--- /dev/null
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2020 Intel Corporation
+ */
+
+#include "iavf_rxtx_vec_common.h"
+
+#include <x86intrin.h>
+
+#ifndef __INTEL_COMPILER
+#pragma GCC diagnostic ignored "-Wcast-qual"
+#endif
+
+#define IAVF_DESCS_PER_LOOP_AVX 8
+#define PKTLEN_SHIFT 10
+
+static inline void
+iavf_rxq_rearm(struct iavf_rx_queue *rxq)
+{
+ int i;
+ uint16_t rx_id;
+ volatile union iavf_rx_desc *rxdp;
+ struct rte_mempool_cache *cache =
+ rte_mempool_default_cache(rxq->mp, rte_lcore_id());
+ struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
+
+ rxdp = rxq->rx_ring + rxq->rxrearm_start;
+
+ /* We need to pull 'n' more MBUFs into the software ring from mempool
+ * We inline the mempool function here, so we can vectorize the copy
+ * from the cache into the shadow ring.
+ */
+
+ /* Can this be satisfied from the cache? */
+ if (cache->len < IAVF_RXQ_REARM_THRESH) {
+ /* No. Backfill the cache first, and then fill from it */
+ uint32_t req = IAVF_RXQ_REARM_THRESH + (cache->size -
+ cache->len);
+
+ /* How many do we require i.e. number to fill the cache + the request */
+ int ret = rte_mempool_ops_dequeue_bulk
+ (rxq->mp, &cache->objs[cache->len], req);
+ if (ret == 0) {
+ cache->len += req;
+ } else {
+ if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
+ rxq->nb_rx_desc) {
+ __m128i dma_addr0;
+
+ dma_addr0 = _mm_setzero_si128();
+ for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
+ rxp[i] = &rxq->fake_mbuf;
+ _mm_storeu_si128((__m128i *)&rxdp[i].read,
+ dma_addr0);
+ }
+ }
+ rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
+ IAVF_RXQ_REARM_THRESH;
+ return;
+ }
+ }
+
+ const __m512i iova_offsets = _mm512_set1_epi64(offsetof
+ (struct rte_mbuf, buf_iova));
+ const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
+
+#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
+ /* to shuffle the addresses to correct slots. Values 4-7 will contain
+ * zeros, so use 7 for a zero-value.
+ */
+ const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
+#else
+ const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
+#endif
+
+ /* Initialize the mbufs in vector, process 8 mbufs in one loop, taking
+ * from mempool cache and populating both shadow and HW rings
+ */
+ for (i = 0; i < IAVF_RXQ_REARM_THRESH / IAVF_DESCS_PER_LOOP_AVX; i++) {
+ const __m512i mbuf_ptrs = _mm512_loadu_si512
+ (&cache->objs[cache->len - IAVF_DESCS_PER_LOOP_AVX]);
+ _mm512_storeu_si512(rxp, mbuf_ptrs);
+
+ const __m512i iova_base_addrs = _mm512_i64gather_epi64
+ (_mm512_add_epi64(mbuf_ptrs, iova_offsets),
+ 0, /* base */
+ 1 /* scale */);
+ const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
+ headroom);
+#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
+ const __m512i iovas0 = _mm512_castsi256_si512
+ (_mm512_extracti64x4_epi64(iova_addrs, 0));
+ const __m512i iovas1 = _mm512_castsi256_si512
+ (_mm512_extracti64x4_epi64(iova_addrs, 1));
+
+ /* permute leaves desc 2-3 addresses in header address slots 0-1
+ * but these are ignored by driver since header split not
+ * enabled. Similarly for desc 6 & 7.
+ */
+ const __m512i desc0_1 = _mm512_permutexvar_epi64
+ (permute_idx,
+ iovas0);
+ const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
+
+ const __m512i desc4_5 = _mm512_permutexvar_epi64
+ (permute_idx,
+ iovas1);
+ const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
+
+ _mm512_storeu_si512((void *)rxdp, desc0_1);
+ _mm512_storeu_si512((void *)(rxdp + 2), desc2_3);
+ _mm512_storeu_si512((void *)(rxdp + 4), desc4_5);
+ _mm512_storeu_si512((void *)(rxdp + 6), desc6_7);
+#else
+ /* permute leaves desc 4-7 addresses in header address slots 0-3
+ * but these are ignored by driver since header split not
+ * enabled.
