# Compile burst-oriented IGB PMD driver
#
CONFIG_RTE_LIBRTE_IGB_PMD=y
-CONFIG_RTE_LIBRTE_IGB_DEBUG_INIT=n
-CONFIG_RTE_LIBRTE_IGB_DEBUG_RX=n
-CONFIG_RTE_LIBRTE_IGB_DEBUG_TX=n
-CONFIG_RTE_LIBRTE_IGB_DEBUG_TX_FREE=n
-CONFIG_RTE_LIBRTE_IGB_DEBUG_DRIVER=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_INIT=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_RX=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_TX=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_TX_FREE=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_DRIVER=n
#
# Compile burst-oriented IXGBE PMD driver
# Compile burst-oriented IGB PMD driver
#
CONFIG_RTE_LIBRTE_IGB_PMD=y
-CONFIG_RTE_LIBRTE_IGB_DEBUG_INIT=n
-CONFIG_RTE_LIBRTE_IGB_DEBUG_RX=n
-CONFIG_RTE_LIBRTE_IGB_DEBUG_TX=n
-CONFIG_RTE_LIBRTE_IGB_DEBUG_TX_FREE=n
-CONFIG_RTE_LIBRTE_IGB_DEBUG_DRIVER=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_INIT=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_RX=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_TX=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_TX_FREE=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_DRIVER=n
#
# Compile burst-oriented IXGBE PMD driver
# Compile burst-oriented IGB PMD driver
#
CONFIG_RTE_LIBRTE_IGB_PMD=y
-CONFIG_RTE_LIBRTE_IGB_DEBUG_INIT=n
-CONFIG_RTE_LIBRTE_IGB_DEBUG_RX=n
-CONFIG_RTE_LIBRTE_IGB_DEBUG_TX=n
-CONFIG_RTE_LIBRTE_IGB_DEBUG_TX_FREE=n
-CONFIG_RTE_LIBRTE_IGB_DEBUG_DRIVER=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_INIT=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_RX=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_TX=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_TX_FREE=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_DRIVER=n
#
# Compile burst-oriented IXGBE PMD driver
# Compile burst-oriented IGB PMD driver
#
CONFIG_RTE_LIBRTE_IGB_PMD=y
-CONFIG_RTE_LIBRTE_IGB_DEBUG_INIT=n
-CONFIG_RTE_LIBRTE_IGB_DEBUG_RX=n
-CONFIG_RTE_LIBRTE_IGB_DEBUG_TX=n
-CONFIG_RTE_LIBRTE_IGB_DEBUG_TX_FREE=n
-CONFIG_RTE_LIBRTE_IGB_DEBUG_DRIVER=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_INIT=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_RX=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_TX=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_TX_FREE=n
+CONFIG_RTE_LIBRTE_E1000_DEBUG_DRIVER=n
#
# Compile burst-oriented IXGBE PMD driver
DIRS-$(CONFIG_RTE_LIBRTE_TIMER) += librte_timer
DIRS-$(CONFIG_RTE_LIBRTE_CMDLINE) += librte_cmdline
DIRS-$(CONFIG_RTE_LIBRTE_ETHER) += librte_ether
-DIRS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += librte_pmd_igb
+DIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += librte_pmd_e1000
DIRS-$(CONFIG_RTE_LIBRTE_IXGBE_PMD) += librte_pmd_ixgbe
DIRS-$(CONFIG_RTE_LIBRTE_HASH) += librte_hash
DIRS-$(CONFIG_RTE_LIBRTE_LPM) += librte_lpm
--- /dev/null
+# BSD LICENSE
+#
+# Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions
+# are met:
+#
+# * Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+# * Redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in
+# the documentation and/or other materials provided with the
+# distribution.
+# * Neither the name of Intel Corporation nor the names of its
+# contributors may be used to endorse or promote products derived
+# from this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+#
+
+include $(RTE_SDK)/mk/rte.vars.mk
+
+#
+# library name
+#
+LIB = librte_pmd_e1000.a
+
+CFLAGS += -O3
+CFLAGS += $(WERROR_FLAGS)
+
+#
+# all source are stored in SRCS-y
+#
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82575.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_api.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_mac.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_manage.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_mbx.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_nvm.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_osdep.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_phy.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_vf.c
+SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_ethdev.c
+SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_rxtx.c
+
+# this lib depends upon:
+DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_eal lib/librte_ether
+DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_mempool lib/librte_mbuf
+DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_net lib/librte_malloc
+
+include $(RTE_SDK)/mk/rte.lib.mk
--- /dev/null
+..
+ BSD LICENSE
+
+ Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in
+ the documentation and/or other materials provided with the
+ distribution.
+ * Neither the name of Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived
+ from this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+Intel® IGB driver
+=================
+
+This directory contains code from the Intel® Network Adapter Driver for 82575/6
+and 82580-based Gigabit Network Connections under FreeBSD, version 2.2.3,
+dated 04/25/2011. This code is available from
+`http://downloadmirror.intel.com/15815/eng/igb-2.2.3.tar.gz`
+
+This driver is valid for the product(s) listed below
+
+* Intel® 82575EB Gigabit Ethernet Controller
+* Intel® 82576 Gigabit Ethernet Controller
+* Intel® 82580EB Gigabit Ethernet Controller
+* Intel® Ethernet Controller I350
+* Intel® Ethernet Server Adapter I340-F4
+* Intel® Ethernet Server Adapter I340-T4
+* Intel® Ethernet Server Adapter I350-F2
+* Intel® Ethernet Server Adapter I350-F4
+* Intel® Ethernet Server Adapter I350-T2
+* Intel® Ethernet Server Adapter I350-T4
+* Intel® Gigabit EF Dual Port Server Adapter
+* Intel® Gigabit ET Dual Port Server Adapter
+* Intel® Gigabit ET Quad Port Server Adapter
+* Intel® Gigabit ET2 Quad Port Server Adapter
+* Intel® Gigabit VT Quad Port Server Adapter
+
+
+Updating driver
+===============
+
+The following modifications have been made to this code to integrate it with the
+Intel® DPDK:
+
+
+e1000_osdep.h and e1000_osdep.c
+-------------------------------
+
+The OS dependency layer has been extensively modified to support the drivers in
+the Intel® DPDK environment. It is expected that these files will not need to be
+changed on updating the driver.
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+/*
+ * 82575EB Gigabit Network Connection
+ * 82575EB Gigabit Backplane Connection
+ * 82575GB Gigabit Network Connection
+ * 82576 Gigabit Network Connection
+ * 82576 Quad Port Gigabit Mezzanine Adapter
+ */
+
+#include "e1000_api.h"
+
+static s32 e1000_init_phy_params_82575(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_82575(struct e1000_hw *hw);
+static s32 e1000_acquire_phy_82575(struct e1000_hw *hw);
+static void e1000_release_phy_82575(struct e1000_hw *hw);
+static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw);
+static void e1000_release_nvm_82575(struct e1000_hw *hw);
+static s32 e1000_check_for_link_82575(struct e1000_hw *hw);
+static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw);
+static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+static s32 e1000_init_hw_82575(struct e1000_hw *hw);
+static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
+static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+ u16 *data);
+static s32 e1000_reset_hw_82575(struct e1000_hw *hw);
+static s32 e1000_reset_hw_82580(struct e1000_hw *hw);
+static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw,
+ u32 offset, u16 *data);
+static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw,
+ u32 offset, u16 data);
+static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw,
+ bool active);
+static s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw,
+ bool active);
+static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
+ bool active);
+static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw);
+static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw);
+static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
+static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
+ u32 offset, u16 data);
+static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
+static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
+static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex);
+static s32 e1000_get_phy_id_82575(struct e1000_hw *hw);
+static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
+static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
+static s32 e1000_reset_init_script_82575(struct e1000_hw *hw);
+static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw);
+static void e1000_config_collision_dist_82575(struct e1000_hw *hw);
+static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
+static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
+static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw);
+static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
+static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw);
+static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw);
+static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw);
+static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw,
+ u16 offset);
+static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
+ u16 offset);
+static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw);
+static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw);
+
+static const u16 e1000_82580_rxpbs_table[] =
+ { 36, 72, 144, 1, 2, 4, 8, 16,
+ 35, 70, 140 };
+#define E1000_82580_RXPBS_TABLE_SIZE \
+ (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
+
+
+/**
+ * e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
+ * @hw: pointer to the HW structure
+ *
+ * Called to determine if the I2C pins are being used for I2C or as an
+ * external MDIO interface since the two options are mutually exclusive.
+ **/
+static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw)
+{
+ u32 reg = 0;
+ bool ext_mdio = FALSE;
+
+ DEBUGFUNC("e1000_sgmii_uses_mdio_82575");
+
+ switch (hw->mac.type) {
+ case e1000_82575:
+ case e1000_82576:
+ reg = E1000_READ_REG(hw, E1000_MDIC);
+ ext_mdio = !!(reg & E1000_MDIC_DEST);
+ break;
+ case e1000_82580:
+ case e1000_i350:
+ reg = E1000_READ_REG(hw, E1000_MDICNFG);
+ ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
+ break;
+ default:
+ break;
+ }
+ return ext_mdio;
+}
+
+/**
+ * e1000_init_phy_params_82575 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl_ext;
+
+ DEBUGFUNC("e1000_init_phy_params_82575");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ phy->type = e1000_phy_none;
+ goto out;
+ }
+
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_82575;
+
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 100;
+
+ phy->ops.acquire = e1000_acquire_phy_82575;
+ phy->ops.check_reset_block = e1000_check_reset_block_generic;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_82575;
+ phy->ops.release = e1000_release_phy_82575;
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+
+ if (e1000_sgmii_active_82575(hw)) {
+ phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
+ ctrl_ext |= E1000_CTRL_I2C_ENA;
+ } else {
+ phy->ops.reset = e1000_phy_hw_reset_generic;
+ ctrl_ext &= ~E1000_CTRL_I2C_ENA;
+ }
+
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ e1000_reset_mdicnfg_82580(hw);
+
+ if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) {
+ phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
+ phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
+ } else if (hw->mac.type >= e1000_82580) {
+ phy->ops.read_reg = e1000_read_phy_reg_82580;
+ phy->ops.write_reg = e1000_write_phy_reg_82580;
+ } else {
+ phy->ops.read_reg = e1000_read_phy_reg_igp;
+ phy->ops.write_reg = e1000_write_phy_reg_igp;
+ }
+
+ /* Set phy->phy_addr and phy->id. */
+ ret_val = e1000_get_phy_id_82575(hw);
+
+ /* Verify phy id and set remaining function pointers */
+ switch (phy->id) {
+ case I347AT4_E_PHY_ID:
+ case M88E1112_E_PHY_ID:
+ case M88E1340M_E_PHY_ID:
+ case M88E1111_I_PHY_ID:
+ phy->type = e1000_phy_m88;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ if (phy->id == I347AT4_E_PHY_ID ||
+ phy->id == M88E1112_E_PHY_ID ||
+ phy->id == M88E1340M_E_PHY_ID)
+ phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2;
+ else
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ break;
+ case IGP03E1000_E_PHY_ID:
+ case IGP04E1000_E_PHY_ID:
+ phy->type = e1000_phy_igp_3;
+ phy->ops.check_polarity = e1000_check_polarity_igp;
+ phy->ops.get_info = e1000_get_phy_info_igp;
+ phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+ break;
+ case I82580_I_PHY_ID:
+ case I350_I_PHY_ID:
+ phy->type = e1000_phy_82580;
+ phy->ops.check_polarity = e1000_check_polarity_82577;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82577;
+ phy->ops.get_cable_length = e1000_get_cable_length_82577;
+ phy->ops.get_info = e1000_get_phy_info_82577;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82575 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u16 size;
+
+ DEBUGFUNC("e1000_init_nvm_params_82575");
+
+ size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+ E1000_EECD_SIZE_EX_SHIFT);
+ /*
+ * Added to a constant, "size" becomes the left-shift value
+ * for setting word_size.
+ */
+ size += NVM_WORD_SIZE_BASE_SHIFT;
+
+ nvm->word_size = 1 << size;
+ nvm->opcode_bits = 8;
+ nvm->delay_usec = 1;
+ switch (nvm->override) {
+ case e1000_nvm_override_spi_large:
+ nvm->page_size = 32;
+ nvm->address_bits = 16;
+ break;
+ case e1000_nvm_override_spi_small:
+ nvm->page_size = 8;
+ nvm->address_bits = 8;
+ break;
+ default:
+ nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+ nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+ break;
+ }
+
+ nvm->type = e1000_nvm_eeprom_spi;
+
+ if (nvm->word_size == (1 << 15))
+ nvm->page_size = 128;
+
+ /* Function Pointers */
+ nvm->ops.acquire = e1000_acquire_nvm_82575;
+ nvm->ops.release = e1000_release_nvm_82575;
+ if (nvm->word_size < (1 << 15))
+ nvm->ops.read = e1000_read_nvm_eerd;
+ else
+ nvm->ops.read = e1000_read_nvm_spi;
+
+ nvm->ops.write = e1000_write_nvm_spi;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.valid_led_default = e1000_valid_led_default_82575;
+
+ /* override genric family function pointers for specific descendants */
+ switch (hw->mac.type) {
+ case e1000_82580:
+ nvm->ops.validate = e1000_validate_nvm_checksum_82580;
+ nvm->ops.update = e1000_update_nvm_checksum_82580;
+ break;
+ case e1000_i350:
+ nvm->ops.validate = e1000_validate_nvm_checksum_i350;
+ nvm->ops.update = e1000_update_nvm_checksum_i350;
+ break;
+ default:
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82575 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
+ u32 ctrl_ext = 0;
+
+ DEBUGFUNC("e1000_init_mac_params_82575");
+
+ /* Set media type */
+ /*
+ * The 82575 uses bits 22:23 for link mode. The mode can be changed
+ * based on the EEPROM. We cannot rely upon device ID. There
+ * is no distinguishable difference between fiber and internal
+ * SerDes mode on the 82575. There can be an external PHY attached
+ * on the SGMII interface. For this, we'll set sgmii_active to TRUE.
+ */
+ hw->phy.media_type = e1000_media_type_copper;
+ dev_spec->sgmii_active = FALSE;
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
+ case E1000_CTRL_EXT_LINK_MODE_SGMII:
+ dev_spec->sgmii_active = TRUE;
+ break;
+ case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
+ case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ break;
+ default:
+ break;
+ }
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set uta register count */
+ mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
+ if (mac->type == e1000_82576)
+ mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
+ if (mac->type == e1000_82580)
+ mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
+ if (mac->type == e1000_i350) {
+ mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
+ /* Enable EEE default settings for i350 */
+ dev_spec->eee_disable = FALSE;
+ }
+
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = TRUE;
+ /* FWSM register */
+ mac->has_fwsm = TRUE;
+ /* ARC supported; valid only if manageability features are enabled. */
+ mac->arc_subsystem_valid =
+ (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
+ ? TRUE : FALSE;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
+ /* reset */
+ if (mac->type >= e1000_82580)
+ mac->ops.reset_hw = e1000_reset_hw_82580;
+ else
+ mac->ops.reset_hw = e1000_reset_hw_82575;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_82575;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_generic;
+ /* physical interface link setup */
+ mac->ops.setup_physical_interface =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_setup_copper_link_82575
+ : e1000_setup_serdes_link_82575;
+ /* physical interface shutdown */
+ mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
+ /* physical interface power up */
+ mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575;
+ /* check for link */
+ mac->ops.check_for_link = e1000_check_for_link_82575;
+ /* receive address register setting */
+ mac->ops.rar_set = e1000_rar_set_generic;
+ /* read mac address */
+ mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
+ /* configure collision distance */
+ mac->ops.config_collision_dist = e1000_config_collision_dist_82575;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_generic;
+ /* ID LED init */
+ mac->ops.id_led_init = e1000_id_led_init_generic;
+ /* blink LED */
+ mac->ops.blink_led = e1000_blink_led_generic;
+ /* setup LED */
+ mac->ops.setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ mac->ops.cleanup_led = e1000_cleanup_led_generic;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_generic;
+ mac->ops.led_off = e1000_led_off_generic;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
+ /* link info */
+ mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
+
+ /* set lan id for port to determine which phy lock to use */
+ hw->mac.ops.set_lan_id(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_function_pointers_82575 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82575");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_82575;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
+ hw->phy.ops.init_params = e1000_init_phy_params_82575;
+ hw->mbx.ops.init_params = e1000_init_mbx_params_pf;
+}
+
+/**
+ * e1000_acquire_phy_82575 - Acquire rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * Acquire access rights to the correct PHY.
+ **/
+static s32 e1000_acquire_phy_82575(struct e1000_hw *hw)
+{
+ u16 mask = E1000_SWFW_PHY0_SM;
+
+ DEBUGFUNC("e1000_acquire_phy_82575");
+
+ if (hw->bus.func == E1000_FUNC_1)
+ mask = E1000_SWFW_PHY1_SM;
+ else if (hw->bus.func == E1000_FUNC_2)
+ mask = E1000_SWFW_PHY2_SM;
+ else if (hw->bus.func == E1000_FUNC_3)
+ mask = E1000_SWFW_PHY3_SM;
+
+ return e1000_acquire_swfw_sync_82575(hw, mask);
+}
+
+/**
+ * e1000_release_phy_82575 - Release rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * A wrapper to release access rights to the correct PHY.
+ **/
+static void e1000_release_phy_82575(struct e1000_hw *hw)
+{
+ u16 mask = E1000_SWFW_PHY0_SM;
+
+ DEBUGFUNC("e1000_release_phy_82575");
+
+ if (hw->bus.func == E1000_FUNC_1)
+ mask = E1000_SWFW_PHY1_SM;
+ else if (hw->bus.func == E1000_FUNC_2)
+ mask = E1000_SWFW_PHY2_SM;
+ else if (hw->bus.func == E1000_FUNC_3)
+ mask = E1000_SWFW_PHY3_SM;
+
+ e1000_release_swfw_sync_82575(hw, mask);
+}
+
+/**
+ * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset using the serial gigabit media independent
+ * interface and stores the retrieved information in data.
+ **/
+static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+ u16 *data)
+{
+ s32 ret_val = -E1000_ERR_PARAM;
+
+ DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
+
+ if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
+ DEBUGOUT1("PHY Address %u is out of range\n", offset);
+ goto out;
+ }
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg_i2c(hw, offset, data);
+
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset using the serial gigabit
+ * media independent interface.
+ **/
+static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+ u16 data)
+{
+ s32 ret_val = -E1000_ERR_PARAM;
+
+ DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
+
+ if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ goto out;
+ }
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg_i2c(hw, offset, data);
+
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_id_82575 - Retrieve PHY addr and id
+ * @hw: pointer to the HW structure
+ *
+ * Retrieves the PHY address and ID for both PHY's which do and do not use
+ * sgmi interface.
+ **/
+static s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_id;
+ u32 ctrl_ext;
+ u32 mdic;
+
+ DEBUGFUNC("e1000_get_phy_id_82575");
+
+ /*
+ * For SGMII PHYs, we try the list of possible addresses until
+ * we find one that works. For non-SGMII PHYs
+ * (e.g. integrated copper PHYs), an address of 1 should
+ * work. The result of this function should mean phy->phy_addr
+ * and phy->id are set correctly.
