#define SYNC_WAIT 0
#define SYNC_START 1
+#define INVALID_OPAQUE -1
#define INVALID_QUEUE_ID -1
+/* Increment for next code block in external HARQ memory */
+#define HARQ_INCR 32768
+/* Headroom for filler LLRs insertion in HARQ buffer */
+#define FILLER_HEADROOM 1024
+/* Constants from K0 computation from 3GPP 38.212 Table 5.4.2.1-2 */
+#define N_ZC_1 66 /* N = 66 Zc for BG 1 */
+#define N_ZC_2 50 /* N = 50 Zc for BG 2 */
+#define K0_1_1 17 /* K0 fraction numerator for rv 1 and BG 1 */
+#define K0_1_2 13 /* K0 fraction numerator for rv 1 and BG 2 */
+#define K0_2_1 33 /* K0 fraction numerator for rv 2 and BG 1 */
+#define K0_2_2 25 /* K0 fraction numerator for rv 2 and BG 2 */
+#define K0_3_1 56 /* K0 fraction numerator for rv 3 and BG 1 */
+#define K0_3_2 43 /* K0 fraction numerator for rv 3 and BG 2 */
static struct test_bbdev_vector test_vector;
/* Switch between PMD and Interrupt for throughput TC */
static bool intr_enabled;
+/* LLR arithmetic representation for numerical conversion */
+static int ldpc_llr_decimals;
+static int ldpc_llr_size;
+/* Keep track of the LDPC decoder device capability flag */
+static uint32_t ldpc_cap_flags;
+
/* Represents tested active devices */
static struct active_device {
const char *driver_name;
return TEST_FAILED;
}
if (intr_enabled && !(cap->capability_flags &
- RTE_BBDEV_TURBO_ENC_INTERRUPTS)) {
+ RTE_BBDEV_LDPC_ENC_INTERRUPTS)) {
printf(
"Dequeue interrupts are not supported!\n");
return TEST_FAILED;
return TEST_FAILED;
}
if (intr_enabled && !(cap->capability_flags &
- RTE_BBDEV_TURBO_DEC_INTERRUPTS)) {
+ RTE_BBDEV_LDPC_DEC_INTERRUPTS)) {
printf(
"Dequeue interrupts are not supported!\n");
return TEST_FAILED;
}
-
+ if (intr_enabled && (test_vector.ldpc_dec.op_flags &
+ (RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
+ RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK
+ ))) {
+ printf("Skip loop-back with interrupt\n");
+ return TEST_FAILED;
+ }
return TEST_SUCCESS;
}
}
snprintf(pool_name, sizeof(pool_name), "%s_pool_%u", op_type_str,
dev_id);
return rte_pktmbuf_pool_create(pool_name, mbuf_pool_size, 0, 0,
- RTE_MAX(max_seg_sz + RTE_PKTMBUF_HEADROOM,
+ RTE_MAX(max_seg_sz + RTE_PKTMBUF_HEADROOM
+ + FILLER_HEADROOM,
(unsigned int)RTE_MBUF_DEFAULT_BUF_SIZE), socket_id);
}
return TEST_SUCCESS;
/* Inputs */
- mbuf_pool_size = optimal_mempool_size(ops_pool_size * in->nb_segments);
- mp = create_mbuf_pool(in, ad->dev_id, socket_id, mbuf_pool_size, "in");
- TEST_ASSERT_NOT_NULL(mp,
- "ERROR Failed to create %u items input pktmbuf pool for dev %u on socket %u.",
- mbuf_pool_size,
- ad->dev_id,
- socket_id);
- ad->in_mbuf_pool = mp;
+ if (in->nb_segments > 0) {
+ mbuf_pool_size = optimal_mempool_size(ops_pool_size *
+ in->nb_segments);
+ mp = create_mbuf_pool(in, ad->dev_id, socket_id,
+ mbuf_pool_size, "in");
+ TEST_ASSERT_NOT_NULL(mp,
+ "ERROR Failed to create %u items input pktmbuf pool for dev %u on socket %u.",
+ mbuf_pool_size,
+ ad->dev_id,
+ socket_id);
+ ad->in_mbuf_pool = mp;
+ }
/* Hard outputs */
- mbuf_pool_size = optimal_mempool_size(ops_pool_size *
- hard_out->nb_segments);
- mp = create_mbuf_pool(hard_out, ad->dev_id, socket_id, mbuf_pool_size,
- "hard_out");
- TEST_ASSERT_NOT_NULL(mp,
- "ERROR Failed to create %u items hard output pktmbuf pool for dev %u on socket %u.",
- mbuf_pool_size,
- ad->dev_id,
- socket_id);
