if (config.acx == NULL)
rte_exit(rte_errno, "failed to create ACL context\n");
+ /* set default classify method to scalar for this context. */
+ if (config.scalar) {
+ ret = rte_acl_set_ctx_classify(config.acx,
+ RTE_ACL_CLASSIFY_SCALAR);
+ if (ret != 0)
+ rte_exit(ret, "failed to setup classify method "
+ "for ACL context\n");
+ }
+
/* add ACL rules. */
f = fopen(config.rule_file, "r");
if (f == NULL)
ret = add_cb_rules(f, config.acx);
if (ret != 0)
- rte_exit(rte_errno, "failed to add rules into ACL context\n");
+ rte_exit(ret, "failed to add rules into ACL context\n");
fclose(f);
v += config.trace_sz;
}
- if (scalar != 0)
- ret = rte_acl_classify_scalar(config.acx, data,
- results, n, categories);
-
- else
- ret = rte_acl_classify(config.acx, data,
- results, n, categories);
+ ret = rte_acl_classify(config.acx, data, results,
+ n, categories);
if (ret != 0)
rte_exit(ret, "classify for ipv%c_5tuples returns %d\n",
}
/* make a quick check for scalar */
- ret = rte_acl_classify_scalar(acx, data, results,
- RTE_DIM(acl_test_data), RTE_ACL_MAX_CATEGORIES);
+ ret = rte_acl_classify_alg(acx, data, results,
+ RTE_DIM(acl_test_data), RTE_ACL_MAX_CATEGORIES,
+ RTE_ACL_CLASSIFY_SCALAR);
if (ret != 0) {
printf("Line %i: SSE classify failed!\n", __LINE__);
goto err;
}
/* classify tuples */
- ret = rte_acl_classify(acx, data, results,
- RTE_DIM(results), 1);
+ ret = rte_acl_classify_alg(acx, data, results,
+ RTE_DIM(results), 1, RTE_ACL_CLASSIFY_SCALAR);
if (ret != 0) {
printf("Line %i: SSE classify failed!\n", __LINE__);
rte_acl_free(acx);
}
/* classify tuples (scalar) */
- ret = rte_acl_classify_scalar(acx, data, results,
- RTE_DIM(results), 1);
+ ret = rte_acl_classify_alg(acx, data, results, RTE_DIM(results), 1,
+ RTE_ACL_CLASSIFY_SCALAR);
+
if (ret != 0) {
printf("Line %i: Scalar classify failed!\n", __LINE__);
rte_acl_free(acx);
/* scalar classify test */
/* cover zero categories in classify (should not fail) */
- result = rte_acl_classify_scalar(acx, NULL, NULL, 0, 0);
+ result = rte_acl_classify_alg(acx, NULL, NULL, 0, 0,
+ RTE_ACL_CLASSIFY_SCALAR);
if (result != 0) {
printf("Line %i: Scalar classify with zero categories "
"failed!\n", __LINE__);
}
/* cover invalid but positive categories in classify */
- result = rte_acl_classify_scalar(acx, NULL, NULL, 0, 3);
+ result = rte_acl_classify(acx, NULL, NULL, 0, 3);
if (result == 0) {
printf("Line %i: Scalar classify with 3 categories "
"should have failed!\n", __LINE__);
(in) = end + 1; \
} while (0)
-#define CLASSIFY(context, data, res, num, cat) do { \
- if (scalar) \
- rte_acl_classify_scalar((context), (data), \
- (res), (num), (cat)); \
- else \
- rte_acl_classify((context), (data), \
- (res), (num), (cat)); \
-} while (0)
-
/*
* ACL rules should have higher priorities than route ones to ensure ACL rule
* always be found when input packets have multi-matches in the database.
if ((context = rte_acl_create(&acl_param)) == NULL)
rte_exit(EXIT_FAILURE, "Failed to create ACL context\n");
+ if (parm_config.scalar && rte_acl_set_ctx_classify(context,
+ RTE_ACL_CLASSIFY_SCALAR) != 0)
+ rte_exit(EXIT_FAILURE,
+ "Failed to setup classify method for ACL context\n");
+
if (rte_acl_add_rules(context, route_base, route_num) < 0)
rte_exit(EXIT_FAILURE, "add rules failed\n");
int socketid;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
/ US_PER_S * BURST_TX_DRAIN_US;
- int scalar = parm_config.scalar;
prev_tsc = 0;
-
lcore_id = rte_lcore_id();
qconf = &lcore_conf[lcore_id];
socketid = rte_lcore_to_socket_id(lcore_id);
nb_rx);
if (acl_search.num_ipv4) {
- CLASSIFY(acl_config.acx_ipv4[socketid],
+ rte_acl_classify(
+ acl_config.acx_ipv4[socketid],
acl_search.data_ipv4,
acl_search.res_ipv4,
acl_search.num_ipv4,
}
if (acl_search.num_ipv6) {
- CLASSIFY(acl_config.acx_ipv6[socketid],
+ rte_acl_classify(
+ acl_config.acx_ipv6[socketid],
acl_search.data_ipv6,
acl_search.res_ipv6,
acl_search.num_ipv6,
SRCS-$(CONFIG_RTE_LIBRTE_ACL) += rte_acl.c
SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_bld.c
SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_gen.c
-SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_run.c
+SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_run_scalar.c
+SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_run_sse.c
+
+CFLAGS_acl_run_sse.o += -msse4.1
# install this header file
SYMLINK-$(CONFIG_RTE_LIBRTE_ACL)-include := rte_acl_osdep.h
/** Name of the ACL context. */
int32_t socket_id;
/** Socket ID to allocate memory from. */
+ enum rte_acl_classify_alg alg;
void *rules;
uint32_t max_rules;
uint32_t rule_sz;
struct rte_acl_bld_trie *node_bld_trie, uint32_t num_tries,
uint32_t num_categories, uint32_t data_index_sz, int match_num);
+typedef int (*rte_acl_classify_t)
+(const struct rte_acl_ctx *, const uint8_t **, uint32_t *, uint32_t, uint32_t);
+
+/*
+ * Different implementations of ACL classify.
+ */
+int
+rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
+ uint32_t *results, uint32_t num, uint32_t categories);
+
+int
+rte_acl_classify_sse(const struct rte_acl_ctx *ctx, const uint8_t **data,
+ uint32_t *results, uint32_t num, uint32_t categories);
+
#ifdef __cplusplus
}
#endif /* __cplusplus */
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
-#include <nmmintrin.h>
#include <rte_acl.h>
#include "tb_mem.h"
#include "acl.h"
switch (rule->config->defs[n].type) {
case RTE_ACL_FIELD_TYPE_BITMASK:
- wild = (size -
- _mm_popcnt_u32(fld->mask_range.u8)) /
+ wild = (size - __builtin_popcount(
+ fld->mask_range.u8)) /
size;
break;
+++ /dev/null
-/*-
- * BSD LICENSE
- *
- * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include <rte_acl.h>
-#include "acl_vect.h"
-#include "acl.h"
-
-#define MAX_SEARCHES_SSE8 8
-#define MAX_SEARCHES_SSE4 4
-#define MAX_SEARCHES_SSE2 2
-#define MAX_SEARCHES_SCALAR 2
-
-#define GET_NEXT_4BYTES(prm, idx) \
- (*((const int32_t *)((prm)[(idx)].data + *(prm)[idx].data_index++)))
-
-
-#define RTE_ACL_NODE_INDEX ((uint32_t)~RTE_ACL_NODE_TYPE)
-
-#define SCALAR_QRANGE_MULT 0x01010101
-#define SCALAR_QRANGE_MASK 0x7f7f7f7f
-#define SCALAR_QRANGE_MIN 0x80808080
-
-enum {
- SHUFFLE32_SLOT1 = 0xe5,
- SHUFFLE32_SLOT2 = 0xe6,
- SHUFFLE32_SLOT3 = 0xe7,
- SHUFFLE32_SWAP64 = 0x4e,
-};
-
-/*
- * Structure to manage N parallel trie traversals.
- * The runtime trie traversal routines can process 8, 4, or 2 tries
- * in parallel. Each packet may require multiple trie traversals (up to 4).
- * This structure is used to fill the slots (0 to n-1) for parallel processing
- * with the trie traversals needed for each packet.
- */
-struct acl_flow_data {
- uint32_t num_packets;
- /* number of packets processed */
- uint32_t started;
- /* number of trie traversals in progress */
- uint32_t trie;
- /* current trie index (0 to N-1) */
- uint32_t cmplt_size;
- uint32_t total_packets;
- uint32_t categories;
- /* number of result categories per packet. */
- /* maximum number of packets to process */
- const uint64_t *trans;
- const uint8_t **data;
- uint32_t *results;
- struct completion *last_cmplt;
- struct completion *cmplt_array;
-};
-
-/*
- * Structure to maintain running results for
- * a single packet (up to 4 tries).
- */
-struct completion {
- uint32_t *results; /* running results. */
- int32_t priority[RTE_ACL_MAX_CATEGORIES]; /* running priorities. */
- uint32_t count; /* num of remaining tries */
- /* true for allocated struct */
-} __attribute__((aligned(XMM_SIZE)));
-
-/*
- * One parms structure for each slot in the search engine.
