#include <stdint.h>
#include <string.h>
#include <stdlib.h>
-#include <smmintrin.h>
/* Verbs header. */
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
#include "mlx5_defs.h"
#include "mlx5_prm.h"
-#ifndef __INTEL_COMPILER
-#pragma GCC diagnostic ignored "-Wcast-qual"
+#ifdef RTE_ARCH_X86_64
+#include "mlx5_rxtx_vec_sse.h"
+#else
+#error "This should not be compiled if SIMD instructions are not supported."
#endif
-/**
- * Fill in buffer descriptors in a multi-packet send descriptor.
- *
- * @param txq
- * Pointer to TX queue structure.
- * @param dseg
- * Pointer to buffer descriptor to be writen.
- * @param pkts
- * Pointer to array of packets to be sent.
- * @param n
- * Number of packets to be filled.
- */
-static inline void
-txq_wr_dseg_v(struct mlx5_txq_data *txq, __m128i *dseg,
- struct rte_mbuf **pkts, unsigned int n)
-{
- unsigned int pos;
- uintptr_t addr;
- const __m128i shuf_mask_dseg =
- _mm_set_epi8(8, 9, 10, 11, /* addr, bswap64 */
- 12, 13, 14, 15,
- 7, 6, 5, 4, /* lkey */
- 0, 1, 2, 3 /* length, bswap32 */);
-#ifdef MLX5_PMD_SOFT_COUNTERS
- uint32_t tx_byte = 0;
-#endif
-
- for (pos = 0; pos < n; ++pos, ++dseg) {
- __m128i desc;
- struct rte_mbuf *pkt = pkts[pos];
-
- addr = rte_pktmbuf_mtod(pkt, uintptr_t);
- desc = _mm_set_epi32(addr >> 32,
- addr,
- mlx5_tx_mb2mr(txq, pkt),
- DATA_LEN(pkt));
- desc = _mm_shuffle_epi8(desc, shuf_mask_dseg);
- _mm_store_si128(dseg, desc);
-#ifdef MLX5_PMD_SOFT_COUNTERS
- tx_byte += DATA_LEN(pkt);
-#endif
- }
-#ifdef MLX5_PMD_SOFT_COUNTERS
- txq->stats.obytes += tx_byte;
-#endif
-}
-
/**
* Count the number of continuous single segment packets.
*
return pos;
}
-/**
- * Send multi-segmented packets until it encounters a single segment packet in
- * the pkts list.
- *
- * @param txq
- * Pointer to TX queue structure.
- * @param pkts
- * Pointer to array of packets to be sent.
- * @param pkts_n
- * Number of packets to be sent.
- *
- * @return
- * Number of packets successfully transmitted (<= pkts_n).
- */
-static uint16_t
-txq_scatter_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
- uint16_t pkts_n)
-{
- uint16_t elts_head = txq->elts_head;
- const uint16_t elts_n = 1 << txq->elts_n;
- const uint16_t elts_m = elts_n - 1;
- const uint16_t wq_n = 1 << txq->wqe_n;
- const uint16_t wq_mask = wq_n - 1;
- const unsigned int nb_dword_per_wqebb =
- MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
- const unsigned int nb_dword_in_hdr =
- sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
- unsigned int n;
- volatile struct mlx5_wqe *wqe = NULL;
-
- assert(elts_n > pkts_n);
- mlx5_tx_complete(txq);
- if (unlikely(!pkts_n))
- return 0;
- for (n = 0; n < pkts_n; ++n) {
- struct rte_mbuf *buf = pkts[n];
- unsigned int segs_n = buf->nb_segs;
- unsigned int ds = nb_dword_in_hdr;
- unsigned int len = PKT_LEN(buf);
- uint16_t wqe_ci = txq->wqe_ci;
- const __m128i shuf_mask_ctrl =
- _mm_set_epi8(15, 14, 13, 12,
- 8, 9, 10, 11, /* bswap32 */
- 4, 5, 6, 7, /* bswap32 */
- 0, 1, 2, 3 /* bswap32 */);
- uint8_t cs_flags = 0;
- uint16_t max_elts;
- uint16_t max_wqe;
- __m128i *t_wqe, *dseg;
- __m128i ctrl;
-
- assert(segs_n);
- max_elts = elts_n - (elts_head - txq->elts_tail);
- max_wqe = wq_n - (txq->wqe_ci - txq->wqe_pi);
- /*
- * A MPW session consumes 2 WQEs at most to
- * include MLX5_MPW_DSEG_MAX pointers.
- */
- if (segs_n == 1 ||
- max_elts < segs_n || max_wqe < 2)
- break;
- if (segs_n > MLX5_MPW_DSEG_MAX) {
- txq->stats.oerrors++;
- break;
- }
- wqe = &((volatile struct mlx5_wqe64 *)
- txq->wqes)[wqe_ci & wq_mask].hdr;
- if (buf->ol_flags &
- (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
- const uint64_t is_tunneled = buf->ol_flags &
- (PKT_TX_TUNNEL_GRE |
- PKT_TX_TUNNEL_VXLAN);
-
- if (is_tunneled && txq->tunnel_en) {
- cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
- MLX5_ETH_WQE_L4_INNER_CSUM;
- if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
- cs_flags |= MLX5_ETH_WQE_L3_CSUM;
- } else {
- cs_flags = MLX5_ETH_WQE_L3_CSUM |
- MLX5_ETH_WQE_L4_CSUM;
- }
- }
- /* Title WQEBB pointer. */
- t_wqe = (__m128i *)wqe;
- dseg = (__m128i *)(wqe + 1);
- do {
- if (!(ds++ % nb_dword_per_wqebb)) {
- dseg = (__m128i *)
- &((volatile struct mlx5_wqe64 *)
- txq->wqes)[++wqe_ci & wq_mask];
- }
- txq_wr_dseg_v(txq, dseg++, &buf, 1);
- (*txq->elts)[elts_head++ & elts_m] = buf;
- buf = buf->next;
- } while (--segs_n);
- ++wqe_ci;
- /* Fill CTRL in the header. */
- ctrl = _mm_set_epi32(0, 0, txq->qp_num_8s | ds,
- MLX5_OPC_MOD_MPW << 24 |
- txq->wqe_ci << 8 | MLX5_OPCODE_TSO);
- ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
- _mm_store_si128(t_wqe, ctrl);
- /* Fill ESEG in the header. */
- _mm_store_si128(t_wqe + 1,
- _mm_set_epi16(0, 0, 0, 0,
- rte_cpu_to_be_16(len), cs_flags,
- 0, 0));
- txq->wqe_ci = wqe_ci;
- }
- if (!n)
- return 0;
- txq->elts_comp += (uint16_t)(elts_head - txq->elts_head);
- txq->elts_head = elts_head;
- if (txq->elts_comp >= MLX5_TX_COMP_THRESH) {
- wqe->ctrl[2] = rte_cpu_to_be_32(8);
- wqe->ctrl[3] = txq->elts_head;
- txq->elts_comp = 0;
- ++txq->cq_pi;
- }
-#ifdef MLX5_PMD_SOFT_COUNTERS
- txq->stats.opackets += n;
-#endif
- mlx5_tx_dbrec(txq, wqe);
- return n;
-}
-
-/**
- * Send burst of packets with Enhanced MPW. If it encounters a multi-seg packet,
- * it returns to make it processed by txq_scatter_v(). All the packets in
- * the pkts list should be single segment packets having same offload flags.
- * This must be checked by txq_check_multiseg() and txq_calc_offload().
- *
- * @param txq
- * Pointer to TX queue structure.
- * @param pkts
- * Pointer to array of packets to be sent.
- * @param pkts_n
- * Number of packets to be sent (<= MLX5_VPMD_TX_MAX_BURST).
- * @param cs_flags
- * Checksum offload flags to be written in the descriptor.
- *
- * @return
- * Number of packets successfully transmitted (<= pkts_n).