+ */
+ if (!e1000_sgmii_active_82575(hw)) {
+ phy->addr = 1;
+ ret_val = e1000_get_phy_id(hw);
+ goto out;
+ }
+
+ if (e1000_sgmii_uses_mdio_82575(hw)) {
+ switch (hw->mac.type) {
+ case e1000_82575:
+ case e1000_82576:
+ mdic = E1000_READ_REG(hw, E1000_MDIC);
+ mdic &= E1000_MDIC_PHY_MASK;
+ phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
+ break;
+ case e1000_82580:
+ case e1000_i350:
+ mdic = E1000_READ_REG(hw, E1000_MDICNFG);
+ mdic &= E1000_MDICNFG_PHY_MASK;
+ phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ break;
+ }
+ ret_val = e1000_get_phy_id(hw);
+ goto out;
+ }
+
+ /* Power on sgmii phy if it is disabled */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT,
+ ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(300);
+
+ /*
+ * The address field in the I2CCMD register is 3 bits and 0 is invalid.
+ * Therefore, we need to test 1-7
+ */
+ for (phy->addr = 1; phy->addr < 8; phy->addr++) {
+ ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
+ if (ret_val == E1000_SUCCESS) {
+ DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
+ phy_id,
+ phy->addr);
+ /*
+ * At the time of this writing, The M88 part is
+ * the only supported SGMII PHY product.
+ */
+ if (phy_id == M88_VENDOR)
+ break;
+ } else {
+ DEBUGOUT1("PHY address %u was unreadable\n",
+ phy->addr);
+ }
+ }
+
+ /* A valid PHY type couldn't be found. */
+ if (phy->addr == 8) {
+ phy->addr = 0;
+ ret_val = -E1000_ERR_PHY;
+ } else {
+ ret_val = e1000_get_phy_id(hw);
+ }
+
+ /* restore previous sfp cage power state */
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Resets the PHY using the serial gigabit media independent interface.
+ **/
+static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
+
+ /*
+ * This isn't a TRUE "hard" reset, but is the only reset
+ * available to us at this time.
+ */
+
+ DEBUGOUT("Soft resetting SGMII attached PHY...\n");
+
+ if (!(hw->phy.ops.write_reg))
+ goto out;
+
+ /*
+ * SFP documentation requires the following to configure the SPF module
+ * to work on SGMII. No further documentation is given.
+ */
+ ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.commit(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: TRUE to enable LPLU, FALSE to disable
+ *
+ * Sets the LPLU D0 state according to the active flag. When
+ * activating LPLU this function also disables smart speed
+ * and vice versa. LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d0_lplu_state_82575");
+
+ if (!(hw->phy.ops.read_reg))
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+ if (ret_val)
+ goto out;
+
+ if (active) {
+ data |= IGP02E1000_PM_D0_LPLU;
+ ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ goto out;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else {
+ data &= ~IGP02E1000_PM_D0_LPLU;
+ ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ data);
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: TRUE to enable LPLU, FALSE to disable
+ *
+ * Sets the LPLU D0 state according to the active flag. When
+ * activating LPLU this function also disables smart speed
+ * and vice versa. LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d0_lplu_state_82580");
+
+ data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
+
+ if (active) {
+ data |= E1000_82580_PM_D0_LPLU;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ data &= ~E1000_82580_PM_SPD;
+ } else {
+ data &= ~E1000_82580_PM_D0_LPLU;
+
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ data |= E1000_82580_PM_SPD;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ data &= ~E1000_82580_PM_SPD;
+ }
+ }
+
+ E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
+ return ret_val;
+}
+
+/**
+ * e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained.
+ **/
+s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d3_lplu_state_82580");
+
+ data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
+
+ if (!active) {
+ data &= ~E1000_82580_PM_D3_LPLU;
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ data |= E1000_82580_PM_SPD;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ data &= ~E1000_82580_PM_SPD;
+ }
+ } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+ data |= E1000_82580_PM_D3_LPLU;
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ data &= ~E1000_82580_PM_SPD;
+ }
+
+ E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
+ return ret_val;
+}
+
+/**
+ * e1000_acquire_nvm_82575 - Request for access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the necessary semaphores for exclusive access to the EEPROM.
+ * Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ * Return successful if access grant bit set, else clear the request for
+ * EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_acquire_nvm_82575");
+
+ ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Check if there is some access
+ * error this access may hook on
+ */
+ if (hw->mac.type == e1000_i350) {
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT |
+ E1000_EECD_TIMEOUT)) {
+ /* Clear all access error flags */
+ E1000_WRITE_REG(hw, E1000_EECD, eecd |
+ E1000_EECD_ERROR_CLR);
+ DEBUGOUT("Nvm bit banging access error"
+ " detected and cleared.\n");
+ }
+ }
+ if (hw->mac.type == e1000_82580) {
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (eecd & E1000_EECD_BLOCKED) {
+ /* Clear access error flag */
+ E1000_WRITE_REG(hw, E1000_EECD, eecd |
+ E1000_EECD_BLOCKED);
+ DEBUGOUT("Nvm bit banging access"
+ " error detected and cleared.\n");
+ }
+ }
+
+ ret_val = e1000_acquire_nvm_generic(hw);
+ if (ret_val)
+ e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_release_nvm_82575 - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit,
+ * then release the semaphores acquired.
+ **/
+static void e1000_release_nvm_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_release_nvm_82575");
+
+ e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+}
+
+/**
+ * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
+ * will also specify which port we're acquiring the lock for.
+ **/
+static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+ u32 swmask = mask;
+ u32 fwmask = mask << 16;
+ s32 ret_val = E1000_SUCCESS;
+ s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
+
+ DEBUGFUNC("e1000_acquire_swfw_sync_82575");
+
+ while (i < timeout) {
+ if (e1000_get_hw_semaphore_generic(hw)) {
+ ret_val = -E1000_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ if (!(swfw_sync & (fwmask | swmask)))
+ break;
+
+ /*
+ * Firmware currently using resource (fwmask)
+ * or other software thread using resource (swmask)
+ */
+ e1000_put_hw_semaphore_generic(hw);
+ msec_delay_irq(5);
+ i++;
+ }
+
+ if (i == timeout) {
+ DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+ ret_val = -E1000_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync |= swmask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_release_swfw_sync_82575 - Release SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Release the SW/FW semaphore used to access the PHY or NVM. The mask
+ * will also specify which port we're releasing the lock for.
+ **/
+static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+
+ DEBUGFUNC("e1000_release_swfw_sync_82575");
+
+ while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS);
+ /* Empty */
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ swfw_sync &= ~mask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+}
+
+/**
+ * e1000_get_cfg_done_82575 - Read config done bit
+ * @hw: pointer to the HW structure
+ *
+ * Read the management control register for the config done bit for
+ * completion status. NOTE: silicon which is EEPROM-less will fail trying
+ * to read the config done bit, so an error is *ONLY* logged and returns
+ * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
+ * would not be able to be reset or change link.
+ **/
+static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
+{
+ s32 timeout = PHY_CFG_TIMEOUT;
+ s32 ret_val = E1000_SUCCESS;
+ u32 mask = E1000_NVM_CFG_DONE_PORT_0;
+
+ DEBUGFUNC("e1000_get_cfg_done_82575");
+
+ if (hw->bus.func == E1000_FUNC_1)
+ mask = E1000_NVM_CFG_DONE_PORT_1;
+ else if (hw->bus.func == E1000_FUNC_2)
+ mask = E1000_NVM_CFG_DONE_PORT_2;
+ else if (hw->bus.func == E1000_FUNC_3)
+ mask = E1000_NVM_CFG_DONE_PORT_3;
+ while (timeout) {
+ if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
+ break;
+ msec_delay(1);
+ timeout--;
+ }
+ if (!timeout)
+ DEBUGOUT("MNG configuration cycle has not completed.\n");
+
+ /* If EEPROM is not marked present, init the PHY manually */
+ if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) &&
+ (hw->phy.type == e1000_phy_igp_3))
+ e1000_phy_init_script_igp3(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_link_up_info_82575 - Get link speed/duplex info
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * This is a wrapper function, if using the serial gigabit media independent
+ * interface, use PCS to retrieve the link speed and duplex information.
+ * Otherwise, use the generic function to get the link speed and duplex info.
+ **/
+static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_get_link_up_info_82575");
+
+ if (hw->phy.media_type != e1000_media_type_copper)
+ ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
+ duplex);
+ else
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
+ duplex);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_link_82575 - Check for link
+ * @hw: pointer to the HW structure
+ *
+ * If sgmii is enabled, then use the pcs register to determine link, otherwise
+ * use the generic interface for determining link.
+ **/
+static s32 e1000_check_for_link_82575(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 speed, duplex;
+
+ DEBUGFUNC("e1000_check_for_link_82575");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
+ &duplex);
+ /*
+ * Use this flag to determine if link needs to be checked or
+ * not. If we have link clear the flag so that we do not
+ * continue to check for link.
+ */
+ hw->mac.get_link_status = !hw->mac.serdes_has_link;
+ } else {
+ ret_val = e1000_check_for_copper_link_generic(hw);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown
+ * @hw: pointer to the HW structure
+ **/
+static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw)
+{
+ u32 reg;
+
+ DEBUGFUNC("e1000_power_up_serdes_link_82575");
+
+ if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
+ !e1000_sgmii_active_82575(hw))
+ return;
+
+ /* Enable PCS to turn on link */
+ reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
+ reg |= E1000_PCS_CFG_PCS_EN;
+ E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
+
+ /* Power up the laser */
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg &= ~E1000_CTRL_EXT_SDP3_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+ /* flush the write to verify completion */
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+}
+
+/**
+ * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * Using the physical coding sub-layer (PCS), retrieve the current speed and
+ * duplex, then store the values in the pointers provided.
+ **/
+static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 pcs;
+
+ DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
+
+ /* Set up defaults for the return values of this function */
+ mac->serdes_has_link = FALSE;
+ *speed = 0;
+ *duplex = 0;
+
+ /*
+ * Read the PCS Status register for link state. For non-copper mode,
+ * the status register is not accurate. The PCS status register is
+ * used instead.
+ */
+ pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
+
+ /*
+ * The link up bit determines when link is up on autoneg. The sync ok
+ * gets set once both sides sync up and agree upon link. Stable link
+ * can be determined by checking for both link up and link sync ok
+ */
+ if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
+ mac->serdes_has_link = TRUE;
+
+ /* Detect and store PCS speed */
+ if (pcs & E1000_PCS_LSTS_SPEED_1000) {
+ *speed = SPEED_1000;
+ } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
+ *speed = SPEED_100;
+ } else {
+ *speed = SPEED_10;
+ }
+
+ /* Detect and store PCS duplex */
+ if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
+ *duplex = FULL_DUPLEX;
+ } else {
+ *duplex = HALF_DUPLEX;
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_shutdown_serdes_link_82575 - Remove link during power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of serdes shut down sfp and PCS on driver unload
+ * when management pass thru is not enabled.
+ **/
+void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
+{
+ u32 reg;
+
+ DEBUGFUNC("e1000_shutdown_serdes_link_82575");
+
+ if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
+ !e1000_sgmii_active_82575(hw))
+ return;
+
+ if (!e1000_enable_mng_pass_thru(hw)) {
+ /* Disable PCS to turn off link */
+ reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
+ reg &= ~E1000_PCS_CFG_PCS_EN;
+ E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
+
+ /* shutdown the laser */
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg |= E1000_CTRL_EXT_SDP3_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+ /* flush the write to verify completion */
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+ }
+
+ return;
+}
+
+/**
+ * e1000_reset_hw_82575 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.
+ **/
+static s32 e1000_reset_hw_82575(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_reset_hw_82575");
+
+ /*
+ * Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ ret_val = e1000_disable_pcie_master_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+ }
+
+ /* set the completion timeout for interface */
+ ret_val = e1000_set_pcie_completion_timeout(hw);
+ if (ret_val) {
+ DEBUGOUT("PCI-E Set completion timeout has failed.\n");
+ }
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to MAC\n");
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+ ret_val = e1000_get_auto_rd_done_generic(hw);
+ if (ret_val) {
+ /*
+ * When auto config read does not complete, do not
+ * return with an error. This can happen in situations
+ * where there is no eeprom and prevents getting link.
+ */
+ DEBUGOUT("Auto Read Done did not complete\n");
+ }
+
+ /* If EEPROM is not present, run manual init scripts */
+ if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
+ e1000_reset_init_script_82575(hw);
+
+ /* Clear any pending interrupt events. */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ E1000_READ_REG(hw, E1000_ICR);
+
+ /* Install any alternate MAC address into RAR0 */
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_82575 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ **/
+static s32 e1000_init_hw_82575(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ u16 i, rar_count = mac->rar_entry_count;
+
+ DEBUGFUNC("e1000_init_hw_82575");
+
+ /* Initialize identification LED */
+ ret_val = mac->ops.id_led_init(hw);
+ if (ret_val) {
+ DEBUGOUT("Error initializing identification LED\n");
+ /* This is not fatal and we should not stop init due to this */
+ }
+
+ /* Disabling VLAN filtering */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ mac->ops.clear_vfta(hw);
+
+ /* Setup the receive address */
+ e1000_init_rx_addrs_generic(hw, rar_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+ /* Zero out the Unicast HASH table */
+ DEBUGOUT("Zeroing the UTA\n");
+ for (i = 0; i < mac->uta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0);
+
+ /* Setup link and flow control */
+ ret_val = mac->ops.setup_link(hw);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82575(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_82575 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Configures the link for auto-neg or forced speed and duplex. Then we check
+ * for link, once link is established calls to configure collision distance
+ * and flow control are called.
+ **/
+static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_copper_link_82575");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ ret_val = e1000_setup_serdes_link_82575(hw);
+ if (ret_val)
+ goto out;
+
+ if (e1000_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
+ /* allow time for SFP cage time to power up phy */
+ msec_delay(300);
+
+ ret_val = hw->phy.ops.reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Error resetting the PHY.\n");
+ goto out;
+ }
+ }
+ switch (hw->phy.type) {
+ case e1000_phy_m88:
+ if (hw->phy.id == I347AT4_E_PHY_ID ||
+ hw->phy.id == M88E1112_E_PHY_ID ||
+ hw->phy.id == M88E1340M_E_PHY_ID)
+ ret_val = e1000_copper_link_setup_m88_gen2(hw);
+ else
+ ret_val = e1000_copper_link_setup_m88(hw);
+ break;
+ case e1000_phy_igp_3:
+ ret_val = e1000_copper_link_setup_igp(hw);
+ break;
+ case e1000_phy_82580:
+ ret_val = e1000_copper_link_setup_82577(hw);
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ break;
+ }
+
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_setup_copper_link_generic(hw);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_serdes_link_82575 - Setup link for serdes
+ * @hw: pointer to the HW structure
+ *
+ * Configure the physical coding sub-layer (PCS) link. The PCS link is
+ * used on copper connections where the serialized gigabit media independent
+ * interface (sgmii), or serdes fiber is being used. Configures the link
+ * for auto-negotiation or forces speed/duplex.
+ **/
+static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
+{
+ u32 ctrl_ext, ctrl_reg, reg;
+ bool pcs_autoneg;
+
+ DEBUGFUNC("e1000_setup_serdes_link_82575");
+
+ if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
+ !e1000_sgmii_active_82575(hw))
+ return E1000_SUCCESS;
+
+ /*
+ * On the 82575, SerDes loopback mode persists until it is
+ * explicitly turned off or a power cycle is performed. A read to
+ * the register does not indicate its status. Therefore, we ensure
+ * loopback mode is disabled during initialization.
+ */
+ E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
+
+ /* power on the sfp cage if present */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+ ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl_reg |= E1000_CTRL_SLU;
+
+ /* set both sw defined pins on 82575/82576*/
+ if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576)
+ ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
+
+ reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
+
+ /* default pcs_autoneg to the same setting as mac autoneg */
+ pcs_autoneg = hw->mac.autoneg;
+
+ switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
+ case E1000_CTRL_EXT_LINK_MODE_SGMII:
+ /* sgmii mode lets the phy handle forcing speed/duplex */
+ pcs_autoneg = TRUE;
+ /* autoneg time out should be disabled for SGMII mode */
+ reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
+ break;
+ case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
+ /* disable PCS autoneg and support parallel detect only */
+ pcs_autoneg = FALSE;
+ /* fall through to default case */
+ default:
+ /*
+ * non-SGMII modes only supports a speed of 1000/Full for the
+ * link so it is best to just force the MAC and let the pcs
+ * link either autoneg or be forced to 1000/Full
+ */
+ ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
+ E1000_CTRL_FD | E1000_CTRL_FRCDPX;
+
+ /* set speed of 1000/Full if speed/duplex is forced */
+ reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
+ break;
+ }
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
+
+ /*
+ * New SerDes mode allows for forcing speed or autonegotiating speed
+ * at 1gb. Autoneg should be default set by most drivers. This is the
+ * mode that will be compatible with older link partners and switches.
+ * However, both are supported by the hardware and some drivers/tools.
+ */
+ reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
+ E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
+
+ /*
+ * We force flow control to prevent the CTRL register values from being
+ * overwritten by the autonegotiated flow control values
+ */
+ reg |= E1000_PCS_LCTL_FORCE_FCTRL;
+
+ if (pcs_autoneg) {
+ /* Set PCS register for autoneg */
+ reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
+ E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
+ DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
+ } else {
+ /* Set PCS register for forced link */
+ reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
+ DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
+ }
+
+ E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
+
+ if (!e1000_sgmii_active_82575(hw))
+ e1000_force_mac_fc_generic(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_valid_led_default_82575 - Verify a valid default LED config
+ * @hw: pointer to the HW structure
+ * @data: pointer to the NVM (EEPROM)
+ *
+ * Read the EEPROM for the current default LED configuration. If the
+ * LED configuration is not valid, set to a valid LED configuration.
+ **/
+static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_valid_led_default_82575");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
+ switch(hw->phy.media_type) {
+ case e1000_media_type_internal_serdes:
+ *data = ID_LED_DEFAULT_82575_SERDES;
+ break;
+ case e1000_media_type_copper:
+ default:
+ *data = ID_LED_DEFAULT;
+ break;
+ }
+ }
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_sgmii_active_82575 - Return sgmii state
+ * @hw: pointer to the HW structure
+ *
+ * 82575 silicon has a serialized gigabit media independent interface (sgmii)
+ * which can be enabled for use in the embedded applications. Simply
+ * return the current state of the sgmii interface.
+ **/
+static bool e1000_sgmii_active_82575(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
+ return dev_spec->sgmii_active;
+}
+
+/**
+ * e1000_reset_init_script_82575 - Inits HW defaults after reset
+ * @hw: pointer to the HW structure
+ *
+ * Inits recommended HW defaults after a reset when there is no EEPROM
+ * detected. This is only for the 82575.
+ **/
+static s32 e1000_reset_init_script_82575(struct e1000_hw* hw)
+{
+ DEBUGFUNC("e1000_reset_init_script_82575");
+
+ if (hw->mac.type == e1000_82575) {
+ DEBUGOUT("Running reset init script for 82575\n");
+ /* SerDes configuration via SERDESCTRL */
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15);
+
+ /* CCM configuration via CCMCTL register */
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00);
+
+ /* PCIe lanes configuration */
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81);
+
+ /* PCIe PLL Configuration */
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_mac_addr_82575 - Read device MAC address
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_mac_addr_82575");
+
+ /*
+ * If there's an alternate MAC address place it in RAR0
+ * so that it will override the Si installed default perm
+ * address.