+ */
+ const __m512i desc0_3 = _mm512_permutexvar_epi64(permute_idx,
+ iova_addrs);
+ const __m512i desc4_7 = _mm512_bsrli_epi128(desc0_3, 8);
+
+ _mm512_storeu_si512((void *)rxdp, desc0_3);
+ _mm512_storeu_si512((void *)(rxdp + 4), desc4_7);
+#endif
+ rxp += IAVF_DESCS_PER_LOOP_AVX;
+ rxdp += IAVF_DESCS_PER_LOOP_AVX;
+ cache->len -= IAVF_DESCS_PER_LOOP_AVX;
+ }
+
+ rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
+ if (rxq->rxrearm_start >= rxq->nb_rx_desc)
+ rxq->rxrearm_start = 0;
+
+ rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;
+
+ rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
+ (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
+
+ /* Update the tail pointer on the NIC */
+ IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
+}
+
+#define IAVF_RX_LEN_MASK 0x80808080
+static inline uint16_t
+_iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts, uint8_t *split_packet)
+{
+ const uint32_t *type_table = rxq->vsi->adapter->ptype_tbl;
+
+ const __m256i mbuf_init = _mm256_set_epi64x(0, 0, 0,
+ rxq->mbuf_initializer);
+ struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
+ volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
+
+ rte_prefetch0(rxdp);
+
+ /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
+ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
+
+ /* See if we need to rearm the RX queue - gives the prefetch a bit
+ * of time to act
+ */
+ if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
+ iavf_rxq_rearm(rxq);
+
+ /* Before we start moving massive data around, check to see if
+ * there is actually a packet available
+ */
+ if (!(rxdp->wb.qword1.status_error_len &
+ rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
+ return 0;
+
+ /* constants used in processing loop */
+ const __m512i crc_adjust =
+ _mm512_set_epi32
+ (/* 1st descriptor */
+ 0, /* ignore non-length fields */
+ -rxq->crc_len, /* sub crc on data_len */
+ -rxq->crc_len, /* sub crc on pkt_len */
+ 0, /* ignore pkt_type field */
+ /* 2nd descriptor */
+ 0, /* ignore non-length fields */
+ -rxq->crc_len, /* sub crc on data_len */
+ -rxq->crc_len, /* sub crc on pkt_len */
+ 0, /* ignore pkt_type field */
+ /* 3rd descriptor */
+ 0, /* ignore non-length fields */
+ -rxq->crc_len, /* sub crc on data_len */
+ -rxq->crc_len, /* sub crc on pkt_len */
+ 0, /* ignore pkt_type field */
+ /* 4th descriptor */
+ 0, /* ignore non-length fields */
+ -rxq->crc_len, /* sub crc on data_len */
+ -rxq->crc_len, /* sub crc on pkt_len */
+ 0 /* ignore pkt_type field */
+ );
+
+ /* 8 packets DD mask, LSB in each 32-bit value */
+ const __m256i dd_check = _mm256_set1_epi32(1);
+
+ /* 8 packets EOP mask, second-LSB in each 32-bit value */
+ const __m256i eop_check = _mm256_slli_epi32(dd_check,
+ IAVF_RX_DESC_STATUS_EOF_SHIFT);
+
+ /* mask to shuffle from desc. to mbuf (4 descriptors)*/
+ const __m512i shuf_msk =
+ _mm512_set_epi32
+ (/* 1st descriptor */
+ 0x07060504, /* octet 4~7, 32bits rss */
+ 0x03020F0E, /* octet 2~3, low 16 bits vlan_macip */
+ /* octet 15~14, 16 bits data_len */
+ 0xFFFF0F0E, /* skip high 16 bits pkt_len, zero out */
+ /* octet 15~14, low 16 bits pkt_len */
+ 0xFFFFFFFF, /* pkt_type set as unknown */
+ /* 2nd descriptor */
+ 0x07060504, /* octet 4~7, 32bits rss */
+ 0x03020F0E, /* octet 2~3, low 16 bits vlan_macip */
+ /* octet 15~14, 16 bits data_len */
+ 0xFFFF0F0E, /* skip high 16 bits pkt_len, zero out */
+ /* octet 15~14, low 16 bits pkt_len */
+ 0xFFFFFFFF, /* pkt_type set as unknown */
+ /* 3rd descriptor */
+ 0x07060504, /* octet 4~7, 32bits rss */
+ 0x03020F0E, /* octet 2~3, low 16 bits vlan_macip */
+ /* octet 15~14, 16 bits data_len */
+ 0xFFFF0F0E, /* skip high 16 bits pkt_len, zero out */
+ /* octet 15~14, low 16 bits pkt_len */
+ 0xFFFFFFFF, /* pkt_type set as unknown */
+ /* 4th descriptor */
+ 0x07060504, /* octet 4~7, 32bits rss */