- ad->hard_out_mbuf_pool = mp;
-
+ if (hard_out->nb_segments > 0) {
+ mbuf_pool_size = optimal_mempool_size(ops_pool_size *
+ hard_out->nb_segments);
+ mp = create_mbuf_pool(hard_out, ad->dev_id, socket_id,
+ mbuf_pool_size,
+ "hard_out");
+ TEST_ASSERT_NOT_NULL(mp,
+ "ERROR Failed to create %u items hard output pktmbuf pool for dev %u on socket %u.",
+ mbuf_pool_size,
+ ad->dev_id,
+ socket_id);
+ ad->hard_out_mbuf_pool = mp;
+ }
/* Soft outputs */
if (soft_out->nb_segments > 0) {
}
}
+/*
+ * We may have to insert filler bits
+ * when they are required by the HARQ assumption
+ */
+static void
+ldpc_add_filler(struct rte_bbdev_op_data *input_ops,
+ const uint16_t n, struct test_op_params *op_params)
+{
+ struct rte_bbdev_op_ldpc_dec dec = op_params->ref_dec_op->ldpc_dec;
+
+ if (input_ops == NULL)
+ return;
+ /* No need to add filler if not required by device */
+ if (!(ldpc_cap_flags &
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_FILLERS))
+ return;
+ /* No need to add filler for loopback operation */
+ if (dec.op_flags & RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)
+ return;
+
+ uint16_t i, j, parity_offset;
+ for (i = 0; i < n; ++i) {
+ struct rte_mbuf *m = input_ops[i].data;
+ int8_t *llr = rte_pktmbuf_mtod_offset(m, int8_t *,
+ input_ops[i].offset);
+ parity_offset = (dec.basegraph == 1 ? 20 : 8)
+ * dec.z_c - dec.n_filler;
+ uint16_t new_hin_size = input_ops[i].length + dec.n_filler;
+ m->data_len = new_hin_size;
+ input_ops[i].length = new_hin_size;
+ for (j = new_hin_size - 1; j >= parity_offset + dec.n_filler;
+ j--)
+ llr[j] = llr[j - dec.n_filler];
+ uint16_t llr_max_pre_scaling = (1 << (ldpc_llr_size - 1)) - 1;
+ for (j = 0; j < dec.n_filler; j++)
+ llr[parity_offset + j] = llr_max_pre_scaling;
+ }
+}
+
static void
ldpc_input_llr_scaling(struct rte_bbdev_op_data *input_ops,
const uint16_t n, const int8_t llr_size,
++byte_idx) {
llr_tmp = llr[byte_idx];
- if (llr_decimals == 2)
+ if (llr_decimals == 4)
+ llr_tmp *= 8;
+ else if (llr_decimals == 2)
llr_tmp *= 2;
else if (llr_decimals == 0)
llr_tmp /= 2;
capabilities->cap.turbo_dec.max_llr_modulus);
if (test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC) {
- ldpc_input_llr_scaling(*queue_ops[DATA_INPUT], n,
- capabilities->cap.ldpc_dec.llr_size,
- capabilities->cap.ldpc_dec.llr_decimals);
- ldpc_input_llr_scaling(*queue_ops[DATA_HARQ_INPUT], n,
- capabilities->cap.ldpc_dec.llr_size,
- capabilities->cap.ldpc_dec.llr_decimals);
+ bool loopback = op_params->ref_dec_op->ldpc_dec.op_flags &
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK;
+ bool llr_comp = op_params->ref_dec_op->ldpc_dec.op_flags &
+ RTE_BBDEV_LDPC_LLR_COMPRESSION;
+ bool harq_comp = op_params->ref_dec_op->ldpc_dec.op_flags &
+ RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION;
+ ldpc_llr_decimals = capabilities->cap.ldpc_dec.llr_decimals;
+ ldpc_llr_size = capabilities->cap.ldpc_dec.llr_size;
+ ldpc_cap_flags = capabilities->cap.ldpc_dec.capability_flags;
+ if (!loopback && !llr_comp)
+ ldpc_input_llr_scaling(*queue_ops[DATA_INPUT], n,
+ ldpc_llr_size, ldpc_llr_decimals);
+ if (!loopback && !harq_comp)
+ ldpc_input_llr_scaling(*queue_ops[DATA_HARQ_INPUT], n,
+ ldpc_llr_size, ldpc_llr_decimals);
+ if (!loopback)
+ ldpc_add_filler(*queue_ops[DATA_HARQ_INPUT], n,
+ op_params);
}
return 0;
ops[i]->ldpc_dec.op_flags = ldpc_dec->op_flags;