- */
-static inline uint16_t
-txq_burst_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts, uint16_t pkts_n,
- uint8_t cs_flags)
-{
- struct rte_mbuf **elts;
- uint16_t elts_head = txq->elts_head;
- const uint16_t elts_n = 1 << txq->elts_n;
- const uint16_t elts_m = elts_n - 1;
- const unsigned int nb_dword_per_wqebb =
- MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
- const unsigned int nb_dword_in_hdr =
- sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
- unsigned int n = 0;
- unsigned int pos;
- uint16_t max_elts;
- uint16_t max_wqe;
- uint32_t comp_req = 0;
- const uint16_t wq_n = 1 << txq->wqe_n;
- const uint16_t wq_mask = wq_n - 1;
- uint16_t wq_idx = txq->wqe_ci & wq_mask;
- volatile struct mlx5_wqe64 *wq =
- &((volatile struct mlx5_wqe64 *)txq->wqes)[wq_idx];
- volatile struct mlx5_wqe *wqe = (volatile struct mlx5_wqe *)wq;
- const __m128i shuf_mask_ctrl =
- _mm_set_epi8(15, 14, 13, 12,
- 8, 9, 10, 11, /* bswap32 */
- 4, 5, 6, 7, /* bswap32 */
- 0, 1, 2, 3 /* bswap32 */);
- __m128i *t_wqe, *dseg;
- __m128i ctrl;
-
- /* Make sure all packets can fit into a single WQE. */
- assert(elts_n > pkts_n);
- mlx5_tx_complete(txq);
- max_elts = (elts_n - (elts_head - txq->elts_tail));
- max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
- pkts_n = RTE_MIN((unsigned int)RTE_MIN(pkts_n, max_wqe), max_elts);
- assert(pkts_n <= MLX5_DSEG_MAX - nb_dword_in_hdr);
- if (unlikely(!pkts_n))
- return 0;
- elts = &(*txq->elts)[elts_head & elts_m];
- /* Loop for available tailroom first. */
- n = RTE_MIN(elts_n - (elts_head & elts_m), pkts_n);
- for (pos = 0; pos < (n & -2); pos += 2)
- _mm_storeu_si128((__m128i *)&elts[pos],
- _mm_loadu_si128((__m128i *)&pkts[pos]));
- if (n & 1)
- elts[pos] = pkts[pos];
- /* Check if it crosses the end of the queue. */
- if (unlikely(n < pkts_n)) {
- elts = &(*txq->elts)[0];
- for (pos = 0; pos < pkts_n - n; ++pos)
- elts[pos] = pkts[n + pos];
- }
- txq->elts_head += pkts_n;
- /* Save title WQEBB pointer. */
- t_wqe = (__m128i *)wqe;
- dseg = (__m128i *)(wqe + 1);
- /* Calculate the number of entries to the end. */
- n = RTE_MIN(
- (wq_n - wq_idx) * nb_dword_per_wqebb - nb_dword_in_hdr,
- pkts_n);
- /* Fill DSEGs. */
- txq_wr_dseg_v(txq, dseg, pkts, n);
- /* Check if it crosses the end of the queue. */
- if (n < pkts_n) {
- dseg = (__m128i *)txq->wqes;
- txq_wr_dseg_v(txq, dseg, &pkts[n], pkts_n - n);
- }
- if (txq->elts_comp + pkts_n < MLX5_TX_COMP_THRESH) {
- txq->elts_comp += pkts_n;
- } else {
- /* Request a completion. */
- txq->elts_comp = 0;
- ++txq->cq_pi;
- comp_req = 8;
- }
- /* Fill CTRL in the header. */
- ctrl = _mm_set_epi32(txq->elts_head, comp_req,
- txq->qp_num_8s | (pkts_n + 2),
- MLX5_OPC_MOD_ENHANCED_MPSW << 24 |
- txq->wqe_ci << 8 | MLX5_OPCODE_ENHANCED_MPSW);
- ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
- _mm_store_si128(t_wqe, ctrl);
- /* Fill ESEG in the header. */
- _mm_store_si128(t_wqe + 1,
- _mm_set_epi8(0, 0, 0, 0,
- 0, 0, 0, 0,
- 0, 0, 0, cs_flags,
- 0, 0, 0, 0));
-#ifdef MLX5_PMD_SOFT_COUNTERS
- txq->stats.opackets += pkts_n;
-#endif
- txq->wqe_ci += (nb_dword_in_hdr + pkts_n + (nb_dword_per_wqebb - 1)) /
- nb_dword_per_wqebb;
- /* Ring QP doorbell. */
- mlx5_tx_dbrec(txq, wqe);
- return pkts_n;
-}
-
/**
* DPDK callback for vectorized TX.
*
return nb_tx;
}
-/**
- * Store free buffers to RX SW ring.
- *
- * @param rxq
- * Pointer to RX queue structure.
- * @param pkts
- * Pointer to array of packets to be stored.
- * @param pkts_n
- * Number of packets to be stored.
- */
-static inline void
-rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
-{
- const uint16_t q_mask = (1 << rxq->elts_n) - 1;
- struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
- unsigned int pos;
- uint16_t p = n & -2;
-
- for (pos = 0; pos < p; pos += 2) {
- __m128i mbp;
-
- mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
- _mm_storeu_si128((__m128i *)&pkts[pos], mbp);
- }
- if (n & 1)
- pkts[pos] = elts[pos];
-}
-
-/**
- * Replenish buffers for RX in bulk.
- *
- * @param rxq
- * Pointer to RX queue structure.
- * @param n
- * Number of buffers to be replenished.
- */
-static inline void
-rxq_replenish_bulk_mbuf(struct mlx5_rxq_data *rxq, uint16_t n)
-{
- const uint16_t q_n = 1 << rxq->elts_n;
- const uint16_t q_mask = q_n - 1;
- const uint16_t elts_idx = rxq->rq_ci & q_mask;
- struct rte_mbuf **elts = &(*rxq->elts)[elts_idx];
- volatile struct mlx5_wqe_data_seg *wq = &(*rxq->wqes)[elts_idx];
- unsigned int i;
-
- assert(n >= MLX5_VPMD_RXQ_RPLNSH_THRESH);
- assert(n <= (uint16_t)(q_n - (rxq->rq_ci - rxq->rq_pi)));
- assert(MLX5_VPMD_RXQ_RPLNSH_THRESH > MLX5_VPMD_DESCS_PER_LOOP);
- /* Not to cross queue end. */
- n = RTE_MIN(n - MLX5_VPMD_DESCS_PER_LOOP, q_n - elts_idx);
- if (rte_mempool_get_bulk(rxq->mp, (void *)elts, n) < 0) {
- rxq->stats.rx_nombuf += n;
- return;
- }
- for (i = 0; i < n; ++i)
- wq[i].addr = rte_cpu_to_be_64((uintptr_t)elts[i]->buf_addr +
- RTE_PKTMBUF_HEADROOM);
- rxq->rq_ci += n;
- rte_io_wmb();
- *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
-}
-
-/**
- * Decompress a compressed completion and fill in mbufs in RX SW ring with data
- * extracted from the title completion descriptor.
- *
- * @param rxq
- * Pointer to RX queue structure.
- * @param cq
- * Pointer to completion array having a compressed completion at first.
- * @param elts
- * Pointer to SW ring to be filled. The first mbuf has to be pre-built from
- * the title completion descriptor to be copied to the rest of mbufs.
- */
-static inline void
-rxq_cq_decompress_v(struct mlx5_rxq_data *rxq,
- volatile struct mlx5_cqe *cq,
- struct rte_mbuf **elts)
-{
- volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
- struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
- unsigned int pos;
- unsigned int i;
- unsigned int inv = 0;
- /* Mask to shuffle from extracted mini CQE to mbuf. */
- const __m128i shuf_mask1 =
- _mm_set_epi8(0, 1, 2, 3, /* rss, bswap32 */
- -1, -1, /* skip vlan_tci */
- 6, 7, /* data_len, bswap16 */
- -1, -1, 6, 7, /* pkt_len, bswap16 */
- -1, -1, -1, -1 /* skip packet_type */);
- const __m128i shuf_mask2 =
- _mm_set_epi8(8, 9, 10, 11, /* rss, bswap32 */
- -1, -1, /* skip vlan_tci */
- 14, 15, /* data_len, bswap16 */
- -1, -1, 14, 15, /* pkt_len, bswap16 */
- -1, -1, -1, -1 /* skip packet_type */);
- /* Restore the compressed count. Must be 16 bits. */
- const uint16_t mcqe_n = t_pkt->data_len +
- (rxq->crc_present * ETHER_CRC_LEN);
- const __m128i rearm =
- _mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
- const __m128i rxdf =
- _mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
- const __m128i crc_adj =
- _mm_set_epi16(0, 0, 0,
- rxq->crc_present * ETHER_CRC_LEN,
- 0,
- rxq->crc_present * ETHER_CRC_LEN,
- 0, 0);
- const uint32_t flow_tag = t_pkt->hash.fdir.hi;
-#ifdef MLX5_PMD_SOFT_COUNTERS
- const __m128i zero = _mm_setzero_si128();
- const __m128i ones = _mm_cmpeq_epi32(zero, zero);
- uint32_t rcvd_byte = 0;
- /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
- const __m128i len_shuf_mask =
- _mm_set_epi8(-1, -1, -1, -1,
- -1, -1, -1, -1,
- 14, 15, 6, 7,
- 10, 11, 2, 3);
-#endif
-
- /*
- * Not to overflow elts array. Decompress next time after mbuf
- * replenishment.
- */
- if (unlikely(mcqe_n + MLX5_VPMD_DESCS_PER_LOOP >
- (uint16_t)(rxq->rq_ci - rxq->cq_ci)))
- return;
- /*
- * A. load mCQEs into a 128bit register.
- * B. store rearm data to mbuf.
- * C. combine data from mCQEs with rx_descriptor_fields1.
- * D. store rx_descriptor_fields1.
- * E. store flow tag (rte_flow mark).
