#include "e1000_api.h"
-STATIC s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw);
-STATIC s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw);
-STATIC s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw);
STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw);
STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
u16 *data);
static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
u16 data);
-static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw);
STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 phy_data, index;
DEBUGFUNC("e1000_get_cable_length_80003es2lan");
/* Initialize identification LED */
ret_val = mac->ops.id_led_init(hw);
+ /* An error is not fatal and we should not stop init due to this */
if (ret_val)
DEBUGOUT("Error initializing identification LED\n");
- /* This is not fatal and we should not stop init due to this */
/* Disabling VLAN filtering */
DEBUGOUT("Initializing the IEEE VLAN\n");
/* Set the transmit descriptor write-back policy */
reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
- reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
+ reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
/* ...for both queues. */
reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
- reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
+ reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
/* Enable retransmit on late collisions */
/* default to true to enable the MDIC W/A */
hw->dev_spec._80003es2lan.mdic_wa_enable = true;
- ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET >>
- E1000_KMRNCTRLSTA_OFFSET_SHIFT,
- &i);
+ ret_val =
+ e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
+ E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
if (!ret_val) {
if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
- u32 ctrl_ext;
+ u32 reg;
u16 data;
DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");
}
/* Bypass Rx and Tx FIFO's */
- ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
- E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
- E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
+ reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
+ data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
+ E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
+ ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
if (ret_val)
return ret_val;
- ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, &data);
+ reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
+ ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
if (ret_val)
return ret_val;
data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
- ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, data);
+ ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
if (ret_val)
return ret_val;
if (ret_val)
return ret_val;
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
if (ret_val)
reg_data);
if (ret_val)
return ret_val;
- ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, ®_data);
+ ret_val =
+ e1000_read_kmrn_reg_80003es2lan(hw,
+ E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+ ®_data);
if (ret_val)
return ret_val;
reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
- ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, reg_data);
+ ret_val =
+ e1000_write_kmrn_reg_80003es2lan(hw,
+ E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+ reg_data);
if (ret_val)
return ret_val;
DEBUGFUNC("e1000_configure_kmrn_for_10_100");
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
- ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
- reg_data);
+ ret_val =
+ e1000_write_kmrn_reg_80003es2lan(hw,
+ E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+ reg_data);
if (ret_val)
return ret_val;
DEBUGFUNC("e1000_configure_kmrn_for_1000");
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
- ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, reg_data);
+ ret_val =
+ e1000_write_kmrn_reg_80003es2lan(hw,
+ E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+ reg_data);
if (ret_val)
return ret_val;
u16 *data)
{
u32 kmrnctrlsta;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_read_kmrn_reg_80003es2lan");
u16 data)
{
u32 kmrnctrlsta;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_write_kmrn_reg_80003es2lan");
**/
STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_read_mac_addr_80003es2lan");
#define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C
#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004
-#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
+#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gig Carry Extend Padding */
#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
-#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disabled */
+#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Dis */
#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
/* PHY Specific Control Register 2 (Page 0, Register 26) */
-#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 /* 1=Reverse Auto-Nego */
+#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 /* 1=Reverse Auto-Neg */
/* MAC Specific Control Register (Page 2, Register 21) */
/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
#include "e1000_api.h"
-STATIC s32 e1000_init_phy_params_82571(struct e1000_hw *hw);
-STATIC s32 e1000_init_nvm_params_82571(struct e1000_hw *hw);
-STATIC s32 e1000_init_mac_params_82571(struct e1000_hw *hw);
STATIC s32 e1000_acquire_nvm_82571(struct e1000_hw *hw);
STATIC void e1000_release_nvm_82571(struct e1000_hw *hw);
STATIC s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset,