ops[i]->ldpc_dec.code_block_mode = ldpc_dec->code_block_mode;
- ops[i]->ldpc_dec.hard_output = hard_outputs[start_idx + i];
- ops[i]->ldpc_dec.input = inputs[start_idx + i];
+ if (hard_outputs != NULL)
+ ops[i]->ldpc_dec.hard_output =
+ hard_outputs[start_idx + i];
+ if (inputs != NULL)
+ ops[i]->ldpc_dec.input =
+ inputs[start_idx + i];
if (soft_outputs != NULL)
ops[i]->ldpc_dec.soft_output =
- soft_outputs[start_idx + i];
+ soft_outputs[start_idx + i];
if (harq_inputs != NULL)
ops[i]->ldpc_dec.harq_combined_input =
harq_inputs[start_idx + i];
if (harq_outputs != NULL)
ops[i]->ldpc_dec.harq_combined_output =
- harq_outputs[start_idx + i];
+ harq_outputs[start_idx + i];
}
}
check_dec_status_and_ordering(struct rte_bbdev_dec_op *op,
unsigned int order_idx, const int expected_status)
{
- TEST_ASSERT(op->status == expected_status,
+ int status = op->status;
+ /* ignore parity mismatch false alarms for long iterations */
+ if (get_iter_max() >= 10) {
+ if (!(expected_status & (1 << RTE_BBDEV_SYNDROME_ERROR)) &&
+ (status & (1 << RTE_BBDEV_SYNDROME_ERROR))) {
+ printf("WARNING: Ignore Syndrome Check mismatch\n");
+ status -= (1 << RTE_BBDEV_SYNDROME_ERROR);
+ }
+ if ((expected_status & (1 << RTE_BBDEV_SYNDROME_ERROR)) &&
+ !(status & (1 << RTE_BBDEV_SYNDROME_ERROR))) {
+ printf("WARNING: Ignore Syndrome Check mismatch\n");
+ status += (1 << RTE_BBDEV_SYNDROME_ERROR);
+ }
+ }
+
+ TEST_ASSERT(status == expected_status,
"op_status (%d) != expected_status (%d)",
op->status, expected_status);
"op_status (%d) != expected_status (%d)",
op->status, expected_status);
- TEST_ASSERT((void *)(uintptr_t)order_idx == op->opaque_data,
- "Ordering error, expected %p, got %p",
- (void *)(uintptr_t)order_idx, op->opaque_data);
+ if (op->opaque_data != (void *)(uintptr_t)INVALID_OPAQUE)
+ TEST_ASSERT((void *)(uintptr_t)order_idx == op->opaque_data,
+ "Ordering error, expected %p, got %p",
+ (void *)(uintptr_t)order_idx, op->opaque_data);
return TEST_SUCCESS;
}
return TEST_SUCCESS;
}
+/*
+ * Compute K0 for a given configuration for HARQ output length computation
+ * As per definition in 3GPP 38.212 Table 5.4.2.1-2
+ */
+static inline uint16_t
+get_k0(uint16_t n_cb, uint16_t z_c, uint8_t bg, uint8_t rv_index)
+{
+ if (rv_index == 0)
+ return 0;
+ uint16_t n = (bg == 1 ? N_ZC_1 : N_ZC_2) * z_c;
+ if (n_cb == n) {
+ if (rv_index == 1)
+ return (bg == 1 ? K0_1_1 : K0_1_2) * z_c;
+ else if (rv_index == 2)
+ return (bg == 1 ? K0_2_1 : K0_2_2) * z_c;
+ else
+ return (bg == 1 ? K0_3_1 : K0_3_2) * z_c;
+ }
+ /* LBRM case - includes a division by N */
+ if (rv_index == 1)
+ return (((bg == 1 ? K0_1_1 : K0_1_2) * n_cb)
+ / n) * z_c;
+ else if (rv_index == 2)
+ return (((bg == 1 ? K0_2_1 : K0_2_2) * n_cb)
+ / n) * z_c;
+ else
+ return (((bg == 1 ? K0_3_1 : K0_3_2) * n_cb)
+ / n) * z_c;
+}
+
+/* HARQ output length including the Filler bits */
+static inline uint16_t
+compute_harq_len(struct rte_bbdev_op_ldpc_dec *ops_ld)
+{
+ uint16_t k0 = 0;
+ uint8_t max_rv = (ops_ld->rv_index == 1) ? 3 : ops_ld->rv_index;
+ k0 = get_k0(ops_ld->n_cb, ops_ld->z_c, ops_ld->basegraph, max_rv);
+ /* Compute RM out size and number of rows */
+ uint16_t parity_offset = (ops_ld->basegraph == 1 ? 20 : 8)
+ * ops_ld->z_c - ops_ld->n_filler;
+ uint16_t deRmOutSize = RTE_MIN(
+ k0 + ops_ld->cb_params.e +
+ ((k0 > parity_offset) ?