- */
- for (pos = 0; pos < mcqe_n; ) {
- __m128i mcqe1, mcqe2;
- __m128i rxdf1, rxdf2;
-#ifdef MLX5_PMD_SOFT_COUNTERS
- __m128i byte_cnt, invalid_mask;
-#endif
-
- if (!(pos & 0x7) && pos + 8 < mcqe_n)
- rte_prefetch0((void *)(cq + pos + 8));
- /* A.1 load mCQEs into a 128bit register. */
- mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
- mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
- /* B.1 store rearm data to mbuf. */
- _mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
- _mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
- /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
- rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
- rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
- rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
- rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
- rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
- rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
- /* D.1 store rx_descriptor_fields1. */
- _mm_storeu_si128((__m128i *)
- &elts[pos]->rx_descriptor_fields1,
- rxdf1);
- _mm_storeu_si128((__m128i *)
- &elts[pos + 1]->rx_descriptor_fields1,
- rxdf2);
- /* B.1 store rearm data to mbuf. */
- _mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
- _mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
- /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
- rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
- rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
- rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
- rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
- rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
- rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
- /* D.1 store rx_descriptor_fields1. */
- _mm_storeu_si128((__m128i *)
- &elts[pos + 2]->rx_descriptor_fields1,
- rxdf1);
- _mm_storeu_si128((__m128i *)
- &elts[pos + 3]->rx_descriptor_fields1,
- rxdf2);
-#ifdef MLX5_PMD_SOFT_COUNTERS
- invalid_mask = _mm_set_epi64x(0,
- (mcqe_n - pos) *
- sizeof(uint16_t) * 8);
- invalid_mask = _mm_sll_epi64(ones, invalid_mask);
- mcqe1 = _mm_srli_si128(mcqe1, 4);
- byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
- byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
- byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
- byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
- rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
-#endif
- if (rxq->mark) {
- /* E.1 store flow tag (rte_flow mark). */
- elts[pos]->hash.fdir.hi = flow_tag;
- elts[pos + 1]->hash.fdir.hi = flow_tag;
- elts[pos + 2]->hash.fdir.hi = flow_tag;
- elts[pos + 3]->hash.fdir.hi = flow_tag;
- }
- pos += MLX5_VPMD_DESCS_PER_LOOP;
- /* Move to next CQE and invalidate consumed CQEs. */
- if (!(pos & 0x7) && pos < mcqe_n) {
- mcq = (void *)(cq + pos);
- for (i = 0; i < 8; ++i)
- cq[inv++].op_own = MLX5_CQE_INVALIDATE;
- }
- }
- /* Invalidate the rest of CQEs. */
- for (; inv < mcqe_n; ++inv)
- cq[inv].op_own = MLX5_CQE_INVALIDATE;
-#ifdef MLX5_PMD_SOFT_COUNTERS
- rxq->stats.ipackets += mcqe_n;
- rxq->stats.ibytes += rcvd_byte;
-#endif
- rxq->cq_ci += mcqe_n;
-}
-
-/**
- * Calculate packet type and offload flag for mbuf and store it.
- *
- * @param rxq
- * Pointer to RX queue structure.
- * @param cqes[4]
- * Array of four 16bytes completions extracted from the original completion
- * descriptor.
- * @param op_err
- * Opcode vector having responder error status. Each field is 4B.
- * @param pkts
- * Pointer to array of packets to be filled.
- */
-static inline void
-rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
- __m128i op_err, struct rte_mbuf **pkts)
-{
- __m128i pinfo0, pinfo1;
- __m128i pinfo, ptype;
- __m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH);
- __m128i cv_flags;
- const __m128i zero = _mm_setzero_si128();
- const __m128i ptype_mask =
- _mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
- const __m128i ptype_ol_mask =
- _mm_set_epi32(0x106, 0x106, 0x106, 0x106);
- const __m128i pinfo_mask =
- _mm_set_epi32(0x3, 0x3, 0x3, 0x3);
- const __m128i cv_flag_sel =
- _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
- (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
- PKT_RX_L4_CKSUM_GOOD) >> 1),
- 0,
- (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
- 0,
- (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
- (uint8_t)(PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED),
- 0);
- const __m128i cv_mask =
- _mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
- PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
- PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
- PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
- PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
- PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
- PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
- PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED);
- const __m128i mbuf_init =
- _mm_loadl_epi64((__m128i *)&rxq->mbuf_initializer);
- __m128i rearm0, rearm1, rearm2, rearm3;
-
- /* Extract pkt_info field. */
- pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
- pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
- pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
- /* Extract hdr_type_etc field. */
- pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
- pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
- ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
- if (rxq->mark) {
- const __m128i pinfo_ft_mask =
- _mm_set_epi32(0xffffff00, 0xffffff00,
- 0xffffff00, 0xffffff00);
- const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
- const __m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
- __m128i flow_tag, invalid_mask;
-
- flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
- /* Check if flow tag is non-zero then set PKT_RX_FDIR. */
- invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
- ol_flags = _mm_or_si128(ol_flags,
- _mm_andnot_si128(invalid_mask,
- fdir_flags));
- /* Mask out invalid entries. */
- flow_tag = _mm_andnot_si128(invalid_mask, flow_tag);
- /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
- ol_flags = _mm_or_si128(ol_flags,
- _mm_andnot_si128(
- _mm_cmpeq_epi32(flow_tag,
- pinfo_ft_mask),
- fdir_id_flags));
- }
- /*
- * Merge the two fields to generate the following:
- * bit[1] = l3_ok
- * bit[2] = l4_ok
- * bit[8] = cv
- * bit[11:10] = l3_hdr_type
- * bit[14:12] = l4_hdr_type
- * bit[15] = ip_frag
- * bit[16] = tunneled
- * bit[17] = outer_l3_type
- */
- ptype = _mm_and_si128(ptype, ptype_mask);
- pinfo = _mm_and_si128(pinfo, pinfo_mask);
- pinfo = _mm_slli_epi32(pinfo, 16);
- /* Make pinfo has merged fields for ol_flags calculation. */
- pinfo = _mm_or_si128(ptype, pinfo);
- ptype = _mm_srli_epi32(pinfo, 10);
- ptype = _mm_packs_epi32(ptype, zero);
- /* Errored packets will have RTE_PTYPE_ALL_MASK. */
- op_err = _mm_srli_epi16(op_err, 8);
- ptype = _mm_or_si128(ptype, op_err);
- pkts[0]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 0)];
- pkts[1]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 2)];
- pkts[2]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 4)];
- pkts[3]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 6)];
- /* Fill flags for checksum and VLAN. */
- pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
- pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
- /* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
- cv_flags = _mm_slli_epi32(pinfo, 9);
- cv_flags = _mm_or_si128(pinfo, cv_flags);
- /* Move back flags to start from byte[0]. */
- cv_flags = _mm_srli_epi32(cv_flags, 8);
- /* Mask out garbage bits. */
- cv_flags = _mm_and_si128(cv_flags, cv_mask);
- /* Merge to ol_flags. */
- ol_flags = _mm_or_si128(ol_flags, cv_flags);
- /* Merge mbuf_init and ol_flags. */
- rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
- rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
- rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
- rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
- /* Write 8B rearm_data and 8B ol_flags. */
- _mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
- _mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
- _mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
- _mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
-}
-
/**
* Skip error packets.
*
return n;
}
-/**
- * Receive burst of packets. An errored completion also consumes a mbuf, but the
- * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
- * before returning to application.
- *
- * @param rxq
- * Pointer to RX queue structure.
- * @param[out] pkts
- * Array to store received packets.
- * @param pkts_n
- * Maximum number of packets in array.
- *
- * @return
- * Number of packets received including errors (<= pkts_n).
- */
-static inline uint16_t
-rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
-{
- const uint16_t q_n = 1 << rxq->cqe_n;
- const uint16_t q_mask = q_n - 1;
- volatile struct mlx5_cqe *cq;
- struct rte_mbuf **elts;
- unsigned int pos;
- uint64_t n;
- uint16_t repl_n;
- uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
- uint16_t nocmp_n = 0;
- uint16_t rcvd_pkt = 0;
- unsigned int cq_idx = rxq->cq_ci & q_mask;
- unsigned int elts_idx;
- unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
- const __m128i owner_check =
- _mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
- const __m128i opcode_check =
- _mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
- const __m128i format_check =
- _mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
- const __m128i resp_err_check =
- _mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
-#ifdef MLX5_PMD_SOFT_COUNTERS
- uint32_t rcvd_byte = 0;
- /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
- const __m128i len_shuf_mask =
- _mm_set_epi8(-1, -1, -1, -1,
- -1, -1, -1, -1,
- 12, 13, 8, 9,
- 4, 5, 0, 1);
-#endif
- /* Mask to shuffle from extracted CQE to mbuf. */
- const __m128i shuf_mask =
- _mm_set_epi8(-1, 3, 2, 1, /* fdir.hi */
- 12, 13, 14, 15, /* rss, bswap32 */
- 10, 11, /* vlan_tci, bswap16 */
- 4, 5, /* data_len, bswap16 */
- -1, -1, /* zero out 2nd half of pkt_len */
- 4, 5 /* pkt_len, bswap16 */);
- /* Mask to blend from the last Qword to the first DQword. */
- const __m128i blend_mask =
- _mm_set_epi8(-1, -1, -1, -1,
- -1, -1, -1, -1,
- 0, 0, 0, 0,
- 0, 0, 0, -1);
- const __m128i zero = _mm_setzero_si128();
- const __m128i ones = _mm_cmpeq_epi32(zero, zero);
- const __m128i crc_adj =
- _mm_set_epi16(0, 0, 0, 0, 0,
- rxq->crc_present * ETHER_CRC_LEN,
- 0,
- rxq->crc_present * ETHER_CRC_LEN);
- const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
-
- assert(rxq->sges_n == 0);
- assert(rxq->cqe_n == rxq->elts_n);
- cq = &(*rxq->cqes)[cq_idx];
- rte_prefetch0(cq);
- rte_prefetch0(cq + 1);
- rte_prefetch0(cq + 2);
- rte_prefetch0(cq + 3);
- pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
- /*
- * Order of indexes:
- * rq_ci >= cq_ci >= rq_pi
- * Definition of indexes:
- * rq_ci - cq_ci := # of buffers owned by HW (posted).