+ 0x03020F0E, /* octet 2~3, low 16 bits vlan_macip */
+ /* octet 15~14, 16 bits data_len */
+ 0xFFFF0F0E, /* skip high 16 bits pkt_len, zero out */
+ /* octet 15~14, low 16 bits pkt_len */
+ 0xFFFFFFFF /* pkt_type set as unknown */
+ );
+ /**
+ * compile-time check the above crc and shuffle layout is correct.
+ * NOTE: the first field (lowest address) is given last in set_epi
+ * calls above.
+ */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
+
+ /* Status/Error flag masks */
+ /**
+ * mask everything except RSS, flow director and VLAN flags
+ * bit2 is for VLAN tag, bit11 for flow director indication
+ * bit13:12 for RSS indication. Bits 3-5 of error
+ * field (bits 22-24) are for IP/L4 checksum errors
+ */
+ const __m256i flags_mask =
+ _mm256_set1_epi32((1 << 2) | (1 << 11) |
+ (3 << 12) | (7 << 22));
+ /**
+ * data to be shuffled by result of flag mask. If VLAN bit is set,
+ * (bit 2), then position 4 in this array will be used in the
+ * destination
+ */
+ const __m256i vlan_flags_shuf =
+ _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
+ 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
+ /**
+ * data to be shuffled by result of flag mask, shifted down 11.
+ * If RSS/FDIR bits are set, shuffle moves appropriate flags in
+ * place.
+ */
+ const __m256i rss_flags_shuf =
+ _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
+ PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
+ 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
+ 0, 0, 0, 0, PKT_RX_FDIR, 0);
+
+ /**
+ * data to be shuffled by the result of the flags mask shifted by 22
+ * bits. This gives use the l3_l4 flags.
+ */
+ const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
+ /* shift right 1 bit to make sure it not exceed 255 */
+ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+ PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
+ PKT_RX_L4_CKSUM_BAD) >> 1,
+ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
+ (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
+ PKT_RX_IP_CKSUM_BAD >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
+ /* second 128-bits */
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+ PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
+ PKT_RX_L4_CKSUM_BAD) >> 1,
+ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
+ (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
+ PKT_RX_IP_CKSUM_BAD >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
+
+ const __m256i cksum_mask =
+ _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
+ PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
+ PKT_RX_EIP_CKSUM_BAD);
+
+ uint16_t i, received;
+
+ for (i = 0, received = 0; i < nb_pkts;
+ i += IAVF_DESCS_PER_LOOP_AVX,
+ rxdp += IAVF_DESCS_PER_LOOP_AVX) {
+ /* step 1, copy over 8 mbuf pointers to rx_pkts array */
+ _mm256_storeu_si256((void *)&rx_pkts[i],
+ _mm256_loadu_si256((void *)&sw_ring[i]));
+#ifdef RTE_ARCH_X86_64
+ _mm256_storeu_si256
+ ((void *)&rx_pkts[i + 4],
+ _mm256_loadu_si256((void *)&sw_ring[i + 4]));
+#endif
+
+ __m512i raw_desc0_3, raw_desc4_7;
+ const __m128i raw_desc7 =
+ _mm_load_si128((void *)(rxdp + 7));
+ rte_compiler_barrier();
+ const __m128i raw_desc6 =
+ _mm_load_si128((void *)(rxdp + 6));
+ rte_compiler_barrier();
+ const __m128i raw_desc5 =
+ _mm_load_si128((void *)(rxdp + 5));
+ rte_compiler_barrier();
+ const __m128i raw_desc4 =
+ _mm_load_si128((void *)(rxdp + 4));
+ rte_compiler_barrier();
+ const __m128i raw_desc3 =
+ _mm_load_si128((void *)(rxdp + 3));
+ rte_compiler_barrier();
+ const __m128i raw_desc2 =
+ _mm_load_si128((void *)(rxdp + 2));
+ rte_compiler_barrier();
+ const __m128i raw_desc1 =
+ _mm_load_si128((void *)(rxdp + 1));
+ rte_compiler_barrier();
+ const __m128i raw_desc0 =
+ _mm_load_si128((void *)(rxdp + 0));
+
+ raw_desc4_7 = _mm512_broadcast_i32x4(raw_desc4);
+ raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc5, 1);
+ raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc6, 2);
+ raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc7, 3);
+ raw_desc0_3 = _mm512_broadcast_i32x4(raw_desc0);
+ raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc1, 1);
+ raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc2, 2);
+ raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc3, 3);
+
+ if (split_packet) {
+ int j;
+
+ for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
+ rte_mbuf_prefetch_part2(rx_pkts[i + j]);
+ }
+
+ /**
+ * convert descriptors 4-7 into mbufs, adjusting length and
+ * re-arranging fields. Then write into the mbuf
+ */
+ const __m512i len4_7 = _mm512_slli_epi32(raw_desc4_7,
+ PKTLEN_SHIFT);
+ const __m512i desc4_7 = _mm512_mask_blend_epi16(IAVF_RX_LEN_MASK,
+ raw_desc4_7,
+ len4_7);
+ __m512i mb4_7 = _mm512_shuffle_epi8(desc4_7, shuf_msk);
+
+ mb4_7 = _mm512_add_epi16(mb4_7, crc_adjust);
+ /**
+ * to get packet types, shift 64-bit values down 30 bits
+ * and so ptype is in lower 8-bits in each
+ */
+ const __m512i ptypes4_7 = _mm512_srli_epi64(desc4_7, 30);
+ const __m256i ptypes6_7 = _mm512_extracti64x4_epi64(ptypes4_7, 1);
+ const __m256i ptypes4_5 = _mm512_extracti64x4_epi64(ptypes4_7, 0);
+ const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
+ const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
+ const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
+ const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
+
+ const __m512i ptype4_7 = _mm512_set_epi32
+ (0, 0, 0, type_table[ptype7],
+ 0, 0, 0, type_table[ptype6],
+ 0, 0, 0, type_table[ptype5],
+ 0, 0, 0, type_table[ptype4]);
+ mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
+
+ /**
+ * convert descriptors 0-3 into mbufs, adjusting length and
+ * re-arranging fields. Then write into the mbuf
+ */
+ const __m512i len0_3 = _mm512_slli_epi32(raw_desc0_3,
+ PKTLEN_SHIFT);
+ const __m512i desc0_3 = _mm512_mask_blend_epi16(IAVF_RX_LEN_MASK,
+ raw_desc0_3,
+ len0_3);
+ __m512i mb0_3 = _mm512_shuffle_epi8(desc0_3, shuf_msk);
+
+ mb0_3 = _mm512_add_epi16(mb0_3, crc_adjust);
+ /* get the packet types */
+ const __m512i ptypes0_3 = _mm512_srli_epi64(desc0_3, 30);
+ const __m256i ptypes2_3 = _mm512_extracti64x4_epi64(ptypes0_3, 1);
+ const __m256i ptypes0_1 = _mm512_extracti64x4_epi64(ptypes0_3, 0);
+ const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
+ const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
+ const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
+ const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
+
+ const __m512i ptype0_3 = _mm512_set_epi32
+ (0, 0, 0, type_table[ptype3],
+ 0, 0, 0, type_table[ptype2],
+ 0, 0, 0, type_table[ptype1],
+ 0, 0, 0, type_table[ptype0]);
+ mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
+
+ /**
+ * use permute/extract to get status content
+ * After the operations, the packets status flags are in the
+ * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
+ */
+ /* merge the status bits into one register */
+ const __m512i status_permute_msk = _mm512_set_epi32
+ (0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 22, 30, 6, 14,
+ 18, 26, 2, 10);
+ const __m512i raw_status0_7 = _mm512_permutex2var_epi32
+ (raw_desc4_7, status_permute_msk, raw_desc0_3);
+ __m256i status0_7 = _mm512_extracti64x4_epi64
+ (raw_status0_7, 0);
+
+ /* now do flag manipulation */
+
+ /* get only flag/error bits we want */
+ const __m256i flag_bits =
+ _mm256_and_si256(status0_7, flags_mask);
+ /* set vlan and rss flags */
+ const __m256i vlan_flags =
+ _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
+ const __m256i rss_flags =
+ _mm256_shuffle_epi8(rss_flags_shuf,
+ _mm256_srli_epi32(flag_bits, 11));
+ /**
+ * l3_l4_error flags, shuffle, then shift to correct adjustment
+ * of flags in flags_shuf, and finally mask out extra bits
+ */
+ __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