+ 0 : ops_ld->n_filler),
+ ops_ld->n_cb);
+ uint16_t numRows = ((deRmOutSize + ops_ld->z_c - 1)
+ / ops_ld->z_c);
+ uint16_t harq_output_len = numRows * ops_ld->z_c;
+ return harq_output_len;
+}
+
+static inline int
+validate_op_harq_chain(struct rte_bbdev_op_data *op,
+ struct op_data_entries *orig_op,
+ struct rte_bbdev_op_ldpc_dec *ops_ld)
+{
+ uint8_t i;
+ uint32_t j, jj, k;
+ struct rte_mbuf *m = op->data;
+ uint8_t nb_dst_segments = orig_op->nb_segments;
+ uint32_t total_data_size = 0;
+ int8_t *harq_orig, *harq_out, abs_harq_origin;
+ uint32_t byte_error = 0, cum_error = 0, error;
+ int16_t llr_max = (1 << (ldpc_llr_size - ldpc_llr_decimals)) - 1;
+ int16_t llr_max_pre_scaling = (1 << (ldpc_llr_size - 1)) - 1;
+ uint16_t parity_offset;
+
+ TEST_ASSERT(nb_dst_segments == m->nb_segs,
+ "Number of segments differ in original (%u) and filled (%u) op",
+ nb_dst_segments, m->nb_segs);
+
+ /* Validate each mbuf segment length */
+ for (i = 0; i < nb_dst_segments; ++i) {
+ /* Apply offset to the first mbuf segment */
+ uint16_t offset = (i == 0) ? op->offset : 0;
+ uint16_t data_len = rte_pktmbuf_data_len(m) - offset;
+ total_data_size += orig_op->segments[i].length;
+
+ TEST_ASSERT(orig_op->segments[i].length <
+ (uint32_t)(data_len + 64),
+ "Length of segment differ in original (%u) and filled (%u) op",
+ orig_op->segments[i].length, data_len);
+ harq_orig = (int8_t *) orig_op->segments[i].addr;
+ harq_out = rte_pktmbuf_mtod_offset(m, int8_t *, offset);
+
+ if (!(ldpc_cap_flags &
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_FILLERS
+ ) || (ops_ld->op_flags &
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)) {
+ data_len -= ops_ld->z_c;
+ parity_offset = data_len;
+ } else {
+ /* Compute RM out size and number of rows */
+ parity_offset = (ops_ld->basegraph == 1 ? 20 : 8)
+ * ops_ld->z_c - ops_ld->n_filler;
+ uint16_t deRmOutSize = compute_harq_len(ops_ld) -
+ ops_ld->n_filler;
+ if (data_len > deRmOutSize)
+ data_len = deRmOutSize;
+ if (data_len > orig_op->segments[i].length)
+ data_len = orig_op->segments[i].length;
+ }
+ /*
+ * HARQ output can have minor differences
+ * due to integer representation and related scaling
+ */
+ for (j = 0, jj = 0; j < data_len; j++, jj++) {
+ if (j == parity_offset) {
+ /* Special Handling of the filler bits */
+ for (k = 0; k < ops_ld->n_filler; k++) {
+ if (harq_out[jj] !=
+ llr_max_pre_scaling) {
+ printf("HARQ Filler issue %d: %d %d\n",
+ jj, harq_out[jj],
+ llr_max);
+ byte_error++;
+ }
+ jj++;
+ }
+ }
+ if (!(ops_ld->op_flags &
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)) {
+ if (ldpc_llr_decimals > 1)
+ harq_out[jj] = (harq_out[jj] + 1)
+ >> (ldpc_llr_decimals - 1);
+ /* Saturated to S7 */
+ if (harq_orig[j] > llr_max)
+ harq_orig[j] = llr_max;
+ if (harq_orig[j] < -llr_max)
+ harq_orig[j] = -llr_max;
+ }
+ if (harq_orig[j] != harq_out[jj]) {
+ error = (harq_orig[j] > harq_out[jj]) ?
