static uint16_t avp_recv_pkts(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
+
+static uint16_t avp_xmit_scattered_pkts(void *tx_queue,
+ struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts);
+
+static uint16_t avp_xmit_pkts(void *tx_queue,
+ struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts);
+
static void avp_dev_rx_queue_release(void *rxq);
static void avp_dev_tx_queue_release(void *txq);
+
+
#define AVP_DEV_TO_PCI(eth_dev) RTE_DEV_TO_PCI((eth_dev)->device)
#define AVP_MAX_RX_BURST 64
+#define AVP_MAX_TX_BURST 64
#define AVP_MAX_MAC_ADDRS 1
#define AVP_MIN_RX_BUFSIZE ETHER_MIN_LEN
pci_dev = AVP_DEV_TO_PCI(eth_dev);
eth_dev->dev_ops = &avp_eth_dev_ops;
eth_dev->rx_pkt_burst = &avp_recv_pkts;
+ eth_dev->tx_pkt_burst = &avp_xmit_pkts;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
/*
if (eth_dev->data->scattered_rx) {
PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
+ eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
}
return 0;
}
PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
eth_dev->data->scattered_rx = 1;
eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
+ eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
}
}
return count;
}
+/*
+ * Copy a chained mbuf to a set of host buffers. This function assumes that
+ * there are sufficient destination buffers to contain the entire source
+ * packet.
+ */
+static inline uint16_t
+avp_dev_copy_to_buffers(struct avp_dev *avp,
+ struct rte_mbuf *mbuf,
+ struct rte_avp_desc **buffers,
+ unsigned int count)
+{
+ struct rte_avp_desc *previous_buf = NULL;
+ struct rte_avp_desc *first_buf = NULL;
+ struct rte_avp_desc *pkt_buf;
+ struct rte_avp_desc *buf;
+ size_t total_length;
+ struct rte_mbuf *m;
+ size_t copy_length;
+ size_t src_offset;
+ char *pkt_data;
+ unsigned int i;
+
+ __rte_mbuf_sanity_check(mbuf, 1);
+
+ m = mbuf;
+ src_offset = 0;
+ total_length = rte_pktmbuf_pkt_len(m);
+ for (i = 0; (i < count) && (m != NULL); i++) {
+ /* fill each destination buffer */
+ buf = buffers[i];
+
+ if (i < count - 1) {
+ /* prefetch next entry while processing this one */
+ pkt_buf = avp_dev_translate_buffer(avp, buffers[i + 1]);
+ rte_prefetch0(pkt_buf);
+ }
+
+ /* Adjust pointers for guest addressing */
+ pkt_buf = avp_dev_translate_buffer(avp, buf);
+ pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
+
+ /* setup the buffer chain */
+ if (previous_buf != NULL)
+ previous_buf->next = buf;
+ else
+ first_buf = pkt_buf;
+
+ previous_buf = pkt_buf;
+
+ do {
+ /*
+ * copy as many source mbuf segments as will fit in the
+ * destination buffer.