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
-static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
DEBUGFUNC("e1000_get_hw_semaphore_82573");
extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
do {
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
break;
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
msec_delay(2);
i++;
} while (i < MDIO_OWNERSHIP_TIMEOUT);
}
for (i = 0; i < words; i++) {
- eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
- ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
- E1000_NVM_RW_REG_START;
+ eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
+ ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
+ E1000_NVM_RW_REG_START);
ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
if (ret_val)
/* Initialize identification LED */
ret_val = mac->ops.id_led_init(hw);
+ /* An error is not fatal and we should not stop init due to this */
if (ret_val)
DEBUGOUT("Error initializing identification LED\n");
- /* This is not fatal and we should not stop init due to this */
/* Disabling VLAN filtering */
DEBUGOUT("Initializing the IEEE VLAN\n");
/* Set the transmit descriptor write-back policy */
reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
- reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
+ reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
/* ...for both queues. */
break;
default:
reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
- reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB |
- E1000_TXDCTL_COUNT_DESC;
+ reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB |
+ E1000_TXDCTL_COUNT_DESC);
E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
break;
}
{
u16 status_1kbt = 0;
u16 receive_errors = 0;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_check_phy_82574");
ctrl = E1000_READ_REG(hw, E1000_CTRL);
status = E1000_READ_REG(hw, E1000_STATUS);
- rxcw = E1000_READ_REG(hw, E1000_RXCW);
+ E1000_READ_REG(hw, E1000_RXCW);
/* SYNCH bit and IV bit are sticky */
usec_delay(10);
rxcw = E1000_READ_REG(hw, E1000_RXCW);
if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
-
/* Receiver is synchronized with no invalid bits. */
switch (mac->serdes_link_state) {
case e1000_serdes_link_autoneg_complete:
DEBUGFUNC("e1000_read_mac_addr_82571");
if (hw->mac.type == e1000_82571) {
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
/* If there's an alternate MAC address place it in RAR0
* so that it will override the Si installed default perm
} else {
nvm->type = e1000_nvm_flash_hw;
}
+
/* Function Pointers */
nvm->ops.acquire = e1000_acquire_nvm_82575;
nvm->ops.release = e1000_release_nvm_82575;
}
if (ret_val != E1000_SUCCESS)
goto out;
+
ret_val = e1000_read_sfp_data_byte(hw,
E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
(u8 *)eth_flags);
if (ret_val != E1000_SUCCESS)
goto out;
- /*
- * Check if there is some SFP
- * module plugged and powered
- */
+
+ /* Check if there is some SFP module plugged and powered */
if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
(tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
dev_spec->module_plugged = true;
dev_spec->sgmii_active = true;
hw->phy.media_type = e1000_media_type_copper;
} else {
- hw->phy.media_type = e1000_media_type_unknown;
- DEBUGOUT("PHY module has not been recognized\n");
- goto out;
+ hw->phy.media_type = e1000_media_type_unknown;
+ DEBUGOUT("PHY module has not been recognized\n");
+ goto out;
}
} else {
hw->phy.media_type = e1000_media_type_unknown;
E1000_IMS_RXDMT0 | \
E1000_IMS_RXSEQ)
-/*
- * This defines the bits that are set in the Interrupt Mask
+/* This defines the bits that are set in the Interrupt Mask
* Set/Read Register. Each bit is documented below:
* o RXT0 = Receiver Timer Interrupt (ring 0)
* o TXDW = Transmit Descriptor Written Back
#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */
#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
-/* Receive Address */
-/*
+/* Receive Address
* Number of high/low register pairs in the RAR. The RAR (Receive Address
* Registers) holds the directed and multicast addresses that we monitor.
* Technically, we have 16 spots. However, we reserve one of these spots
#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
#define MAX_PHY_MULTI_PAGE_REG 0xF
-/* Bit definitions for valid PHY IDs. */
-/*
+/* Bit definitions for valid PHY IDs.
* I = Integrated
* E = External
*/
#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
-/*
- * 0 = <50M
+/* 0 = <50M
* 1 = 50-80M
* 2 = 80-110M
* 3 = 110-140M
* within 1ms in 1000BASE-T
*/
#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000
-/*
- * Number of times we will attempt to autonegotiate before downshifting if we
+/* Number of times we will attempt to autonegotiate before downshifting if we
* are the master
*/
#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400
#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800
#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00
-/*
- * Number of times we will attempt to autonegotiate before downshifting if we
+/* Number of times we will attempt to autonegotiate before downshifting if we
* are the slave
*/
#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
/* I347AT4 Extended PHY Specific Control Register */
-/*
- * Number of times we will attempt to autonegotiate before downshifting if we
+/* Number of times we will attempt to autonegotiate before downshifting if we
* are the master
*/
#define I347AT4_PSCR_DOWNSHIFT_ENABLE 0x0800
/* BME1000 PHY Specific Control Register */
#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */
-/*
- * Bits...