+ harq_orig[j] - harq_out[jj] :
+ harq_out[jj] - harq_orig[j];
+ abs_harq_origin = harq_orig[j] > 0 ?
+ harq_orig[j] :
+ -harq_orig[j];
+ /* Residual quantization error */
+ if ((error > 8 && (abs_harq_origin <
+ (llr_max - 16))) ||
+ (error > 16)) {
+ printf("HARQ mismatch %d: exp %d act %d => %d\n",
+ j, harq_orig[j],
+ harq_out[jj], error);
+ byte_error++;
+ cum_error += error;
+ }
+ }
+ }
+ m = m->next;
+ }
+
+ if (byte_error)
+ TEST_ASSERT(byte_error <= 1,
+ "HARQ output mismatch (%d) %d",
+ byte_error, cum_error);
+
+ /* Validate total mbuf pkt length */
+ uint32_t pkt_len = rte_pktmbuf_pkt_len(op->data) - op->offset;
+ TEST_ASSERT(total_data_size < pkt_len + 64,
+ "Length of data differ in original (%u) and filled (%u) op",
+ total_data_size, pkt_len);
+
+ return TEST_SUCCESS;
+}
+
static int
validate_dec_op(struct rte_bbdev_dec_op **ops, const uint16_t n,
struct rte_bbdev_dec_op *ref_op, const int vector_mask)
return TEST_SUCCESS;
}
-
static int
validate_ldpc_dec_op(struct rte_bbdev_dec_op **ops, const uint16_t n,
struct rte_bbdev_dec_op *ref_op, const int vector_mask)
TEST_ASSERT(ops_td->iter_count <= ref_td->iter_count,
"Returned iter_count (%d) > expected iter_count (%d)",
ops_td->iter_count, ref_td->iter_count);
- /* We can ignore data when the decoding failed to converge */
- if ((ops[i]->status & (1 << RTE_BBDEV_SYNDROME_ERROR)) == 0)
+ /*
+ * We can ignore output data when the decoding failed to
+ * converge or for loop-back cases
+ */
+ if (!check_bit(ops[i]->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK
+ ) && (
+ ops[i]->status & (1 << RTE_BBDEV_SYNDROME_ERROR
+ )) == 0)
TEST_ASSERT_SUCCESS(validate_op_chain(hard_output,
hard_data_orig),
"Hard output buffers (CB=%u) are not equal",
i);
if (ref_op->ldpc_dec.op_flags &
RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE) {
- ldpc_input_llr_scaling(harq_output, 1, 8, 0);
- TEST_ASSERT_SUCCESS(validate_op_chain(harq_output,
- harq_data_orig),
+ TEST_ASSERT_SUCCESS(validate_op_harq_chain(harq_output,
+ harq_data_orig, ops_td),
"HARQ output buffers (CB=%u) are not equal",
i);
}
+ if (ref_op->ldpc_dec.op_flags &
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)
+ TEST_ASSERT_SUCCESS(validate_op_harq_chain(harq_output,
+ harq_data_orig, ops_td),
+ "HARQ output buffers (CB=%u) are not equal",
+ i);
+
}
return TEST_SUCCESS;
return ret;
}
+
+/* Push back the HARQ output from DDR to host */
+static void
+retrieve_harq_ddr(uint16_t dev_id, uint16_t queue_id,
+ struct rte_bbdev_dec_op **ops,
+ const uint16_t n)
+{
+ uint16_t j;
+ int save_status, ret;
+ uint32_t harq_offset = (uint32_t) queue_id * HARQ_INCR * 1024;
+ struct rte_bbdev_dec_op *ops_deq[MAX_BURST];
+ uint32_t flags = ops[0]->ldpc_dec.op_flags;
+ bool loopback = flags & RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK;
+ bool mem_out = flags & RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE;
+ bool hc_out = flags & RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE;
+ bool h_comp = flags & RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION;
+ for (j = 0; j < n; ++j) {
+ if ((loopback && mem_out) || hc_out) {
+ save_status = ops[j]->status;
+ ops[j]->ldpc_dec.op_flags =
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK +
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE;