- */
-struct parms {
- const uint8_t *data;
- /* input data for this packet */
- const uint32_t *data_index;
- /* data indirection for this trie */
- struct completion *cmplt;
- /* completion data for this packet */
-};
-
-/*
- * Define an global idle node for unused engine slots
- */
-static const uint32_t idle[UINT8_MAX + 1];
-
-static const rte_xmm_t mm_type_quad_range = {
- .u32 = {
- RTE_ACL_NODE_QRANGE,
- RTE_ACL_NODE_QRANGE,
- RTE_ACL_NODE_QRANGE,
- RTE_ACL_NODE_QRANGE,
- },
-};
-
-static const rte_xmm_t mm_type_quad_range64 = {
- .u32 = {
- RTE_ACL_NODE_QRANGE,
- RTE_ACL_NODE_QRANGE,
- 0,
- 0,
- },
-};
-
-static const rte_xmm_t mm_shuffle_input = {
- .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
-};
-
-static const rte_xmm_t mm_shuffle_input64 = {
- .u32 = {0x00000000, 0x04040404, 0x80808080, 0x80808080},
-};
-
-static const rte_xmm_t mm_ones_16 = {
- .u16 = {1, 1, 1, 1, 1, 1, 1, 1},
-};
-
-static const rte_xmm_t mm_bytes = {
- .u32 = {UINT8_MAX, UINT8_MAX, UINT8_MAX, UINT8_MAX},
-};
-
-static const rte_xmm_t mm_bytes64 = {
- .u32 = {UINT8_MAX, UINT8_MAX, 0, 0},
-};
-
-static const rte_xmm_t mm_match_mask = {
- .u32 = {
- RTE_ACL_NODE_MATCH,
- RTE_ACL_NODE_MATCH,
- RTE_ACL_NODE_MATCH,
- RTE_ACL_NODE_MATCH,
- },
-};
-
-static const rte_xmm_t mm_match_mask64 = {
- .u32 = {
- RTE_ACL_NODE_MATCH,
- 0,
- RTE_ACL_NODE_MATCH,
- 0,
- },
-};
-
-static const rte_xmm_t mm_index_mask = {
- .u32 = {
- RTE_ACL_NODE_INDEX,
- RTE_ACL_NODE_INDEX,
- RTE_ACL_NODE_INDEX,
- RTE_ACL_NODE_INDEX,
- },
-};
-
-static const rte_xmm_t mm_index_mask64 = {
- .u32 = {
- RTE_ACL_NODE_INDEX,
- RTE_ACL_NODE_INDEX,
- 0,
- 0,
- },
-};
-
-/*
- * Allocate a completion structure to manage the tries for a packet.
- */
-static inline struct completion *
-alloc_completion(struct completion *p, uint32_t size, uint32_t tries,
- uint32_t *results)
-{
- uint32_t n;
-
- for (n = 0; n < size; n++) {
-
- if (p[n].count == 0) {
-
- /* mark as allocated and set number of tries. */
- p[n].count = tries;
- p[n].results = results;
- return &(p[n]);
- }
- }
-
- /* should never get here */
- return NULL;
-}
-
-/*
- * Resolve priority for a single result trie.
- */
-static inline void
-resolve_single_priority(uint64_t transition, int n,
- const struct rte_acl_ctx *ctx, struct parms *parms,
- const struct rte_acl_match_results *p)
-{
- if (parms[n].cmplt->count == ctx->num_tries ||
- parms[n].cmplt->priority[0] <=
- p[transition].priority[0]) {
-
- parms[n].cmplt->priority[0] = p[transition].priority[0];
- parms[n].cmplt->results[0] = p[transition].results[0];
- }
-
- parms[n].cmplt->count--;
-}
-
-/*
- * Resolve priority for multiple results. This consists comparing
- * the priority of the current traversal with the running set of
- * results for the packet. For each result, keep a running array of
- * the result (rule number) and its priority for each category.
- */
-static inline void
-resolve_priority(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
- struct parms *parms, const struct rte_acl_match_results *p,
- uint32_t categories)
-{
- uint32_t x;
- xmm_t results, priority, results1, priority1, selector;
- xmm_t *saved_results, *saved_priority;
-
- for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
-
- saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
- saved_priority =
- (xmm_t *)(&parms[n].cmplt->priority[x]);
-
- /* get results and priorities for completed trie */
- results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
- priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
-
- /* if this is not the first completed trie */
- if (parms[n].cmplt->count != ctx->num_tries) {
-
- /* get running best results and their priorities */
- results1 = MM_LOADU(saved_results);
- priority1 = MM_LOADU(saved_priority);
-
- /* select results that are highest priority */
- selector = MM_CMPGT32(priority1, priority);
- results = MM_BLENDV8(results, results1, selector);
- priority = MM_BLENDV8(priority, priority1, selector);
- }
-
- /* save running best results and their priorities */
- MM_STOREU(saved_results, results);
- MM_STOREU(saved_priority, priority);
- }
-
- /* Count down completed tries for this search request */
- parms[n].cmplt->count--;
-}
-
-/*
- * Routine to fill a slot in the parallel trie traversal array (parms) from
- * the list of packets (flows).
- */
-static inline uint64_t
-acl_start_next_trie(struct acl_flow_data *flows, struct parms *parms, int n,
- const struct rte_acl_ctx *ctx)
-{
- uint64_t transition;
-
- /* if there are any more packets to process */
- if (flows->num_packets < flows->total_packets) {
- parms[n].data = flows->data[flows->num_packets];
- parms[n].data_index = ctx->trie[flows->trie].data_index;
-
- /* if this is the first trie for this packet */
- if (flows->trie == 0) {
- flows->last_cmplt = alloc_completion(flows->cmplt_array,
- flows->cmplt_size, ctx->num_tries,
- flows->results +
- flows->num_packets * flows->categories);
- }
-
- /* set completion parameters and starting index for this slot */
- parms[n].cmplt = flows->last_cmplt;
- transition =
- flows->trans[parms[n].data[*parms[n].data_index++] +
- ctx->trie[flows->trie].root_index];
-
- /*
- * if this is the last trie for this packet,
- * then setup next packet.
- */
- flows->trie++;
- if (flows->trie >= ctx->num_tries) {
- flows->trie = 0;
- flows->num_packets++;
- }
-
- /* keep track of number of active trie traversals */
- flows->started++;
-
- /* no more tries to process, set slot to an idle position */
- } else {
- transition = ctx->idle;
- parms[n].data = (const uint8_t *)idle;
- parms[n].data_index = idle;
- }
- return transition;
-}
-
-/*
- * Detect matches. If a match node transition is found, then this trie
- * traversal is complete and fill the slot with the next trie
- * to be processed.
- */
-static inline uint64_t
-acl_match_check_transition(uint64_t transition, int slot,
- const struct rte_acl_ctx *ctx, struct parms *parms,
- struct acl_flow_data *flows)
-{
- const struct rte_acl_match_results *p;
-
- p = (const struct rte_acl_match_results *)
- (flows->trans + ctx->match_index);
-
- if (transition & RTE_ACL_NODE_MATCH) {
-
- /* Remove flags from index and decrement active traversals */
- transition &= RTE_ACL_NODE_INDEX;
- flows->started--;
-
- /* Resolve priorities for this trie and running results */
- if (flows->categories == 1)
- resolve_single_priority(transition, slot, ctx,
- parms, p);
- else
- resolve_priority(transition, slot, ctx, parms, p,
- flows->categories);
-
- /* Fill the slot with the next trie or idle trie */
- transition = acl_start_next_trie(flows, parms, slot, ctx);
-
- } else if (transition == ctx->idle) {
- /* reset indirection table for idle slots */
- parms[slot].data_index = idle;
- }
-
- return transition;
-}
-
-/*
- * Extract transitions from an XMM register and check for any matches
- */
-static void
-acl_process_matches(xmm_t *indicies, int slot, const struct rte_acl_ctx *ctx,
- struct parms *parms, struct acl_flow_data *flows)
-{
- uint64_t transition1, transition2;
-
- /* extract transition from low 64 bits. */
- transition1 = MM_CVT64(*indicies);
-
- /* extract transition from high 64 bits. */
- *indicies = MM_SHUFFLE32(*indicies, SHUFFLE32_SWAP64);
- transition2 = MM_CVT64(*indicies);
-
- transition1 = acl_match_check_transition(transition1, slot, ctx,
- parms, flows);
- transition2 = acl_match_check_transition(transition2, slot + 1, ctx,
- parms, flows);
-
- /* update indicies with new transitions. */
- *indicies = MM_SET64(transition2, transition1);
-}
-
-/*
- * Check for a match in 2 transitions (contained in SSE register)
- */
-static inline void
-acl_match_check_x2(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
- struct acl_flow_data *flows, xmm_t *indicies, xmm_t match_mask)
-{
- xmm_t temp;
-
- temp = MM_AND(match_mask, *indicies);
- while (!MM_TESTZ(temp, temp)) {
- acl_process_matches(indicies, slot, ctx, parms, flows);
- temp = MM_AND(match_mask, *indicies);
- }
-}
-
-/*
- * Check for any match in 4 transitions (contained in 2 SSE registers)
- */
-static inline void
-acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
- struct acl_flow_data *flows, xmm_t *indicies1, xmm_t *indicies2,
- xmm_t match_mask)
-{
- xmm_t temp;
-
- /* put low 32 bits of each transition into one register */
- temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
- 0x88);
- /* test for match node */
- temp = MM_AND(match_mask, temp);
-
- while (!MM_TESTZ(temp, temp)) {
- acl_process_matches(indicies1, slot, ctx, parms, flows);
- acl_process_matches(indicies2, slot + 2, ctx, parms, flows);
-
- temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
- (__m128)*indicies2,
- 0x88);
- temp = MM_AND(match_mask, temp);
- }
-}
-
-/*
- * Calculate the address of the next transition for
- * all types of nodes. Note that only DFA nodes and range
- * nodes actually transition to another node. Match
- * nodes don't move.