- * cq_ci - rq_pi := # of buffers not returned to app (decompressed).
- * N - (rq_ci - rq_pi) := # of buffers consumed (to be replenished).
- */
- repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
- if (repl_n >= MLX5_VPMD_RXQ_RPLNSH_THRESH)
- rxq_replenish_bulk_mbuf(rxq, repl_n);
- /* See if there're unreturned mbufs from compressed CQE. */
- rcvd_pkt = rxq->cq_ci - rxq->rq_pi;
- if (rcvd_pkt > 0) {
- rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
- rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
- rxq->rq_pi += rcvd_pkt;
- pkts += rcvd_pkt;
- }
- elts_idx = rxq->rq_pi & q_mask;
- elts = &(*rxq->elts)[elts_idx];
- pkts_n = RTE_MIN(pkts_n - rcvd_pkt,
- (uint16_t)(rxq->rq_ci - rxq->cq_ci));
- /* Not to overflow pkts/elts array. */
- pkts_n = RTE_ALIGN_FLOOR(pkts_n, MLX5_VPMD_DESCS_PER_LOOP);
- /* Not to cross queue end. */
- pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
- if (!pkts_n)
- return rcvd_pkt;
- /* At this point, there shouldn't be any remained packets. */
- assert(rxq->rq_pi == rxq->cq_ci);
- /*
- * A. load first Qword (8bytes) in one loop.
- * B. copy 4 mbuf pointers from elts ring to returing pkts.
- * C. load remained CQE data and extract necessary fields.
- * Final 16bytes cqes[] extracted from original 64bytes CQE has the
- * following structure:
- * struct {
- * uint8_t pkt_info;
- * uint8_t flow_tag[3];
- * uint16_t byte_cnt;
- * uint8_t rsvd4;
- * uint8_t op_own;
- * uint16_t hdr_type_etc;
- * uint16_t vlan_info;
- * uint32_t rx_has_res;
- * } c;
- * D. fill in mbuf.
- * E. get valid CQEs.
- * F. find compressed CQE.
- */
- for (pos = 0;
- pos < pkts_n;
- pos += MLX5_VPMD_DESCS_PER_LOOP) {
- __m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
- __m128i cqe_tmp1, cqe_tmp2;
- __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
- __m128i op_own, op_own_tmp1, op_own_tmp2;
- __m128i opcode, owner_mask, invalid_mask;
- __m128i comp_mask;
- __m128i mask;
-#ifdef MLX5_PMD_SOFT_COUNTERS
- __m128i byte_cnt;
-#endif
- __m128i mbp1, mbp2;
- __m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
- unsigned int p1, p2, p3;
-
- /* Prefetch next 4 CQEs. */
- if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
- rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
- rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
- rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
- rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
- }
- /* A.0 do not cross the end of CQ. */
- mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
- mask = _mm_sll_epi64(ones, mask);
- p = _mm_andnot_si128(mask, p);
- /* A.1 load cqes. */
- p3 = _mm_extract_epi16(p, 3);
- cqes[3] = _mm_loadl_epi64((__m128i *)
- &cq[pos + p3].sop_drop_qpn);
- rte_compiler_barrier();
- p2 = _mm_extract_epi16(p, 2);
- cqes[2] = _mm_loadl_epi64((__m128i *)
- &cq[pos + p2].sop_drop_qpn);
- rte_compiler_barrier();
- /* B.1 load mbuf pointers. */
- mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
- mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
- /* A.1 load a block having op_own. */
- p1 = _mm_extract_epi16(p, 1);
- cqes[1] = _mm_loadl_epi64((__m128i *)
- &cq[pos + p1].sop_drop_qpn);
- rte_compiler_barrier();
- cqes[0] = _mm_loadl_epi64((__m128i *)
- &cq[pos].sop_drop_qpn);
- /* B.2 copy mbuf pointers. */
- _mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
- _mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
- rte_compiler_barrier();
- /* C.1 load remained CQE data and extract necessary fields. */
- cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
- cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
- cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
- cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
- cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].rsvd1[3]);
- cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].rsvd1[3]);
- cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
- cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
- cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd2[10]);
- cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd2[10]);
- cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
- cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
- /* C.2 generate final structure for mbuf with swapping bytes. */
- pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
- pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
- /* C.3 adjust CRC length. */
- pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
- pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
- /* C.4 adjust flow mark. */
- pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
- pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
- /* D.1 fill in mbuf - rx_descriptor_fields1. */
- _mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
- _mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
- /* E.1 extract op_own field. */
- op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
- /* C.1 load remained CQE data and extract necessary fields. */
- cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
- cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
- cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
- cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
- cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].rsvd1[3]);
- cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].rsvd1[3]);
- cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
- cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
- cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd2[10]);
- cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd2[10]);
- cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
- cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
- /* C.2 generate final structure for mbuf with swapping bytes. */
- pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
- pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
- /* C.3 adjust CRC length. */
- pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
- pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
- /* C.4 adjust flow mark. */
- pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
- pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
- /* E.1 extract op_own byte. */
- op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
- op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
- /* D.1 fill in mbuf - rx_descriptor_fields1. */
- _mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
- _mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
- /* E.2 flip owner bit to mark CQEs from last round. */
- owner_mask = _mm_and_si128(op_own, owner_check);
- if (ownership)
- owner_mask = _mm_xor_si128(owner_mask, owner_check);
- owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
- owner_mask = _mm_packs_epi32(owner_mask, zero);
- /* E.3 get mask for invalidated CQEs. */
- opcode = _mm_and_si128(op_own, opcode_check);
- invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
- invalid_mask = _mm_packs_epi32(invalid_mask, zero);
- /* E.4 mask out beyond boundary. */
- invalid_mask = _mm_or_si128(invalid_mask, mask);
- /* E.5 merge invalid_mask with invalid owner. */
- invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
- /* F.1 find compressed CQE format. */
- comp_mask = _mm_and_si128(op_own, format_check);
- comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
- comp_mask = _mm_packs_epi32(comp_mask, zero);
- /* F.2 mask out invalid entries. */
- comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
- comp_idx = _mm_cvtsi128_si64(comp_mask);
- /* F.3 get the first compressed CQE. */
- comp_idx = comp_idx ?
- __builtin_ctzll(comp_idx) /
- (sizeof(uint16_t) * 8) :
- MLX5_VPMD_DESCS_PER_LOOP;
- /* E.6 mask out entries after the compressed CQE. */
- mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
- mask = _mm_sll_epi64(ones, mask);
- invalid_mask = _mm_or_si128(invalid_mask, mask);
- /* E.7 count non-compressed valid CQEs. */
- n = _mm_cvtsi128_si64(invalid_mask);
- n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
- MLX5_VPMD_DESCS_PER_LOOP;
- nocmp_n += n;
- /* D.2 get the final invalid mask. */
- mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
- mask = _mm_sll_epi64(ones, mask);
- invalid_mask = _mm_or_si128(invalid_mask, mask);
- /* D.3 check error in opcode. */
- opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
- opcode = _mm_packs_epi32(opcode, zero);
- opcode = _mm_andnot_si128(invalid_mask, opcode);
- /* D.4 mark if any error is set */
- rxq->pending_err |= !!_mm_cvtsi128_si64(opcode);
- /* D.5 fill in mbuf - rearm_data and packet_type. */
- rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
-#ifdef MLX5_PMD_SOFT_COUNTERS
- /* Add up received bytes count. */
- byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
- byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
- byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
- rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
-#endif
- /*
- * Break the loop unless more valid CQE is expected, or if
- * there's a compressed CQE.
- */
- if (n != MLX5_VPMD_DESCS_PER_LOOP)
- break;
- }
- /* If no new CQE seen, return without updating cq_db. */
- if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP))
- return rcvd_pkt;
- /* Update the consumer indexes for non-compressed CQEs. */
- assert(nocmp_n <= pkts_n);
- rxq->cq_ci += nocmp_n;
- rxq->rq_pi += nocmp_n;
- rcvd_pkt += nocmp_n;
-#ifdef MLX5_PMD_SOFT_COUNTERS
- rxq->stats.ipackets += nocmp_n;
- rxq->stats.ibytes += rcvd_byte;
-#endif
- /* Decompress the last CQE if compressed. */
- if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
- assert(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
- rxq_cq_decompress_v(rxq, &cq[nocmp_n], &elts[nocmp_n]);
- /* Return more packets if needed. */
- if (nocmp_n < pkts_n) {
- uint16_t n = rxq->cq_ci - rxq->rq_pi;
-
- n = RTE_MIN(n, pkts_n - nocmp_n);
- rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
- rxq->rq_pi += n;
- rcvd_pkt += n;
- }
- }
- rte_compiler_barrier();
- *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
- return rcvd_pkt;
-}
-
/**
* DPDK callback for vectorized RX.
*
S_ASSERT_MLX5_CQE(offsetof(struct mlx5_cqe, op_own) ==
offsetof(struct mlx5_cqe, sop_drop_qpn) + 7);
+/**
+ * Replenish buffers for RX in bulk.
+ *
+ * @param rxq
+ * Pointer to RX queue structure.
+ * @param n
+ * Number of buffers to be replenished.