+ */
+ copy_length = RTE_MIN((avp->host_mbuf_size -
+ pkt_buf->data_len),
+ (rte_pktmbuf_data_len(m) -
+ src_offset));
+ rte_memcpy(RTE_PTR_ADD(pkt_data, pkt_buf->data_len),
+ RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
+ src_offset),
+ copy_length);
+ pkt_buf->data_len += copy_length;
+ src_offset += copy_length;
+
+ if (likely(src_offset == rte_pktmbuf_data_len(m))) {
+ /* need a new source buffer */
+ m = m->next;
+ src_offset = 0;
+ }
+
+ if (unlikely(pkt_buf->data_len ==
+ avp->host_mbuf_size)) {
+ /* need a new destination buffer */
+ break;
+ }
+
+ } while (m != NULL);
+ }
+
+ first_buf->nb_segs = count;
+ first_buf->pkt_len = total_length;
+
+ if (mbuf->ol_flags & PKT_TX_VLAN_PKT) {
+ first_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
+ first_buf->vlan_tci = mbuf->vlan_tci;
+ }
+
+ avp_dev_buffer_sanity_check(avp, buffers[0]);
+
+ return total_length;
+}
+
+
+static uint16_t
+avp_xmit_scattered_pkts(void *tx_queue,
+ struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ struct rte_avp_desc *avp_bufs[(AVP_MAX_TX_BURST *
+ RTE_AVP_MAX_MBUF_SEGMENTS)];
+ struct avp_queue *txq = (struct avp_queue *)tx_queue;
+ struct rte_avp_desc *tx_bufs[AVP_MAX_TX_BURST];
+ struct avp_dev *avp = txq->avp;
+ struct rte_avp_fifo *alloc_q;
+ struct rte_avp_fifo *tx_q;
+ unsigned int count, avail, n;
+ unsigned int orig_nb_pkts;
+ struct rte_mbuf *m;
+ unsigned int required;
+ unsigned int segments;
+ unsigned int tx_bytes;
+ unsigned int i;
+
+ orig_nb_pkts = nb_pkts;
+ tx_q = avp->tx_q[txq->queue_id];
+ alloc_q = avp->alloc_q[txq->queue_id];
+
+ /* limit the number of transmitted packets to the max burst size */
+ if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
+ nb_pkts = AVP_MAX_TX_BURST;
+
+ /* determine how many buffers are available to copy into */
+ avail = avp_fifo_count(alloc_q);
+ if (unlikely(avail > (AVP_MAX_TX_BURST *
+ RTE_AVP_MAX_MBUF_SEGMENTS)))
+ avail = AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS;
+
+ /* determine how many slots are available in the transmit queue */
+ count = avp_fifo_free_count(tx_q);
+
+ /* determine how many packets can be sent */
+ nb_pkts = RTE_MIN(count, nb_pkts);
+
+ /* determine how many packets will fit in the available buffers */
+ count = 0;
+ segments = 0;
+ for (i = 0; i < nb_pkts; i++) {
+ m = tx_pkts[i];
+ if (likely(i < (unsigned int)nb_pkts - 1)) {
+ /* prefetch next entry while processing this one */
+ rte_prefetch0(tx_pkts[i + 1]);
+ }
+ required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
+ avp->host_mbuf_size;
+
+ if (unlikely((required == 0) ||
+ (required > RTE_AVP_MAX_MBUF_SEGMENTS)))
+ break;
+ else if (unlikely(required + segments > avail))
+ break;
+ segments += required;
+ count++;
+ }
+ nb_pkts = count;
+
+ if (unlikely(nb_pkts == 0)) {
+ /* no available buffers, or no space on the tx queue */
+ txq->errors += orig_nb_pkts;
+ return 0;
+ }
+
+ PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
+ nb_pkts, tx_q);
+
+ /* retrieve sufficient send buffers */
+ n = avp_fifo_get(alloc_q, (void **)&avp_bufs, segments);
+ if (unlikely(n != segments)) {
+ PMD_TX_LOG(DEBUG, "Failed to allocate buffers "
+ "n=%u, segments=%u, orig=%u\n",
+ n, segments, orig_nb_pkts);
+ txq->errors += orig_nb_pkts;
+ return 0;
+ }
+
+ tx_bytes = 0;
+ count = 0;
+ for (i = 0; i < nb_pkts; i++) {
+ /* process each packet to be transmitted */
+ m = tx_pkts[i];
+
+ /* determine how many buffers are required for this packet */
+ required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
+ avp->host_mbuf_size;
+
+ tx_bytes += avp_dev_copy_to_buffers(avp, m,