- */
-static inline xmm_t
-acl_calc_addr(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
- xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
- xmm_t *indicies1, xmm_t *indicies2)
-{
- xmm_t addr, node_types, temp;
-
- /*
- * Note that no transition is done for a match
- * node and therefore a stream freezes when
- * it reaches a match.
- */
-
- /* Shuffle low 32 into temp and high 32 into indicies2 */
- temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
- 0x88);
- *indicies2 = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
- (__m128)*indicies2, 0xdd);
-
- /* Calc node type and node addr */
- node_types = MM_ANDNOT(index_mask, temp);
- addr = MM_AND(index_mask, temp);
-
- /*
- * Calc addr for DFAs - addr = dfa_index + input_byte
- */
-
- /* mask for DFA type (0) nodes */
- temp = MM_CMPEQ32(node_types, MM_XOR(node_types, node_types));
-
- /* add input byte to DFA position */
- temp = MM_AND(temp, bytes);
- temp = MM_AND(temp, next_input);
- addr = MM_ADD32(addr, temp);
-
- /*
- * Calc addr for Range nodes -> range_index + range(input)
- */
- node_types = MM_CMPEQ32(node_types, type_quad_range);
-
- /*
- * Calculate number of range boundaries that are less than the
- * input value. Range boundaries for each node are in signed 8 bit,
- * ordered from -128 to 127 in the indicies2 register.
- * This is effectively a popcnt of bytes that are greater than the
- * input byte.
- */
-
- /* shuffle input byte to all 4 positions of 32 bit value */
- temp = MM_SHUFFLE8(next_input, shuffle_input);
-
- /* check ranges */
- temp = MM_CMPGT8(temp, *indicies2);
-
- /* convert -1 to 1 (bytes greater than input byte */
- temp = MM_SIGN8(temp, temp);
-
- /* horizontal add pairs of bytes into words */
- temp = MM_MADD8(temp, temp);
-
- /* horizontal add pairs of words into dwords */
- temp = MM_MADD16(temp, ones_16);
-
- /* mask to range type nodes */
- temp = MM_AND(temp, node_types);
-
- /* add index into node position */
- return MM_ADD32(addr, temp);
-}
-
-/*
- * Process 4 transitions (in 2 SIMD registers) in parallel
- */
-static inline xmm_t
-transition4(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
- xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
- const uint64_t *trans, xmm_t *indicies1, xmm_t *indicies2)
-{
- xmm_t addr;
- uint64_t trans0, trans2;
-
- /* Calculate the address (array index) for all 4 transitions. */
-
- addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
- bytes, type_quad_range, indicies1, indicies2);
-
- /* Gather 64 bit transitions and pack back into 2 registers. */
-
- trans0 = trans[MM_CVT32(addr)];
-
- /* get slot 2 */
-
- /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
- addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
- trans2 = trans[MM_CVT32(addr)];
-
- /* get slot 1 */
-
- /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
- addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
- *indicies1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
-
- /* get slot 3 */
-
- /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
- addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
- *indicies2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
-
- return MM_SRL32(next_input, 8);
-}
-
-static inline void
-acl_set_flow(struct acl_flow_data *flows, struct completion *cmplt,
- uint32_t cmplt_size, const uint8_t **data, uint32_t *results,
- uint32_t data_num, uint32_t categories, const uint64_t *trans)
-{
- flows->num_packets = 0;
- flows->started = 0;
- flows->trie = 0;
- flows->last_cmplt = NULL;
- flows->cmplt_array = cmplt;
- flows->total_packets = data_num;
- flows->categories = categories;
- flows->cmplt_size = cmplt_size;
- flows->data = data;
- flows->results = results;
- flows->trans = trans;
-}
-
-/*
- * Execute trie traversal with 8 traversals in parallel
- */
-static inline void
-search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
- uint32_t *results, uint32_t total_packets, uint32_t categories)
-{
- int n;
- struct acl_flow_data flows;
- uint64_t index_array[MAX_SEARCHES_SSE8];
- struct completion cmplt[MAX_SEARCHES_SSE8];
- struct parms parms[MAX_SEARCHES_SSE8];
- xmm_t input0, input1;
- xmm_t indicies1, indicies2, indicies3, indicies4;
-
- acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
- total_packets, categories, ctx->trans_table);
-
- for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
- cmplt[n].count = 0;
- index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
- }
-
- /*
- * indicies1 contains index_array[0,1]
- * indicies2 contains index_array[2,3]
- * indicies3 contains index_array[4,5]
- * indicies4 contains index_array[6,7]
- */
-
- indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
- indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
-
- indicies3 = MM_LOADU((xmm_t *) &index_array[4]);
- indicies4 = MM_LOADU((xmm_t *) &index_array[6]);
-
- /* Check for any matches. */
- acl_match_check_x4(0, ctx, parms, &flows,
- &indicies1, &indicies2, mm_match_mask.m);
- acl_match_check_x4(4, ctx, parms, &flows,
- &indicies3, &indicies4, mm_match_mask.m);
-
- while (flows.started > 0) {
-
- /* Gather 4 bytes of input data for each stream. */
- input0 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0),
- 0);
- input1 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 4),
- 0);
-
- input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
- input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
-
- input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
- input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
-
- input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
- input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
-
- /* Process the 4 bytes of input on each stream. */
-
- input0 = transition4(mm_index_mask.m, input0,
- mm_shuffle_input.m, mm_ones_16.m,
- mm_bytes.m, mm_type_quad_range.m,
- flows.trans, &indicies1, &indicies2);
-
- input1 = transition4(mm_index_mask.m, input1,
- mm_shuffle_input.m, mm_ones_16.m,
- mm_bytes.m, mm_type_quad_range.m,
- flows.trans, &indicies3, &indicies4);
-
- input0 = transition4(mm_index_mask.m, input0,
- mm_shuffle_input.m, mm_ones_16.m,
- mm_bytes.m, mm_type_quad_range.m,
- flows.trans, &indicies1, &indicies2);
-
- input1 = transition4(mm_index_mask.m, input1,
- mm_shuffle_input.m, mm_ones_16.m,
- mm_bytes.m, mm_type_quad_range.m,
- flows.trans, &indicies3, &indicies4);
-
- input0 = transition4(mm_index_mask.m, input0,
- mm_shuffle_input.m, mm_ones_16.m,
- mm_bytes.m, mm_type_quad_range.m,
- flows.trans, &indicies1, &indicies2);
-
- input1 = transition4(mm_index_mask.m, input1,
- mm_shuffle_input.m, mm_ones_16.m,
- mm_bytes.m, mm_type_quad_range.m,
- flows.trans, &indicies3, &indicies4);
-
- input0 = transition4(mm_index_mask.m, input0,
- mm_shuffle_input.m, mm_ones_16.m,
- mm_bytes.m, mm_type_quad_range.m,
- flows.trans, &indicies1, &indicies2);
-
- input1 = transition4(mm_index_mask.m, input1,
- mm_shuffle_input.m, mm_ones_16.m,
- mm_bytes.m, mm_type_quad_range.m,
- flows.trans, &indicies3, &indicies4);
-
- /* Check for any matches. */
- acl_match_check_x4(0, ctx, parms, &flows,
- &indicies1, &indicies2, mm_match_mask.m);
- acl_match_check_x4(4, ctx, parms, &flows,
- &indicies3, &indicies4, mm_match_mask.m);
- }
-}
-
-/*
- * Execute trie traversal with 4 traversals in parallel
- */
-static inline void
-search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
- uint32_t *results, int total_packets, uint32_t categories)
-{
- int n;
- struct acl_flow_data flows;
- uint64_t index_array[MAX_SEARCHES_SSE4];
- struct completion cmplt[MAX_SEARCHES_SSE4];
- struct parms parms[MAX_SEARCHES_SSE4];
- xmm_t input, indicies1, indicies2;
-
- acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
- total_packets, categories, ctx->trans_table);
-
- for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
- cmplt[n].count = 0;
- index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
- }
-
- indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
- indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
-
- /* Check for any matches. */
- acl_match_check_x4(0, ctx, parms, &flows,
- &indicies1, &indicies2, mm_match_mask.m);
-
- while (flows.started > 0) {
-
- /* Gather 4 bytes of input data for each stream. */
- input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
- input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
- input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
- input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
-
- /* Process the 4 bytes of input on each stream. */
- input = transition4(mm_index_mask.m, input,
- mm_shuffle_input.m, mm_ones_16.m,
- mm_bytes.m, mm_type_quad_range.m,
- flows.trans, &indicies1, &indicies2);
-
- input = transition4(mm_index_mask.m, input,
- mm_shuffle_input.m, mm_ones_16.m,
- mm_bytes.m, mm_type_quad_range.m,
- flows.trans, &indicies1, &indicies2);
-
- input = transition4(mm_index_mask.m, input,
- mm_shuffle_input.m, mm_ones_16.m,
- mm_bytes.m, mm_type_quad_range.m,
- flows.trans, &indicies1, &indicies2);
-
- input = transition4(mm_index_mask.m, input,
- mm_shuffle_input.m, mm_ones_16.m,
- mm_bytes.m, mm_type_quad_range.m,
- flows.trans, &indicies1, &indicies2);
-
- /* Check for any matches. */
- acl_match_check_x4(0, ctx, parms, &flows,
- &indicies1, &indicies2, mm_match_mask.m);
- }
-}
-
-static inline xmm_t
-transition2(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
- xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
- const uint64_t *trans, xmm_t *indicies1)
-{
- uint64_t t;
- xmm_t addr, indicies2;
-
- indicies2 = MM_XOR(ones_16, ones_16);
-
- addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
- bytes, type_quad_range, indicies1, &indicies2);
-
- /* Gather 64 bit transitions and pack 2 per register. */
-
- t = trans[MM_CVT32(addr)];
-
- /* get slot 1 */
- addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
- *indicies1 = MM_SET64(trans[MM_CVT32(addr)], t);
-
- return MM_SRL32(next_input, 8);
-}
-
-/*
- * Execute trie traversal with 2 traversals in parallel.
