp_id] &= (0xFFFFFFFF -
+ (1 << q->aq_id));
+ rte_free(q->lb_in);
+ rte_free(q->lb_out);
+ rte_free(q);
+ dev->data->queues[q_id].queue_private = NULL;
+ }
+
return 0;
}
}
static const struct rte_bbdev_ops acc100_bbdev_ops = {
+ .setup_queues = acc100_setup_queues,
.close = acc100_dev_close,
.info_get = acc100_dev_info_get,
+ .queue_setup = acc100_queue_setup,
+ .queue_release = acc100_queue_release,
};
/* ACC100 PCI PF address map */