+ */
+static inline void
+mlx5_rx_replenish_bulk_mbuf(struct mlx5_rxq_data *rxq, uint16_t n)
+{
+ const uint16_t q_n = 1 << rxq->elts_n;
+ const uint16_t q_mask = q_n - 1;
+ const uint16_t elts_idx = rxq->rq_ci & q_mask;
+ struct rte_mbuf **elts = &(*rxq->elts)[elts_idx];
+ volatile struct mlx5_wqe_data_seg *wq = &(*rxq->wqes)[elts_idx];
+ unsigned int i;
+
+ assert(n >= MLX5_VPMD_RXQ_RPLNSH_THRESH);
+ assert(n <= (uint16_t)(q_n - (rxq->rq_ci - rxq->rq_pi)));
+ assert(MLX5_VPMD_RXQ_RPLNSH_THRESH > MLX5_VPMD_DESCS_PER_LOOP);
+ /* Not to cross queue end. */
+ n = RTE_MIN(n - MLX5_VPMD_DESCS_PER_LOOP, q_n - elts_idx);
+ if (rte_mempool_get_bulk(rxq->mp, (void *)elts, n) < 0) {
+ rxq->stats.rx_nombuf += n;
+ return;
+ }
+ for (i = 0; i < n; ++i)
+ wq[i].addr = rte_cpu_to_be_64((uintptr_t)elts[i]->buf_addr +
+ RTE_PKTMBUF_HEADROOM);
+ rxq->rq_ci += n;
+ rte_io_wmb();
+ *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
+}
+
#endif /* RTE_PMD_MLX5_RXTX_VEC_H_ */
--- /dev/null
+/*-
+ * BSD LICENSE
+ *
+ * Copyright 2017 6WIND S.A.
+ * Copyright 2017 Mellanox.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of 6WIND S.A. nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
+#define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
+
+#include <assert.h>
+#include <stdint.h>
+#include <string.h>
+#include <stdlib.h>
+#include <smmintrin.h>
+
+#include <rte_mbuf.h>
+#include <rte_mempool.h>
+#include <rte_prefetch.h>
+
+#include "mlx5.h"
+#include "mlx5_utils.h"
+#include "mlx5_rxtx.h"
+#include "mlx5_rxtx_vec.h"
+#include "mlx5_autoconf.h"
+#include "mlx5_defs.h"
+#include "mlx5_prm.h"
+
+#ifndef __INTEL_COMPILER
+#pragma GCC diagnostic ignored "-Wcast-qual"
+#endif
+
+/**
+ * Fill in buffer descriptors in a multi-packet send descriptor.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param dseg
+ * Pointer to buffer descriptor to be writen.
+ * @param pkts
+ * Pointer to array of packets to be sent.
+ * @param n
+ * Number of packets to be filled.
+ */
+static inline void
+txq_wr_dseg_v(struct mlx5_txq_data *txq, __m128i *dseg,
+ struct rte_mbuf **pkts, unsigned int n)
+{
+ unsigned int pos;
+ uintptr_t addr;
+ const __m128i shuf_mask_dseg =
+ _mm_set_epi8(8, 9, 10, 11, /* addr, bswap64 */
+ 12, 13, 14, 15,
+ 7, 6, 5, 4, /* lkey */
+ 0, 1, 2, 3 /* length, bswap32 */);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ uint32_t tx_byte = 0;
+#endif
+
+ for (pos = 0; pos < n; ++pos, ++dseg) {
+ __m128i desc;
+ struct rte_mbuf *pkt = pkts[pos];
+
+ addr = rte_pktmbuf_mtod(pkt, uintptr_t);
+ desc = _mm_set_epi32(addr >> 32,
+ addr,
+ mlx5_tx_mb2mr(txq, pkt),
+ DATA_LEN(pkt));
+ desc = _mm_shuffle_epi8(desc, shuf_mask_dseg);
+ _mm_store_si128(dseg, desc);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ tx_byte += DATA_LEN(pkt);
+#endif
+ }
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ txq->stats.obytes += tx_byte;
+#endif
+}
+
+/**
+ * Send multi-segmented packets until it encounters a single segment packet in
+ * the pkts list.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param pkts
+ * Pointer to array of packets to be sent.
+ * @param pkts_n
+ * Number of packets to be sent.
+ *
+ * @return
+ * Number of packets successfully transmitted (<= pkts_n).
+ */
+static uint16_t
+txq_scatter_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
+ uint16_t pkts_n)
+{
+ uint16_t elts_head = txq->elts_head;
+ const uint16_t elts_n = 1 << txq->elts_n;
+ const uint16_t elts_m = elts_n - 1;
+ const uint16_t wq_n = 1 << txq->wqe_n;
+ const uint16_t wq_mask = wq_n - 1;
+ const unsigned int nb_dword_per_wqebb =
+ MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
+ const unsigned int nb_dword_in_hdr =
+ sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
+ unsigned int n;
+ volatile struct mlx5_wqe *wqe = NULL;
+
+ assert(elts_n > pkts_n);
+ mlx5_tx_complete(txq);
+ if (unlikely(!pkts_n))
+ return 0;
+ for (n = 0; n < pkts_n; ++n) {
+ struct rte_mbuf *buf = pkts[n];
+ unsigned int segs_n = buf->nb_segs;
+ unsigned int ds = nb_dword_in_hdr;
+ unsigned int len = PKT_LEN(buf);
+ uint16_t wqe_ci = txq->wqe_ci;
+ const __m128i shuf_mask_ctrl =
+ _mm_set_epi8(15, 14, 13, 12,
+ 8, 9, 10, 11, /* bswap32 */
+ 4, 5, 6, 7, /* bswap32 */
+ 0, 1, 2, 3 /* bswap32 */);
+ uint8_t cs_flags = 0;
+ uint16_t max_elts;
+ uint16_t max_wqe;
+ __m128i *t_wqe, *dseg;
+ __m128i ctrl;
+
+ assert(segs_n);
+ max_elts = elts_n - (elts_head - txq->elts_tail);
+ max_wqe = wq_n - (txq->wqe_ci - txq->wqe_pi);
+ /*
+ * A MPW session consumes 2 WQEs at most to
+ * include MLX5_MPW_DSEG_MAX pointers.
+ */
+ if (segs_n == 1 ||
+ max_elts < segs_n || max_wqe < 2)
+ break;
+ if (segs_n > MLX5_MPW_DSEG_MAX) {
+ txq->stats.oerrors++;
+ break;
+ }
+ wqe = &((volatile struct mlx5_wqe64 *)
+ txq->wqes)[wqe_ci & wq_mask].hdr;
+ if (buf->ol_flags &
+ (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
+ const uint64_t is_tunneled =
+ buf->ol_flags & (PKT_TX_TUNNEL_GRE |
+ PKT_TX_TUNNEL_VXLAN);
+
+ if (is_tunneled && txq->tunnel_en) {
+ cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
+ MLX5_ETH_WQE_L4_INNER_CSUM;
+ if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
+ cs_flags |= MLX5_ETH_WQE_L3_CSUM;
+ } else {
+ cs_flags = MLX5_ETH_WQE_L3_CSUM |
+ MLX5_ETH_WQE_L4_CSUM;
+ }
+ }
+ /* Title WQEBB pointer. */
+ t_wqe = (__m128i *)wqe;
+ dseg = (__m128i *)(wqe + 1);
+ do {
+ if (!(ds++ % nb_dword_per_wqebb)) {
+ dseg = (__m128i *)
+ &((volatile struct mlx5_wqe64 *)
+ txq->wqes)[++wqe_ci & wq_mask];
+ }
+ txq_wr_dseg_v(txq, dseg++, &buf, 1);
+ (*txq->elts)[elts_head++ & elts_m] = buf;
+ buf = buf->next;
+ } while (--segs_n);
+ ++wqe_ci;
+ /* Fill CTRL in the header. */
+ ctrl = _mm_set_epi32(0, 0, txq->qp_num_8s | ds,
+ MLX5_OPC_MOD_MPW << 24 |
+ txq->wqe_ci << 8 | MLX5_OPCODE_TSO);
+ ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
+ _mm_store_si128(t_wqe, ctrl);
+ /* Fill ESEG in the header. */
+ _mm_store_si128(t_wqe + 1,
+ _mm_set_epi16(0, 0, 0, 0,
+ rte_cpu_to_be_16(len), cs_flags,
+ 0, 0));
+ txq->wqe_ci = wqe_ci;
+ }
+ if (!n)
+ return 0;
+ txq->elts_comp += (uint16_t)(elts_head - txq->elts_head);
+ txq->elts_head = elts_head;
+ if (txq->elts_comp >= MLX5_TX_COMP_THRESH) {
+ wqe->ctrl[2] = rte_cpu_to_be_32(8);
+ wqe->ctrl[3] = txq->elts_head;
+ txq->elts_comp = 0;
+ ++txq->cq_pi;
+ }
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ txq->stats.opackets += n;
+#endif
+ mlx5_tx_dbrec(txq, wqe);
+ return n;
+}
+
+/**
+ * Send burst of packets with Enhanced MPW. If it encounters a multi-seg packet,
+ * it returns to make it processed by txq_scatter_v(). All the packets in
+ * the pkts list should be single segment packets having same offload flags.
+ * This must be checked by txq_check_multiseg() and txq_calc_offload().
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param pkts
+ * Pointer to array of packets to be sent.
+ * @param pkts_n
+ * Number of packets to be sent (<= MLX5_VPMD_TX_MAX_BURST).