+ */
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_mac_addr_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_config_collision_dist_82575 - Configure collision distance
+ * @hw: pointer to the HW structure
+ *
+ * Configures the collision distance to the default value and is used
+ * during link setup.
+ **/
+static void e1000_config_collision_dist_82575(struct e1000_hw *hw)
+{
+ u32 tctl_ext;
+
+ DEBUGFUNC("e1000_config_collision_dist_82575");
+
+ tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT);
+
+ tctl_ext &= ~E1000_TCTL_EXT_COLD;
+ tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT;
+
+ E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+
+ if (!(phy->ops.check_reset_block))
+ return;
+
+ /* If the management interface is not enabled, then power down */
+ if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw)))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_82575");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_PRC64);
+ E1000_READ_REG(hw, E1000_PRC127);
+ E1000_READ_REG(hw, E1000_PRC255);
+ E1000_READ_REG(hw, E1000_PRC511);
+ E1000_READ_REG(hw, E1000_PRC1023);
+ E1000_READ_REG(hw, E1000_PRC1522);
+ E1000_READ_REG(hw, E1000_PTC64);
+ E1000_READ_REG(hw, E1000_PTC127);
+ E1000_READ_REG(hw, E1000_PTC255);
+ E1000_READ_REG(hw, E1000_PTC511);
+ E1000_READ_REG(hw, E1000_PTC1023);
+ E1000_READ_REG(hw, E1000_PTC1522);
+
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ E1000_READ_REG(hw, E1000_RXERRC);
+ E1000_READ_REG(hw, E1000_TNCRS);
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ E1000_READ_REG(hw, E1000_TSCTC);
+ E1000_READ_REG(hw, E1000_TSCTFC);
+
+ E1000_READ_REG(hw, E1000_MGTPRC);
+ E1000_READ_REG(hw, E1000_MGTPDC);
+ E1000_READ_REG(hw, E1000_MGTPTC);
+
+ E1000_READ_REG(hw, E1000_IAC);
+ E1000_READ_REG(hw, E1000_ICRXOC);
+
+ E1000_READ_REG(hw, E1000_ICRXPTC);
+ E1000_READ_REG(hw, E1000_ICRXATC);
+ E1000_READ_REG(hw, E1000_ICTXPTC);
+ E1000_READ_REG(hw, E1000_ICTXATC);
+ E1000_READ_REG(hw, E1000_ICTXQEC);
+ E1000_READ_REG(hw, E1000_ICTXQMTC);
+ E1000_READ_REG(hw, E1000_ICRXDMTC);
+
+ E1000_READ_REG(hw, E1000_CBTMPC);
+ E1000_READ_REG(hw, E1000_HTDPMC);
+ E1000_READ_REG(hw, E1000_CBRMPC);
+ E1000_READ_REG(hw, E1000_RPTHC);
+ E1000_READ_REG(hw, E1000_HGPTC);
+ E1000_READ_REG(hw, E1000_HTCBDPC);
+ E1000_READ_REG(hw, E1000_HGORCL);
+ E1000_READ_REG(hw, E1000_HGORCH);
+ E1000_READ_REG(hw, E1000_HGOTCL);
+ E1000_READ_REG(hw, E1000_HGOTCH);
+ E1000_READ_REG(hw, E1000_LENERRS);
+
+ /* This register should not be read in copper configurations */
+ if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
+ e1000_sgmii_active_82575(hw))
+ E1000_READ_REG(hw, E1000_SCVPC);
+}
+
+/**
+ * e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable
+ * @hw: pointer to the HW structure
+ *
+ * After rx enable if managability is enabled then there is likely some
+ * bad data at the start of the fifo and possibly in the DMA fifo. This
+ * function clears the fifos and flushes any packets that came in as rx was
+ * being enabled.
+ **/
+void e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
+{
+ u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
+ int i, ms_wait;
+
+ DEBUGFUNC("e1000_rx_fifo_workaround_82575");
+ if (hw->mac.type != e1000_82575 ||
+ !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
+ return;
+
+ /* Disable all Rx queues */
+ for (i = 0; i < 4; i++) {
+ rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
+ E1000_WRITE_REG(hw, E1000_RXDCTL(i),
+ rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
+ }
+ /* Poll all queues to verify they have shut down */
+ for (ms_wait = 0; ms_wait < 10; ms_wait++) {
+ msec_delay(1);
+ rx_enabled = 0;
+ for (i = 0; i < 4; i++)
+ rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i));
+ if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
+ break;
+ }
+
+ if (ms_wait == 10)
+ DEBUGOUT("Queue disable timed out after 10ms\n");
+
+ /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
+ * incoming packets are rejected. Set enable and wait 2ms so that
+ * any packet that was coming in as RCTL.EN was set is flushed
+ */
+ rfctl = E1000_READ_REG(hw, E1000_RFCTL);
+ E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
+
+ rlpml = E1000_READ_REG(hw, E1000_RLPML);
+ E1000_WRITE_REG(hw, E1000_RLPML, 0);
+
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
+ temp_rctl |= E1000_RCTL_LPE;
+
+ E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl);
+ E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(2);
+
+ /* Enable Rx queues that were previously enabled and restore our
+ * previous state
+ */
+ for (i = 0; i < 4; i++)
+ E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+ E1000_WRITE_FLUSH(hw);
+
+ E1000_WRITE_REG(hw, E1000_RLPML, rlpml);
+ E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
+
+ /* Flush receive errors generated by workaround */
+ E1000_READ_REG(hw, E1000_ROC);
+ E1000_READ_REG(hw, E1000_RNBC);
+ E1000_READ_REG(hw, E1000_MPC);
+}
+
+/**
+ * e1000_set_pcie_completion_timeout - set pci-e completion timeout
+ * @hw: pointer to the HW structure
+ *
+ * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
+ * however the hardware default for these parts is 500us to 1ms which is less
+ * than the 10ms recommended by the pci-e spec. To address this we need to
+ * increase the value to either 10ms to 200ms for capability version 1 config,
+ * or 16ms to 55ms for version 2.
+ **/
+static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
+{
+ u32 gcr = E1000_READ_REG(hw, E1000_GCR);
+ s32 ret_val = E1000_SUCCESS;
+ u16 pcie_devctl2;
+
+ /* only take action if timeout value is defaulted to 0 */
+ if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
+ goto out;
+
+ /*
+ * if capababilities version is type 1 we can write the
+ * timeout of 10ms to 200ms through the GCR register
+ */
+ if (!(gcr & E1000_GCR_CAP_VER2)) {
+ gcr |= E1000_GCR_CMPL_TMOUT_10ms;
+ goto out;
+ }
+
+ /*
+ * for version 2 capabilities we need to write the config space
+ * directly in order to set the completion timeout value for
+ * 16ms to 55ms
+ */
+ ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
+ &pcie_devctl2);
+ if (ret_val)
+ goto out;
+
+ pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
+
+ ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
+ &pcie_devctl2);
+out:
+ /* disable completion timeout resend */
+ gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
+
+ E1000_WRITE_REG(hw, E1000_GCR, gcr);
+ return ret_val;
+}
+
+/**
+ * e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
+ * @hw: pointer to the hardware struct
+ * @enable: state to enter, either enabled or disabled
+ * @pf: Physical Function pool - do not set anti-spoofing for the PF
+ *
+ * enables/disables L2 switch anti-spoofing functionality.
+ **/
+void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
+{
+ u32 dtxswc;
+
+ switch (hw->mac.type) {
+ case e1000_82576:
+ dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
+ if (enable) {
+ dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
+ E1000_DTXSWC_VLAN_SPOOF_MASK);
+ /* The PF can spoof - it has to in order to
+ * support emulation mode NICs */
+ dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
+ } else {
+ dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
+ E1000_DTXSWC_VLAN_SPOOF_MASK);
+ }
+ E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
+ break;
+ case e1000_i350:
+ dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
+ if (enable) {
+ dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
+ E1000_DTXSWC_VLAN_SPOOF_MASK);
+ /* The PF can spoof - it has to in order to
+ * support emulation mode NICs
+ */
+ dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
+ } else {
+ dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
+ E1000_DTXSWC_VLAN_SPOOF_MASK);
+ }
+ E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
+ default:
+ break;
+ }
+}
+
+/**
+ * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
+ * @hw: pointer to the hardware struct
+ * @enable: state to enter, either enabled or disabled
+ *
+ * enables/disables L2 switch loopback functionality.
+ **/
+void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
+{
+ u32 dtxswc;
+
+ switch (hw->mac.type) {
+ case e1000_82576:
+ dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
+ if (enable)
+ dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+ else
+ dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+ E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
+ break;
+ case e1000_i350:
+ dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
+ if (enable)
+ dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+ else
+ dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+ E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
+ break;
+ default:
+ /* Currently no other hardware supports loopback */
+ break;
+ }
+
+
+}
+
+/**
+ * e1000_vmdq_set_replication_pf - enable or disable vmdq replication
+ * @hw: pointer to the hardware struct
+ * @enable: state to enter, either enabled or disabled
+ *
+ * enables/disables replication of packets across multiple pools.
+ **/
+void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
+{
+ u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
+
+ if (enable)
+ vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
+ else
+ vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
+
+ E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
+}
+
+/**
+ * e1000_read_phy_reg_82580 - Read 82580 MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the MDI control register in the PHY at offset and stores the
+ * information read to data.
+ **/
+static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_read_phy_reg_82580");
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
+
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_82580 - Write 82580 MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write to register at offset
+ *
+ * Writes data to MDI control register in the PHY at offset.
+ **/
+static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_write_phy_reg_82580");
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
+
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
+ * @hw: pointer to the HW structure
+ *
+ * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
+ * the values found in the EEPROM. This addresses an issue in which these
+ * bits are not restored from EEPROM after reset.
+ **/
+static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u32 mdicnfg;
+ u16 nvm_data = 0;
+
+ DEBUGFUNC("e1000_reset_mdicnfg_82580");
+
+ if (hw->mac.type != e1000_82580)
+ goto out;
+ if (!e1000_sgmii_active_82575(hw))
+ goto out;
+
+ ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
+ NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
+ &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
+ if (nvm_data & NVM_WORD24_EXT_MDIO)
+ mdicnfg |= E1000_MDICNFG_EXT_MDIO;
+ if (nvm_data & NVM_WORD24_COM_MDIO)
+ mdicnfg |= E1000_MDICNFG_COM_MDIO;
+ E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_reset_hw_82580 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets function or entire device (all ports, etc.)
+ * to a known state.
+ **/
+static s32 e1000_reset_hw_82580(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ /* BH SW mailbox bit in SW_FW_SYNC */
+ u16 swmbsw_mask = E1000_SW_SYNCH_MB;
+ u32 ctrl;
+ bool global_device_reset = hw->dev_spec._82575.global_device_reset;
+
+ DEBUGFUNC("e1000_reset_hw_82580");
+
+ hw->dev_spec._82575.global_device_reset = FALSE;
+
+ /* Get current control state. */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /*
+ * Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ ret_val = e1000_disable_pcie_master_generic(hw);
+ if (ret_val)
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ /* Determine whether or not a global dev reset is requested */
+ if (global_device_reset &&
+ e1000_acquire_swfw_sync_82575(hw, swmbsw_mask))
+ global_device_reset = FALSE;
+
+ if (global_device_reset &&
+ !(E1000_READ_REG(hw, E1000_STATUS) & E1000_STAT_DEV_RST_SET))
+ ctrl |= E1000_CTRL_DEV_RST;
+ else
+ ctrl |= E1000_CTRL_RST;
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Add delay to insure DEV_RST has time to complete */
+ if (global_device_reset)
+ msec_delay(5);
+
+ ret_val = e1000_get_auto_rd_done_generic(hw);
+ if (ret_val) {
+ /*
+ * When auto config read does not complete, do not
+ * return with an error. This can happen in situations
+ * where there is no eeprom and prevents getting link.
+ */
+ DEBUGOUT("Auto Read Done did not complete\n");
+ }
+
+ /* If EEPROM is not present, run manual init scripts */
+ if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
+ e1000_reset_init_script_82575(hw);
+
+ /* clear global device reset status bit */
+ E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);
+
+ /* Clear any pending interrupt events. */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ E1000_READ_REG(hw, E1000_ICR);
+
+ ret_val = e1000_reset_mdicnfg_82580(hw);
+ if (ret_val)
+ DEBUGOUT("Could not reset MDICNFG based on EEPROM\n");
+
+ /* Install any alternate MAC address into RAR0 */
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
+
+ /* Release semaphore */
+ if (global_device_reset)
+ e1000_release_swfw_sync_82575(hw, swmbsw_mask);
+
+ return ret_val;
+}
+
+/**
+ * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size
+ * @data: data received by reading RXPBS register
+ *
+ * The 82580 uses a table based approach for packet buffer allocation sizes.
+ * This function converts the retrieved value into the correct table value
+ * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
+ * 0x0 36 72 144 1 2 4 8 16
+ * 0x8 35 70 140 rsv rsv rsv rsv rsv
+ */
+u16 e1000_rxpbs_adjust_82580(u32 data)
+{
+ u16 ret_val = 0;
+
+ if (data < E1000_82580_RXPBS_TABLE_SIZE)
+ ret_val = e1000_82580_rxpbs_table[data];
+
+ return ret_val;
+}
+
+/**
+ * e1000_validate_nvm_checksum_with_offset - Validate EEPROM
+ * checksum
+ * @hw: pointer to the HW structure
+ * @offset: offset in words of the checksum protected region
+ *
+ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_with_offset");
+
+ for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
+ ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+
+ if (checksum != (u16) NVM_SUM) {
+ DEBUGOUT("NVM Checksum Invalid\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_with_offset - Update EEPROM
+ * checksum
+ * @hw: pointer to the HW structure
+ * @offset: offset in words of the checksum protected region
+ *
+ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ * up to the checksum. Then calculates the EEPROM checksum and writes the
+ * value to the EEPROM.
+ **/
+s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
+{
+ s32 ret_val;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_update_nvm_checksum_with_offset");
+
+ for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
+ ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error while updating checksum.\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+ checksum = (u16) NVM_SUM - checksum;
+ ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
+ &checksum);
+ if (ret_val)
+ DEBUGOUT("NVM Write Error while updating checksum.\n");
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM section checksum by reading/adding each word of
+ * the EEPROM and then verifies that the sum of the EEPROM is
+ * equal to 0xBABA.
+ **/
+static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 eeprom_regions_count = 1;
+ u16 j, nvm_data;
+ u16 nvm_offset;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_82580");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
+ /* if chekcsums compatibility bit is set validate checksums
+ * for all 4 ports. */
+ eeprom_regions_count = 4;
+ }
+
+ for (j = 0; j < eeprom_regions_count; j++) {
+ nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
+ ret_val = e1000_validate_nvm_checksum_with_offset(hw,
+ nvm_offset);
+ if (ret_val != E1000_SUCCESS)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_82580 - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM section checksums for all 4 ports by reading/adding
+ * each word of the EEPROM up to the checksum. Then calculates the EEPROM
+ * checksum and writes the value to the EEPROM.
+ **/
+static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 j, nvm_data;
+ u16 nvm_offset;
+
+ DEBUGFUNC("e1000_update_nvm_checksum_82580");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error while updating checksum"
+ " compatibility bit.\n");
+ goto out;
+ }
+
+ if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
+ /* set compatibility bit to validate checksums appropriately */
+ nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
+ ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
+ &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Write Error while updating checksum"
+ " compatibility bit.\n");
+ goto out;
+ }
+ }
+
+ for (j = 0; j < 4; j++) {
+ nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
+ ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
+ if (ret_val) {
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM section checksum by reading/adding each word of
+ * the EEPROM and then verifies that the sum of the EEPROM is
+ * equal to 0xBABA.
+ **/
+static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 j;
+ u16 nvm_offset;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_i350");
+
+ for (j = 0; j < 4; j++) {
+ nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
+ ret_val = e1000_validate_nvm_checksum_with_offset(hw,
+ nvm_offset);
+ if (ret_val != E1000_SUCCESS)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_i350 - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM section checksums for all 4 ports by reading/adding
+ * each word of the EEPROM up to the checksum. Then calculates the EEPROM
+ * checksum and writes the value to the EEPROM.
+ **/
+static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 j;
+ u16 nvm_offset;
+
+ DEBUGFUNC("e1000_update_nvm_checksum_i350");
+
+ for (j = 0; j < 4; j++) {
+ nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
+ ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
+ if (ret_val != E1000_SUCCESS)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_eee_i350 - Enable/disable EEE support
+ * @hw: pointer to the HW structure
+ *
+ * Enable/disable EEE based on setting in dev_spec structure.
+ *
+ **/
+s32 e1000_set_eee_i350(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u32 ipcnfg, eeer, ctrl_ext;
+
+ DEBUGFUNC("e1000_set_eee_i350");
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ if ((hw->mac.type != e1000_i350) ||
+ (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
+ goto out;
+ ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG);
+ eeer = E1000_READ_REG(hw, E1000_EEER);
+
+ /* enable or disable per user setting */
+ if (!(hw->dev_spec._82575.eee_disable)) {
+ ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
+ E1000_IPCNFG_EEE_100M_AN);
+ eeer |= (E1000_EEER_TX_LPI_EN |
+ E1000_EEER_RX_LPI_EN |
+ E1000_EEER_LPI_FC);
+
+ } else {
+ ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
+ E1000_IPCNFG_EEE_100M_AN);
+ eeer &= ~(E1000_EEER_TX_LPI_EN |
+ E1000_EEER_RX_LPI_EN |
+ E1000_EEER_LPI_FC);
+ }
+ E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg);
+ E1000_WRITE_REG(hw, E1000_EEER, eeer);
+ E1000_READ_REG(hw, E1000_IPCNFG);
+ E1000_READ_REG(hw, E1000_EEER);
+out:
+
+ return ret_val;
+}
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_82575_H_
+#define _E1000_82575_H_
+
+#define ID_LED_DEFAULT_82575_SERDES ((ID_LED_DEF1_DEF2 << 12) | \
+ (ID_LED_DEF1_DEF2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_OFF1_ON2))
+/*
+ * Receive Address Register Count
+ * Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor.
+ * These entries are also used for MAC-based filtering.
+ */
+/*
+ * For 82576, there are an additional set of RARs that begin at an offset
+ * separate from the first set of RARs.