+ if (h_comp)
+ ops[j]->ldpc_dec.op_flags +=
+ RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION;
+ ops[j]->ldpc_dec.harq_combined_input.offset =
+ harq_offset;
+ ops[j]->ldpc_dec.harq_combined_output.offset = 0;
+ harq_offset += HARQ_INCR;
+ if (!loopback)
+ ops[j]->ldpc_dec.harq_combined_input.length =
+ ops[j]->ldpc_dec.harq_combined_output.length;
+ rte_bbdev_enqueue_ldpc_dec_ops(dev_id, queue_id,
+ &ops[j], 1);
+ ret = 0;
+ while (ret == 0)
+ ret = rte_bbdev_dequeue_ldpc_dec_ops(
+ dev_id, queue_id,
+ &ops_deq[j], 1);
+ ops[j]->ldpc_dec.op_flags = flags;
+ ops[j]->status = save_status;
+ }
+ }
+}
+
+/*
+ * Push back the HARQ output from HW DDR to Host
+ * Preload HARQ memory input and adjust HARQ offset
+ */
+static void
+preload_harq_ddr(uint16_t dev_id, uint16_t queue_id,
+ struct rte_bbdev_dec_op **ops, const uint16_t n,
+ bool preload)
+{
+ uint16_t j;
+ int ret;
+ uint32_t harq_offset = (uint32_t) queue_id * HARQ_INCR * 1024;
+ struct rte_bbdev_op_data save_hc_in, save_hc_out;
+ struct rte_bbdev_dec_op *ops_deq[MAX_BURST];
+ uint32_t flags = ops[0]->ldpc_dec.op_flags;
+ bool mem_in = flags & RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE;
+ bool hc_in = flags & RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE;
+ bool mem_out = flags & RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE;
+ bool hc_out = flags & RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE;
+ bool h_comp = flags & RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION;
+ for (j = 0; j < n; ++j) {
+ if ((mem_in || hc_in) && preload) {
+ save_hc_in = ops[j]->ldpc_dec.harq_combined_input;
+ save_hc_out = ops[j]->ldpc_dec.harq_combined_output;
+ ops[j]->ldpc_dec.op_flags =
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK +
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE;
+ if (h_comp)
+ ops[j]->ldpc_dec.op_flags +=
+ RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION;
+ ops[j]->ldpc_dec.harq_combined_output.offset =
+ harq_offset;
+ ops[j]->ldpc_dec.harq_combined_input.offset = 0;
+ rte_bbdev_enqueue_ldpc_dec_ops(dev_id, queue_id,
+ &ops[j], 1);
+ ret = 0;
+ while (ret == 0)
+ ret = rte_bbdev_dequeue_ldpc_dec_ops(
+ dev_id, queue_id, &ops_deq[j], 1);
+ ops[j]->ldpc_dec.op_flags = flags;
+ ops[j]->ldpc_dec.harq_combined_input = save_hc_in;
+ ops[j]->ldpc_dec.harq_combined_output = save_hc_out;
+ }
+ /* Adjust HARQ offset when we reach external DDR */
+ if (mem_in || hc_in)
+ ops[j]->ldpc_dec.harq_combined_input.offset
+ = harq_offset;
+ if (mem_out || hc_out)
+ ops[j]->ldpc_dec.harq_combined_output.offset
+ = harq_offset;
+ harq_offset += HARQ_INCR;
+ }
+}
+
static void
dequeue_event_callback(uint16_t dev_id,
enum rte_bbdev_event_type event, void *cb_arg,
burst_sz = rte_atomic16_read(&tp->burst_sz);
num_ops = tp->op_params->num_to_process;
- if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC ||
- test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC)
+ if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC)
deq = rte_bbdev_dequeue_dec_ops(dev_id, queue_id,
&tp->dec_ops[
rte_atomic16_read(&tp->nb_dequeued)],
burst_sz);
- else
+ else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC)
+ deq = rte_bbdev_dequeue_ldpc_dec_ops(dev_id, queue_id,
+ &tp->dec_ops[
+ rte_atomic16_read(&tp->nb_dequeued)],