- */
-static inline void
-search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data,
- uint32_t *results, uint32_t total_packets, uint32_t categories)
-{
- int n;
- struct acl_flow_data flows;
- uint64_t index_array[MAX_SEARCHES_SSE2];
- struct completion cmplt[MAX_SEARCHES_SSE2];
- struct parms parms[MAX_SEARCHES_SSE2];
- xmm_t input, indicies;
-
- acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
- total_packets, categories, ctx->trans_table);
-
- for (n = 0; n < MAX_SEARCHES_SSE2; n++) {
- cmplt[n].count = 0;
- index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
- }
-
- indicies = MM_LOADU((xmm_t *) &index_array[0]);
-
- /* Check for any matches. */
- acl_match_check_x2(0, ctx, parms, &flows, &indicies, mm_match_mask64.m);
-
- while (flows.started > 0) {
-
- /* Gather 4 bytes of input data for each stream. */
- input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
- input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
-
- /* Process the 4 bytes of input on each stream. */
-
- input = transition2(mm_index_mask64.m, input,
- mm_shuffle_input64.m, mm_ones_16.m,
- mm_bytes64.m, mm_type_quad_range64.m,
- flows.trans, &indicies);
-
- input = transition2(mm_index_mask64.m, input,
- mm_shuffle_input64.m, mm_ones_16.m,
- mm_bytes64.m, mm_type_quad_range64.m,
- flows.trans, &indicies);
-
- input = transition2(mm_index_mask64.m, input,
- mm_shuffle_input64.m, mm_ones_16.m,
- mm_bytes64.m, mm_type_quad_range64.m,
- flows.trans, &indicies);
-
- input = transition2(mm_index_mask64.m, input,
- mm_shuffle_input64.m, mm_ones_16.m,
- mm_bytes64.m, mm_type_quad_range64.m,
- flows.trans, &indicies);
-
- /* Check for any matches. */
- acl_match_check_x2(0, ctx, parms, &flows, &indicies,
- mm_match_mask64.m);
- }
-}
-
-/*
- * When processing the transition, rather than using if/else
- * construct, the offset is calculated for DFA and QRANGE and
- * then conditionally added to the address based on node type.
- * This is done to avoid branch mis-predictions. Since the
- * offset is rather simple calculation it is more efficient
- * to do the calculation and do a condition move rather than
- * a conditional branch to determine which calculation to do.
- */
-static inline uint32_t
-scan_forward(uint32_t input, uint32_t max)
-{
- return (input == 0) ? max : rte_bsf32(input);
-}
-
-static inline uint64_t
-scalar_transition(const uint64_t *trans_table, uint64_t transition,
- uint8_t input)
-{
- uint32_t addr, index, ranges, x, a, b, c;
-
- /* break transition into component parts */
- ranges = transition >> (sizeof(index) * CHAR_BIT);
-
- /* calc address for a QRANGE node */
- c = input * SCALAR_QRANGE_MULT;
- a = ranges | SCALAR_QRANGE_MIN;
- index = transition & ~RTE_ACL_NODE_INDEX;
- a -= (c & SCALAR_QRANGE_MASK);
- b = c & SCALAR_QRANGE_MIN;
- addr = transition ^ index;
- a &= SCALAR_QRANGE_MIN;
- a ^= (ranges ^ b) & (a ^ b);
- x = scan_forward(a, 32) >> 3;
- addr += (index == RTE_ACL_NODE_DFA) ? input : x;
-
- /* pickup next transition */
- transition = *(trans_table + addr);
- return transition;
-}
-
-int
-rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
- uint32_t *results, uint32_t num, uint32_t categories)
-{
- int n;
- uint64_t transition0, transition1;
- uint32_t input0, input1;
- struct acl_flow_data flows;
- uint64_t index_array[MAX_SEARCHES_SCALAR];
- struct completion cmplt[MAX_SEARCHES_SCALAR];
- struct parms parms[MAX_SEARCHES_SCALAR];
-
- if (categories != 1 &&
- ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
- return -EINVAL;
-
- acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, num,
- categories, ctx->trans_table);
-
- for (n = 0; n < MAX_SEARCHES_SCALAR; n++) {
- cmplt[n].count = 0;
- index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
- }
-
- transition0 = index_array[0];
- transition1 = index_array[1];
-
- while (flows.started > 0) {
-
- input0 = GET_NEXT_4BYTES(parms, 0);
- input1 = GET_NEXT_4BYTES(parms, 1);
-
- for (n = 0; n < 4; n++) {
- if (likely((transition0 & RTE_ACL_NODE_MATCH) == 0))
- transition0 = scalar_transition(flows.trans,
- transition0, (uint8_t)input0);
-
- input0 >>= CHAR_BIT;
-
- if (likely((transition1 & RTE_ACL_NODE_MATCH) == 0))
- transition1 = scalar_transition(flows.trans,
- transition1, (uint8_t)input1);
-
- input1 >>= CHAR_BIT;
-
- }
- if ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
- transition0 = acl_match_check_transition(transition0,
- 0, ctx, parms, &flows);
- transition1 = acl_match_check_transition(transition1,
- 1, ctx, parms, &flows);
-
- }
- }
- return 0;
-}
-
-int
-rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
- uint32_t *results, uint32_t num, uint32_t categories)
-{
- if (categories != 1 &&
- ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
- return -EINVAL;
-
- if (likely(num >= MAX_SEARCHES_SSE8))
- search_sse_8(ctx, data, results, num, categories);
- else if (num >= MAX_SEARCHES_SSE4)
- search_sse_4(ctx, data, results, num, categories);
- else
- search_sse_2(ctx, data, results, num, categories);
-
- return 0;
-}
--- /dev/null
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef _ACL_RUN_H_
+#define _ACL_RUN_H_
+
+#include <rte_acl.h>
+#include "acl_vect.h"
+#include "acl.h"
+
+#define MAX_SEARCHES_SSE8 8
+#define MAX_SEARCHES_SSE4 4
+#define MAX_SEARCHES_SSE2 2
+#define MAX_SEARCHES_SCALAR 2
+
+#define GET_NEXT_4BYTES(prm, idx) \
+ (*((const int32_t *)((prm)[(idx)].data + *(prm)[idx].data_index++)))
+
+
+#define RTE_ACL_NODE_INDEX ((uint32_t)~RTE_ACL_NODE_TYPE)
+
+#define SCALAR_QRANGE_MULT 0x01010101
+#define SCALAR_QRANGE_MASK 0x7f7f7f7f
+#define SCALAR_QRANGE_MIN 0x80808080
+
+/*
+ * Structure to manage N parallel trie traversals.
+ * The runtime trie traversal routines can process 8, 4, or 2 tries
+ * in parallel. Each packet may require multiple trie traversals (up to 4).
+ * This structure is used to fill the slots (0 to n-1) for parallel processing
+ * with the trie traversals needed for each packet.
+ */
+struct acl_flow_data {
+ uint32_t num_packets;
+ /* number of packets processed */
+ uint32_t started;
+ /* number of trie traversals in progress */
+ uint32_t trie;
+ /* current trie index (0 to N-1) */
+ uint32_t cmplt_size;
+ uint32_t total_packets;
+ uint32_t categories;
+ /* number of result categories per packet. */
+ /* maximum number of packets to process */
+ const uint64_t *trans;
+ const uint8_t **data;
+ uint32_t *results;
+ struct completion *last_cmplt;
+ struct completion *cmplt_array;
+};
+
+/*
+ * Structure to maintain running results for
+ * a single packet (up to 4 tries).