+/* Bits...
* 15-5: page
* 4-0: register offset
*/
#define E1000_PROXYFC_ARP_DIRECTED 0x00000020 /* Directed ARP Proxy Ena */
#define E1000_PROXYFC_IPV4 0x00000040 /* Directed IPv4 Enable */
#define E1000_PROXYFC_IPV6 0x00000080 /* Directed IPv6 Enable */
-#define E1000_PROXYFC_NS 0x00000200 /* IPv4 NBRHD Solicitation */
+#define E1000_PROXYFC_NS 0x00000200 /* IPv6 Neighbor Solicitation */
#define E1000_PROXYFC_ARP 0x00000800 /* ARP Request Proxy Ena */
/* Proxy Status */
#define E1000_PROXYS_CLEAR 0xFFFFFFFF /* Clear */
#define E1000_DEV_ID_ICH10_D_BM_LM 0x10DE
#define E1000_DEV_ID_ICH10_D_BM_LF 0x10DF
#define E1000_DEV_ID_ICH10_D_BM_V 0x1525
-
#define E1000_DEV_ID_PCH_M_HV_LM 0x10EA
#define E1000_DEV_ID_PCH_M_HV_LC 0x10EB
#define E1000_DEV_ID_PCH_D_HV_DM 0x10EF
#define E1000_DEV_ID_DH89XXCC_SERDES 0x043A
#define E1000_DEV_ID_DH89XXCC_BACKPLANE 0x043C
#define E1000_DEV_ID_DH89XXCC_SFP 0x0440
+
#define E1000_REVISION_0 0
#define E1000_REVISION_1 1
#define E1000_REVISION_2 2
#include "e1000_manage.h"
#include "e1000_mbx.h"
+/* Function pointers for the MAC. */
struct e1000_mac_operations {
- /* Function pointers for the MAC. */
s32 (*init_params)(struct e1000_hw *);
s32 (*id_led_init)(struct e1000_hw *);
s32 (*blink_led)(struct e1000_hw *);
+ bool (*check_mng_mode)(struct e1000_hw *);
s32 (*check_for_link)(struct e1000_hw *);
- bool (*check_mng_mode)(struct e1000_hw *hw);
s32 (*cleanup_led)(struct e1000_hw *);
void (*clear_hw_cntrs)(struct e1000_hw *);
void (*clear_vfta)(struct e1000_hw *);
void (*release_swfw_sync)(struct e1000_hw *, u16);
};
-/*
- * When to use various PHY register access functions:
+/* When to use various PHY register access functions:
*
* Func Caller
* Function Does Does When to use
s32 (*write_i2c_byte)(struct e1000_hw *, u8, u8, u8);
};
+/* Function pointers for the NVM. */
struct e1000_nvm_operations {
s32 (*init_params)(struct e1000_hw *);
s32 (*acquire)(struct e1000_hw *);
bool modified;
};
-#define E1000_SHADOW_RAM_WORDS 2048
+#define E1000_SHADOW_RAM_WORDS 2048
struct e1000_dev_spec_ich8lan {
bool kmrn_lock_loss_workaround_enabled;
#include "e1000_api.h"
-STATIC s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw);
-STATIC s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw);
STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
STATIC s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
STATIC s32 e1000_led_off_pchlan(struct e1000_hw *hw);
STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
-static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout);
-static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
STATIC s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
u32 offset, u16 *data);
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
u32 offset, u8 byte);
-STATIC s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw,
- u32 offset, u8 data);
-static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 size, u16 data);
STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
-STATIC void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
STATIC s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_init_phy_params_pchlan");
break;
/* fall-through */
case e1000_pch2lan:
- /*
- * In case the PHY needs to be in mdio slow mode,
+ case e1000_pch_lpt:
+ /* In case the PHY needs to be in mdio slow mode,
* set slow mode and try to get the PHY id again.