+ burst_sz);
+ else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_ENC)
+ deq = rte_bbdev_dequeue_ldpc_enc_ops(dev_id, queue_id,
+ &tp->enc_ops[
+ rte_atomic16_read(&tp->nb_dequeued)],
+ burst_sz);
+ else /*RTE_BBDEV_OP_TURBO_ENC*/
deq = rte_bbdev_dequeue_enc_ops(dev_id, queue_id,
&tp->enc_ops[
rte_atomic16_read(&tp->nb_dequeued)],
int i, j, ret;
struct rte_bbdev_info info;
uint16_t num_to_enq;
+ bool extDdr = check_bit(ldpc_cap_flags,
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE);
+ bool loopback = check_bit(ref_op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK);
+ bool hc_out = check_bit(ref_op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE);
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
for (i = 0; i < TEST_REPETITIONS; ++i) {
for (j = 0; j < num_ops; ++j) {
- mbuf_reset(ops_enq[j]->ldpc_dec.hard_output.data);
- if (check_bit(ref_op->ldpc_dec.op_flags,
- RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE))
+ if (!loopback)
+ mbuf_reset(
+ ops_enq[j]->ldpc_dec.hard_output.data);
+ if (hc_out || loopback)
mbuf_reset(
ops_enq[j]->ldpc_dec.harq_combined_output.data);
}
-
+ if (extDdr) {
+ bool preload = i == (TEST_REPETITIONS - 1);
+ preload_harq_ddr(tp->dev_id, queue_id, ops_enq,
+ num_ops, preload);
+ }
start_time = rte_rdtsc_precise();
for (enq = 0, deq = 0; enq < num_ops;) {
tp->iter_count = RTE_MAX(ops_enq[i]->ldpc_dec.iter_count,
tp->iter_count);
}
+ if (extDdr) {
+ /* Read loopback is not thread safe */
+ retrieve_harq_ddr(tp->dev_id, queue_id, ops_enq, num_ops);
+ }
if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
ret = validate_ldpc_dec_op(ops_deq, num_ops, ref_op,
uint16_t i, j, dequeued;
struct rte_bbdev_dec_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
uint64_t start_time = 0, last_time = 0;
+ bool extDdr = ldpc_cap_flags &
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE;
for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
uint16_t enq = 0, deq = 0;
ret = rte_bbdev_dec_op_alloc_bulk(mempool, ops_enq, burst_sz);
TEST_ASSERT_SUCCESS(ret,
"rte_bbdev_dec_op_alloc_bulk() failed");
+
+ /* For latency tests we need to disable early termination */
+ if (check_bit(ref_op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE))
+ ref_op->ldpc_dec.op_flags -=
+ RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE;
+ ref_op->ldpc_dec.iter_max = 6;
+ ref_op->ldpc_dec.iter_count = ref_op->ldpc_dec.iter_max;
+
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_ldpc_dec_op(ops_enq, burst_sz, dequeued,
bufs->inputs,
bufs->harq_outputs,
ref_op);
+ if (extDdr)
+ preload_harq_ddr(dev_id, queue_id, ops_enq,
+ burst_sz, true);
+
/* Set counter to validate the ordering */
for (j = 0; j < burst_sz; ++j)
ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
*min_time = RTE_MIN(*min_time, last_time);
*total_time += last_time;
+ if (extDdr)
+ retrieve_harq_ddr(dev_id, queue_id, ops_enq, burst_sz);
+
if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
ret = validate_ldpc_dec_op(ops_deq, burst_sz, ref_op,
vector_mask);
rte_bbdev_dec_op_free_bulk(ops_enq, deq);
dequeued += deq;
}
-
return i;
}
burst_sz = num_to_process - dequeued;
ret = rte_bbdev_enc_op_alloc_bulk(mempool, ops_enq, burst_sz);
-
TEST_ASSERT_SUCCESS(ret,
"rte_bbdev_enc_op_alloc_bulk() failed");