+ * @param cs_flags
+ * Checksum offload flags to be written in the descriptor.
+ *
+ * @return
+ * Number of packets successfully transmitted (<= pkts_n).
+ */
+static inline uint16_t
+txq_burst_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts, uint16_t pkts_n,
+ uint8_t cs_flags)
+{
+ struct rte_mbuf **elts;
+ uint16_t elts_head = txq->elts_head;
+ const uint16_t elts_n = 1 << txq->elts_n;
+ const uint16_t elts_m = elts_n - 1;
+ const unsigned int nb_dword_per_wqebb =
+ MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
+ const unsigned int nb_dword_in_hdr =
+ sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
+ unsigned int n = 0;
+ unsigned int pos;
+ uint16_t max_elts;
+ uint16_t max_wqe;
+ uint32_t comp_req = 0;
+ const uint16_t wq_n = 1 << txq->wqe_n;
+ const uint16_t wq_mask = wq_n - 1;
+ uint16_t wq_idx = txq->wqe_ci & wq_mask;
+ volatile struct mlx5_wqe64 *wq =
+ &((volatile struct mlx5_wqe64 *)txq->wqes)[wq_idx];
+ volatile struct mlx5_wqe *wqe = (volatile struct mlx5_wqe *)wq;
+ const __m128i shuf_mask_ctrl =
+ _mm_set_epi8(15, 14, 13, 12,
+ 8, 9, 10, 11, /* bswap32 */
+ 4, 5, 6, 7, /* bswap32 */
+ 0, 1, 2, 3 /* bswap32 */);
+ __m128i *t_wqe, *dseg;
+ __m128i ctrl;
+
+ /* Make sure all packets can fit into a single WQE. */
+ assert(elts_n > pkts_n);
+ mlx5_tx_complete(txq);
+ max_elts = (elts_n - (elts_head - txq->elts_tail));
+ max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
+ pkts_n = RTE_MIN((unsigned int)RTE_MIN(pkts_n, max_wqe), max_elts);
+ assert(pkts_n <= MLX5_DSEG_MAX - nb_dword_in_hdr);
+ if (unlikely(!pkts_n))
+ return 0;
+ elts = &(*txq->elts)[elts_head & elts_m];
+ /* Loop for available tailroom first. */
+ n = RTE_MIN(elts_n - (elts_head & elts_m), pkts_n);
+ for (pos = 0; pos < (n & -2); pos += 2)
+ _mm_storeu_si128((__m128i *)&elts[pos],
+ _mm_loadu_si128((__m128i *)&pkts[pos]));
+ if (n & 1)
+ elts[pos] = pkts[pos];
+ /* Check if it crosses the end of the queue. */
+ if (unlikely(n < pkts_n)) {
+ elts = &(*txq->elts)[0];
+ for (pos = 0; pos < pkts_n - n; ++pos)
+ elts[pos] = pkts[n + pos];
+ }
+ txq->elts_head += pkts_n;
+ /* Save title WQEBB pointer. */
+ t_wqe = (__m128i *)wqe;
+ dseg = (__m128i *)(wqe + 1);
+ /* Calculate the number of entries to the end. */
+ n = RTE_MIN(
+ (wq_n - wq_idx) * nb_dword_per_wqebb - nb_dword_in_hdr,
+ pkts_n);
+ /* Fill DSEGs. */
+ txq_wr_dseg_v(txq, dseg, pkts, n);
+ /* Check if it crosses the end of the queue. */
+ if (n < pkts_n) {
+ dseg = (__m128i *)txq->wqes;
+ txq_wr_dseg_v(txq, dseg, &pkts[n], pkts_n - n);
+ }
+ if (txq->elts_comp + pkts_n < MLX5_TX_COMP_THRESH) {
+ txq->elts_comp += pkts_n;
+ } else {
+ /* Request a completion. */
+ txq->elts_comp = 0;
+ ++txq->cq_pi;
+ comp_req = 8;
+ }
+ /* Fill CTRL in the header. */
+ ctrl = _mm_set_epi32(txq->elts_head, comp_req,
+ txq->qp_num_8s | (pkts_n + 2),
+ MLX5_OPC_MOD_ENHANCED_MPSW << 24 |
+ txq->wqe_ci << 8 | MLX5_OPCODE_ENHANCED_MPSW);
+ ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
+ _mm_store_si128(t_wqe, ctrl);
+ /* Fill ESEG in the header. */
+ _mm_store_si128(t_wqe + 1,
+ _mm_set_epi8(0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, cs_flags,
+ 0, 0, 0, 0));
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ txq->stats.opackets += pkts_n;
+#endif
+ txq->wqe_ci += (nb_dword_in_hdr + pkts_n + (nb_dword_per_wqebb - 1)) /
+ nb_dword_per_wqebb;
+ /* Ring QP doorbell. */
+ mlx5_tx_dbrec(txq, wqe);
+ return pkts_n;
+}
+
+/**
+ * Store free buffers to RX SW ring.
+ *
+ * @param rxq
+ * Pointer to RX queue structure.
+ * @param pkts
+ * Pointer to array of packets to be stored.
+ * @param pkts_n
+ * Number of packets to be stored.
+ */
+static inline void
+rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
+{
+ const uint16_t q_mask = (1 << rxq->elts_n) - 1;
+ struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
+ unsigned int pos;
+ uint16_t p = n & -2;
+
+ for (pos = 0; pos < p; pos += 2) {
+ __m128i mbp;
+
+ mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
+ _mm_storeu_si128((__m128i *)&pkts[pos], mbp);
+ }
+ if (n & 1)
+ pkts[pos] = elts[pos];
+}
+
+/**
+ * Decompress a compressed completion and fill in mbufs in RX SW ring with data
+ * extracted from the title completion descriptor.
+ *
+ * @param rxq
+ * Pointer to RX queue structure.
+ * @param cq
+ * Pointer to completion array having a compressed completion at first.
+ * @param elts
+ * Pointer to SW ring to be filled. The first mbuf has to be pre-built from
+ * the title completion descriptor to be copied to the rest of mbufs.
+ */
+static inline void
+rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
+ struct rte_mbuf **elts)
+{
+ volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
+ struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
+ unsigned int pos;
+ unsigned int i;
+ unsigned int inv = 0;
+ /* Mask to shuffle from extracted mini CQE to mbuf. */
+ const __m128i shuf_mask1 =
+ _mm_set_epi8(0, 1, 2, 3, /* rss, bswap32 */
+ -1, -1, /* skip vlan_tci */
+ 6, 7, /* data_len, bswap16 */
+ -1, -1, 6, 7, /* pkt_len, bswap16 */
+ -1, -1, -1, -1 /* skip packet_type */);
+ const __m128i shuf_mask2 =
+ _mm_set_epi8(8, 9, 10, 11, /* rss, bswap32 */
+ -1, -1, /* skip vlan_tci */
+ 14, 15, /* data_len, bswap16 */
+ -1, -1, 14, 15, /* pkt_len, bswap16 */
+ -1, -1, -1, -1 /* skip packet_type */);
+ /* Restore the compressed count. Must be 16 bits. */
+ const uint16_t mcqe_n = t_pkt->data_len +
+ (rxq->crc_present * ETHER_CRC_LEN);
+ const __m128i rearm =
+ _mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
+ const __m128i rxdf =
+ _mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
+ const __m128i crc_adj =
+ _mm_set_epi16(0, 0, 0,
+ rxq->crc_present * ETHER_CRC_LEN,
+ 0,
+ rxq->crc_present * ETHER_CRC_LEN,
+ 0, 0);
+ const uint32_t flow_tag = t_pkt->hash.fdir.hi;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i ones = _mm_cmpeq_epi32(zero, zero);
+ uint32_t rcvd_byte = 0;
+ /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
+ const __m128i len_shuf_mask =
+ _mm_set_epi8(-1, -1, -1, -1,
+ -1, -1, -1, -1,
+ 14, 15, 6, 7,
+ 10, 11, 2, 3);
+#endif
+
+ /*
+ * Not to overflow elts array. Decompress next time after mbuf
+ * replenishment.
+ */
+ if (unlikely(mcqe_n + MLX5_VPMD_DESCS_PER_LOOP >
+ (uint16_t)(rxq->rq_ci - rxq->cq_ci)))
+ return;
+ /*
+ * A. load mCQEs into a 128bit register.
+ * B. store rearm data to mbuf.
+ * C. combine data from mCQEs with rx_descriptor_fields1.
+ * D. store rx_descriptor_fields1.
+ * E. store flow tag (rte_flow mark).