+ _mm256_srli_epi32(flag_bits, 22));
+ l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
+ l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
+
+ /* merge flags */
+ const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
+ _mm256_or_si256(rss_flags, vlan_flags));
+ /**
+ * At this point, we have the 8 sets of flags in the low 16-bits
+ * of each 32-bit value in vlan0.
+ * We want to extract these, and merge them with the mbuf init
+ * data so we can do a single write to the mbuf to set the flags
+ * and all the other initialization fields. Extracting the
+ * appropriate flags means that we have to do a shift and blend
+ * for each mbuf before we do the write. However, we can also
+ * add in the previously computed rx_descriptor fields to
+ * make a single 256-bit write per mbuf
+ */
+ /* check the structure matches expectations */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
+ offsetof(struct rte_mbuf, rearm_data) + 8);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
+ RTE_ALIGN(offsetof(struct rte_mbuf,
+ rearm_data),
+ 16));
+ /* build up data and do writes */
+ __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
+ rearm6, rearm7;
+ const __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
+ const __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
+ const __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
+ const __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
+
+ rearm6 = _mm256_blend_epi32(mbuf_init,
+ _mm256_slli_si256(mbuf_flags, 8),
+ 0x04);
+ rearm4 = _mm256_blend_epi32(mbuf_init,
+ _mm256_slli_si256(mbuf_flags, 4),
+ 0x04);
+ rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
+ rearm0 = _mm256_blend_epi32(mbuf_init,
+ _mm256_srli_si256(mbuf_flags, 4),
+ 0x04);
+ /* permute to add in the rx_descriptor e.g. rss fields */
+ rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
+ rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
+ rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
+ rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
+ /* write to mbuf */
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
+ rearm6);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
+ rearm4);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
+ rearm2);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
+ rearm0);
+
+ /* repeat for the odd mbufs */
+ const __m256i odd_flags =
+ _mm256_castsi128_si256
+ (_mm256_extracti128_si256(mbuf_flags, 1));
+ rearm7 = _mm256_blend_epi32(mbuf_init,
+ _mm256_slli_si256(odd_flags, 8),
+ 0x04);
+ rearm5 = _mm256_blend_epi32(mbuf_init,
+ _mm256_slli_si256(odd_flags, 4),
+ 0x04);
+ rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
+ rearm1 = _mm256_blend_epi32(mbuf_init,
+ _mm256_srli_si256(odd_flags, 4),
+ 0x04);
+ /* since odd mbufs are already in hi 128-bits use blend */
+ rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
+ rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
+ rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
+ rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
+ /* again write to mbufs */
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
+ rearm7);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
+ rearm5);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
+ rearm3);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
+ rearm1);
+
+ /* extract and record EOP bit */
+ if (split_packet) {
+ const __m128i eop_mask =
+ _mm_set1_epi16(1 << IAVF_RX_DESC_STATUS_EOF_SHIFT);
+ const __m256i eop_bits256 = _mm256_and_si256(status0_7,
+ eop_check);
+ /* pack status bits into a single 128-bit register */
+ const __m128i eop_bits =
+ _mm_packus_epi32
+ (_mm256_castsi256_si128(eop_bits256),
+ _mm256_extractf128_si256(eop_bits256,
+ 1));
+ /**
+ * flip bits, and mask out the EOP bit, which is now
+ * a split-packet bit i.e. !EOP, rather than EOP one.