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
uint64_t enq_start_time, deq_start_time;
uint64_t enq_sw_last_time, deq_last_time;
struct rte_bbdev_stats stats;
+ bool extDdr = ldpc_cap_flags &
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE;
for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
uint16_t enq = 0, deq = 0;
bufs->harq_outputs,
ref_op);
+ if (extDdr)
+ preload_harq_ddr(dev_id, queue_id, ops_enq,
+ burst_sz, true);
+
/* Start time meas for enqueue function offload latency */
enq_start_time = rte_rdtsc_precise();
do {
&ops_enq[enq], burst_sz - enq);
} while (unlikely(burst_sz != enq));
+ enq_sw_last_time = rte_rdtsc_precise() - enq_start_time;
ret = get_bbdev_queue_stats(dev_id, queue_id, &stats);
TEST_ASSERT_SUCCESS(ret,
"Failed to get stats for queue (%u) of device (%u)",
queue_id, dev_id);
- enq_sw_last_time = rte_rdtsc_precise() - enq_start_time -
- stats.acc_offload_cycles;
+ enq_sw_last_time -= stats.acc_offload_cycles;
time_st->enq_sw_max_time = RTE_MAX(time_st->enq_sw_max_time,
enq_sw_last_time);
time_st->enq_sw_min_time = RTE_MIN(time_st->enq_sw_min_time,
/* Dequeue remaining operations if needed*/
while (burst_sz != deq)
- deq += rte_bbdev_dequeue_dec_ops(dev_id, queue_id,
+ deq += rte_bbdev_dequeue_ldpc_dec_ops(dev_id, queue_id,
&ops_deq[deq], burst_sz - deq);
+ if (extDdr) {
+ /* Read loopback is not thread safe */
+ retrieve_harq_ddr(dev_id, queue_id, ops_enq, burst_sz);
+ }
+
rte_bbdev_dec_op_free_bulk(ops_enq, deq);
dequeued += deq;
}
burst_sz = num_to_process - dequeued;
ret = rte_bbdev_enc_op_alloc_bulk(mempool, ops_enq, burst_sz);
- TEST_ASSERT_SUCCESS(ret, "rte_bbdev_op_alloc_bulk() failed");
+ TEST_ASSERT_SUCCESS(ret,
+ "rte_bbdev_enc_op_alloc_bulk() failed");
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_enc_op(ops_enq, burst_sz, dequeued,
bufs->inputs,
&ops_enq[enq], burst_sz - enq);
} while (unlikely(burst_sz != enq));
+ enq_sw_last_time = rte_rdtsc_precise() - enq_start_time;
+
ret = get_bbdev_queue_stats(dev_id, queue_id, &stats);
TEST_ASSERT_SUCCESS(ret,
"Failed to get stats for queue (%u) of device (%u)",
queue_id, dev_id);
-
- enq_sw_last_time = rte_rdtsc_precise() - enq_start_time -
- stats.acc_offload_cycles;
+ enq_sw_last_time -= stats.acc_offload_cycles;
time_st->enq_sw_max_time = RTE_MAX(time_st->enq_sw_max_time,
enq_sw_last_time);
time_st->enq_sw_min_time = RTE_MIN(time_st->enq_sw_min_time,
burst_sz = num_to_process - dequeued;
ret = rte_bbdev_enc_op_alloc_bulk(mempool, ops_enq, burst_sz);
- TEST_ASSERT_SUCCESS(ret, "rte_bbdev_op_alloc_bulk() failed");
+ TEST_ASSERT_SUCCESS(ret,
+ "rte_bbdev_enc_op_alloc_bulk() failed");
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_ldpc_enc_op(ops_enq, burst_sz, dequeued,
bufs->inputs,
&ops_enq[enq], burst_sz - enq);
} while (unlikely(burst_sz != enq));
+ enq_sw_last_time = rte_rdtsc_precise() - enq_start_time;
ret = get_bbdev_queue_stats(dev_id, queue_id, &stats);
TEST_ASSERT_SUCCESS(ret,
"Failed to get stats for queue (%u) of device (%u)",
queue_id, dev_id);
- enq_sw_last_time = rte_rdtsc_precise() - enq_start_time -
- stats.acc_offload_cycles;
+ enq_sw_last_time -= stats.acc_offload_cycles;
time_st->enq_sw_max_time = RTE_MAX(time_st->enq_sw_max_time,
enq_sw_last_time);
time_st->enq_sw_min_time = RTE_MIN(time_st->enq_sw_min_time,