*/
ret_val = e1000_set_mdio_slow_mode_hv(hw);
/* find total size of the NVM, then cut in half since the total
* size represents two separate NVM banks.
*/
- nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
- << FLASH_SECTOR_ADDR_SHIFT;
+ nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
+ << FLASH_SECTOR_ADDR_SHIFT);
nvm->flash_bank_size /= 2;
/* Adjust to word count */
nvm->flash_bank_size /= sizeof(u16);
STATIC s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
u16 *data, bool read)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("__e1000_access_emi_reg_locked");
fwsm = E1000_READ_REG(hw, E1000_FWSM);
- return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
- ((fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
+ return ((fwsm & E1000_ICH_FWSM_FW_VALID) &&
+ ((fwsm & E1000_FWSM_MODE_MASK) ==
+ (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)));
}
/**
u32 strap = E1000_READ_REG(hw, E1000_STRAP);
u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
E1000_STRAP_SMT_FREQ_SHIFT;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
if (ret_val)
goto release;
- status_reg &= BM_CS_STATUS_LINK_UP |
- BM_CS_STATUS_RESOLVED |
- BM_CS_STATUS_SPEED_MASK;
+ status_reg &= (BM_CS_STATUS_LINK_UP |
+ BM_CS_STATUS_RESOLVED |
+ BM_CS_STATUS_SPEED_MASK);
if (status_reg == (BM_CS_STATUS_LINK_UP |
BM_CS_STATUS_RESOLVED |
if (ret_val)
goto release;
- status_reg &= HV_M_STATUS_LINK_UP |
- HV_M_STATUS_AUTONEG_COMPLETE |
- HV_M_STATUS_SPEED_MASK;
+ status_reg &= (HV_M_STATUS_LINK_UP |
+ HV_M_STATUS_AUTONEG_COMPLETE |
+ HV_M_STATUS_SPEED_MASK);
if (status_reg == (HV_M_STATUS_LINK_UP |
HV_M_STATUS_AUTONEG_COMPLETE |
**/
s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u32 ctrl_reg = 0;
u32 ctrl_ext = 0;
u32 reg = 0;
**/
STATIC s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 oem_reg;
DEBUGFUNC("e1000_set_lplu_state_pchlan");
DEBUGFUNC("e1000_read_flash_data_ich8lan");
- if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
+ if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
return -E1000_ERR_NVM;
- flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
- hw->nvm.flash_base_addr;
+ flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+ hw->nvm.flash_base_addr);
do {
usec_delay(1);
E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
- ret_val = e1000_flash_cycle_ich8lan(hw,
- ICH_FLASH_READ_COMMAND_TIMEOUT);
+ ret_val =
+ e1000_flash_cycle_ich8lan(hw,
+ ICH_FLASH_READ_COMMAND_TIMEOUT);
/* Check if FCERR is set to 1, if set to 1, clear it
* and try the whole sequence a few more times, else
offset > ICH_FLASH_LINEAR_ADDR_MASK)
return -E1000_ERR_NVM;
- flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
- hw->nvm.flash_base_addr;
+ flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+ hw->nvm.flash_base_addr);
do {
usec_delay(1);
/* check if FCERR is set to 1 , if set to 1, clear it
* and try the whole sequence a few more times else done
*/
- ret_val = e1000_flash_cycle_ich8lan(hw,
- ICH_FLASH_WRITE_COMMAND_TIMEOUT);
+ ret_val =
+ e1000_flash_cycle_ich8lan(hw,
+ ICH_FLASH_WRITE_COMMAND_TIMEOUT);
if (ret_val == E1000_SUCCESS)
break;
flash_linear_addr = hw->nvm.flash_base_addr;
flash_linear_addr += (bank) ? flash_bank_size : 0;
- for (j = 0; j < iteration ; j++) {
+ for (j = 0; j < iteration; j++) {
do {
+ u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
+
/* Steps */
ret_val = e1000_flash_cycle_init_ich8lan(hw);
if (ret_val)
E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
flash_linear_addr);
- ret_val = e1000_flash_cycle_ich8lan(hw,
- ICH_FLASH_ERASE_COMMAND_TIMEOUT);
+ ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
if (ret_val == E1000_SUCCESS)
break;
/* Initialize identification LED */
ret_val = mac->ops.id_led_init(hw);
+ /* An error is not fatal and we should not stop init due to this */
if (ret_val)
DEBUGOUT("Error initializing identification LED\n");
- /* This is not fatal and we should not stop init due to this */
/* Setup the receive address. */
e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
/* Set the transmit descriptor write-back policy for both queues */
txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
- txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB;
- txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
- E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+ txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB);
+ txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
+ E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
- txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB;
- txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
- E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+ txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB);
+ txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
+ E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
/* ICH8 has opposite polarity of no_snoop bits.
phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
+
if (hw->phy.type == e1000_phy_i217) {
u16 phy_reg;
*/
if (!(E1000_READ_REG(hw, E1000_FWSM) &
E1000_ICH_FWSM_FW_VALID)) {
-
/* Enable proxy to reset only on power good. */
hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
&phy_reg);
#define ICH_FLASH_REG_MAPSIZE 0x00A0
-#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
+#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
#define E1000_ICH_FWSM_DISSW 0x10000000 /* FW Disables SW Writes */
/* FW established a valid mode */
-#define E1000_ICH_FWSM_FW_VALID 0x00008000
-#define E1000_ICH_FWSM_PCIM2PCI 0x01000000 /* ME PCIm-to-PCI active */
+#define E1000_ICH_FWSM_FW_VALID 0x00008000
+#define E1000_ICH_FWSM_PCIM2PCI 0x01000000 /* ME PCIm-to-PCI active */
#define E1000_ICH_FWSM_PCIM2PCI_COUNT 2000
#define E1000_ICH_MNG_IAMT_MODE 0x2
#define E1000_FEXT_PHY_CABLE_DISCONNECTED 0x00000004
#define E1000_FEXTNVM_SW_CONFIG 1
-#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M */
+#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* different on ICH8M */
#define E1000_FEXTNVM3 0x0003C /* Future Extended NVM 3 - RW */
#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK 0x0C000000
#define PHY_PAGE_SHIFT 5
#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
((reg) & MAX_PHY_REG_ADDRESS))
-#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
-#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
+#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
+#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
#define IGP3_CAPABILITY PHY_REG(776, 19) /* Capability */
#define IGP3_PM_CTRL PHY_REG(769, 20) /* Power Management Control */
#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
#define HV_STATS_PAGE 778
-#define HV_SCC_UPPER PHY_REG(HV_STATS_PAGE, 16) /* Single Collision Count */
+/* Half-duplex collision counts */
+#define HV_SCC_UPPER PHY_REG(HV_STATS_PAGE, 16) /* Single Collision */
#define HV_SCC_LOWER PHY_REG(HV_STATS_PAGE, 17)
-#define HV_ECOL_UPPER PHY_REG(HV_STATS_PAGE, 18) /* Excessive Coll. Count */
+#define HV_ECOL_UPPER PHY_REG(HV_STATS_PAGE, 18) /* Excessive Coll. */
#define HV_ECOL_LOWER PHY_REG(HV_STATS_PAGE, 19)
-#define HV_MCC_UPPER PHY_REG(HV_STATS_PAGE, 20) /* Multiple Coll. Count */
+#define HV_MCC_UPPER PHY_REG(HV_STATS_PAGE, 20) /* Multiple Collision */
#define HV_MCC_LOWER PHY_REG(HV_STATS_PAGE, 21)
-#define HV_LATECOL_UPPER PHY_REG(HV_STATS_PAGE, 23) /* Late Collision Count */
+#define HV_LATECOL_UPPER PHY_REG(HV_STATS_PAGE, 23) /* Late Collision */
#define HV_LATECOL_LOWER PHY_REG(HV_STATS_PAGE, 24)
-#define HV_COLC_UPPER PHY_REG(HV_STATS_PAGE, 25) /* Collision Count */
+#define HV_COLC_UPPER PHY_REG(HV_STATS_PAGE, 25) /* Collision */
#define HV_COLC_LOWER PHY_REG(HV_STATS_PAGE, 26)
#define HV_DC_UPPER PHY_REG(HV_STATS_PAGE, 27) /* Defer Count */
#define HV_DC_LOWER PHY_REG(HV_STATS_PAGE, 28)
-#define HV_TNCRS_UPPER PHY_REG(HV_STATS_PAGE, 29) /* Transmit with no CRS */
+#define HV_TNCRS_UPPER PHY_REG(HV_STATS_PAGE, 29) /* Tx with no CRS */