+ */
+#define E1000_RAR_ENTRIES_82575 16
+#define E1000_RAR_ENTRIES_82576 24
+#define E1000_RAR_ENTRIES_82580 24
+#define E1000_RAR_ENTRIES_I350 32
+#define E1000_SW_SYNCH_MB 0x00000100
+#define E1000_STAT_DEV_RST_SET 0x00100000
+#define E1000_CTRL_DEV_RST 0x20000000
+
+#ifdef E1000_BIT_FIELDS
+struct e1000_adv_data_desc {
+ __le64 buffer_addr; /* Address of the descriptor's data buffer */
+ union {
+ u32 data;
+ struct {
+ u32 datalen :16; /* Data buffer length */
+ u32 rsvd :4;
+ u32 dtyp :4; /* Descriptor type */
+ u32 dcmd :8; /* Descriptor command */
+ } config;
+ } lower;
+ union {
+ u32 data;
+ struct {
+ u32 status :4; /* Descriptor status */
+ u32 idx :4;
+ u32 popts :6; /* Packet Options */
+ u32 paylen :18; /* Payload length */
+ } options;
+ } upper;
+};
+
+#define E1000_TXD_DTYP_ADV_C 0x2 /* Advanced Context Descriptor */
+#define E1000_TXD_DTYP_ADV_D 0x3 /* Advanced Data Descriptor */
+#define E1000_ADV_TXD_CMD_DEXT 0x20 /* Descriptor extension (0 = legacy) */
+#define E1000_ADV_TUCMD_IPV4 0x2 /* IP Packet Type: 1=IPv4 */
+#define E1000_ADV_TUCMD_IPV6 0x0 /* IP Packet Type: 0=IPv6 */
+#define E1000_ADV_TUCMD_L4T_UDP 0x0 /* L4 Packet TYPE of UDP */
+#define E1000_ADV_TUCMD_L4T_TCP 0x4 /* L4 Packet TYPE of TCP */
+#define E1000_ADV_TUCMD_MKRREQ 0x10 /* Indicates markers are required */
+#define E1000_ADV_DCMD_EOP 0x1 /* End of Packet */
+#define E1000_ADV_DCMD_IFCS 0x2 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADV_DCMD_RS 0x8 /* Report Status */
+#define E1000_ADV_DCMD_VLE 0x40 /* Add VLAN tag */
+#define E1000_ADV_DCMD_TSE 0x80 /* TCP Seg enable */
+/* Extended Device Control */
+#define E1000_CTRL_EXT_NSICR 0x00000001 /* Disable Intr Clear all on read */
+
+struct e1000_adv_context_desc {
+ union {
+ u32 ip_config;
+ struct {
+ u32 iplen :9;
+ u32 maclen :7;
+ u32 vlan_tag :16;
+ } fields;
+ } ip_setup;
+ u32 seq_num;
+ union {
+ u64 l4_config;
+ struct {
+ u32 mkrloc :9;
+ u32 tucmd :11;
+ u32 dtyp :4;
+ u32 adv :8;
+ u32 rsvd :4;
+ u32 idx :4;
+ u32 l4len :8;
+ u32 mss :16;
+ } fields;
+ } l4_setup;
+};
+#endif
+
+/* SRRCTL bit definitions */
+#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */
+#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00
+#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */
+#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000
+#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
+#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000
+#define E1000_SRRCTL_TIMESTAMP 0x40000000
+#define E1000_SRRCTL_DROP_EN 0x80000000
+
+#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F
+#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00
+
+#define E1000_TX_HEAD_WB_ENABLE 0x1
+#define E1000_TX_SEQNUM_WB_ENABLE 0x2
+
+#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002
+#define E1000_MRQC_ENABLE_VMDQ 0x00000003
+#define E1000_MRQC_ENABLE_VMDQ_RSS_2Q 0x00000005
+#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000
+#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000
+#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000
+#define E1000_MRQC_ENABLE_RSS_8Q 0x00000002
+
+#define E1000_VMRCTL_MIRROR_PORT_SHIFT 8
+#define E1000_VMRCTL_MIRROR_DSTPORT_MASK (7 << E1000_VMRCTL_MIRROR_PORT_SHIFT)
+#define E1000_VMRCTL_POOL_MIRROR_ENABLE (1 << 0)
+#define E1000_VMRCTL_UPLINK_MIRROR_ENABLE (1 << 1)
+#define E1000_VMRCTL_DOWNLINK_MIRROR_ENABLE (1 << 2)
+
+#define E1000_EICR_TX_QUEUE ( \
+ E1000_EICR_TX_QUEUE0 | \
+ E1000_EICR_TX_QUEUE1 | \
+ E1000_EICR_TX_QUEUE2 | \
+ E1000_EICR_TX_QUEUE3)
+
+#define E1000_EICR_RX_QUEUE ( \
+ E1000_EICR_RX_QUEUE0 | \
+ E1000_EICR_RX_QUEUE1 | \
+ E1000_EICR_RX_QUEUE2 | \
+ E1000_EICR_RX_QUEUE3)
+
+#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE
+#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE
+
+#define EIMS_ENABLE_MASK ( \
+ E1000_EIMS_RX_QUEUE | \
+ E1000_EIMS_TX_QUEUE | \
+ E1000_EIMS_TCP_TIMER | \
+ E1000_EIMS_OTHER)
+
+/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */
+#define E1000_IMIR_PORT_IM_EN 0x00010000 /* TCP port enable */
+#define E1000_IMIR_PORT_BP 0x00020000 /* TCP port check bypass */
+#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */
+#define E1000_IMIREXT_CTRL_URG 0x00002000 /* Check URG bit in header */
+#define E1000_IMIREXT_CTRL_ACK 0x00004000 /* Check ACK bit in header */
+#define E1000_IMIREXT_CTRL_PSH 0x00008000 /* Check PSH bit in header */
+#define E1000_IMIREXT_CTRL_RST 0x00010000 /* Check RST bit in header */
+#define E1000_IMIREXT_CTRL_SYN 0x00020000 /* Check SYN bit in header */
+#define E1000_IMIREXT_CTRL_FIN 0x00040000 /* Check FIN bit in header */
+#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */
+
+/* Receive Descriptor - Advanced */
+union e1000_adv_rx_desc {
+ struct {
+ __le64 pkt_addr; /* Packet buffer address */
+ __le64 hdr_addr; /* Header buffer address */
+ } read;
+ struct {
+ struct {
+ union {
+ __le32 data;
+ struct {
+ __le16 pkt_info; /*RSS type, Pkt type*/
+ /* Split Header, header buffer len */
+ __le16 hdr_info;
+ } hs_rss;
+ } lo_dword;
+ union {
+ __le32 rss; /* RSS Hash */
+ struct {
+ __le16 ip_id; /* IP id */
+ __le16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ __le32 status_error; /* ext status/error */
+ __le16 length; /* Packet length */
+ __le16 vlan; /* VLAN tag */
+ } upper;
+ } wb; /* writeback */
+};
+
+#define E1000_RXDADV_RSSTYPE_MASK 0x0000000F
+#define E1000_RXDADV_RSSTYPE_SHIFT 12
+#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
+#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
+#define E1000_RXDADV_SPLITHEADER_EN 0x00001000
+#define E1000_RXDADV_SPH 0x8000
+#define E1000_RXDADV_STAT_TS 0x10000 /* Pkt was time stamped */
+#define E1000_RXDADV_STAT_TSIP 0x08000 /* timestamp in packet */
+#define E1000_RXDADV_ERR_HBO 0x00800000
+
+/* RSS Hash results */
+#define E1000_RXDADV_RSSTYPE_NONE 0x00000000
+#define E1000_RXDADV_RSSTYPE_IPV4_TCP 0x00000001
+#define E1000_RXDADV_RSSTYPE_IPV4 0x00000002
+#define E1000_RXDADV_RSSTYPE_IPV6_TCP 0x00000003
+#define E1000_RXDADV_RSSTYPE_IPV6_EX 0x00000004
+#define E1000_RXDADV_RSSTYPE_IPV6 0x00000005
+#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006
+#define E1000_RXDADV_RSSTYPE_IPV4_UDP 0x00000007
+#define E1000_RXDADV_RSSTYPE_IPV6_UDP 0x00000008
+#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009
+
+/* RSS Packet Types as indicated in the receive descriptor */
+#define E1000_RXDADV_PKTTYPE_NONE 0x00000000
+#define E1000_RXDADV_PKTTYPE_IPV4 0x00000010 /* IPV4 hdr present */
+#define E1000_RXDADV_PKTTYPE_IPV4_EX 0x00000020 /* IPV4 hdr + extensions */
+#define E1000_RXDADV_PKTTYPE_IPV6 0x00000040 /* IPV6 hdr present */
+#define E1000_RXDADV_PKTTYPE_IPV6_EX 0x00000080 /* IPV6 hdr + extensions */
+#define E1000_RXDADV_PKTTYPE_TCP 0x00000100 /* TCP hdr present */
+#define E1000_RXDADV_PKTTYPE_UDP 0x00000200 /* UDP hdr present */
+#define E1000_RXDADV_PKTTYPE_SCTP 0x00000400 /* SCTP hdr present */
+#define E1000_RXDADV_PKTTYPE_NFS 0x00000800 /* NFS hdr present */
+
+#define E1000_RXDADV_PKTTYPE_IPSEC_ESP 0x00001000 /* IPSec ESP */
+#define E1000_RXDADV_PKTTYPE_IPSEC_AH 0x00002000 /* IPSec AH */
+#define E1000_RXDADV_PKTTYPE_LINKSEC 0x00004000 /* LinkSec Encap */
+#define E1000_RXDADV_PKTTYPE_ETQF 0x00008000 /* PKTTYPE is ETQF index */
+#define E1000_RXDADV_PKTTYPE_ETQF_MASK 0x00000070 /* ETQF has 8 indices */
+#define E1000_RXDADV_PKTTYPE_ETQF_SHIFT 4 /* Right-shift 4 bits */
+
+/* LinkSec results */
+/* Security Processing bit Indication */
+#define E1000_RXDADV_LNKSEC_STATUS_SECP 0x00020000
+#define E1000_RXDADV_LNKSEC_ERROR_BIT_MASK 0x18000000
+#define E1000_RXDADV_LNKSEC_ERROR_NO_SA_MATCH 0x08000000
+#define E1000_RXDADV_LNKSEC_ERROR_REPLAY_ERROR 0x10000000
+#define E1000_RXDADV_LNKSEC_ERROR_BAD_SIG 0x18000000
+
+#define E1000_RXDADV_IPSEC_STATUS_SECP 0x00020000
+#define E1000_RXDADV_IPSEC_ERROR_BIT_MASK 0x18000000
+#define E1000_RXDADV_IPSEC_ERROR_INVALID_PROTOCOL 0x08000000
+#define E1000_RXDADV_IPSEC_ERROR_INVALID_LENGTH 0x10000000
+#define E1000_RXDADV_IPSEC_ERROR_AUTHENTICATION_FAILED 0x18000000
+
+/* Transmit Descriptor - Advanced */
+union e1000_adv_tx_desc {
+ struct {
+ __le64 buffer_addr; /* Address of descriptor's data buf */
+ __le32 cmd_type_len;
+ __le32 olinfo_status;
+ } read;
+ struct {
+ __le64 rsvd; /* Reserved */
+ __le32 nxtseq_seed;
+ __le32 status;
+ } wb;
+};
+
+/* Adv Transmit Descriptor Config Masks */
+#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */
+#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */
+#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */
+#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */
+#define E1000_ADVTXD_DCMD_DDTYP_ISCSI 0x10000000 /* DDP hdr type or iSCSI */
+#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */
+#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */
+#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */
+#define E1000_ADVTXD_MAC_LINKSEC 0x00040000 /* Apply LinkSec on packet */
+#define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp packet */
+#define E1000_ADVTXD_STAT_SN_CRC 0x00000002 /* NXTSEQ/SEED present in WB */
+#define E1000_ADVTXD_IDX_SHIFT 4 /* Adv desc Index shift */
+#define E1000_ADVTXD_POPTS_ISCO_1ST 0x00000000 /* 1st TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_MDL 0x00000800 /* Middle TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800 /* 1st&Last TSO-full iSCSI PDU*/
+#define E1000_ADVTXD_POPTS_IPSEC 0x00000400 /* IPSec offload request */
+#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */
+
+/* Context descriptors */
+struct e1000_adv_tx_context_desc {
+ __le32 vlan_macip_lens;
+ __le32 seqnum_seed;
+ __le32 type_tucmd_mlhl;
+ __le32 mss_l4len_idx;
+};
+
+#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */
+#define E1000_ADVTXD_VLAN_SHIFT 16 /* Adv ctxt vlan tag shift */
+#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */
+#define E1000_ADVTXD_TUCMD_IPV6 0x00000000 /* IP Packet Type: 0=IPv6 */
+#define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000 /* L4 Packet TYPE of UDP */
+#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */
+#define E1000_ADVTXD_TUCMD_L4T_SCTP 0x00001000 /* L4 Packet TYPE of SCTP */
+#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP 0x00002000 /* IPSec Type ESP */
+/* IPSec Encrypt Enable for ESP */
+#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN 0x00004000
+#define E1000_ADVTXD_TUCMD_MKRREQ 0x00002000 /* Req requires Markers and CRC */
+#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */
+#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */
+/* Adv ctxt IPSec SA IDX mask */
+#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK 0x000000FF
+/* Adv ctxt IPSec ESP len mask */
+#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK 0x000000FF
+
+/* Additional Transmit Descriptor Control definitions */
+#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Tx Queue */
+#define E1000_TXDCTL_SWFLSH 0x04000000 /* Tx Desc. write-back flushing */
+/* Tx Queue Arbitration Priority 0=low, 1=high */
+#define E1000_TXDCTL_PRIORITY 0x08000000
+
+/* Additional Receive Descriptor Control definitions */
+#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Rx Queue */
+#define E1000_RXDCTL_SWFLSH 0x04000000 /* Rx Desc. write-back flushing */
+
+/* Direct Cache Access (DCA) definitions */
+#define E1000_DCA_CTRL_DCA_ENABLE 0x00000000 /* DCA Enable */
+#define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */
+
+#define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */
+#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */
+
+#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */
+#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */
+#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header enable */
+#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload enable */
+
+#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */
+#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */
+#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */
+
+#define E1000_DCA_TXCTRL_CPUID_MASK_82576 0xFF000000 /* Tx CPUID Mask */
+#define E1000_DCA_RXCTRL_CPUID_MASK_82576 0xFF000000 /* Rx CPUID Mask */
+#define E1000_DCA_TXCTRL_CPUID_SHIFT_82576 24 /* Tx CPUID */
+#define E1000_DCA_RXCTRL_CPUID_SHIFT_82576 24 /* Rx CPUID */
+
+/* Additional interrupt register bit definitions */
+#define E1000_ICR_LSECPNS 0x00000020 /* PN threshold - server */
+#define E1000_IMS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */
+#define E1000_ICS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */
+
+/* ETQF register bit definitions */
+#define E1000_ETQF_FILTER_ENABLE (1 << 26)
+#define E1000_ETQF_IMM_INT (1 << 29)
+#define E1000_ETQF_1588 (1 << 30)
+#define E1000_ETQF_QUEUE_ENABLE (1 << 31)
+/*
+ * ETQF filter list: one static filter per filter consumer. This is
+ * to avoid filter collisions later. Add new filters
+ * here!!
+ *
+ * Current filters:
+ * EAPOL 802.1x (0x888e): Filter 0
+ */
+#define E1000_ETQF_FILTER_EAPOL 0
+
+#define E1000_FTQF_VF_BP 0x00008000
+#define E1000_FTQF_1588_TIME_STAMP 0x08000000
+#define E1000_FTQF_MASK 0xF0000000
+#define E1000_FTQF_MASK_PROTO_BP 0x10000000
+#define E1000_FTQF_MASK_SOURCE_ADDR_BP 0x20000000
+#define E1000_FTQF_MASK_DEST_ADDR_BP 0x40000000
+#define E1000_FTQF_MASK_SOURCE_PORT_BP 0x80000000
+
+#define E1000_NVM_APME_82575 0x0400
+#define MAX_NUM_VFS 8
+
+#define E1000_DTXSWC_MAC_SPOOF_MASK 0x000000FF /* Per VF MAC spoof control */
+#define E1000_DTXSWC_VLAN_SPOOF_MASK 0x0000FF00 /* Per VF VLAN spoof control */
+#define E1000_DTXSWC_LLE_MASK 0x00FF0000 /* Per VF Local LB enables */
+#define E1000_DTXSWC_VLAN_SPOOF_SHIFT 8
+#define E1000_DTXSWC_LLE_SHIFT 16
+#define E1000_DTXSWC_VMDQ_LOOPBACK_EN (1 << 31) /* global VF LB enable */
+
+/* Easy defines for setting default pool, would normally be left a zero */
+#define E1000_VT_CTL_DEFAULT_POOL_SHIFT 7
+#define E1000_VT_CTL_DEFAULT_POOL_MASK (0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT)
+
+/* Other useful VMD_CTL register defines */
+#define E1000_VT_CTL_IGNORE_MAC (1 << 28)
+#define E1000_VT_CTL_DISABLE_DEF_POOL (1 << 29)
+#define E1000_VT_CTL_VM_REPL_EN (1 << 30)
+
+/* Per VM Offload register setup */
+#define E1000_VMOLR_RLPML_MASK 0x00003FFF /* Long Packet Maximum Length mask */
+#define E1000_VMOLR_LPE 0x00010000 /* Accept Long packet */
+#define E1000_VMOLR_RSSE 0x00020000 /* Enable RSS */
+#define E1000_VMOLR_AUPE 0x01000000 /* Accept untagged packets */
+#define E1000_VMOLR_ROMPE 0x02000000 /* Accept overflow multicast */
+#define E1000_VMOLR_ROPE 0x04000000 /* Accept overflow unicast */
+#define E1000_VMOLR_BAM 0x08000000 /* Accept Broadcast packets */
+#define E1000_VMOLR_MPME 0x10000000 /* Multicast promiscuous mode */
+#define E1000_VMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */
+#define E1000_VMOLR_STRCRC 0x80000000 /* CRC stripping enable */
+
+#define E1000_VMOLR_VPE 0x00800000 /* VLAN promiscuous enable */
+#define E1000_VMOLR_UPE 0x20000000 /* Unicast promisuous enable */
+#define E1000_DVMOLR_HIDVLAN 0x20000000 /* Vlan hiding enable */
+#define E1000_DVMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */
+#define E1000_DVMOLR_STRCRC 0x80000000 /* CRC stripping enable */
+
+#define E1000_PBRWAC_WALPB 0x00000007 /* Wrap around event on LAN Rx PB */
+#define E1000_PBRWAC_PBE 0x00000008 /* Rx packet buffer empty */
+
+#define E1000_VLVF_ARRAY_SIZE 32
+#define E1000_VLVF_VLANID_MASK 0x00000FFF
+#define E1000_VLVF_POOLSEL_SHIFT 12
+#define E1000_VLVF_POOLSEL_MASK (0xFF << E1000_VLVF_POOLSEL_SHIFT)
+#define E1000_VLVF_LVLAN 0x00100000
+#define E1000_VLVF_VLANID_ENABLE 0x80000000
+
+#define E1000_VMVIR_VLANA_DEFAULT 0x40000000 /* Always use default VLAN */
+#define E1000_VMVIR_VLANA_NEVER 0x80000000 /* Never insert VLAN tag */
+
+#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */
+
+#define E1000_IOVCTL 0x05BBC
+#define E1000_IOVCTL_REUSE_VFQ 0x00000001
+
+#define E1000_RPLOLR_STRVLAN 0x40000000
+#define E1000_RPLOLR_STRCRC 0x80000000
+
+#define E1000_TCTL_EXT_COLD 0x000FFC00
+#define E1000_TCTL_EXT_COLD_SHIFT 10
+
+#define E1000_DTXCTL_8023LL 0x0004
+#define E1000_DTXCTL_VLAN_ADDED 0x0008
+#define E1000_DTXCTL_OOS_ENABLE 0x0010
+#define E1000_DTXCTL_MDP_EN 0x0020
+#define E1000_DTXCTL_SPOOF_INT 0x0040
+
+#define ALL_QUEUES 0xFFFF
+
+/* Rx packet buffer size defines */
+#define E1000_RXPBS_SIZE_MASK_82576 0x0000007F
+void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable);
+void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf);
+void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable);
+s32 e1000_init_nvm_params_82575(struct e1000_hw *hw);
+
+enum e1000_promisc_type {
+ e1000_promisc_disabled = 0, /* all promisc modes disabled */
+ e1000_promisc_unicast = 1, /* unicast promiscuous enabled */
+ e1000_promisc_multicast = 2, /* multicast promiscuous enabled */
+ e1000_promisc_enabled = 3, /* both uni and multicast promisc */
+ e1000_num_promisc_types
+};
+
+void e1000_vfta_set_vf(struct e1000_hw *, u16, bool);
+void e1000_rlpml_set_vf(struct e1000_hw *, u16);
+s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type type);
+u16 e1000_rxpbs_adjust_82580(u32 data);
+s32 e1000_set_eee_i350(struct e1000_hw *);
+#endif /* _E1000_82575_H_ */
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#include "e1000_api.h"
+
+/**
+ * e1000_init_mac_params - Initialize MAC function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the MAC
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_mac_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->mac.ops.init_params) {
+ ret_val = hw->mac.ops.init_params(hw);
+ if (ret_val) {
+ DEBUGOUT("MAC Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("mac.init_mac_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params - Initialize NVM function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the NVM
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_nvm_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->nvm.ops.init_params) {
+ ret_val = hw->nvm.ops.init_params(hw);
+ if (ret_val) {
+ DEBUGOUT("NVM Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("nvm.init_nvm_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_phy_params - Initialize PHY function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the PHY
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_phy_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->phy.ops.init_params) {
+ ret_val = hw->phy.ops.init_params(hw);
+ if (ret_val) {
+ DEBUGOUT("PHY Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("phy.init_phy_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_mbx_params - Initialize mailbox function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the PHY
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_mbx_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->mbx.ops.init_params) {
+ ret_val = hw->mbx.ops.init_params(hw);
+ if (ret_val) {
+ DEBUGOUT("Mailbox Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("mbx.init_mbx_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_mac_type - Sets MAC type
+ * @hw: pointer to the HW structure
+ *
+ * This function sets the mac type of the adapter based on the
+ * device ID stored in the hw structure.