+ */
+struct completion {
+ uint32_t *results; /* running results. */
+ int32_t priority[RTE_ACL_MAX_CATEGORIES]; /* running priorities. */
+ uint32_t count; /* num of remaining tries */
+ /* true for allocated struct */
+} __attribute__((aligned(XMM_SIZE)));
+
+/*
+ * One parms structure for each slot in the search engine.
+ */
+struct parms {
+ const uint8_t *data;
+ /* input data for this packet */
+ const uint32_t *data_index;
+ /* data indirection for this trie */
+ struct completion *cmplt;
+ /* completion data for this packet */
+};
+
+/*
+ * Define an global idle node for unused engine slots
+ */
+static const uint32_t idle[UINT8_MAX + 1];
+
+/*
+ * Allocate a completion structure to manage the tries for a packet.
+ */
+static inline struct completion *
+alloc_completion(struct completion *p, uint32_t size, uint32_t tries,
+ uint32_t *results)
+{
+ uint32_t n;
+
+ for (n = 0; n < size; n++) {
+
+ if (p[n].count == 0) {
+
+ /* mark as allocated and set number of tries. */
+ p[n].count = tries;
+ p[n].results = results;
+ return &(p[n]);
+ }
+ }
+
+ /* should never get here */
+ return NULL;
+}
+
+/*
+ * Resolve priority for a single result trie.
+ */
+static inline void
+resolve_single_priority(uint64_t transition, int n,
+ const struct rte_acl_ctx *ctx, struct parms *parms,
+ const struct rte_acl_match_results *p)
+{
+ if (parms[n].cmplt->count == ctx->num_tries ||
+ parms[n].cmplt->priority[0] <=
+ p[transition].priority[0]) {
+
+ parms[n].cmplt->priority[0] = p[transition].priority[0];
+ parms[n].cmplt->results[0] = p[transition].results[0];
+ }
+}
+
+/*
+ * Routine to fill a slot in the parallel trie traversal array (parms) from
+ * the list of packets (flows).
+ */
+static inline uint64_t
+acl_start_next_trie(struct acl_flow_data *flows, struct parms *parms, int n,
+ const struct rte_acl_ctx *ctx)
+{
+ uint64_t transition;
+
+ /* if there are any more packets to process */
+ if (flows->num_packets < flows->total_packets) {
+ parms[n].data = flows->data[flows->num_packets];
+ parms[n].data_index = ctx->trie[flows->trie].data_index;
+
+ /* if this is the first trie for this packet */
+ if (flows->trie == 0) {
+ flows->last_cmplt = alloc_completion(flows->cmplt_array,
+ flows->cmplt_size, ctx->num_tries,
+ flows->results +
+ flows->num_packets * flows->categories);
+ }
+
+ /* set completion parameters and starting index for this slot */
+ parms[n].cmplt = flows->last_cmplt;
+ transition =
+ flows->trans[parms[n].data[*parms[n].data_index++] +
+ ctx->trie[flows->trie].root_index];
+
+ /*
+ * if this is the last trie for this packet,
+ * then setup next packet.
+ */
+ flows->trie++;
+ if (flows->trie >= ctx->num_tries) {
+ flows->trie = 0;
+ flows->num_packets++;
+ }
+
+ /* keep track of number of active trie traversals */
+ flows->started++;
+
+ /* no more tries to process, set slot to an idle position */
+ } else {
+ transition = ctx->idle;
+ parms[n].data = (const uint8_t *)idle;
+ parms[n].data_index = idle;
+ }
+ return transition;
+}
+
+static inline void
+acl_set_flow(struct acl_flow_data *flows, struct completion *cmplt,
+ uint32_t cmplt_size, const uint8_t **data, uint32_t *results,
+ uint32_t data_num, uint32_t categories, const uint64_t *trans)
+{
+ flows->num_packets = 0;
+ flows->started = 0;
+ flows->trie = 0;
+ flows->last_cmplt = NULL;
+ flows->cmplt_array = cmplt;
+ flows->total_packets = data_num;
+ flows->categories = categories;
+ flows->cmplt_size = cmplt_size;
+ flows->data = data;
+ flows->results = results;
+ flows->trans = trans;
+}
+
+typedef void (*resolve_priority_t)
+(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
+ struct parms *parms, const struct rte_acl_match_results *p,
+ uint32_t categories);
+
+/*
+ * Detect matches. If a match node transition is found, then this trie
+ * traversal is complete and fill the slot with the next trie
+ * to be processed.
+ */
+static inline uint64_t
+acl_match_check(uint64_t transition, int slot,
+ const struct rte_acl_ctx *ctx, struct parms *parms,
+ struct acl_flow_data *flows, resolve_priority_t resolve_priority)
+{
+ const struct rte_acl_match_results *p;
+
+ p = (const struct rte_acl_match_results *)
+ (flows->trans + ctx->match_index);
+
+ if (transition & RTE_ACL_NODE_MATCH) {
+
+ /* Remove flags from index and decrement active traversals */
+ transition &= RTE_ACL_NODE_INDEX;
+ flows->started--;
+
+ /* Resolve priorities for this trie and running results */
+ if (flows->categories == 1)
+ resolve_single_priority(transition, slot, ctx,
+ parms, p);
+ else
+ resolve_priority(transition, slot, ctx, parms,
+ p, flows->categories);
+
+ /* Count down completed tries for this search request */
+ parms[slot].cmplt->count--;
+
+ /* Fill the slot with the next trie or idle trie */
+ transition = acl_start_next_trie(flows, parms, slot, ctx);
+
+ } else if (transition == ctx->idle) {
+ /* reset indirection table for idle slots */
+ parms[slot].data_index = idle;
+ }
+
+ return transition;
+}
+
+#endif /* _ACL_RUN_H_ */
--- /dev/null
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "acl_run.h"
+
+/*
+ * Resolve priority for multiple results (scalar version).
+ * This consists comparing the priority of the current traversal with the
+ * running set of results for the packet.
+ * For each result, keep a running array of the result (rule number) and
+ * its priority for each category.
+ */
+static inline void
+resolve_priority_scalar(uint64_t transition, int n,
+ const struct rte_acl_ctx *ctx, struct parms *parms,
+ const struct rte_acl_match_results *p, uint32_t categories)
+{
+ uint32_t i;
+ int32_t *saved_priority;
+ uint32_t *saved_results;
+ const int32_t *priority;
+ const uint32_t *results;
+
+ saved_results = parms[n].cmplt->results;
+ saved_priority = parms[n].cmplt->priority;
+
+ /* results and priorities for completed trie */
+ results = p[transition].results;
+ priority = p[transition].priority;
+
+ /* if this is not the first completed trie */
+ if (parms[n].cmplt->count != ctx->num_tries) {
+ for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
+
+ if (saved_priority[i] <= priority[i]) {
+ saved_priority[i] = priority[i];
+ saved_results[i] = results[i];
+ }
+ if (saved_priority[i + 1] <= priority[i + 1]) {
+ saved_priority[i + 1] = priority[i + 1];
+ saved_results[i + 1] = results[i + 1];
+ }
+ if (saved_priority[i + 2] <= priority[i + 2]) {
+ saved_priority[i + 2] = priority[i + 2];
+ saved_results[i + 2] = results[i + 2];
+ }
+ if (saved_priority[i + 3] <= priority[i + 3]) {
+ saved_priority[i + 3] = priority[i + 3];
+ saved_results[i + 3] = results[i + 3];
+ }
+ }
+ } else {
+ for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
+ saved_priority[i] = priority[i];
+ saved_priority[i + 1] = priority[i + 1];
+ saved_priority[i + 2] = priority[i + 2];
+ saved_priority[i + 3] = priority[i + 3];
+
+ saved_results[i] = results[i];
+ saved_results[i + 1] = results[i + 1];
+ saved_results[i + 2] = results[i + 2];
+ saved_results[i + 3] = results[i + 3];
+ }
+ }
+}
+
+/*
+ * When processing the transition, rather than using if/else
+ * construct, the offset is calculated for DFA and QRANGE and
+ * then conditionally added to the address based on node type.
+ * This is done to avoid branch mis-predictions. Since the
+ * offset is rather simple calculation it is more efficient
+ * to do the calculation and do a condition move rather than
+ * a conditional branch to determine which calculation to do.