+ */
+ for (pos = 0; pos < mcqe_n; ) {
+ __m128i mcqe1, mcqe2;
+ __m128i rxdf1, rxdf2;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ __m128i byte_cnt, invalid_mask;
+#endif
+
+ if (!(pos & 0x7) && pos + 8 < mcqe_n)
+ rte_prefetch0((void *)(cq + pos + 8));
+ /* A.1 load mCQEs into a 128bit register. */
+ mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
+ mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
+ /* B.1 store rearm data to mbuf. */
+ _mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
+ _mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
+ /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
+ rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
+ rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
+ rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
+ rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
+ rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
+ rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
+ /* D.1 store rx_descriptor_fields1. */
+ _mm_storeu_si128((__m128i *)
+ &elts[pos]->rx_descriptor_fields1,
+ rxdf1);
+ _mm_storeu_si128((__m128i *)
+ &elts[pos + 1]->rx_descriptor_fields1,
+ rxdf2);
+ /* B.1 store rearm data to mbuf. */
+ _mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
+ _mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
+ /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
+ rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
+ rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
+ rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
+ rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
+ rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
+ rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
+ /* D.1 store rx_descriptor_fields1. */
+ _mm_storeu_si128((__m128i *)
+ &elts[pos + 2]->rx_descriptor_fields1,
+ rxdf1);
+ _mm_storeu_si128((__m128i *)
+ &elts[pos + 3]->rx_descriptor_fields1,
+ rxdf2);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ invalid_mask = _mm_set_epi64x(0,
+ (mcqe_n - pos) *
+ sizeof(uint16_t) * 8);
+ invalid_mask = _mm_sll_epi64(ones, invalid_mask);
+ mcqe1 = _mm_srli_si128(mcqe1, 4);
+ byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
+ byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
+ byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
+ byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
+ rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
+#endif
+ if (rxq->mark) {
+ /* E.1 store flow tag (rte_flow mark). */
+ elts[pos]->hash.fdir.hi = flow_tag;
+ elts[pos + 1]->hash.fdir.hi = flow_tag;
+ elts[pos + 2]->hash.fdir.hi = flow_tag;
+ elts[pos + 3]->hash.fdir.hi = flow_tag;
+ }
+ pos += MLX5_VPMD_DESCS_PER_LOOP;
+ /* Move to next CQE and invalidate consumed CQEs. */
+ if (!(pos & 0x7) && pos < mcqe_n) {
+ mcq = (void *)(cq + pos);
+ for (i = 0; i < 8; ++i)
+ cq[inv++].op_own = MLX5_CQE_INVALIDATE;
+ }
+ }
+ /* Invalidate the rest of CQEs. */
+ for (; inv < mcqe_n; ++inv)
+ cq[inv].op_own = MLX5_CQE_INVALIDATE;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ rxq->stats.ipackets += mcqe_n;
+ rxq->stats.ibytes += rcvd_byte;
+#endif
+ rxq->cq_ci += mcqe_n;
+}
+
+/**
+ * Calculate packet type and offload flag for mbuf and store it.
+ *
+ * @param rxq
+ * Pointer to RX queue structure.
+ * @param cqes[4]
+ * Array of four 16bytes completions extracted from the original completion
+ * descriptor.
+ * @param op_err
+ * Opcode vector having responder error status. Each field is 4B.
+ * @param pkts
+ * Pointer to array of packets to be filled.
+ */
+static inline void
+rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
+ __m128i op_err, struct rte_mbuf **pkts)
+{
+ __m128i pinfo0, pinfo1;
+ __m128i pinfo, ptype;
+ __m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH);
+ __m128i cv_flags;
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i ptype_mask =
+ _mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
+ const __m128i ptype_ol_mask =
+ _mm_set_epi32(0x106, 0x106, 0x106, 0x106);
+ const __m128i pinfo_mask =
+ _mm_set_epi32(0x3, 0x3, 0x3, 0x3);
+ const __m128i cv_flag_sel =
+ _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
+ (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
+ PKT_RX_L4_CKSUM_GOOD) >> 1),
+ 0,
+ (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
+ 0,
+ (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
+ (uint8_t)(PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED),
+ 0);
+ const __m128i cv_mask =
+ _mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
+ PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
+ PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
+ PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
+ PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
+ PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
+ PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
+ PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED);
+ const __m128i mbuf_init =
+ _mm_loadl_epi64((__m128i *)&rxq->mbuf_initializer);
+ __m128i rearm0, rearm1, rearm2, rearm3;
+
+ /* Extract pkt_info field. */
+ pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
+ pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
+ pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
+ /* Extract hdr_type_etc field. */
+ pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
+ pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
+ ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
+ if (rxq->mark) {
+ const __m128i pinfo_ft_mask =
+ _mm_set_epi32(0xffffff00, 0xffffff00,
+ 0xffffff00, 0xffffff00);
+ const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
+ const __m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
+ __m128i flow_tag, invalid_mask;
+
+ flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
+ /* Check if flow tag is non-zero then set PKT_RX_FDIR. */
+ invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
+ ol_flags = _mm_or_si128(ol_flags,
+ _mm_andnot_si128(invalid_mask,
+ fdir_flags));
+ /* Mask out invalid entries. */
+ flow_tag = _mm_andnot_si128(invalid_mask, flow_tag);
+ /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
+ ol_flags = _mm_or_si128(ol_flags,
+ _mm_andnot_si128(
+ _mm_cmpeq_epi32(flow_tag,
+ pinfo_ft_mask),
+ fdir_id_flags));
+ }
+ /*
+ * Merge the two fields to generate the following:
+ * bit[1] = l3_ok
+ * bit[2] = l4_ok
+ * bit[8] = cv
+ * bit[11:10] = l3_hdr_type
+ * bit[14:12] = l4_hdr_type
+ * bit[15] = ip_frag
+ * bit[16] = tunneled
+ * bit[17] = outer_l3_type
+ */
+ ptype = _mm_and_si128(ptype, ptype_mask);
+ pinfo = _mm_and_si128(pinfo, pinfo_mask);
+ pinfo = _mm_slli_epi32(pinfo, 16);
+ /* Make pinfo has merged fields for ol_flags calculation. */
+ pinfo = _mm_or_si128(ptype, pinfo);
+ ptype = _mm_srli_epi32(pinfo, 10);
+ ptype = _mm_packs_epi32(ptype, zero);
+ /* Errored packets will have RTE_PTYPE_ALL_MASK. */
+ op_err = _mm_srli_epi16(op_err, 8);
+ ptype = _mm_or_si128(ptype, op_err);
+ pkts[0]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 0)];
+ pkts[1]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 2)];
+ pkts[2]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 4)];
+ pkts[3]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 6)];
+ /* Fill flags for checksum and VLAN. */
+ pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
+ pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
+ /* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
+ cv_flags = _mm_slli_epi32(pinfo, 9);
+ cv_flags = _mm_or_si128(pinfo, cv_flags);
+ /* Move back flags to start from byte[0]. */
+ cv_flags = _mm_srli_epi32(cv_flags, 8);
+ /* Mask out garbage bits. */
+ cv_flags = _mm_and_si128(cv_flags, cv_mask);
+ /* Merge to ol_flags. */
+ ol_flags = _mm_or_si128(ol_flags, cv_flags);
+ /* Merge mbuf_init and ol_flags. */
+ rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
+ rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
+ rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
+ rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
+ /* Write 8B rearm_data and 8B ol_flags. */
+ _mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
+ _mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
+ _mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
+ _mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
+}
+
+/**
+ * Receive burst of packets. An errored completion also consumes a mbuf, but the
+ * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
+ * before returning to application.
+ *
+ * @param rxq
+ * Pointer to RX queue structure.
+ * @param[out] pkts
+ * Array to store received packets.
+ * @param pkts_n
+ * Maximum number of packets in array.
+ *
+ * @return
+ * Number of packets received including errors (<= pkts_n).
+ */
+static inline uint16_t
+rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
+{
+ const uint16_t q_n = 1 << rxq->cqe_n;
+ const uint16_t q_mask = q_n - 1;
+ volatile struct mlx5_cqe *cq;
+ struct rte_mbuf **elts;
+ unsigned int pos;
+ uint64_t n;
+ uint16_t repl_n;
+ uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
+ uint16_t nocmp_n = 0;
+ uint16_t rcvd_pkt = 0;
+ unsigned int cq_idx = rxq->cq_ci & q_mask;
+ unsigned int elts_idx;
+ unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
+ const __m128i owner_check =
+ _mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
+ const __m128i opcode_check =
+ _mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
+ const __m128i format_check =
+ _mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
+ const __m128i resp_err_check =
+ _mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ uint32_t rcvd_byte = 0;
+ /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
+ const __m128i len_shuf_mask =
+ _mm_set_epi8(-1, -1, -1, -1,
+ -1, -1, -1, -1,
+ 12, 13, 8, 9,
+ 4, 5, 0, 1);
+#endif
+ /* Mask to shuffle from extracted CQE to mbuf. */
+ const __m128i shuf_mask =
+ _mm_set_epi8(-1, 3, 2, 1, /* fdir.hi */
+ 12, 13, 14, 15, /* rss, bswap32 */
+ 10, 11, /* vlan_tci, bswap16 */
+ 4, 5, /* data_len, bswap16 */
+ -1, -1, /* zero out 2nd half of pkt_len */
+ 4, 5 /* pkt_len, bswap16 */);
+ /* Mask to blend from the last Qword to the first DQword. */
+ const __m128i blend_mask =
+ _mm_set_epi8(-1, -1, -1, -1,
+ -1, -1, -1, -1,
+ 0, 0, 0, 0,
+ 0, 0, 0, -1);
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i ones = _mm_cmpeq_epi32(zero, zero);
+ const __m128i crc_adj =
+ _mm_set_epi16(0, 0, 0, 0, 0,
+ rxq->crc_present * ETHER_CRC_LEN,
+ 0,
+ rxq->crc_present * ETHER_CRC_LEN);
+ const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
+
+ assert(rxq->sges_n == 0);
+ assert(rxq->cqe_n == rxq->elts_n);
+ cq = &(*rxq->cqes)[cq_idx];
+ rte_prefetch0(cq);
+ rte_prefetch0(cq + 1);
+ rte_prefetch0(cq + 2);
+ rte_prefetch0(cq + 3);
+ pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
+ /*
+ * Order of indexes:
+ * rq_ci >= cq_ci >= rq_pi
+ * Definition of indexes:
+ * rq_ci - cq_ci := # of buffers owned by HW (posted).