+ */
+ __m128i split_bits = _mm_andnot_si128(eop_bits,
+ eop_mask);
+ /**
+ * eop bits are out of order, so we need to shuffle them
+ * back into order again. In doing so, only use low 8
+ * bits, which acts like another pack instruction
+ * The original order is (hi->lo): 1,3,5,7,0,2,4,6
+ * [Since we use epi8, the 16-bit positions are
+ * multiplied by 2 in the eop_shuffle value.]
+ */
+ __m128i eop_shuffle =
+ _mm_set_epi8(/* zero hi 64b */
+ 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF,
+ /* move values to lo 64b */
+ 8, 0, 10, 2,
+ 12, 4, 14, 6);
+ split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
+ *(uint64_t *)split_packet =
+ _mm_cvtsi128_si64(split_bits);
+ split_packet += IAVF_DESCS_PER_LOOP_AVX;
+ }
+
+ /* perform dd_check */
+ status0_7 = _mm256_and_si256(status0_7, dd_check);
+ status0_7 = _mm256_packs_epi32(status0_7,
+ _mm256_setzero_si256());
+
+ uint64_t burst = __builtin_popcountll
+ (_mm_cvtsi128_si64
+ (_mm256_extracti128_si256
+ (status0_7, 1)));
+ burst += __builtin_popcountll
+ (_mm_cvtsi128_si64
+ (_mm256_castsi256_si128(status0_7)));
+ received += burst;
+ if (burst != IAVF_DESCS_PER_LOOP_AVX)
+ break;
+ }
+
+ /* update tail pointers */
+ rxq->rx_tail += received;
+ rxq->rx_tail &= (rxq->nb_rx_desc - 1);
+ if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep aligned */
+ rxq->rx_tail--;
+ received--;
+ }
+ rxq->rxrearm_nb += received;
+ return received;
+}
+
+/**
+ * Notice:
+ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
+ */
+uint16_t
+iavf_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ return _iavf_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL);
+}
+
+/**
+ * vPMD receive routine that reassembles single burst of 32 scattered packets
+ * Notice:
+ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
+ */
+static uint16_t
+iavf_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ struct iavf_rx_queue *rxq = rx_queue;
+ uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
+
+ /* get some new buffers */
+ uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
+ split_flags);
+ if (nb_bufs == 0)
+ return 0;
+
+ /* happy day case, full burst + no packets to be joined */
+ const uint64_t *split_fl64 = (uint64_t *)split_flags;
+
+ if (!rxq->pkt_first_seg &&
+ split_fl64[0] == 0 && split_fl64[1] == 0 &&
+ split_fl64[2] == 0 && split_fl64[3] == 0)
+ return nb_bufs;
+
+ /* reassemble any packets that need reassembly*/
+ unsigned int i = 0;
+
+ if (!rxq->pkt_first_seg) {
+ /* find the first split flag, and only reassemble then*/
+ while (i < nb_bufs && !split_flags[i])
+ i++;
+ if (i == nb_bufs)
+ return nb_bufs;
+ rxq->pkt_first_seg = rx_pkts[i];
+ }
+ return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
+ &split_flags[i]);
+}
+
+/**
+ * vPMD receive routine that reassembles scattered packets.
+ * Main receive routine that can handle arbitrary burst sizes
+ * Notice:
+ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
+ */
+uint16_t
+iavf_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ uint16_t retval = 0;
+
+ while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
+ uint16_t burst = iavf_recv_scattered_burst_vec_avx512(rx_queue,
+ rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
+ retval += burst;
+ nb_pkts -= burst;
+ if (burst < IAVF_VPMD_RX_MAX_BURST)
+ return retval;
+ }
+ return retval + iavf_recv_scattered_burst_vec_avx512(rx_queue,
+ rx_pkts + retval, nb_pkts);
+}