+ */
+static inline uint32_t
+scan_forward(uint32_t input, uint32_t max)
+{
+ return (input == 0) ? max : rte_bsf32(input);
+}
+
+static inline uint64_t
+scalar_transition(const uint64_t *trans_table, uint64_t transition,
+ uint8_t input)
+{
+ uint32_t addr, index, ranges, x, a, b, c;
+
+ /* break transition into component parts */
+ ranges = transition >> (sizeof(index) * CHAR_BIT);
+
+ /* calc address for a QRANGE node */
+ c = input * SCALAR_QRANGE_MULT;
+ a = ranges | SCALAR_QRANGE_MIN;
+ index = transition & ~RTE_ACL_NODE_INDEX;
+ a -= (c & SCALAR_QRANGE_MASK);
+ b = c & SCALAR_QRANGE_MIN;
+ addr = transition ^ index;
+ a &= SCALAR_QRANGE_MIN;
+ a ^= (ranges ^ b) & (a ^ b);
+ x = scan_forward(a, 32) >> 3;
+ addr += (index == RTE_ACL_NODE_DFA) ? input : x;
+
+ /* pickup next transition */
+ transition = *(trans_table + addr);
+ return transition;
+}
+
+int
+rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
+ uint32_t *results, uint32_t num, uint32_t categories)
+{
+ int n;
+ uint64_t transition0, transition1;
+ uint32_t input0, input1;
+ struct acl_flow_data flows;
+ uint64_t index_array[MAX_SEARCHES_SCALAR];
+ struct completion cmplt[MAX_SEARCHES_SCALAR];
+ struct parms parms[MAX_SEARCHES_SCALAR];
+
+ if (categories != 1 &&
+ ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
+ return -EINVAL;
+
+ acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, num,
+ categories, ctx->trans_table);
+
+ for (n = 0; n < MAX_SEARCHES_SCALAR; n++) {
+ cmplt[n].count = 0;
+ index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+ }
+
+ transition0 = index_array[0];
+ transition1 = index_array[1];
+
+ while (flows.started > 0) {
+
+ input0 = GET_NEXT_4BYTES(parms, 0);
+ input1 = GET_NEXT_4BYTES(parms, 1);
+
+ for (n = 0; n < 4; n++) {
+ if (likely((transition0 & RTE_ACL_NODE_MATCH) == 0))
+ transition0 = scalar_transition(flows.trans,
+ transition0, (uint8_t)input0);
+
+ input0 >>= CHAR_BIT;
+
+ if (likely((transition1 & RTE_ACL_NODE_MATCH) == 0))
+ transition1 = scalar_transition(flows.trans,
+ transition1, (uint8_t)input1);
+
+ input1 >>= CHAR_BIT;
+
+ }
+ if ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
+ transition0 = acl_match_check(transition0,
+ 0, ctx, parms, &flows, resolve_priority_scalar);
+ transition1 = acl_match_check(transition1,
+ 1, ctx, parms, &flows, resolve_priority_scalar);
+
+ }
+ }
+ return 0;
+}
--- /dev/null
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "acl_run.h"
+
+enum {
+ SHUFFLE32_SLOT1 = 0xe5,
+ SHUFFLE32_SLOT2 = 0xe6,
+ SHUFFLE32_SLOT3 = 0xe7,
+ SHUFFLE32_SWAP64 = 0x4e,
+};
+
+static const rte_xmm_t mm_type_quad_range = {
+ .u32 = {
+ RTE_ACL_NODE_QRANGE,
+ RTE_ACL_NODE_QRANGE,
+ RTE_ACL_NODE_QRANGE,
+ RTE_ACL_NODE_QRANGE,
+ },
+};
+
+static const rte_xmm_t mm_type_quad_range64 = {
+ .u32 = {
+ RTE_ACL_NODE_QRANGE,
+ RTE_ACL_NODE_QRANGE,
+ 0,
+ 0,
+ },
+};
+
+static const rte_xmm_t mm_shuffle_input = {
+ .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
+};
+
+static const rte_xmm_t mm_shuffle_input64 = {
+ .u32 = {0x00000000, 0x04040404, 0x80808080, 0x80808080},
+};
+
+static const rte_xmm_t mm_ones_16 = {
+ .u16 = {1, 1, 1, 1, 1, 1, 1, 1},
+};
+
+static const rte_xmm_t mm_bytes = {
+ .u32 = {UINT8_MAX, UINT8_MAX, UINT8_MAX, UINT8_MAX},
+};
+
+static const rte_xmm_t mm_bytes64 = {
+ .u32 = {UINT8_MAX, UINT8_MAX, 0, 0},
+};
+
+static const rte_xmm_t mm_match_mask = {
+ .u32 = {
+ RTE_ACL_NODE_MATCH,
+ RTE_ACL_NODE_MATCH,
+ RTE_ACL_NODE_MATCH,
+ RTE_ACL_NODE_MATCH,
+ },
+};
+
+static const rte_xmm_t mm_match_mask64 = {
+ .u32 = {
+ RTE_ACL_NODE_MATCH,
+ 0,
+ RTE_ACL_NODE_MATCH,
+ 0,
+ },
+};
+
+static const rte_xmm_t mm_index_mask = {
+ .u32 = {
+ RTE_ACL_NODE_INDEX,
+ RTE_ACL_NODE_INDEX,
+ RTE_ACL_NODE_INDEX,
+ RTE_ACL_NODE_INDEX,
+ },
+};
+
+static const rte_xmm_t mm_index_mask64 = {
+ .u32 = {
+ RTE_ACL_NODE_INDEX,
+ RTE_ACL_NODE_INDEX,
+ 0,
+ 0,
+ },
+};
+
+
+/*
+ * Resolve priority for multiple results (sse version).
+ * This consists comparing the priority of the current traversal with the
+ * running set of results for the packet.
+ * For each result, keep a running array of the result (rule number) and
+ * its priority for each category.
+ */
+static inline void
+resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
+ struct parms *parms, const struct rte_acl_match_results *p,
+ uint32_t categories)
+{
+ uint32_t x;
+ xmm_t results, priority, results1, priority1, selector;
+ xmm_t *saved_results, *saved_priority;
+
+ for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
+
+ saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
+ saved_priority =
+ (xmm_t *)(&parms[n].cmplt->priority[x]);
+
+ /* get results and priorities for completed trie */
+ results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
+ priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
+
+ /* if this is not the first completed trie */
+ if (parms[n].cmplt->count != ctx->num_tries) {
+
+ /* get running best results and their priorities */
+ results1 = MM_LOADU(saved_results);
+ priority1 = MM_LOADU(saved_priority);
+
+ /* select results that are highest priority */
+ selector = MM_CMPGT32(priority1, priority);
+ results = MM_BLENDV8(results, results1, selector);
+ priority = MM_BLENDV8(priority, priority1, selector);
+ }
+
+ /* save running best results and their priorities */
+ MM_STOREU(saved_results, results);
+ MM_STOREU(saved_priority, priority);
+ }
+}
+
+/*
+ * Extract transitions from an XMM register and check for any matches
+ */
+static void
+acl_process_matches(xmm_t *indicies, int slot, const struct rte_acl_ctx *ctx,
+ struct parms *parms, struct acl_flow_data *flows)
+{
+ uint64_t transition1, transition2;
+
+ /* extract transition from low 64 bits. */
+ transition1 = MM_CVT64(*indicies);
+
+ /* extract transition from high 64 bits. */
+ *indicies = MM_SHUFFLE32(*indicies, SHUFFLE32_SWAP64);
+ transition2 = MM_CVT64(*indicies);
+
+ transition1 = acl_match_check(transition1, slot, ctx,
+ parms, flows, resolve_priority_sse);
+ transition2 = acl_match_check(transition2, slot + 1, ctx,
+ parms, flows, resolve_priority_sse);
+
+ /* update indicies with new transitions. */
+ *indicies = MM_SET64(transition2, transition1);
+}
+
+/*
+ * Check for a match in 2 transitions (contained in SSE register)
+ */
+static inline void
+acl_match_check_x2(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
+ struct acl_flow_data *flows, xmm_t *indicies, xmm_t match_mask)
+{
+ xmm_t temp;
+
+ temp = MM_AND(match_mask, *indicies);
+ while (!MM_TESTZ(temp, temp)) {
+ acl_process_matches(indicies, slot, ctx, parms, flows);
+ temp = MM_AND(match_mask, *indicies);
+ }
+}
+
+/*
+ * Check for any match in 4 transitions (contained in 2 SSE registers)
+ */
+static inline void
+acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
+ struct acl_flow_data *flows, xmm_t *indicies1, xmm_t *indicies2,
+ xmm_t match_mask)
+{
+ xmm_t temp;
+
+ /* put low 32 bits of each transition into one register */
+ temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
+ 0x88);
+ /* test for match node */
+ temp = MM_AND(match_mask, temp);
+
+ while (!MM_TESTZ(temp, temp)) {
+ acl_process_matches(indicies1, slot, ctx, parms, flows);
+ acl_process_matches(indicies2, slot + 2, ctx, parms, flows);
+
+ temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
+ (__m128)*indicies2,
+ 0x88);
+ temp = MM_AND(match_mask, temp);
+ }
+}
+
+/*
+ * Calculate the address of the next transition for
+ * all types of nodes. Note that only DFA nodes and range
+ * nodes actually transition to another node. Match
+ * nodes don't move.
+ */
+static inline xmm_t
+acl_calc_addr(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
+ xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
+ xmm_t *indicies1, xmm_t *indicies2)
+{
+ xmm_t addr, node_types, temp;
+
+ /*
+ * Note that no transition is done for a match
+ * node and therefore a stream freezes when
+ * it reaches a match.