#define HV_TNCRS_LOWER PHY_REG(HV_STATS_PAGE, 30)
#define E1000_FCRTV_PCH 0x05F40 /* PCH Flow Control Refresh Timer Value */
#define I82579_EEE_CAPABILITY 0x0410 /* IEEE MMD Register 3.20 */
#define I82579_EEE_ADVERTISEMENT 0x040E /* IEEE MMD Register 7.60 */
#define I82579_EEE_LP_ABILITY 0x040F /* IEEE MMD Register 7.61 */
-#define I82579_EEE_100_SUPPORTED (1 << 1) /* 100BaseTx EEE supported */
-#define I82579_EEE_1000_SUPPORTED (1 << 2) /* 1000BaseTx EEE supported */
+#define I82579_EEE_100_SUPPORTED (1 << 1) /* 100BaseTx EEE */
+#define I82579_EEE_1000_SUPPORTED (1 << 2) /* 1000BaseTx EEE */
#define I217_EEE_PCS_STATUS 0x9401 /* IEEE MMD Register 3.1 */
#define I217_EEE_CAPABILITY 0x8000 /* IEEE MMD Register 3.20 */
#define I217_EEE_ADVERTISEMENT 0x8001 /* IEEE MMD Register 7.60 */
s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
{
u32 i;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 offset, nvm_alt_mac_addr_offset, nvm_data;
u8 alt_mac_addr[ETH_ADDR_LEN];
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
- if ((hw->phy.media_type == e1000_media_type_internal_serdes)
- && mac->autoneg) {
- /*
- * Read the PCS_LSTS and check to see if AutoNeg
+ if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
+ mac->autoneg) {
+ /* Read the PCS_LSTS and check to see if AutoNeg
* has completed.
*/
pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT);
#ifndef _E1000_MAC_H_
#define _E1000_MAC_H_
-/*
- * Functions that should not be called directly from drivers but can be used
- * by other files in this 'shared code'
- */
void e1000_init_mac_ops_generic(struct e1000_hw *hw);
void e1000_null_mac_generic(struct e1000_hw *hw);
s32 e1000_null_ops_generic(struct e1000_hw *hw);
return true;
} else if ((manc & E1000_MANC_SMBUS_EN) &&
!(manc & E1000_MANC_ASF_EN)) {
- return true;
+ return true;
}
return false;
#include "e1000_api.h"
-static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
u16 *data, bool read, bool page_set);
STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page);
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
if (!ret_val)
- phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
+ phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal);
return ret_val;
}
ret_val = phy->ops.read_reg(hw, offset, &data);
if (!ret_val)
- phy->cable_polarity = (data & mask)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
+ phy->cable_polarity = ((data & mask)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal);
return ret_val;
}
ret_val = phy->ops.read_reg(hw, offset, &phy_data);
if (!ret_val)
- phy->cable_polarity = (phy_data & mask)
+ phy->cable_polarity = ((phy_data & mask)
? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
+ : e1000_rev_polarity_normal);
return ret_val;
}
if (ret_val)
return ret_val;
- index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+ index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT);
if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
return -E1000_ERR_PHY;
* that can be put into the lookup table to obtain the
* approximate cable length.
*/
- cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
- IGP02E1000_AGC_LENGTH_MASK;
+ cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
+ IGP02E1000_AGC_LENGTH_MASK);
/* Array index bound check. */
if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
/* Calculate cable length with the error range of +/- 10 meters. */
- phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
- (agc_value - IGP02E1000_AGC_RANGE) : 0;
+ phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
+ (agc_value - IGP02E1000_AGC_RANGE) : 0);
phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
return ret_val;
} else {
/* Polarity is forced */
- phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
+ phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal);
}
ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
hw->phy.addr = 1;
if (offset > MAX_PHY_MULTI_PAGE_REG) {
-
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
page);
**/
s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_disable_phy_wakeup_reg_access_bm");
u16 *data, bool read)
{
s32 ret_val;
- u32 addr_reg = 0;
- u32 data_reg = 0;
+ u32 addr_reg;
+ u32 data_reg;
DEBUGFUNC("e1000_access_phy_debug_regs_hv");
/* This takes care of the difference with desktop vs mobile phy */
- addr_reg = (hw->phy.type == e1000_phy_82578) ?
- I82578_ADDR_REG : I82577_ADDR_REG;
+ addr_reg = ((hw->phy.type == e1000_phy_82578) ?
+ I82578_ADDR_REG : I82577_ADDR_REG);
data_reg = addr_reg + 1;
/* All operations in this function are phy address 2 */
if (ret_val)
return ret_val;
- data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
- BM_CS_STATUS_SPEED_MASK;
+ data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
+ BM_CS_STATUS_SPEED_MASK);
if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
BM_CS_STATUS_SPEED_1000))
/* flush the packets in the fifo buffer */
ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
- HV_MUX_DATA_CTRL_GEN_TO_MAC |
- HV_MUX_DATA_CTRL_FORCE_SPEED);
+ (HV_MUX_DATA_CTRL_GEN_TO_MAC |
+ HV_MUX_DATA_CTRL_FORCE_SPEED));
if (ret_val)
return ret_val;
ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
if (!ret_val)
- phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
+ phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal);
return ret_val;
}
if (ret_val)
return ret_val;
- length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
- I82577_DSTATUS_CABLE_LENGTH_SHIFT;
+ length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
+ I82577_DSTATUS_CABLE_LENGTH_SHIFT);
if (length == E1000_CABLE_LENGTH_UNDEFINED)
ret_val = -E1000_ERR_PHY;
#define I82577_ADDR_REG 16
#define I82577_CFG_REG 22
#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
-#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
+#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift */
#define I82577_CTRL_REG 23
/* 82577 specific PHY registers */
#define IGP02E1000_PHY_AGC_C 0x14B1
#define IGP02E1000_PHY_AGC_D 0x18B1
-#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */
+#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course=15:13, Fine=12:9 */
#define IGP02E1000_AGC_LENGTH_MASK 0x7F
#define IGP02E1000_AGC_RANGE 15
#define E1000_KMRNCTRLSTA_K0_100_EN 0x2000 /* ena K0s mode for 10/100 lnk */
#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10
-#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */
-#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */
+#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Ctrl */
+#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Ctrl */
#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */
/* IFE PHY Extended Status Control */
#define E1000_IVAR 0x000E4 /* Interrupt Vector Allocation Register - RW */
#define E1000_SVCR 0x000F0
#define E1000_SVT 0x000F4
-#define E1000_LPIC 0x000FC /* Low Power IDLE control */
+#define E1000_LPIC 0x000FC /* Low Power IDLE control */
#define E1000_RCTL 0x00100 /* Rx Control - RW */
#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */
/* Queues packet buffer size masks where _n can be 0-3 and _s 0-63 [kB] */
#define E1000_I210_TXPBS_SIZE(_n, _s) ((_s) << (6 * _n))
-/*
- * Convenience macros
+/* Convenience macros
*
* Note: "_n" is the queue number of the register to be written to.
*
#define E1000_LSECTXKEY1(_n) (0x0B030 + (0x04 * (_n)))
#define E1000_LSECRXSA(_n) (0x0B310 + (0x04 * (_n))) /* Rx SAs - RW */
#define E1000_LSECRXPN(_n) (0x0B330 + (0x04 * (_n))) /* Rx SAs - RW */
-/*
- * LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit
+/* LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit
* key - RW.
*/
#define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m)))