+ &avp_bufs[count], required);
+ tx_bufs[i] = avp_bufs[count];
+ count += required;
+
+ /* free the original mbuf */
+ rte_pktmbuf_free(m);
+ }
+
+ txq->packets += nb_pkts;
+ txq->bytes += tx_bytes;
+
+#ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
+ for (i = 0; i < nb_pkts; i++)
+ avp_dev_buffer_sanity_check(avp, tx_bufs[i]);
+#endif
+
+ /* send the packets */
+ n = avp_fifo_put(tx_q, (void **)&tx_bufs[0], nb_pkts);
+ if (unlikely(n != orig_nb_pkts))
+ txq->errors += (orig_nb_pkts - n);
+
+ return n;
+}
+
+
+static uint16_t
+avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
+{
+ struct avp_queue *txq = (struct avp_queue *)tx_queue;
+ struct rte_avp_desc *avp_bufs[AVP_MAX_TX_BURST];
+ struct avp_dev *avp = txq->avp;
+ struct rte_avp_desc *pkt_buf;
+ struct rte_avp_fifo *alloc_q;
+ struct rte_avp_fifo *tx_q;
+ unsigned int count, avail, n;
+ struct rte_mbuf *m;
+ unsigned int pkt_len;
+ unsigned int tx_bytes;
+ char *pkt_data;
+ unsigned int i;
+
+ tx_q = avp->tx_q[txq->queue_id];
+ alloc_q = avp->alloc_q[txq->queue_id];
+
+ /* limit the number of transmitted packets to the max burst size */
+ if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
+ nb_pkts = AVP_MAX_TX_BURST;
+
+ /* determine how many buffers are available to copy into */
+ avail = avp_fifo_count(alloc_q);
+
+ /* determine how many slots are available in the transmit queue */
+ count = avp_fifo_free_count(tx_q);
+
+ /* determine how many packets can be sent */
+ count = RTE_MIN(count, avail);
+ count = RTE_MIN(count, nb_pkts);
+
+ if (unlikely(count == 0)) {
+ /* no available buffers, or no space on the tx queue */
+ txq->errors += nb_pkts;
+ return 0;
+ }
+
+ PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
+ count, tx_q);
+
+ /* retrieve sufficient send buffers */
+ n = avp_fifo_get(alloc_q, (void **)&avp_bufs, count);
+ if (unlikely(n != count)) {
+ txq->errors++;
+ return 0;
+ }
+
+ tx_bytes = 0;
+ for (i = 0; i < count; i++) {
+ /* prefetch next entry while processing the current one */
+ if (i < count - 1) {
+ pkt_buf = avp_dev_translate_buffer(avp,
+ avp_bufs[i + 1]);
+ rte_prefetch0(pkt_buf);
+ }
+
+ /* process each packet to be transmitted */
+ m = tx_pkts[i];
+
+ /* Adjust pointers for guest addressing */
+ pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
+ pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
+ pkt_len = rte_pktmbuf_pkt_len(m);
+
+ if (unlikely((pkt_len > avp->guest_mbuf_size) ||
+ (pkt_len > avp->host_mbuf_size))) {
+ /*
+ * application should be using the scattered transmit
+ * function; send it truncated to avoid the performance
+ * hit of having to manage returning the already
+ * allocated buffer to the free list. This should not
+ * happen since the application should have set the
+ * max_rx_pkt_len based on its MTU and it should be
+ * policing its own packet sizes.
+ */
+ txq->errors++;
+ pkt_len = RTE_MIN(avp->guest_mbuf_size,
+ avp->host_mbuf_size);
+ }
+
+ /* copy data out of our mbuf and into the AVP buffer */
+ rte_memcpy(pkt_data, rte_pktmbuf_mtod(m, void *), pkt_len);
+ pkt_buf->pkt_len = pkt_len;
+ pkt_buf->data_len = pkt_len;
+ pkt_buf->nb_segs = 1;
+ pkt_buf->next = NULL;
+
+ if (m->ol_flags & PKT_TX_VLAN_PKT) {
+ pkt_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
+ pkt_buf->vlan_tci = m->vlan_tci;
+ }
+
+ tx_bytes += pkt_len;
+
+ /* free the original mbuf */
+ rte_pktmbuf_free(m);
+ }
+
+ txq->packets += count;
+ txq->bytes += tx_bytes;
+
+ /* send the packets */
+ n = avp_fifo_put(tx_q, (void **)&avp_bufs[0], count);
+
+ return n;
+}
+
static void
avp_dev_rx_queue_release(void *rx_queue)
{