+ */
+
+ /* Shuffle low 32 into temp and high 32 into indicies2 */
+ temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
+ 0x88);
+ *indicies2 = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
+ (__m128)*indicies2, 0xdd);
+
+ /* Calc node type and node addr */
+ node_types = MM_ANDNOT(index_mask, temp);
+ addr = MM_AND(index_mask, temp);
+
+ /*
+ * Calc addr for DFAs - addr = dfa_index + input_byte
+ */
+
+ /* mask for DFA type (0) nodes */
+ temp = MM_CMPEQ32(node_types, MM_XOR(node_types, node_types));
+
+ /* add input byte to DFA position */
+ temp = MM_AND(temp, bytes);
+ temp = MM_AND(temp, next_input);
+ addr = MM_ADD32(addr, temp);
+
+ /*
+ * Calc addr for Range nodes -> range_index + range(input)
+ */
+ node_types = MM_CMPEQ32(node_types, type_quad_range);
+
+ /*
+ * Calculate number of range boundaries that are less than the
+ * input value. Range boundaries for each node are in signed 8 bit,
+ * ordered from -128 to 127 in the indicies2 register.
+ * This is effectively a popcnt of bytes that are greater than the
+ * input byte.
+ */
+
+ /* shuffle input byte to all 4 positions of 32 bit value */
+ temp = MM_SHUFFLE8(next_input, shuffle_input);
+
+ /* check ranges */
+ temp = MM_CMPGT8(temp, *indicies2);
+
+ /* convert -1 to 1 (bytes greater than input byte */
+ temp = MM_SIGN8(temp, temp);
+
+ /* horizontal add pairs of bytes into words */
+ temp = MM_MADD8(temp, temp);
+
+ /* horizontal add pairs of words into dwords */
+ temp = MM_MADD16(temp, ones_16);
+
+ /* mask to range type nodes */
+ temp = MM_AND(temp, node_types);
+
+ /* add index into node position */
+ return MM_ADD32(addr, temp);
+}
+
+/*
+ * Process 4 transitions (in 2 SIMD registers) in parallel
+ */
+static inline xmm_t
+transition4(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
+ xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
+ const uint64_t *trans, xmm_t *indicies1, xmm_t *indicies2)
+{
+ xmm_t addr;
+ uint64_t trans0, trans2;
+
+ /* Calculate the address (array index) for all 4 transitions. */
+
+ addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
+ bytes, type_quad_range, indicies1, indicies2);
+
+ /* Gather 64 bit transitions and pack back into 2 registers. */
+
+ trans0 = trans[MM_CVT32(addr)];
+
+ /* get slot 2 */
+
+ /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
+ addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
+ trans2 = trans[MM_CVT32(addr)];
+
+ /* get slot 1 */
+
+ /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
+ addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
+ *indicies1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
+
+ /* get slot 3 */
+
+ /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
+ addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
+ *indicies2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
+
+ return MM_SRL32(next_input, 8);
+}
+
+/*
+ * Execute trie traversal with 8 traversals in parallel
+ */
+static inline int
+search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
+ uint32_t *results, uint32_t total_packets, uint32_t categories)
+{
+ int n;
+ struct acl_flow_data flows;
+ uint64_t index_array[MAX_SEARCHES_SSE8];
+ struct completion cmplt[MAX_SEARCHES_SSE8];
+ struct parms parms[MAX_SEARCHES_SSE8];
+ xmm_t input0, input1;
+ xmm_t indicies1, indicies2, indicies3, indicies4;
+
+ acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+ total_packets, categories, ctx->trans_table);
+
+ for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
+ cmplt[n].count = 0;
+ index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+ }
+
+ /*
+ * indicies1 contains index_array[0,1]
+ * indicies2 contains index_array[2,3]
+ * indicies3 contains index_array[4,5]
+ * indicies4 contains index_array[6,7]
+ */
+
+ indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
+ indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
+
+ indicies3 = MM_LOADU((xmm_t *) &index_array[4]);
+ indicies4 = MM_LOADU((xmm_t *) &index_array[6]);
+
+ /* Check for any matches. */
+ acl_match_check_x4(0, ctx, parms, &flows,
+ &indicies1, &indicies2, mm_match_mask.m);
+ acl_match_check_x4(4, ctx, parms, &flows,
+ &indicies3, &indicies4, mm_match_mask.m);
+
+ while (flows.started > 0) {
+
+ /* Gather 4 bytes of input data for each stream. */
+ input0 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0),
+ 0);
+ input1 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 4),
+ 0);
+
+ input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
+ input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
+
+ input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
+ input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
+
+ input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
+ input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
+
+ /* Process the 4 bytes of input on each stream. */
+
+ input0 = transition4(mm_index_mask.m, input0,
+ mm_shuffle_input.m, mm_ones_16.m,
+ mm_bytes.m, mm_type_quad_range.m,
+ flows.trans, &indicies1, &indicies2);
+
+ input1 = transition4(mm_index_mask.m, input1,
+ mm_shuffle_input.m, mm_ones_16.m,
+ mm_bytes.m, mm_type_quad_range.m,
+ flows.trans, &indicies3, &indicies4);
+
+ input0 = transition4(mm_index_mask.m, input0,
+ mm_shuffle_input.m, mm_ones_16.m,
+ mm_bytes.m, mm_type_quad_range.m,
+ flows.trans, &indicies1, &indicies2);
+
+ input1 = transition4(mm_index_mask.m, input1,
+ mm_shuffle_input.m, mm_ones_16.m,
+ mm_bytes.m, mm_type_quad_range.m,
+ flows.trans, &indicies3, &indicies4);
+
+ input0 = transition4(mm_index_mask.m, input0,
+ mm_shuffle_input.m, mm_ones_16.m,
+ mm_bytes.m, mm_type_quad_range.m,
+ flows.trans, &indicies1, &indicies2);
+
+ input1 = transition4(mm_index_mask.m, input1,
+ mm_shuffle_input.m, mm_ones_16.m,
+ mm_bytes.m, mm_type_quad_range.m,
+ flows.trans, &indicies3, &indicies4);
+
+ input0 = transition4(mm_index_mask.m, input0,
+ mm_shuffle_input.m, mm_ones_16.m,
+ mm_bytes.m, mm_type_quad_range.m,
+ flows.trans, &indicies1, &indicies2);
+
+ input1 = transition4(mm_index_mask.m, input1,
+ mm_shuffle_input.m, mm_ones_16.m,
+ mm_bytes.m, mm_type_quad_range.m,
+ flows.trans, &indicies3, &indicies4);
+
+ /* Check for any matches. */
+ acl_match_check_x4(0, ctx, parms, &flows,
+ &indicies1, &indicies2, mm_match_mask.m);
+ acl_match_check_x4(4, ctx, parms, &flows,
+ &indicies3, &indicies4, mm_match_mask.m);
+ }
+
+ return 0;
+}
+
+/*
+ * Execute trie traversal with 4 traversals in parallel
+ */
+static inline int
+search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
+ uint32_t *results, int total_packets, uint32_t categories)
+{
+ int n;
+ struct acl_flow_data flows;
+ uint64_t index_array[MAX_SEARCHES_SSE4];
+ struct completion cmplt[MAX_SEARCHES_SSE4];
+ struct parms parms[MAX_SEARCHES_SSE4];
+ xmm_t input, indicies1, indicies2;
+
+ acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+ total_packets, categories, ctx->trans_table);
+
+ for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
+ cmplt[n].count = 0;
+ index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+ }
+
+ indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
+ indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
+
+ /* Check for any matches. */
+ acl_match_check_x4(0, ctx, parms, &flows,
+ &indicies1, &indicies2, mm_match_mask.m);
+
+ while (flows.started > 0) {
+
+ /* Gather 4 bytes of input data for each stream. */
+ input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
+ input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
+ input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
+ input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
+
+ /* Process the 4 bytes of input on each stream. */
+ input = transition4(mm_index_mask.m, input,
+ mm_shuffle_input.m, mm_ones_16.m,
+ mm_bytes.m, mm_type_quad_range.m,
+ flows.trans, &indicies1, &indicies2);
+
+ input = transition4(mm_index_mask.m, input,
+ mm_shuffle_input.m, mm_ones_16.m,
+ mm_bytes.m, mm_type_quad_range.m,
+ flows.trans, &indicies1, &indicies2);
+
+ input = transition4(mm_index_mask.m, input,
+ mm_shuffle_input.m, mm_ones_16.m,
+ mm_bytes.m, mm_type_quad_range.m,
+ flows.trans, &indicies1, &indicies2);
+
+ input = transition4(mm_index_mask.m, input,
+ mm_shuffle_input.m, mm_ones_16.m,
+ mm_bytes.m, mm_type_quad_range.m,
+ flows.trans, &indicies1, &indicies2);
+
+ /* Check for any matches. */
+ acl_match_check_x4(0, ctx, parms, &flows,
+ &indicies1, &indicies2, mm_match_mask.m);
+ }
+
+ return 0;
+}
+
+static inline xmm_t
+transition2(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
+ xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
+ const uint64_t *trans, xmm_t *indicies1)
+{
+ uint64_t t;
+ xmm_t addr, indicies2;
+
+ indicies2 = MM_XOR(ones_16, ones_16);
+
+ addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
+ bytes, type_quad_range, indicies1, &indicies2);
+
+ /* Gather 64 bit transitions and pack 2 per register. */
+
+ t = trans[MM_CVT32(addr)];
+
+ /* get slot 1 */
+ addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
+ *indicies1 = MM_SET64(trans[MM_CVT32(addr)], t);
+
+ return MM_SRL32(next_input, 8);
+}
+
+/*
+ * Execute trie traversal with 2 traversals in parallel.
+ */
+static inline int
+search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data,
+ uint32_t *results, uint32_t total_packets, uint32_t categories)
+{
+ int n;
+ struct acl_flow_data flows;
+ uint64_t index_array[MAX_SEARCHES_SSE2];
+ struct completion cmplt[MAX_SEARCHES_SSE2];
+ struct parms parms[MAX_SEARCHES_SSE2];
+ xmm_t input, indicies;
+
+ acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+ total_packets, categories, ctx->trans_table);
+
+ for (n = 0; n < MAX_SEARCHES_SSE2; n++) {
+ cmplt[n].count = 0;
+ index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+ }
+
+ indicies = MM_LOADU((xmm_t *) &index_array[0]);
+
+ /* Check for any matches. */
+ acl_match_check_x2(0, ctx, parms, &flows, &indicies, mm_match_mask64.m);
+
+ while (flows.started > 0) {
+
+ /* Gather 4 bytes of input data for each stream. */
+ input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
+ input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
+
+ /* Process the 4 bytes of input on each stream. */
+
+ input = transition2(mm_index_mask64.m, input,
+ mm_shuffle_input64.m, mm_ones_16.m,
+ mm_bytes64.m, mm_type_quad_range64.m,
+ flows.trans, &indicies);
+
+ input = transition2(mm_index_mask64.m, input,
+ mm_shuffle_input64.m, mm_ones_16.m,
+ mm_bytes64.m, mm_type_quad_range64.m,
+ flows.trans, &indicies);
+
+ input = transition2(mm_index_mask64.m, input,
+ mm_shuffle_input64.m, mm_ones_16.m,
+ mm_bytes64.m, mm_type_quad_range64.m,
+ flows.trans, &indicies);
+
+ input = transition2(mm_index_mask64.m, input,
+ mm_shuffle_input64.m, mm_ones_16.m,
+ mm_bytes64.m, mm_type_quad_range64.m,
+ flows.trans, &indicies);
+
+ /* Check for any matches. */
+ acl_match_check_x2(0, ctx, parms, &flows, &indicies,
+ mm_match_mask64.m);
+ }
+
+ return 0;
+}
+
+int
+rte_acl_classify_sse(const struct rte_acl_ctx *ctx, const uint8_t **data,
+ uint32_t *results, uint32_t num, uint32_t categories)
+{
+ if (categories != 1 &&
+ ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
+ return -EINVAL;
+
+ if (likely(num >= MAX_SEARCHES_SSE8))
+ return search_sse_8(ctx, data, results, num, categories);
+ else if (num >= MAX_SEARCHES_SSE4)
+ return search_sse_4(ctx, data, results, num, categories);
+ else
+ return search_sse_2(ctx, data, results, num, categories);
+}
TAILQ_HEAD(rte_acl_list, rte_tailq_entry);
+static const rte_acl_classify_t classify_fns[] = {
+ [RTE_ACL_CLASSIFY_DEFAULT] = rte_acl_classify_scalar,
+ [RTE_ACL_CLASSIFY_SCALAR] = rte_acl_classify_scalar,
+ [RTE_ACL_CLASSIFY_SSE] = rte_acl_classify_sse,
+};
+
+/* by default, use always avaialbe scalar code path. */
+static enum rte_acl_classify_alg rte_acl_default_classify =
+ RTE_ACL_CLASSIFY_SCALAR;
+
+static void
+rte_acl_set_default_classify(enum rte_acl_classify_alg alg)
+{
+ rte_acl_default_classify = alg;
+}
+
+extern int
+rte_acl_set_ctx_classify(struct rte_acl_ctx *ctx, enum rte_acl_classify_alg alg)
+{
+ if (ctx == NULL || (uint32_t)alg >= RTE_DIM(classify_fns))
+ return -EINVAL;
+
+ ctx->alg = alg;
+ return 0;
+}
+
+static void __attribute__((constructor))
+rte_acl_init(void)
+{
+ enum rte_acl_classify_alg alg = RTE_ACL_CLASSIFY_DEFAULT;
+
+ if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
+ alg = RTE_ACL_CLASSIFY_SSE;
+
+ rte_acl_set_default_classify(alg);
+}
+
+int
+rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
+ uint32_t *results, uint32_t num, uint32_t categories)
+{
+ return classify_fns[ctx->alg](ctx, data, results, num, categories);
+}
+
+int
+rte_acl_classify_alg(const struct rte_acl_ctx *ctx, const uint8_t **data,
+ uint32_t *results, uint32_t num, uint32_t categories,
+ enum rte_acl_classify_alg alg)
+{
+ return classify_fns[alg](ctx, data, results, num, categories);
+}
+
struct rte_acl_ctx *
rte_acl_find_existing(const char *name)
{
ctx->max_rules = param->max_rule_num;
ctx->rule_sz = param->rule_size;
ctx->socket_id = param->socket_id;
+ ctx->alg = rte_acl_default_classify;
snprintf(ctx->name, sizeof(ctx->name), "%s", param->name);
te->data = (void *) ctx;
if (!ctx)
return;
printf("acl context <%s>@%p\n", ctx->name, ctx);
+ printf(" socket_id=%"PRId32"\n", ctx->socket_id);
+ printf(" alg=%"PRId32"\n", ctx->alg);
printf(" max_rules=%"PRIu32"\n", ctx->max_rules);
printf(" rule_size=%"PRIu32"\n", ctx->rule_sz);
printf(" num_rules=%"PRIu32"\n", ctx->num_rules);
rte_acl_reset(struct rte_acl_ctx *ctx);
/**
- * Search for a matching ACL rule for each input data buffer.
+ * Avaialble implementations of ACL classify.
+ */
+enum rte_acl_classify_alg {
+ RTE_ACL_CLASSIFY_DEFAULT = 0,
+ RTE_ACL_CLASSIFY_SCALAR = 1, /**< generic implementation. */
+ RTE_ACL_CLASSIFY_SSE = 2, /**< requries SSE4.1 support. */
+};
+
+/**
+ * Perform search for a matching ACL rule for each input data buffer.
* Each input data buffer can have up to *categories* matches.
* That implies that results array should be big enough to hold
* (categories * num) elements.
* RTE_ACL_RESULTS_MULTIPLIER and can't be bigger than RTE_ACL_MAX_CATEGORIES.
* If more than one rule is applicable for given input buffer and
* given category, then rule with highest priority will be returned as a match.
- * Note, that it is a caller responsibility to ensure that input parameters
+ * Note, that it is a caller's responsibility to ensure that input parameters
* are valid and point to correct memory locations.
*
* @param ctx
* zero on successful completion.
* -EINVAL for incorrect arguments.
*/
-int
-rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
- uint32_t *results, uint32_t num, uint32_t categories);
+extern int
+rte_acl_classify(const struct rte_acl_ctx *ctx,
+ const uint8_t **data,
+ uint32_t *results, uint32_t num,
+ uint32_t categories);
/**
- * Perform scalar search for a matching ACL rule for each input data buffer.
- * Note, that while the search itself will avoid explicit use of SSE/AVX
- * intrinsics, code for comparing matching results/priorities sill might use
- * vector intrinsics (for categories > 1).
+ * Perform search using specified algorithm for a matching ACL rule for
+ * each input data buffer.
* Each input data buffer can have up to *categories* matches.
* That implies that results array should be big enough to hold
* (categories * num) elements.
* @param categories
* Number of maximum possible matches for each input buffer, one possible
* match per category.
+ * @param alg
+ * Algorithm to be used for the search.
+ * It is the caller responibility to ensure that the value refers to the
+ * existing algorithm, and that it could be run on the given CPU.
* @return
* zero on successful completion.
* -EINVAL for incorrect arguments.
*/
-int
-rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
- uint32_t *results, uint32_t num, uint32_t categories);
+extern int
+rte_acl_classify_alg(const struct rte_acl_ctx *ctx,
+ const uint8_t **data,
+ uint32_t *results, uint32_t num,
+ uint32_t categories,
+ enum rte_acl_classify_alg alg);
+
+/*
+ * Override the default classifier function for a given ACL context.
+ * @param ctx
+ * ACL context to change classify function for.
+ * @param alg
+ * New default classify algorithm for given ACL context.
+ * It is the caller responibility to ensure that the value refers to the
+ * existing algorithm, and that it could be run on the given CPU.
+ * @return
+ * - -EINVAL if the parameters are invalid.
+ * - Zero if operation completed successfully.
+ */
+extern int
+rte_acl_set_ctx_classify(struct rte_acl_ctx *ctx,
+ enum rte_acl_classify_alg alg);
/**
* Dump an ACL context structure to the console.