+ * cq_ci - rq_pi := # of buffers not returned to app (decompressed).
+ * N - (rq_ci - rq_pi) := # of buffers consumed (to be replenished).
+ */
+ repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
+ if (repl_n >= MLX5_VPMD_RXQ_RPLNSH_THRESH)
+ mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
+ /* See if there're unreturned mbufs from compressed CQE. */
+ rcvd_pkt = rxq->cq_ci - rxq->rq_pi;
+ if (rcvd_pkt > 0) {
+ rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
+ rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
+ rxq->rq_pi += rcvd_pkt;
+ pkts += rcvd_pkt;
+ }
+ elts_idx = rxq->rq_pi & q_mask;
+ elts = &(*rxq->elts)[elts_idx];
+ pkts_n = RTE_MIN(pkts_n - rcvd_pkt,
+ (uint16_t)(rxq->rq_ci - rxq->cq_ci));
+ /* Not to overflow pkts/elts array. */
+ pkts_n = RTE_ALIGN_FLOOR(pkts_n, MLX5_VPMD_DESCS_PER_LOOP);
+ /* Not to cross queue end. */
+ pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
+ if (!pkts_n)
+ return rcvd_pkt;
+ /* At this point, there shouldn't be any remained packets. */
+ assert(rxq->rq_pi == rxq->cq_ci);
+ /*
+ * A. load first Qword (8bytes) in one loop.
+ * B. copy 4 mbuf pointers from elts ring to returing pkts.
+ * C. load remained CQE data and extract necessary fields.
+ * Final 16bytes cqes[] extracted from original 64bytes CQE has the
+ * following structure:
+ * struct {
+ * uint8_t pkt_info;
+ * uint8_t flow_tag[3];
+ * uint16_t byte_cnt;
+ * uint8_t rsvd4;
+ * uint8_t op_own;
+ * uint16_t hdr_type_etc;
+ * uint16_t vlan_info;
+ * uint32_t rx_has_res;
+ * } c;
+ * D. fill in mbuf.
+ * E. get valid CQEs.
+ * F. find compressed CQE.
+ */
+ for (pos = 0;
+ pos < pkts_n;
+ pos += MLX5_VPMD_DESCS_PER_LOOP) {
+ __m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
+ __m128i cqe_tmp1, cqe_tmp2;
+ __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
+ __m128i op_own, op_own_tmp1, op_own_tmp2;
+ __m128i opcode, owner_mask, invalid_mask;
+ __m128i comp_mask;
+ __m128i mask;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ __m128i byte_cnt;
+#endif
+ __m128i mbp1, mbp2;
+ __m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
+ unsigned int p1, p2, p3;
+
+ /* Prefetch next 4 CQEs. */
+ if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
+ rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
+ rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
+ rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
+ rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
+ }
+ /* A.0 do not cross the end of CQ. */
+ mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
+ mask = _mm_sll_epi64(ones, mask);
+ p = _mm_andnot_si128(mask, p);
+ /* A.1 load cqes. */
+ p3 = _mm_extract_epi16(p, 3);
+ cqes[3] = _mm_loadl_epi64((__m128i *)
+ &cq[pos + p3].sop_drop_qpn);
+ rte_compiler_barrier();
+ p2 = _mm_extract_epi16(p, 2);
+ cqes[2] = _mm_loadl_epi64((__m128i *)
+ &cq[pos + p2].sop_drop_qpn);
+ rte_compiler_barrier();
+ /* B.1 load mbuf pointers. */
+ mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
+ mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
+ /* A.1 load a block having op_own. */
+ p1 = _mm_extract_epi16(p, 1);
+ cqes[1] = _mm_loadl_epi64((__m128i *)
+ &cq[pos + p1].sop_drop_qpn);
+ rte_compiler_barrier();
+ cqes[0] = _mm_loadl_epi64((__m128i *)
+ &cq[pos].sop_drop_qpn);
+ /* B.2 copy mbuf pointers. */
+ _mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
+ _mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
+ rte_compiler_barrier();
+ /* C.1 load remained CQE data and extract necessary fields. */
+ cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
+ cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
+ cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
+ cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
+ cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].rsvd1[3]);
+ cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].rsvd1[3]);
+ cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
+ cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
+ cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd2[10]);
+ cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd2[10]);
+ cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
+ cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
+ /* C.2 generate final structure for mbuf with swapping bytes. */
+ pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
+ pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
+ /* C.3 adjust CRC length. */
+ pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
+ pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
+ /* C.4 adjust flow mark. */
+ pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
+ pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
+ /* D.1 fill in mbuf - rx_descriptor_fields1. */
+ _mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
+ _mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
+ /* E.1 extract op_own field. */
+ op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
+ /* C.1 load remained CQE data and extract necessary fields. */
+ cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
+ cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
+ cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
+ cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
+ cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].rsvd1[3]);
+ cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].rsvd1[3]);
+ cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
+ cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
+ cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd2[10]);
+ cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd2[10]);
+ cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
+ cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
+ /* C.2 generate final structure for mbuf with swapping bytes. */
+ pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
+ pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
+ /* C.3 adjust CRC length. */
+ pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
+ pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
+ /* C.4 adjust flow mark. */
+ pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
+ pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
+ /* E.1 extract op_own byte. */
+ op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
+ op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
+ /* D.1 fill in mbuf - rx_descriptor_fields1. */
+ _mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
+ _mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
+ /* E.2 flip owner bit to mark CQEs from last round. */
+ owner_mask = _mm_and_si128(op_own, owner_check);
+ if (ownership)
+ owner_mask = _mm_xor_si128(owner_mask, owner_check);
+ owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
+ owner_mask = _mm_packs_epi32(owner_mask, zero);
+ /* E.3 get mask for invalidated CQEs. */
+ opcode = _mm_and_si128(op_own, opcode_check);
+ invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
+ invalid_mask = _mm_packs_epi32(invalid_mask, zero);
+ /* E.4 mask out beyond boundary. */
+ invalid_mask = _mm_or_si128(invalid_mask, mask);
+ /* E.5 merge invalid_mask with invalid owner. */
+ invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
+ /* F.1 find compressed CQE format. */
+ comp_mask = _mm_and_si128(op_own, format_check);
+ comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
+ comp_mask = _mm_packs_epi32(comp_mask, zero);
+ /* F.2 mask out invalid entries. */
+ comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
+ comp_idx = _mm_cvtsi128_si64(comp_mask);
+ /* F.3 get the first compressed CQE. */
+ comp_idx = comp_idx ?
+ __builtin_ctzll(comp_idx) /
+ (sizeof(uint16_t) * 8) :
+ MLX5_VPMD_DESCS_PER_LOOP;
+ /* E.6 mask out entries after the compressed CQE. */
+ mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
+ mask = _mm_sll_epi64(ones, mask);
+ invalid_mask = _mm_or_si128(invalid_mask, mask);
+ /* E.7 count non-compressed valid CQEs. */
+ n = _mm_cvtsi128_si64(invalid_mask);
+ n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
+ MLX5_VPMD_DESCS_PER_LOOP;
+ nocmp_n += n;
+ /* D.2 get the final invalid mask. */
+ mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
+ mask = _mm_sll_epi64(ones, mask);
+ invalid_mask = _mm_or_si128(invalid_mask, mask);
+ /* D.3 check error in opcode. */
+ opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
+ opcode = _mm_packs_epi32(opcode, zero);
+ opcode = _mm_andnot_si128(invalid_mask, opcode);
+ /* D.4 mark if any error is set */
+ rxq->pending_err |= !!_mm_cvtsi128_si64(opcode);
+ /* D.5 fill in mbuf - rearm_data and packet_type. */
+ rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Add up received bytes count. */
+ byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
+ byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
+ byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
+ rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
+#endif
+ /*
+ * Break the loop unless more valid CQE is expected, or if
+ * there's a compressed CQE.
+ */
+ if (n != MLX5_VPMD_DESCS_PER_LOOP)
+ break;
+ }
+ /* If no new CQE seen, return without updating cq_db. */
+ if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP))
+ return rcvd_pkt;
+ /* Update the consumer indexes for non-compressed CQEs. */
+ assert(nocmp_n <= pkts_n);
+ rxq->cq_ci += nocmp_n;
+ rxq->rq_pi += nocmp_n;
+ rcvd_pkt += nocmp_n;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ rxq->stats.ipackets += nocmp_n;
+ rxq->stats.ibytes += rcvd_byte;
+#endif
+ /* Decompress the last CQE if compressed. */
+ if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
+ assert(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
+ rxq_cq_decompress_v(rxq, &cq[nocmp_n], &elts[nocmp_n]);
+ /* Return more packets if needed. */
+ if (nocmp_n < pkts_n) {
+ uint16_t n = rxq->cq_ci - rxq->rq_pi;
+
+ n = RTE_MIN(n, pkts_n - nocmp_n);
+ rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
+ rxq->rq_pi += n;
+ rcvd_pkt += n;
+ }
+ }
+ rte_compiler_barrier();
+ *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
+ return rcvd_pkt;
+}
+
+#endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */