static void *next_baseaddr;
static uint64_t system_page_sz;
+#ifdef RTE_ARCH_64
+/*
+ * Linux kernel uses a really high address as starting address for serving
+ * mmaps calls. If there exists addressing limitations and IOVA mode is VA,
+ * this starting address is likely too high for those devices. However, it
+ * is possible to use a lower address in the process virtual address space
+ * as with 64 bits there is a lot of available space.
+ *
+ * Current known limitations are 39 or 40 bits. Setting the starting address
+ * at 4GB implies there are 508GB or 1020GB for mapping the available
+ * hugepages. This is likely enough for most systems, although a device with
+ * addressing limitations should call rte_eal_check_dma_mask for ensuring all
+ * memory is within supported range.
+ */
+static uint64_t baseaddr = 0x100000000;
+#endif
+
void *
eal_get_virtual_area(void *requested_addr, size_t *size,
size_t page_sz, int flags, int mmap_flags)
rte_eal_process_type() == RTE_PROC_PRIMARY)
next_baseaddr = (void *) internal_config.base_virtaddr;
+#ifdef RTE_ARCH_64
+ if (next_baseaddr == NULL && internal_config.base_virtaddr == 0 &&
+ rte_eal_process_type() == RTE_PROC_PRIMARY)
+ next_baseaddr = (void *) baseaddr;
+#endif
if (requested_addr == NULL && next_baseaddr != NULL) {
requested_addr = next_baseaddr;
requested_addr = RTE_PTR_ALIGN(requested_addr, page_sz);
mmap_flags, -1, 0);
if (mapped_addr == MAP_FAILED && allow_shrink)
*size -= page_sz;
- } while (allow_shrink && mapped_addr == MAP_FAILED && *size > 0);
+
+ if (mapped_addr != MAP_FAILED && addr_is_hint &&
+ mapped_addr != requested_addr) {
+ /* hint was not used. Try with another offset */
+ munmap(mapped_addr, map_sz);
+ mapped_addr = MAP_FAILED;
+ next_baseaddr = RTE_PTR_ADD(next_baseaddr, page_sz);
+ requested_addr = next_baseaddr;
+ }
+ } while ((allow_shrink || addr_is_hint) &&
+ mapped_addr == MAP_FAILED && *size > 0);
/* align resulting address - if map failed, we will ignore the value
* anyway, so no need to add additional checks.