+ * MUST BE FIRST FUNCTION CALLED (explicitly or through
+ * e1000_setup_init_funcs()).
+ **/
+s32 e1000_set_mac_type(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_set_mac_type");
+
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82575EB_COPPER:
+ case E1000_DEV_ID_82575EB_FIBER_SERDES:
+ case E1000_DEV_ID_82575GB_QUAD_COPPER:
+ mac->type = e1000_82575;
+ break;
+ case E1000_DEV_ID_82576:
+ case E1000_DEV_ID_82576_FIBER:
+ case E1000_DEV_ID_82576_SERDES:
+ case E1000_DEV_ID_82576_QUAD_COPPER:
+ case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
+ case E1000_DEV_ID_82576_NS:
+ case E1000_DEV_ID_82576_NS_SERDES:
+ case E1000_DEV_ID_82576_SERDES_QUAD:
+ mac->type = e1000_82576;
+ break;
+ case E1000_DEV_ID_82580_COPPER:
+ case E1000_DEV_ID_82580_FIBER:
+ case E1000_DEV_ID_82580_SERDES:
+ case E1000_DEV_ID_82580_SGMII:
+ case E1000_DEV_ID_82580_COPPER_DUAL:
+ case E1000_DEV_ID_82580_QUAD_FIBER:
+ case E1000_DEV_ID_DH89XXCC_SGMII:
+ case E1000_DEV_ID_DH89XXCC_SERDES:
+ case E1000_DEV_ID_DH89XXCC_BACKPLANE:
+ case E1000_DEV_ID_DH89XXCC_SFP:
+ mac->type = e1000_82580;
+ break;
+ case E1000_DEV_ID_I350_COPPER:
+ case E1000_DEV_ID_I350_FIBER:
+ case E1000_DEV_ID_I350_SERDES:
+ case E1000_DEV_ID_I350_SGMII:
+ case E1000_DEV_ID_I350_DA4:
+ mac->type = e1000_i350;
+ break;
+ case E1000_DEV_ID_82576_VF:
+ mac->type = e1000_vfadapt;
+ break;
+ case E1000_DEV_ID_I350_VF:
+ mac->type = e1000_vfadapt_i350;
+ break;
+ default:
+ /* Should never have loaded on this device */
+ ret_val = -E1000_ERR_MAC_INIT;
+ break;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_setup_init_funcs - Initializes function pointers
+ * @hw: pointer to the HW structure
+ * @init_device: TRUE will initialize the rest of the function pointers
+ * getting the device ready for use. FALSE will only set
+ * MAC type and the function pointers for the other init
+ * functions. Passing FALSE will not generate any hardware
+ * reads or writes.
+ *
+ * This function must be called by a driver in order to use the rest
+ * of the 'shared' code files. Called by drivers only.
+ **/
+s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
+{
+ s32 ret_val;
+
+ /* Can't do much good without knowing the MAC type. */
+ ret_val = e1000_set_mac_type(hw);
+ if (ret_val) {
+ DEBUGOUT("ERROR: MAC type could not be set properly.\n");
+ goto out;
+ }
+
+ if (!hw->hw_addr) {
+ DEBUGOUT("ERROR: Registers not mapped\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ /*
+ * Init function pointers to generic implementations. We do this first
+ * allowing a driver module to override it afterward.
+ */
+ e1000_init_mac_ops_generic(hw);
+ e1000_init_phy_ops_generic(hw);
+ e1000_init_nvm_ops_generic(hw);
+ e1000_init_mbx_ops_generic(hw);
+
+ /*
+ * Set up the init function pointers. These are functions within the
+ * adapter family file that sets up function pointers for the rest of
+ * the functions in that family.
+ */
+ switch (hw->mac.type) {
+ case e1000_82575:
+ case e1000_82576:
+ case e1000_82580:
+ case e1000_i350:
+ e1000_init_function_pointers_82575(hw);
+ break;
+ case e1000_vfadapt:
+ e1000_init_function_pointers_vf(hw);
+ break;
+ case e1000_vfadapt_i350:
+ e1000_init_function_pointers_vf(hw);
+ break;
+ default:
+ DEBUGOUT("Hardware not supported\n");
+ ret_val = -E1000_ERR_CONFIG;
+ break;
+ }
+
+ /*
+ * Initialize the rest of the function pointers. These require some
+ * register reads/writes in some cases.
+ */
+ if (!(ret_val) && init_device) {
+ ret_val = e1000_init_mac_params(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_init_nvm_params(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_init_phy_params(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_init_mbx_params(hw);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_bus_info - Obtain bus information for adapter
+ * @hw: pointer to the HW structure
+ *
+ * This will obtain information about the HW bus for which the
+ * adapter is attached and stores it in the hw structure. This is a
+ * function pointer entry point called by drivers.
+ **/
+s32 e1000_get_bus_info(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.get_bus_info)
+ return hw->mac.ops.get_bus_info(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clear_vfta - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * This clears the VLAN filter table on the adapter. This is a function
+ * pointer entry point called by drivers.
+ **/
+void e1000_clear_vfta(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.clear_vfta)
+ hw->mac.ops.clear_vfta(hw);
+}
+
+/**
+ * e1000_write_vfta - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: the 32-bit offset in which to write the value to.
+ * @value: the 32-bit value to write at location offset.
+ *
+ * This writes a 32-bit value to a 32-bit offset in the VLAN filter
+ * table. This is a function pointer entry point called by drivers.
+ **/
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
+{
+ if (hw->mac.ops.write_vfta)
+ hw->mac.ops.write_vfta(hw, offset, value);
+}
+
+/**
+ * e1000_update_mc_addr_list - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ *
+ * Updates the Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
+ u32 mc_addr_count)
+{
+ if (hw->mac.ops.update_mc_addr_list)
+ hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
+ mc_addr_count);
+}
+
+/**
+ * e1000_force_mac_fc - Force MAC flow control
+ * @hw: pointer to the HW structure
+ *
+ * Force the MAC's flow control settings. Currently no func pointer exists
+ * and all implementations are handled in the generic version of this
+ * function.
+ **/
+s32 e1000_force_mac_fc(struct e1000_hw *hw)
+{
+ return e1000_force_mac_fc_generic(hw);
+}
+
+/**
+ * e1000_check_for_link - Check/Store link connection
+ * @hw: pointer to the HW structure
+ *
+ * This checks the link condition of the adapter and stores the
+ * results in the hw->mac structure. This is a function pointer entry
+ * point called by drivers.
+ **/
+s32 e1000_check_for_link(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.check_for_link)
+ return hw->mac.ops.check_for_link(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_check_mng_mode - Check management mode
+ * @hw: pointer to the HW structure
+ *
+ * This checks if the adapter has manageability enabled.
+ * This is a function pointer entry point called by drivers.
+ **/
+bool e1000_check_mng_mode(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.check_mng_mode)
+ return hw->mac.ops.check_mng_mode(hw);
+
+ return FALSE;
+}
+
+/**
+ * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface
+ * @length: size of the buffer
+ *
+ * Writes the DHCP information to the host interface.
+ **/
+s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
+{
+ return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
+}
+
+/**
+ * e1000_reset_hw - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state. This is a function pointer
+ * entry point called by drivers.
+ **/
+s32 e1000_reset_hw(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.reset_hw)
+ return hw->mac.ops.reset_hw(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_init_hw - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation. This is a function
+ * pointer entry point called by drivers.
+ **/
+s32 e1000_init_hw(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.init_hw)
+ return hw->mac.ops.init_hw(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_setup_link - Configures link and flow control
+ * @hw: pointer to the HW structure
+ *
+ * This configures link and flow control settings for the adapter. This
+ * is a function pointer entry point called by drivers. While modules can
+ * also call this, they probably call their own version of this function.
+ **/
+s32 e1000_setup_link(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.setup_link)
+ return hw->mac.ops.setup_link(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_get_speed_and_duplex - Returns current speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to a 16-bit value to store the speed
+ * @duplex: pointer to a 16-bit value to store the duplex.
+ *
+ * This returns the speed and duplex of the adapter in the two 'out'
+ * variables passed in. This is a function pointer entry point called
+ * by drivers.
+ **/
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+ if (hw->mac.ops.get_link_up_info)
+ return hw->mac.ops.get_link_up_info(hw, speed, duplex);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_setup_led - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use and saves the current state
+ * of the LED so it can be later restored. This is a function pointer entry
+ * point called by drivers.
+ **/
+s32 e1000_setup_led(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.setup_led)
+ return hw->mac.ops.setup_led(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_cleanup_led - Restores SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This restores the SW controllable LED to the value saved off by
+ * e1000_setup_led. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_cleanup_led(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.cleanup_led)
+ return hw->mac.ops.cleanup_led(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_blink_led - Blink SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This starts the adapter LED blinking. Request the LED to be setup first
+ * and cleaned up after. This is a function pointer entry point called by
+ * drivers.
+ **/
+s32 e1000_blink_led(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.blink_led)
+ return hw->mac.ops.blink_led(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_id_led_init - store LED configurations in SW
+ * @hw: pointer to the HW structure
+ *
+ * Initializes the LED config in SW. This is a function pointer entry point
+ * called by drivers.
+ **/
+s32 e1000_id_led_init(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.id_led_init)
+ return hw->mac.ops.id_led_init(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_on - Turn on SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED on. This is a function pointer entry point
+ * called by drivers.
+ **/
+s32 e1000_led_on(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.led_on)
+ return hw->mac.ops.led_on(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off - Turn off SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED off. This is a function pointer entry point
+ * called by drivers.
+ **/
+s32 e1000_led_off(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.led_off)
+ return hw->mac.ops.led_off(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_reset_adaptive - Reset adaptive IFS
+ * @hw: pointer to the HW structure
+ *
+ * Resets the adaptive IFS. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ **/
+void e1000_reset_adaptive(struct e1000_hw *hw)
+{
+ e1000_reset_adaptive_generic(hw);
+}
+
+/**
+ * e1000_update_adaptive - Update adaptive IFS
+ * @hw: pointer to the HW structure
+ *
+ * Updates adapter IFS. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ **/
+void e1000_update_adaptive(struct e1000_hw *hw)
+{
+ e1000_update_adaptive_generic(hw);
+}
+
+/**
+ * e1000_disable_pcie_master - Disable PCI-Express master access
+ * @hw: pointer to the HW structure
+ *
+ * Disables PCI-Express master access and verifies there are no pending
+ * requests. Currently no func pointer exists and all implementations are
+ * handled in the generic version of this function.
+ **/
+s32 e1000_disable_pcie_master(struct e1000_hw *hw)
+{
+ return e1000_disable_pcie_master_generic(hw);
+}
+
+/**
+ * e1000_config_collision_dist - Configure collision distance
+ * @hw: pointer to the HW structure
+ *
+ * Configures the collision distance to the default value and is used
+ * during link setup.
+ **/
+void e1000_config_collision_dist(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.config_collision_dist)
+ hw->mac.ops.config_collision_dist(hw);
+}
+
+/**
+ * e1000_rar_set - Sets a receive address register
+ * @hw: pointer to the HW structure
+ * @addr: address to set the RAR to
+ * @index: the RAR to set
+ *
+ * Sets a Receive Address Register (RAR) to the specified address.
+ **/
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ if (hw->mac.ops.rar_set)
+ hw->mac.ops.rar_set(hw, addr, index);
+}
+
+/**
+ * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
+ * @hw: pointer to the HW structure
+ *
+ * Ensures that the MDI/MDIX SW state is valid.
+ **/
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.validate_mdi_setting)
+ return hw->mac.ops.validate_mdi_setting(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_hash_mc_addr - Determines address location in multicast table
+ * @hw: pointer to the HW structure
+ * @mc_addr: Multicast address to hash.
+ *
+ * This hashes an address to determine its location in the multicast
+ * table. Currently no func pointer exists and all implementations
+ * are handled in the generic version of this function.
+ **/
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+{
+ return e1000_hash_mc_addr_generic(hw, mc_addr);
+}
+
+/**
+ * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
+ * @hw: pointer to the HW structure
+ *
+ * Enables packet filtering on transmit packets if manageability is enabled
+ * and host interface is enabled.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ **/
+bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
+{
+ return e1000_enable_tx_pkt_filtering_generic(hw);
+}
+
+/**
+ * e1000_mng_host_if_write - Writes to the manageability host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface buffer
+ * @length: size of the buffer
+ * @offset: location in the buffer to write to
+ * @sum: sum of the data (not checksum)
+ *
+ * This function writes the buffer content at the offset given on the host if.
+ * It also does alignment considerations to do the writes in most efficient
+ * way. Also fills up the sum of the buffer in *buffer parameter.
+ **/
+s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length,
+ u16 offset, u8 *sum)
+{
+ if (hw->mac.ops.mng_host_if_write)
+ return hw->mac.ops.mng_host_if_write(hw, buffer, length,
+ offset, sum);
+
+ return E1000_NOT_IMPLEMENTED;
+}
+
+/**
+ * e1000_mng_write_cmd_header - Writes manageability command header
+ * @hw: pointer to the HW structure
+ * @hdr: pointer to the host interface command header
+ *
+ * Writes the command header after does the checksum calculation.
+ **/
+s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr)
+{
+ if (hw->mac.ops.mng_write_cmd_header)
+ return hw->mac.ops.mng_write_cmd_header(hw, hdr);
+
+ return E1000_NOT_IMPLEMENTED;
+}
+
+/**
+ * e1000_mng_enable_host_if - Checks host interface is enabled
+ * @hw: pointer to the HW structure
+ *
+ * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ * This function checks whether the HOST IF is enabled for command operation
+ * and also checks whether the previous command is completed. It busy waits
+ * in case of previous command is not completed.
+ **/
+s32 e1000_mng_enable_host_if(struct e1000_hw * hw)
+{
+ if (hw->mac.ops.mng_enable_host_if)
+ return hw->mac.ops.mng_enable_host_if(hw);
+
+ return E1000_NOT_IMPLEMENTED;
+}
+
+/**
+ * e1000_wait_autoneg - Waits for autonegotiation completion
+ * @hw: pointer to the HW structure
+ *
+ * Waits for autoneg to complete. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ **/
+s32 e1000_wait_autoneg(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.wait_autoneg)
+ return hw->mac.ops.wait_autoneg(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_reset_block - Verifies PHY can be reset
+ * @hw: pointer to the HW structure
+ *
+ * Checks if the PHY is in a state that can be reset or if manageability
+ * has it tied up. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_check_reset_block(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.check_reset_block)
+ return hw->phy.ops.check_reset_block(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_phy_reg - Reads PHY register
+ * @hw: pointer to the HW structure
+ * @offset: the register to read
+ * @data: the buffer to store the 16-bit read.
+ *
+ * Reads the PHY register and returns the value in data.
+ * This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ if (hw->phy.ops.read_reg)
+ return hw->phy.ops.read_reg(hw, offset, data);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_phy_reg - Writes PHY register
+ * @hw: pointer to the HW structure
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes the PHY register at offset with the value in data.
+ * This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ if (hw->phy.ops.write_reg)
+ return hw->phy.ops.write_reg(hw, offset, data);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_release_phy - Generic release PHY
+ * @hw: pointer to the HW structure
+ *
+ * Return if silicon family does not require a semaphore when accessing the
+ * PHY.
+ **/
+void e1000_release_phy(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.release)
+ hw->phy.ops.release(hw);
+}
+
+/**
+ * e1000_acquire_phy - Generic acquire PHY
+ * @hw: pointer to the HW structure
+ *
+ * Return success if silicon family does not require a semaphore when
+ * accessing the PHY.
+ **/
+s32 e1000_acquire_phy(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.acquire)
+ return hw->phy.ops.acquire(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_kmrn_reg - Reads register using Kumeran interface
+ * @hw: pointer to the HW structure
+ * @offset: the register to read
+ * @data: the location to store the 16-bit value read.
+ *
+ * Reads a register out of the Kumeran interface. Currently no func pointer
+ * exists and all implementations are handled in the generic version of
+ * this function.
+ **/
+s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return e1000_read_kmrn_reg_generic(hw, offset, data);
+}
+
+/**
+ * e1000_write_kmrn_reg - Writes register using Kumeran interface
+ * @hw: pointer to the HW structure
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes a register to the Kumeran interface. Currently no func pointer
+ * exists and all implementations are handled in the generic version of
+ * this function.
+ **/
+s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return e1000_write_kmrn_reg_generic(hw, offset, data);
+}
+
+/**
+ * e1000_get_cable_length - Retrieves cable length estimation
+ * @hw: pointer to the HW structure
+ *
+ * This function estimates the cable length and stores them in
+ * hw->phy.min_length and hw->phy.max_length. This is a function pointer
+ * entry point called by drivers.
+ **/
+s32 e1000_get_cable_length(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.get_cable_length)
+ return hw->phy.ops.get_cable_length(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_info - Retrieves PHY information from registers
+ * @hw: pointer to the HW structure
+ *
+ * This function gets some information from various PHY registers and
+ * populates hw->phy values with it. This is a function pointer entry
+ * point called by drivers.
+ **/
+s32 e1000_get_phy_info(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.get_info)
+ return hw->phy.ops.get_info(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_hw_reset - Hard PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Performs a hard PHY reset. This is a function pointer entry point called
+ * by drivers.
+ **/
+s32 e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.reset)
+ return hw->phy.ops.reset(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_commit - Soft PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Performs a soft PHY reset on those that apply. This is a function pointer
+ * entry point called by drivers.
+ **/
+s32 e1000_phy_commit(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.commit)
+ return hw->phy.ops.commit(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_d0_lplu_state - Sets low power link up state for D0
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D0
+ * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
+{
+ if (hw->phy.ops.set_d0_lplu_state)
+ return hw->phy.ops.set_d0_lplu_state(hw, active);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_d3_lplu_state - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+{
+ if (hw->phy.ops.set_d3_lplu_state)
+ return hw->phy.ops.set_d3_lplu_state(hw, active);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_mac_addr - Reads MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the MAC address out of the adapter and stores it in the HW structure.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ **/
+s32 e1000_read_mac_addr(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.read_mac_addr)
+ return hw->mac.ops.read_mac_addr(hw);
+
+ return e1000_read_mac_addr_generic(hw);
+}
+
+/**
+ * e1000_read_pba_string - Read device part number string
+ * @hw: pointer to the HW structure
+ * @pba_num: pointer to device part number
+ * @pba_num_size: size of part number buffer
+ *
+ * Reads the product board assembly (PBA) number from the EEPROM and stores
+ * the value in pba_num.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ **/
+s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
+{
+ return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
+}
+
+/**
+ * e1000_read_pba_length - Read device part number string length
+ * @hw: pointer to the HW structure
+ * @pba_num_size: size of part number buffer
+ *
+ * Reads the product board assembly (PBA) number length from the EEPROM and
+ * stores the value in pba_num.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ **/
+s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
+{
+ return e1000_read_pba_length_generic(hw, pba_num_size);
+}
+
+/**
+ * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
+ * @hw: pointer to the HW structure
+ *
+ * Validates the NVM checksum is correct. This is a function pointer entry
+ * point called by drivers.
+ **/
+s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
+{
+ if (hw->nvm.ops.validate)
+ return hw->nvm.ops.validate(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the NVM checksum. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ **/
+s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
+{
+ if (hw->nvm.ops.update)
+ return hw->nvm.ops.update(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_reload_nvm - Reloads EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ * extended control register.
+ **/
+void e1000_reload_nvm(struct e1000_hw *hw)
+{
+ if (hw->nvm.ops.reload)
+ hw->nvm.ops.reload(hw);
+}
+
+/**
+ * e1000_read_nvm - Reads NVM (EEPROM)
+ * @hw: pointer to the HW structure
+ * @offset: the word offset to read
+ * @words: number of 16-bit words to read
+ * @data: pointer to the properly sized buffer for the data.
+ *
+ * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
+ * pointer entry point called by drivers.
+ **/
+s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ if (hw->nvm.ops.read)
+ return hw->nvm.ops.read(hw, offset, words, data);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_write_nvm - Writes to NVM (EEPROM)
+ * @hw: pointer to the HW structure
+ * @offset: the word offset to read
+ * @words: number of 16-bit words to write
+ * @data: pointer to the properly sized buffer for the data.
+ *
+ * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
+ * pointer entry point called by drivers.
+ **/
+s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ if (hw->nvm.ops.write)
+ return hw->nvm.ops.write(hw, offset, words, data);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
+ * @hw: pointer to the HW structure
+ * @reg: 32bit register offset
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes the PHY register at offset with the value in data.
+ * This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
+ u8 data)
+{
+ return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
+}
+
+/**
+ * e1000_power_up_phy - Restores link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * The phy may be powered down to save power, to turn off link when the
+ * driver is unloaded, or wake on lan is not enabled (among others).
+ **/
+void e1000_power_up_phy(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.power_up)
+ hw->phy.ops.power_up(hw);
+
+ e1000_setup_link(hw);
+}
+
+/**
+ * e1000_power_down_phy - Power down PHY
+ * @hw: pointer to the HW structure
+ *
+ * The phy may be powered down to save power, to turn off link when the
+ * driver is unloaded, or wake on lan is not enabled (among others).
+ **/
+void e1000_power_down_phy(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.power_down)
+ hw->phy.ops.power_down(hw);
+}
+
+/**
+ * e1000_power_up_fiber_serdes_link - Power up serdes link
+ * @hw: pointer to the HW structure
+ *
+ * Power on the optics and PCS.
+ **/
+void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.power_up_serdes)
+ hw->mac.ops.power_up_serdes(hw);
+}
+
+/**
+ * e1000_shutdown_fiber_serdes_link - Remove link during power down
+ * @hw: pointer to the HW structure
+ *
+ * Shutdown the optics and PCS on driver unload.
+ **/
+void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.shutdown_serdes)
+ hw->mac.ops.shutdown_serdes(hw);
+}
+
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_API_H_
+#define _E1000_API_H_
+
+#include "e1000_hw.h"
+
+extern void e1000_init_function_pointers_82575(struct e1000_hw *hw);
+extern void e1000_rx_fifo_flush_82575(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_vf(struct e1000_hw *hw);
+extern void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw);
+extern void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw);
+
+s32 e1000_set_mac_type(struct e1000_hw *hw);
+s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device);
+s32 e1000_init_mac_params(struct e1000_hw *hw);
+s32 e1000_init_nvm_params(struct e1000_hw *hw);
+s32 e1000_init_phy_params(struct e1000_hw *hw);
+s32 e1000_init_mbx_params(struct e1000_hw *hw);
+s32 e1000_get_bus_info(struct e1000_hw *hw);
+void e1000_clear_vfta(struct e1000_hw *hw);
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
+s32 e1000_force_mac_fc(struct e1000_hw *hw);
+s32 e1000_check_for_link(struct e1000_hw *hw);
+s32 e1000_reset_hw(struct e1000_hw *hw);
+s32 e1000_init_hw(struct e1000_hw *hw);
+s32 e1000_setup_link(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+s32 e1000_disable_pcie_master(struct e1000_hw *hw);
+void e1000_config_collision_dist(struct e1000_hw *hw);
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr);
+void e1000_update_mc_addr_list(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count);
+s32 e1000_setup_led(struct e1000_hw *hw);
+s32 e1000_cleanup_led(struct e1000_hw *hw);
+s32 e1000_check_reset_block(struct e1000_hw *hw);
+s32 e1000_blink_led(struct e1000_hw *hw);
+s32 e1000_led_on(struct e1000_hw *hw);
+s32 e1000_led_off(struct e1000_hw *hw);
+s32 e1000_id_led_init(struct e1000_hw *hw);
+void e1000_reset_adaptive(struct e1000_hw *hw);
+void e1000_update_adaptive(struct e1000_hw *hw);
+s32 e1000_get_cable_length(struct e1000_hw *hw);
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
+ u32 offset, u8 data);
+s32 e1000_get_phy_info(struct e1000_hw *hw);
+void e1000_release_phy(struct e1000_hw *hw);
+s32 e1000_acquire_phy(struct e1000_hw *hw);
+s32 e1000_phy_hw_reset(struct e1000_hw *hw);
+s32 e1000_phy_commit(struct e1000_hw *hw);
+void e1000_power_up_phy(struct e1000_hw *hw);
+void e1000_power_down_phy(struct e1000_hw *hw);
+s32 e1000_read_mac_addr(struct e1000_hw *hw);
+s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num,
+ u32 pba_num_size);
+s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size);
+void e1000_reload_nvm(struct e1000_hw *hw);
+s32 e1000_update_nvm_checksum(struct e1000_hw *hw);
+s32 e1000_validate_nvm_checksum(struct e1000_hw *hw);
+s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data);
+s32 e1000_wait_autoneg(struct e1000_hw *hw);
+s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
+s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
+bool e1000_check_mng_mode(struct e1000_hw *hw);
+bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
+s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
+s32 e1000_mng_host_if_write(struct e1000_hw *hw,
+ u8 *buffer, u16 length, u16 offset, u8 *sum);
+s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr);
+s32 e1000_mng_write_dhcp_info(struct e1000_hw * hw,
+ u8 *buffer, u16 length);
+
+/*
+ * TBI_ACCEPT macro definition:
+ *
+ * This macro requires:
+ * adapter = a pointer to struct e1000_hw
+ * status = the 8 bit status field of the Rx descriptor with EOP set
+ * error = the 8 bit error field of the Rx descriptor with EOP set
+ * length = the sum of all the length fields of the Rx descriptors that
+ * make up the current frame
+ * last_byte = the last byte of the frame DMAed by the hardware
+ * max_frame_length = the maximum frame length we want to accept.
+ * min_frame_length = the minimum frame length we want to accept.
+ *
+ * This macro is a conditional that should be used in the interrupt
+ * handler's Rx processing routine when RxErrors have been detected.
+ *
+ * Typical use:
+ * ...
+ * if (TBI_ACCEPT) {
+ * accept_frame = TRUE;
+ * e1000_tbi_adjust_stats(adapter, MacAddress);
+ * frame_length--;
+ * } else {
+ * accept_frame = FALSE;
+ * }
+ * ...
+ */
+
+/* The carrier extension symbol, as received by the NIC. */
+#define CARRIER_EXTENSION 0x0F
+
+#define TBI_ACCEPT(a, status, errors, length, last_byte, min_frame_size, max_frame_size) \
+ (e1000_tbi_sbp_enabled_82543(a) && \
+ (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
+ ((last_byte) == CARRIER_EXTENSION) && \
+ (((status) & E1000_RXD_STAT_VP) ? \
+ (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \
+ ((length) <= (max_frame_size + 1))) : \
+ (((length) > min_frame_size) && \
+ ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1)))))
+
+#endif
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_DEFINES_H_
+#define _E1000_DEFINES_H_
+
+/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define REQ_TX_DESCRIPTOR_MULTIPLE 8
+#define REQ_RX_DESCRIPTOR_MULTIPLE 8
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define E1000_WUC_APME 0x00000001 /* APM Enable */
+#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
+#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
+#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
+#define E1000_WUC_LSCWE 0x00000010 /* Link Status wake up enable */
+#define E1000_WUC_PPROXYE 0x00000010 /* Protocol Proxy Enable */
+#define E1000_WUC_LSCWO 0x00000020 /* Link Status wake up override */
+#define E1000_WUC_SPM 0x80000000 /* Enable SPM */
+#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */
+
+/* Wake Up Filter Control */
+#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
+#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
+#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
+#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */
+#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
+#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
+#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
+#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
+#define E1000_WUFC_FW_RST 0x80000000 /* Wake on FW Reset Enable */
+#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
+#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */
+#define E1000_WUFC_FLX_FILTERS 0x000F0000 /*Mask for the 4 flexible filters */
+/*
+ * For 82576 to utilize Extended filter masks in addition to
+ * existing (filter) masks
+ */
+#define E1000_WUFC_EXT_FLX_FILTERS 0x00300000 /* Ext. FLX filter mask */
+
+/* Wake Up Status */
+#define E1000_WUS_LNKC E1000_WUFC_LNKC
+#define E1000_WUS_MAG E1000_WUFC_MAG
+#define E1000_WUS_EX E1000_WUFC_EX
+#define E1000_WUS_MC E1000_WUFC_MC
+#define E1000_WUS_BC E1000_WUFC_BC
+#define E1000_WUS_ARP E1000_WUFC_ARP
+#define E1000_WUS_IPV4 E1000_WUFC_IPV4
+#define E1000_WUS_IPV6 E1000_WUFC_IPV6
+#define E1000_WUS_FLX0 E1000_WUFC_FLX0
+#define E1000_WUS_FLX1 E1000_WUFC_FLX1
+#define E1000_WUS_FLX2 E1000_WUFC_FLX2
+#define E1000_WUS_FLX3 E1000_WUFC_FLX3
+#define E1000_WUS_FLX_FILTERS E1000_WUFC_FLX_FILTERS
+
+/* Wake Up Packet Length */
+#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */
+
+/* Four Flexible Filters are supported */
+#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
+/* Two Extended Flexible Filters are supported (82576) */
+#define E1000_EXT_FLEXIBLE_FILTER_COUNT_MAX 2
+#define E1000_FHFT_LENGTH_OFFSET 0xFC /* Length byte in FHFT */
+#define E1000_FHFT_LENGTH_MASK 0x0FF /* Length in lower byte */
+
+/* Each Flexible Filter is at most 128 (0x80) bytes in length */
+#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128
+
+#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
+#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+
+/* Extended Device Control */
+#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */
+#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */
+#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
+#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */
+#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */
+/* Reserved (bits 4,5) in >= 82575 */
+#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Definable Pin 4 */
+#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Definable Pin 5 */
+#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA
+#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Definable Pin 6 */
+#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* Value of SW Definable Pin 3 */
+/* SDP 4/5 (bits 8,9) are reserved in >= 82575 */
+#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
+#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */
+#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
+#define E1000_CTRL_EXT_SDP3_DIR 0x00000800 /* Direction of SDP3 0=in 1=out */
+#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */
+#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
+#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */
+/* Physical Func Reset Done Indication */
+#define E1000_CTRL_EXT_PFRSTD 0x00004000
+#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
+#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
+#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clock Gating */
+#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_82580_MASK 0x01C00000 /*82580 bit 24:22*/
+#define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX 0x00400000
+#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_PCIX_SERDES 0x00800000
+#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000
+#define E1000_CTRL_EXT_EIAME 0x01000000
+#define E1000_CTRL_EXT_IRCA 0x00000001
+#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000
+#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000
+#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
+#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
+#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
+#define E1000_CTRL_EXT_CANC 0x04000000 /* Int delay cancellation */
+#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
+/* IAME enable bit (27) was removed in >= 82575 */
+#define E1000_CTRL_EXT_IAME 0x08000000 /* Int acknowledge Auto-mask */
+#define E1000_CRTL_EXT_PB_PAREN 0x01000000 /* packet buffer parity error
+ * detection enabled */
+#define E1000_CTRL_EXT_DF_PAREN 0x02000000 /* descriptor FIFO parity
+ * error detection enable */
+#define E1000_CTRL_EXT_GHOST_PAREN 0x40000000
+#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */
+#define E1000_I2CCMD_REG_ADDR_SHIFT 16
+#define E1000_I2CCMD_REG_ADDR 0x00FF0000
+#define E1000_I2CCMD_PHY_ADDR_SHIFT 24
+#define E1000_I2CCMD_PHY_ADDR 0x07000000
+#define E1000_I2CCMD_OPCODE_READ 0x08000000
+#define E1000_I2CCMD_OPCODE_WRITE 0x00000000
+#define E1000_I2CCMD_RESET 0x10000000
+#define E1000_I2CCMD_READY 0x20000000
+#define E1000_I2CCMD_INTERRUPT_ENA 0x40000000
+#define E1000_I2CCMD_ERROR 0x80000000
+#define E1000_MAX_SGMII_PHY_REG_ADDR 255
+#define E1000_I2CCMD_PHY_TIMEOUT 200
+#define E1000_IVAR_VALID 0x80
+#define E1000_GPIE_NSICR 0x00000001
+#define E1000_GPIE_MSIX_MODE 0x00000010
+#define E1000_GPIE_EIAME 0x40000000
+#define E1000_GPIE_PBA 0x80000000
+
+/* Receive Descriptor bit definitions */
+#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
+#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
+#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
+#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
+#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */
+#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
+#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
+#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
+#define E1000_RXD_STAT_CRCV 0x100 /* Speculative CRC Valid */
+#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */
+#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */
+#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */
+#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */
+#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
+#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
+#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
+#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
+#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
+#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */
+#define E1000_RXD_SPC_PRI_SHIFT 13
+#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */
+#define E1000_RXD_SPC_CFI_SHIFT 12
+
+#define E1000_RXDEXT_STATERR_LB 0x00040000
+#define E1000_RXDEXT_STATERR_CE 0x01000000
+#define E1000_RXDEXT_STATERR_SE 0x02000000
+#define E1000_RXDEXT_STATERR_SEQ 0x04000000
+#define E1000_RXDEXT_STATERR_CXE 0x10000000
+#define E1000_RXDEXT_STATERR_TCPE 0x20000000
+#define E1000_RXDEXT_STATERR_IPE 0x40000000
+#define E1000_RXDEXT_STATERR_RXE 0x80000000
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
+ E1000_RXD_ERR_CE | \
+ E1000_RXD_ERR_SE | \
+ E1000_RXD_ERR_SEQ | \
+ E1000_RXD_ERR_CXE | \
+ E1000_RXD_ERR_RXE)
+
+/* Same mask, but for extended and packet split descriptors */
+#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
+ E1000_RXDEXT_STATERR_CE | \
+ E1000_RXDEXT_STATERR_SE | \
+ E1000_RXDEXT_STATERR_SEQ | \
+ E1000_RXDEXT_STATERR_CXE | \
+ E1000_RXDEXT_STATERR_RXE)
+
+#define E1000_MRQC_ENABLE_MASK 0x00000007
+#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001
+#define E1000_MRQC_ENABLE_RSS_INT 0x00000004
+#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000
+#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000
+#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000
+#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000
+#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000
+
+#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
+#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF
+
+/* Management Control */
+#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
+#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */
+#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */
+#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */
+#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */
+#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */
+#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */
+#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
+/* Enable Neighbor Discovery Filtering */
+#define E1000_MANC_NEIGHBOR_EN 0x00004000
+#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */
+#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */
+#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
+#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
+#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */
+#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
+/* Enable MAC address filtering */
+#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000
+/* Enable MNG packets to host memory */
+#define E1000_MANC_EN_MNG2HOST 0x00200000
+/* Enable IP address filtering */
+#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000
+#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */
+#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */
+#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
+#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
+#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
+#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */
+#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */
+#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */
+#define E1000_MANC_MPROXYE 0x40000000 /* Mngment Proxy Enable */
+#define E1000_MANC_EN_BMC2OS 0x10000000 /* OS2BMC is enabled or not */
+
+#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */
+#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */
+
+#define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */
+#define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */
+#define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */
+#define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */
+
+/* Receive Control */
+#define E1000_RCTL_RST 0x00000001 /* Software reset */
+#define E1000_RCTL_EN 0x00000002 /* enable */
+#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
+#define E1000_RCTL_UPE 0x00000008 /* unicast promisc enable */
+#define E1000_RCTL_MPE 0x00000010 /* multicast promisc enable */
+#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
+#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
+#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
+#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */
+#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
+#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */
+#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
+#define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min thresh size */
+#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* Rx desc min thresh size */
+#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* Rx desc min thresh size */
+#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
+#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */
+#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */
+#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */
+#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
+#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */
+#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */
+#define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */
+#define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */
+#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
+#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
+#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
+#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
+#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
+#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
+#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
+#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */
+#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */
+
+/*
+ * Use byte values for the following shift parameters
+ * Usage:
+ * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
+ * E1000_PSRCTL_BSIZE0_MASK) |
+ * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
+ * E1000_PSRCTL_BSIZE1_MASK) |
+ * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
+ * E1000_PSRCTL_BSIZE2_MASK) |
+ * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
+ * E1000_PSRCTL_BSIZE3_MASK))
+ * where value0 = [128..16256], default=256
+ * value1 = [1024..64512], default=4096
+ * value2 = [0..64512], default=4096
+ * value3 = [0..64512], default=0
+ */
+
+#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
+#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
+#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
+#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
+
+#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
+#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
+#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
+#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
+
+/* SWFW_SYNC Definitions */
+#define E1000_SWFW_EEP_SM 0x01
+#define E1000_SWFW_PHY0_SM 0x02
+#define E1000_SWFW_PHY1_SM 0x04
+#define E1000_SWFW_CSR_SM 0x08
+#define E1000_SWFW_PHY2_SM 0x20
+#define E1000_SWFW_PHY3_SM 0x40
+#define E1000_SWFW_SW_MNG_SM 0x400
+
+/* FACTPS Definitions */
+#define E1000_FACTPS_LFS 0x40000000 /* LAN Function Select */
+/* Device Control */
+#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
+#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */
+#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master reqs */
+#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */
+#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */
+#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
+#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
+#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
+#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
+#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
+#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */
+#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
+#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
+#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */
+#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock
+ * indication in SDP[0] */
+#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through
+ * PHYRST_N pin */
+#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external
+ * LINK_0 and LINK_1 pins */
+#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
+#define E1000_CTRL_ADVD3WUC 0x00100000 /* D3 WUC */
+#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
+#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
+#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */
+#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
+#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
+#define E1000_CTRL_RST 0x04000000 /* Global reset */
+#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
+#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
+#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
+#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
+#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to ME */
+#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */
+
+/*
+ * Bit definitions for the Management Data IO (MDIO) and Management Data
+ * Clock (MDC) pins in the Device Control Register.
+ */
+#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0
+#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0
+#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2
+#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2
+#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3
+#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3
+#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
+#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA
+
+#define E1000_CONNSW_ENRGSRC 0x4
+#define E1000_PCS_CFG_PCS_EN 8
+#define E1000_PCS_LCTL_FLV_LINK_UP 1
+#define E1000_PCS_LCTL_FSV_10 0
+#define E1000_PCS_LCTL_FSV_100 2
+#define E1000_PCS_LCTL_FSV_1000 4
+#define E1000_PCS_LCTL_FDV_FULL 8
+#define E1000_PCS_LCTL_FSD 0x10
+#define E1000_PCS_LCTL_FORCE_LINK 0x20
+#define E1000_PCS_LCTL_LOW_LINK_LATCH 0x40
+#define E1000_PCS_LCTL_FORCE_FCTRL 0x80
+#define E1000_PCS_LCTL_AN_ENABLE 0x10000
+#define E1000_PCS_LCTL_AN_RESTART 0x20000
+#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000
+#define E1000_PCS_LCTL_AN_SGMII_BYPASS 0x80000
+#define E1000_PCS_LCTL_AN_SGMII_TRIGGER 0x100000
+#define E1000_PCS_LCTL_FAST_LINK_TIMER 0x1000000
+#define E1000_PCS_LCTL_LINK_OK_FIX 0x2000000
+#define E1000_PCS_LCTL_CRS_ON_NI 0x4000000
+#define E1000_ENABLE_SERDES_LOOPBACK 0x0410
+
+#define E1000_PCS_LSTS_LINK_OK 1
+#define E1000_PCS_LSTS_SPEED_10 0
+#define E1000_PCS_LSTS_SPEED_100 2
+#define E1000_PCS_LSTS_SPEED_1000 4
+#define E1000_PCS_LSTS_DUPLEX_FULL 8
+#define E1000_PCS_LSTS_SYNK_OK 0x10
+#define E1000_PCS_LSTS_AN_COMPLETE 0x10000
+#define E1000_PCS_LSTS_AN_PAGE_RX 0x20000
+#define E1000_PCS_LSTS_AN_TIMED_OUT 0x40000
+#define E1000_PCS_LSTS_AN_REMOTE_FAULT 0x80000
+#define E1000_PCS_LSTS_AN_ERROR_RWS 0x100000
+
+/* Device Status */
+#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
+#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
+#define E1000_STATUS_FUNC_SHIFT 2
+#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */
+#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
+#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
+#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */
+#define E1000_STATUS_SPEED_MASK 0x000000C0
+#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
+#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */
+#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
+#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */
+#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state.
+ * Clear on write '0'. */
+#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Master request status */
+#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */
+#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
+#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
+#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
+#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
+#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */
+#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */
+#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */
+#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */
+#define E1000_STATUS_BMC_LITE 0x01000000 /* BMC external code execution
+ * disabled */
+#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */
+#define E1000_STATUS_FUSE_8 0x04000000
+#define E1000_STATUS_FUSE_9 0x08000000
+#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */
+#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */
+
+/* Constants used to interpret the masked PCI-X bus speed. */
+#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */
+#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */
+#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /*PCI-X bus speed 100-133 MHz*/
+
+#define SPEED_10 10
+#define SPEED_100 100
+#define SPEED_1000 1000
+#define HALF_DUPLEX 1
+#define FULL_DUPLEX 2
+
+#define PHY_FORCE_TIME 20
+
+#define ADVERTISE_10_HALF 0x0001
+#define ADVERTISE_10_FULL 0x0002
+#define ADVERTISE_100_HALF 0x0004
+#define ADVERTISE_100_FULL 0x0008
+#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */
+#define ADVERTISE_1000_FULL 0x0020
+
+/* 1000/H is not supported, nor spec-compliant. */
+#define E1000_ALL_SPEED_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
+ ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
+ ADVERTISE_1000_FULL)
+#define E1000_ALL_NOT_GIG (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
+ ADVERTISE_100_HALF | ADVERTISE_100_FULL)
+#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL)
+#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL)
+#define E1000_ALL_FULL_DUPLEX (ADVERTISE_10_FULL | ADVERTISE_100_FULL | \
+ ADVERTISE_1000_FULL)
+#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF)
+
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX
+
+/* LED Control */
+#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT 0
+#define E1000_LEDCTL_LED0_BLINK_RATE 0x00000020
+#define E1000_LEDCTL_LED0_IVRT 0x00000040
+#define E1000_LEDCTL_LED0_BLINK 0x00000080
+#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00
+#define E1000_LEDCTL_LED1_MODE_SHIFT 8
+#define E1000_LEDCTL_LED1_BLINK_RATE 0x00002000
+#define E1000_LEDCTL_LED1_IVRT 0x00004000
+#define E1000_LEDCTL_LED1_BLINK 0x00008000
+#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000
+#define E1000_LEDCTL_LED2_MODE_SHIFT 16
+#define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000
+#define E1000_LEDCTL_LED2_IVRT 0x00400000
+#define E1000_LEDCTL_LED2_BLINK 0x00800000
+#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000
+#define E1000_LEDCTL_LED3_MODE_SHIFT 24
+#define E1000_LEDCTL_LED3_BLINK_RATE 0x20000000
+#define E1000_LEDCTL_LED3_IVRT 0x40000000
+#define E1000_LEDCTL_LED3_BLINK 0x80000000
+
+#define E1000_LEDCTL_MODE_LINK_10_1000 0x0
+#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
+#define E1000_LEDCTL_MODE_LINK_UP 0x2
+#define E1000_LEDCTL_MODE_ACTIVITY 0x3
+#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
+#define E1000_LEDCTL_MODE_LINK_10 0x5
+#define E1000_LEDCTL_MODE_LINK_100 0x6
+#define E1000_LEDCTL_MODE_LINK_1000 0x7
+#define E1000_LEDCTL_MODE_PCIX_MODE 0x8
+#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9
+#define E1000_LEDCTL_MODE_COLLISION 0xA
+#define E1000_LEDCTL_MODE_BUS_SPEED 0xB
+#define E1000_LEDCTL_MODE_BUS_SIZE 0xC
+#define E1000_LEDCTL_MODE_PAUSED 0xD
+#define E1000_LEDCTL_MODE_LED_ON 0xE
+#define E1000_LEDCTL_MODE_LED_OFF 0xF
+
+/* Transmit Descriptor bit definitions */
+#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
+#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
+#define E1000_TXD_POPTS_SHIFT 8 /* POPTS shift */
+#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
+#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
+#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
+#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
+#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
+#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
+#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
+#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
+#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
+#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
+#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
+#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
+#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
+/* Extended desc bits for Linksec and timesync */
+
+/* Transmit Control */
+#define E1000_TCTL_RST 0x00000001 /* software reset */
+#define E1000_TCTL_EN 0x00000002 /* enable Tx */
+#define E1000_TCTL_BCE 0x00000004 /* busy check enable */
+#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
+#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
+#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
+#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */
+#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */
+#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
+#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */
+#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
+
+/* Transmit Arbitration Count */
+#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */
+
+/* SerDes Control */
+#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
+
+/* Receive Checksum Control */
+#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */
+#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
+#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
+#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */
+#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */
+#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
+#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */
+
+/* Header split receive */
+#define E1000_RFCTL_ISCSI_DIS 0x00000001
+#define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E
+#define E1000_RFCTL_ISCSI_DWC_SHIFT 1
+#define E1000_RFCTL_NFSW_DIS 0x00000040
+#define E1000_RFCTL_NFSR_DIS 0x00000080
+#define E1000_RFCTL_NFS_VER_MASK 0x00000300
+#define E1000_RFCTL_NFS_VER_SHIFT 8
+#define E1000_RFCTL_IPV6_DIS 0x00000400
+#define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800
+#define E1000_RFCTL_ACK_DIS 0x00001000
+#define E1000_RFCTL_ACKD_DIS 0x00002000
+#define E1000_RFCTL_IPFRSP_DIS 0x00004000
+#define E1000_RFCTL_EXTEN 0x00008000
+#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
+#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
+#define E1000_RFCTL_LEF 0x00040000
+
+/* Collision related configuration parameters */
+#define E1000_COLLISION_THRESHOLD 15
+#define E1000_CT_SHIFT 4
+#define E1000_COLLISION_DISTANCE 63
+#define E1000_COLD_SHIFT 12
+
+/* Default values for the transmit IPG register */
+#define DEFAULT_82543_TIPG_IPGT_FIBER 9
+#define DEFAULT_82543_TIPG_IPGT_COPPER 8
+
+#define E1000_TIPG_IPGT_MASK 0x000003FF
+#define E1000_TIPG_IPGR1_MASK 0x000FFC00
+#define E1000_TIPG_IPGR2_MASK 0x3FF00000
+
+#define DEFAULT_82543_TIPG_IPGR1 8
+#define E1000_TIPG_IPGR1_SHIFT 10
+
+#define DEFAULT_82543_TIPG_IPGR2 6
+#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
+#define E1000_TIPG_IPGR2_SHIFT 20
+
+/* Ethertype field values */
+#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
+
+#define ETHERNET_FCS_SIZE 4
+#define MAX_JUMBO_FRAME_SIZE 0x3F00
+
+/* Extended Configuration Control and Size */
+#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
+#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
+#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008
+#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
+#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16
+
+#define E1000_PHY_CTRL_SPD_EN 0x00000001
+#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
+
+#define E1000_KABGTXD_BGSQLBIAS 0x00050000
+
+/* PBA constants */
+#define E1000_PBA_6K 0x0006 /* 6KB */
+#define E1000_PBA_8K 0x0008 /* 8KB */
+#define E1000_PBA_10K 0x000A /* 10KB */
+#define E1000_PBA_12K 0x000C /* 12KB */
+#define E1000_PBA_14K 0x000E /* 14KB */
+#define E1000_PBA_16K 0x0010 /* 16KB */
+#define E1000_PBA_18K 0x0012
+#define E1000_PBA_20K 0x0014
+#define E1000_PBA_22K 0x0016
+#define E1000_PBA_24K 0x0018
+#define E1000_PBA_26K 0x001A
+#define E1000_PBA_30K 0x001E
+#define E1000_PBA_32K 0x0020
+#define E1000_PBA_34K 0x0022
+#define E1000_PBA_35K 0x0023
+#define E1000_PBA_38K 0x0026
+#define E1000_PBA_40K 0x0028
+#define E1000_PBA_48K 0x0030 /* 48KB */
+#define E1000_PBA_64K 0x0040 /* 64KB */
+
+#define E1000_PBS_16K E1000_PBA_16K
+#define E1000_PBS_24K E1000_PBA_24K
+
+#define IFS_MAX 80
+#define IFS_MIN 40
+#define IFS_RATIO 4
+#define IFS_STEP 10
+#define MIN_NUM_XMITS 1000
+
+/* SW Semaphore Register */
+#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
+#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */
+#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
+
+#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */
+
+/* Interrupt Cause Read */
+#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
+#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
+#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
+#define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */
+#define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */
+#define E1000_ICR_RXO 0x00000040 /* Rx overrun */
+#define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */
+#define E1000_ICR_VMMB 0x00000100 /* VM MB event */
+#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
+#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */
+#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
+#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
+#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
+#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
+#define E1000_ICR_TXD_LOW 0x00008000
+#define E1000_ICR_SRPD 0x00010000
+#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */
+#define E1000_ICR_MNG 0x00040000 /* Manageability event */
+#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */
+#define E1000_ICR_DRSTA 0x40000000 /* Device Reset Asserted */
+#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver
+ * should claim the interrupt */
+#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* Q0 Rx desc FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* Q0 Tx desc FIFO parity error */
+#define E1000_ICR_HOST_ARB_PAR 0x00400000 /* host arb read buffer parity err */
+#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */
+#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* Q1 Rx desc FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* Q1 Tx desc FIFO parity error */
+#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */
+#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW
+ * bit in the FWSM */
+#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates
+ * an interrupt */
+#define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */
+#define E1000_ICR_EPRST 0x00100000 /* ME hardware reset occurs */
+#define E1000_ICR_FER 0x00400000 /* Fatal Error */
+
+#define E1000_ICR_THS 0x00800000 /* ICR.THS: Thermal Sensor Event*/
+#define E1000_ICR_MDDET 0x10000000 /* Malicious Driver Detect */
+
+/* Extended Interrupt Cause Read */
+#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */
+#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */
+#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */
+#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */
+#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */
+#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */
+#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */
+#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */
+#define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */
+#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */
+/* TCP Timer */
+#define E1000_TCPTIMER_KS 0x00000100 /* KickStart */
+#define E1000_TCPTIMER_COUNT_ENABLE 0x00000200 /* Count Enable */
+#define E1000_TCPTIMER_COUNT_FINISH 0x00000400 /* Count finish */
+#define E1000_TCPTIMER_LOOP 0x00000800 /* Loop */
+
+/*
+ * This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register. Each bit is documented below:
+ * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ * o RXSEQ = Receive Sequence Error
+ */
+#define POLL_IMS_ENABLE_MASK ( \
+ E1000_IMS_RXDMT0 | \
+ E1000_IMS_RXSEQ)
+
+/*
+ * This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register. Each bit is documented below:
+ * o RXT0 = Receiver Timer Interrupt (ring 0)
+ * o TXDW = Transmit Descriptor Written Back
+ * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ * o RXSEQ = Receive Sequence Error
+ * o LSC = Link Status Change
+ */
+#define IMS_ENABLE_MASK ( \
+ E1000_IMS_RXT0 | \
+ E1000_IMS_TXDW | \
+ E1000_IMS_RXDMT0 | \
+ E1000_IMS_RXSEQ | \
+ E1000_IMS_LSC)
+
+/* Interrupt Mask Set */
+#define E1000_IMS_TXDW E1000_ICR_TXDW /* Tx desc written back */
+#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */
+#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
+#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
+#define E1000_IMS_RXO E1000_ICR_RXO /* Rx overrun */
+#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */
+#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */
+#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_IMS_SRPD E1000_ICR_SRPD
+#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */
+#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */
+#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */
+#define E1000_IMS_DRSTA E1000_ICR_DRSTA /* Device Reset Asserted */
+#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* Q0 Rx desc FIFO
+ * parity error */
+#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* Q0 Tx desc FIFO
+ * parity error */
+#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer
+ * parity error */
+#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity
+ * error */
+#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* Q1 Rx desc FIFO
+ * parity error */
+#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* Q1 Tx desc FIFO
+ * parity error */
+#define E1000_IMS_DSW E1000_ICR_DSW
+#define E1000_IMS_PHYINT E1000_ICR_PHYINT
+#define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */
+#define E1000_IMS_EPRST E1000_ICR_EPRST
+#define E1000_IMS_FER E1000_ICR_FER /* Fatal Error */
+
+#define E1000_IMS_THS E1000_ICR_THS /* ICR.TS: Thermal Sensor Event*/
+#define E1000_IMS_MDDET E1000_ICR_MDDET /* Malicious Driver Detect */
+/* Extended Interrupt Mask Set */
+#define E1000_EIMS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define E1000_EIMS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define E1000_EIMS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define E1000_EIMS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define E1000_EIMS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define E1000_EIMS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define E1000_EIMS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define E1000_EIMS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
+#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
+
+/* Interrupt Cause Set */
+#define E1000_ICS_TXDW E1000_ICR_TXDW /* Tx desc written back */
+#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
+#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
+#define E1000_ICS_RXO E1000_ICR_RXO /* Rx overrun */
+#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */
+#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */
+#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_ICS_SRPD E1000_ICR_SRPD
+#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */
+#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */
+#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */
+#define E1000_ICS_DRSTA E1000_ICR_DRSTA /* Device Reset Aserted */
+#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* Q0 Rx desc FIFO
+ * parity error */
+#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* Q0 Tx desc FIFO
+ * parity error */
+#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer
+ * parity error */
+#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity
+ * error */
+#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* Q1 Rx desc FIFO
+ * parity error */
+#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* Q1 Tx desc FIFO
+ * parity error */
+#define E1000_ICS_DSW E1000_ICR_DSW
+#define E1000_ICS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */
+#define E1000_ICS_PHYINT E1000_ICR_PHYINT
+#define E1000_ICS_EPRST E1000_ICR_EPRST
+
+/* Extended Interrupt Cause Set */
+#define E1000_EICS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define E1000_EICS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define E1000_EICS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define E1000_EICS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define E1000_EICS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define E1000_EICS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define E1000_EICS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define E1000_EICS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define E1000_EICS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
+#define E1000_EICS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
+
+#define E1000_EITR_ITR_INT_MASK 0x0000FFFF
+/* E1000_EITR_CNT_IGNR is only for 82576 and newer */
+#define E1000_EITR_CNT_IGNR 0x80000000 /* Don't reset counters on write */
+
+/* Transmit Descriptor Control */
+#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
+#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
+#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
+#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
+/* Enable the counting of descriptors still to be processed. */
+#define E1000_TXDCTL_COUNT_DESC 0x00400000
+
+/* Flow Control Constants */
+#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
+#define FLOW_CONTROL_TYPE 0x8808
+
+/* 802.1q VLAN Packet Size */
+#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */
+#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
+
+/* Receive Address */
+/*
+ * Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor.
+ * Technically, we have 16 spots. However, we reserve one of these spots
+ * (RAR[15]) for our directed address used by controllers with
+ * manageability enabled, allowing us room for 15 multicast addresses.
+ */
+#define E1000_RAR_ENTRIES 15
+#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
+#define E1000_RAL_MAC_ADDR_LEN 4
+#define E1000_RAH_MAC_ADDR_LEN 2
+#define E1000_RAH_QUEUE_MASK_82575 0x000C0000
+#define E1000_RAH_POOL_MASK 0x03FC0000
+#define E1000_RAH_POOL_SHIFT 18
+#define E1000_RAH_POOL_1 0x00040000
+
+/* Error Codes */
+#define E1000_SUCCESS 0
+#define E1000_ERR_NVM 1
+#define E1000_ERR_PHY 2
+#define E1000_ERR_CONFIG 3
+#define E1000_ERR_PARAM 4
+#define E1000_ERR_MAC_INIT 5
+#define E1000_ERR_PHY_TYPE 6
+#define E1000_ERR_RESET 9
+#define E1000_ERR_MASTER_REQUESTS_PENDING 10
+#define E1000_ERR_HOST_INTERFACE_COMMAND 11
+#define E1000_BLK_PHY_RESET 12
+#define E1000_ERR_SWFW_SYNC 13
+#define E1000_NOT_IMPLEMENTED 14
+#define E1000_ERR_MBX 15
+#define E1000_ERR_INVALID_ARGUMENT 16
+#define E1000_ERR_NO_SPACE 17
+#define E1000_ERR_NVM_PBA_SECTION 18
+
+/* Loop limit on how long we wait for auto-negotiation to complete */
+#define FIBER_LINK_UP_LIMIT 50
+#define COPPER_LINK_UP_LIMIT 10
+#define PHY_AUTO_NEG_LIMIT 45
+#define PHY_FORCE_LIMIT 20
+/* Number of 100 microseconds we wait for PCI Express master disable */
+#define MASTER_DISABLE_TIMEOUT 800
+/* Number of milliseconds we wait for PHY configuration done after MAC reset */
+#define PHY_CFG_TIMEOUT 100
+/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
+#define MDIO_OWNERSHIP_TIMEOUT 10
+/* Number of milliseconds for NVM auto read done after MAC reset. */
+#define AUTO_READ_DONE_TIMEOUT 10
+
+/* Flow Control */
+#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
+#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */
+#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
+
+/* Transmit Configuration Word */
+#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
+#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */
+#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
+#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */
+#define E1000_TXCW_NP 0x00008000 /* TXCW next page */
+#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */
+#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */
+#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
+#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */
+#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
+#define E1000_RXCW_CC 0x10000000 /* Receive config change */
+#define E1000_RXCW_C 0x20000000 /* Receive config */
+#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
+#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */
+
+#define E1000_TSYNCTXCTL_VALID 0x00000001 /* Tx timestamp valid */
+#define E1000_TSYNCTXCTL_ENABLED 0x00000010 /* enable Tx timestamping */
+
+#define E1000_TSYNCRXCTL_VALID 0x00000001 /* Rx timestamp valid */
+#define E1000_TSYNCRXCTL_TYPE_MASK 0x0000000E /* Rx type mask */
+#define E1000_TSYNCRXCTL_TYPE_L2_V2 0x00
+#define E1000_TSYNCRXCTL_TYPE_L4_V1 0x02
+#define E1000_TSYNCRXCTL_TYPE_L2_L4_V2 0x04
+#define E1000_TSYNCRXCTL_TYPE_ALL 0x08
+#define E1000_TSYNCRXCTL_TYPE_EVENT_V2 0x0A
+#define E1000_TSYNCRXCTL_ENABLED 0x00000010 /* enable Rx timestamping */
+
+#define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK 0x000000FF
+#define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE 0x00
+#define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE 0x01
+#define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE 0x02
+#define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE 0x03
+#define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE 0x04
+
+#define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK 0x00000F00
+#define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE 0x0000
+#define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE 0x0100
+#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE 0x0200
+#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE 0x0300
+#define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE 0x0800
+#define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE 0x0900
+#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00
+#define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE 0x0B00
+#define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE 0x0C00
+#define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE 0x0D00
+
+#define E1000_TIMINCA_16NS_SHIFT 24
+/* TUPLE Filtering Configuration */
+#define E1000_TTQF_DISABLE_MASK 0xF0008000 /* TTQF Disable Mask */
+#define E1000_TTQF_QUEUE_ENABLE 0x100 /* TTQF Queue Enable Bit */
+#define E1000_TTQF_PROTOCOL_MASK 0xFF /* TTQF Protocol Mask */
+/* TTQF TCP Bit, shift with E1000_TTQF_PROTOCOL SHIFT */
+#define E1000_TTQF_PROTOCOL_TCP 0x0
+/* TTQF UDP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */
+#define E1000_TTQF_PROTOCOL_UDP 0x1
+/* TTQF SCTP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */
+#define E1000_TTQF_PROTOCOL_SCTP 0x2
+#define E1000_TTQF_PROTOCOL_SHIFT 5 /* TTQF Protocol Shift */
+#define E1000_TTQF_QUEUE_SHIFT 16 /* TTQF Queue Shfit */
+#define E1000_TTQF_RX_QUEUE_MASK 0x70000 /* TTQF Queue Mask */
+#define E1000_TTQF_MASK_ENABLE 0x10000000 /* TTQF Mask Enable Bit */
+#define E1000_IMIR_CLEAR_MASK 0xF001FFFF /* IMIR Reg Clear Mask */
+#define E1000_IMIR_PORT_BYPASS 0x20000 /* IMIR Port Bypass Bit */
+#define E1000_IMIR_PRIORITY_SHIFT 29 /* IMIR Priority Shift */
+#define E1000_IMIREXT_CLEAR_MASK 0x7FFFF /* IMIREXT Reg Clear Mask */
+
+#define E1000_MDICNFG_EXT_MDIO 0x80000000 /* MDI ext/int destination */
+#define E1000_MDICNFG_COM_MDIO 0x40000000 /* MDI shared w/ lan 0 */
+#define E1000_MDICNFG_PHY_MASK 0x03E00000
+#define E1000_MDICNFG_PHY_SHIFT 21
+
+#define E1000_THSTAT_LOW_EVENT 0x20000000 /* Low thermal threshold */
+#define E1000_THSTAT_MID_EVENT 0x00200000 /* Mid thermal threshold */
+#define E1000_THSTAT_HIGH_EVENT 0x00002000 /* High thermal threshold */
+#define E1000_THSTAT_PWR_DOWN 0x00000001 /* Power Down Event */
+#define E1000_THSTAT_LINK_THROTTLE 0x00000002 /* Link Speed Throttle Event */
+
+/* Powerville EEE defines */
+#define E1000_IPCNFG_EEE_1G_AN 0x00000008 /* IPCNFG EEE Enable 1G AN */
+#define E1000_IPCNFG_EEE_100M_AN 0x00000004 /* IPCNFG EEE Enable 100M AN */
+#define E1000_EEER_TX_LPI_EN 0x00010000 /* EEER Tx LPI Enable */
+#define E1000_EEER_RX_LPI_EN 0x00020000 /* EEER Rx LPI Enable */
+#define E1000_EEER_LPI_FC 0x00040000 /* EEER Enable on Flow Control*/
+/* EEE status */
+#define E1000_EEER_EEE_NEG 0x20000000 /* EEE capability negotiated */
+#define E1000_EEER_RX_LPI_STATUS 0x40000000 /* Rx in LPI state */
+#define E1000_EEER_TX_LPI_STATUS 0x80000000 /* Tx in LPI state */
+
+/* PCI Express Control */
+#define E1000_GCR_RXD_NO_SNOOP 0x00000001
+#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002
+#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004
+#define E1000_GCR_TXD_NO_SNOOP 0x00000008
+#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010
+#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020
+#define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000
+#define E1000_GCR_CMPL_TMOUT_10ms 0x00001000
+#define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000
+#define E1000_GCR_CAP_VER2 0x00040000
+
+#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \
+ E1000_GCR_RXDSCW_NO_SNOOP | \
+ E1000_GCR_RXDSCR_NO_SNOOP | \
+ E1000_GCR_TXD_NO_SNOOP | \
+ E1000_GCR_TXDSCW_NO_SNOOP | \
+ E1000_GCR_TXDSCR_NO_SNOOP)
+
+/* PHY Control Register */
+#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
+#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
+#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
+#define MII_CR_POWER_DOWN 0x0800 /* Power down */
+#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
+#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
+#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
+#define MII_CR_SPEED_1000 0x0040
+#define MII_CR_SPEED_100 0x2000
+#define MII_CR_SPEED_10 0x0000
+
+/* PHY Status Register */
+#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
+#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
+#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
+#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
+#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
+#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
+#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
+#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
+#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
+#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
+#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
+#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
+#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
+#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
+#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
+
+/* Autoneg Advertisement Register */
+#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
+#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
+#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
+#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
+#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
+#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
+#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+
+/* Link Partner Ability Register (Base Page) */
+#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
+#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */
+#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */
+#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */
+#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */
+#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
+#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
+#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */
+#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */
+#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+
+/* Autoneg Expansion Register */
+#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
+#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */
+#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */
+#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
+#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */
+
+/* 1000BASE-T Control Register */
+#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
+#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
+#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */
+ /* 0=DTE device */
+#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
+ /* 0=Configure PHY as Slave */
+#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
+ /* 0=Automatic Master/Slave config */
+#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
+#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
+#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
+#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
+#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
+
+/* 1000BASE-T Status Register */
+#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */
+#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */
+#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
+#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
+#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
+#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx is Master, 0=Slave */
+#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
+
+#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define PHY_CONTROL 0x00 /* Control Register */
+#define PHY_STATUS 0x01 /* Status Register */
+#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
+#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
+#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
+#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */
+#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
+#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
+
+#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */
+
+/* NVM Control */
+#define E1000_EECD_SK 0x00000001 /* NVM Clock */
+#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */
+#define E1000_EECD_DI 0x00000004 /* NVM Data In */
+#define E1000_EECD_DO 0x00000008 /* NVM Data Out */
+#define E1000_EECD_FWE_MASK 0x00000030
+#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */
+#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */
+#define E1000_EECD_FWE_SHIFT 4
+#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */
+#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */
+#define E1000_EECD_PRES 0x00000100 /* NVM Present */
+#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */
+#define E1000_EECD_BLOCKED 0x00008000 /* Bit banging access blocked flag */
+#define E1000_EECD_ABORT 0x00010000 /* NVM operation aborted flag */
+#define E1000_EECD_TIMEOUT 0x00020000 /* NVM read operation timeout flag */
+#define E1000_EECD_ERROR_CLR 0x00040000 /* NVM error status clear bit */
+/* NVM Addressing bits based on type 0=small, 1=large */
+#define E1000_EECD_ADDR_BITS 0x00000400
+#define E1000_EECD_TYPE 0x00002000 /* NVM Type (1-SPI, 0-Microwire) */
+#ifndef E1000_NVM_GRANT_ATTEMPTS
+#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
+#endif
+#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
+#define E1000_EECD_SIZE_EX_SHIFT 11
+#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */
+#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */
+#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */
+#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
+#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
+#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */
+#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
+#define E1000_EECD_SECVAL_SHIFT 22
+#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES)
+
+#define E1000_NVM_SWDPIN0 0x0001 /* SWDPIN 0 NVM Value */
+#define E1000_NVM_LED_LOGIC 0x0020 /* Led Logic Word */
+#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write regs */
+#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
+#define E1000_NVM_RW_REG_START 1 /* Start operation */
+#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
+#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */
+#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */
+#define E1000_FLASH_UPDATES 2000
+
+/* NVM Word Offsets */
+#define NVM_COMPAT 0x0003
+#define NVM_ID_LED_SETTINGS 0x0004
+#define NVM_VERSION 0x0005
+#define NVM_SERDES_AMPLITUDE 0x0006 /* SERDES output amplitude */
+#define NVM_PHY_CLASS_WORD 0x0007
+#define NVM_INIT_CONTROL1_REG 0x000A
+#define NVM_INIT_CONTROL2_REG 0x000F
+#define NVM_SWDEF_PINS_CTRL_PORT_1 0x0010
+#define NVM_INIT_CONTROL3_PORT_B 0x0014
+#define NVM_INIT_3GIO_3 0x001A
+#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020
+#define NVM_INIT_CONTROL3_PORT_A 0x0024
+#define NVM_CFG 0x0012
+#define NVM_FLASH_VERSION 0x0032
+#define NVM_ALT_MAC_ADDR_PTR 0x0037
+#define NVM_CHECKSUM_REG 0x003F
+#define NVM_COMPATIBILITY_REG_3 0x0003
+#define NVM_COMPATIBILITY_BIT_MASK 0x8000
+
+#define E1000_NVM_CFG_DONE_PORT_0 0x040000 /* MNG config cycle done */
+#define E1000_NVM_CFG_DONE_PORT_1 0x080000 /* ...for second port */
+#define E1000_NVM_CFG_DONE_PORT_2 0x100000 /* ...for third port */
+#define E1000_NVM_CFG_DONE_PORT_3 0x200000 /* ...for fourth port */
+
+#define NVM_82580_LAN_FUNC_OFFSET(a) (a ? (0x40 + (0x40 * a)) : 0)
+
+/* Mask bits for fields in Word 0x24 of the NVM */
+#define NVM_WORD24_COM_MDIO 0x0008 /* MDIO interface shared */
+#define NVM_WORD24_EXT_MDIO 0x0004 /* MDIO accesses routed external */
+
+/* Mask bits for fields in Word 0x0f of the NVM */
+#define NVM_WORD0F_PAUSE_MASK 0x3000
+#define NVM_WORD0F_PAUSE 0x1000
+#define NVM_WORD0F_ASM_DIR 0x2000
+#define NVM_WORD0F_ANE 0x0800
+#define NVM_WORD0F_SWPDIO_EXT_MASK 0x00F0
+#define NVM_WORD0F_LPLU 0x0001
+
+/* Mask bits for fields in Word 0x1a of the NVM */
+#define NVM_WORD1A_ASPM_MASK 0x000C
+
+/* Mask bits for fields in Word 0x03 of the EEPROM */
+#define NVM_COMPAT_LOM 0x0800
+
+/* length of string needed to store PBA number */
+#define E1000_PBANUM_LENGTH 11
+
+/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
+#define NVM_SUM 0xBABA
+
+#define NVM_MAC_ADDR_OFFSET 0
+#define NVM_PBA_OFFSET_0 8
+#define NVM_PBA_OFFSET_1 9
+#define NVM_PBA_PTR_GUARD 0xFAFA
+#define NVM_RESERVED_WORD 0xFFFF
+#define NVM_PHY_CLASS_A 0x8000
+#define NVM_SERDES_AMPLITUDE_MASK 0x000F
+#define NVM_SIZE_MASK 0x1C00
+#define NVM_SIZE_SHIFT 10
+#define NVM_WORD_SIZE_BASE_SHIFT 6
+#define NVM_SWDPIO_EXT_SHIFT 4
+
+/* NVM Commands - Microwire */
+#define NVM_READ_OPCODE_MICROWIRE 0x6 /* NVM read opcode */
+#define NVM_WRITE_OPCODE_MICROWIRE 0x5 /* NVM write opcode */
+#define NVM_ERASE_OPCODE_MICROWIRE 0x7 /* NVM erase opcode */
+#define NVM_EWEN_OPCODE_MICROWIRE 0x13 /* NVM erase/write enable */
+#define NVM_EWDS_OPCODE_MICROWIRE 0x10 /* NVM erase/write disable */
+
+/* NVM Commands - SPI */
+#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
+#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */
+#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */
+#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
+#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */
+#define NVM_WRDI_OPCODE_SPI 0x04 /* NVM reset Write Enable latch */
+#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */
+#define NVM_WRSR_OPCODE_SPI 0x01 /* NVM write Status register */
+
+/* SPI NVM Status Register */
+#define NVM_STATUS_RDY_SPI 0x01
+#define NVM_STATUS_WEN_SPI 0x02
+#define NVM_STATUS_BP0_SPI 0x04
+#define NVM_STATUS_BP1_SPI 0x08
+#define NVM_STATUS_WPEN_SPI 0x80
+
+/* Word definitions for ID LED Settings */
+#define ID_LED_RESERVED_0000 0x0000
+#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
+ (ID_LED_OFF1_OFF2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2 0x1
+#define ID_LED_DEF1_ON2 0x2
+#define ID_LED_DEF1_OFF2 0x3
+#define ID_LED_ON1_DEF2 0x4
+#define ID_LED_ON1_ON2 0x5
+#define ID_LED_ON1_OFF2 0x6
+#define ID_LED_OFF1_DEF2 0x7
+#define ID_LED_OFF1_ON2 0x8
+#define ID_LED_OFF1_OFF2 0x9
+
+#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
+#define IGP_ACTIVITY_LED_ENABLE 0x0300
+#define IGP_LED3_MODE 0x07000000
+
+/* PCI/PCI-X/PCI-EX Config space */
+#define PCIX_COMMAND_REGISTER 0xE6
+#define PCIX_STATUS_REGISTER_LO 0xE8
+#define PCIX_STATUS_REGISTER_HI 0xEA
+#define PCI_HEADER_TYPE_REGISTER 0x0E
+#define PCIE_LINK_STATUS 0x12
+#define PCIE_DEVICE_CONTROL2 0x28
+
+#define PCIX_COMMAND_MMRBC_MASK 0x000C
+#define PCIX_COMMAND_MMRBC_SHIFT 0x2
+#define PCIX_STATUS_HI_MMRBC_MASK 0x0060
+#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5
+#define PCIX_STATUS_HI_MMRBC_4K 0x3
+#define PCIX_STATUS_HI_MMRBC_2K 0x2
+#define PCIX_STATUS_LO_FUNC_MASK 0x7
+#define PCI_HEADER_TYPE_MULTIFUNC 0x80
+#define PCIE_LINK_WIDTH_MASK 0x3F0
+#define PCIE_LINK_WIDTH_SHIFT 4
+#define PCIE_LINK_SPEED_MASK 0x0F
+#define PCIE_LINK_SPEED_2500 0x01
+#define PCIE_LINK_SPEED_5000 0x02
+#define PCIE_DEVICE_CONTROL2_16ms 0x0005
+
+#ifndef ETH_ADDR_LEN
+#define ETH_ADDR_LEN 6
+#endif
+
+#define PHY_REVISION_MASK 0xFFFFFFF0
+#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
+#define MAX_PHY_MULTI_PAGE_REG 0xF
+
+/* Bit definitions for valid PHY IDs. */
+/*
+ * I = Integrated
+ * E = External
+ */
+#define M88E1000_E_PHY_ID 0x01410C50
+#define M88E1000_I_PHY_ID 0x01410C30
+#define M88E1011_I_PHY_ID 0x01410C20
+#define IGP01E1000_I_PHY_ID 0x02A80380
+#define M88E1011_I_REV_4 0x04
+#define M88E1111_I_PHY_ID 0x01410CC0
+#define M88E1112_E_PHY_ID 0x01410C90
+#define I347AT4_E_PHY_ID 0x01410DC0
+#define M88E1340M_E_PHY_ID 0x01410DF0
+#define GG82563_E_PHY_ID 0x01410CA0
+#define IGP03E1000_E_PHY_ID 0x02A80390
+#define IFE_E_PHY_ID 0x02A80330
+#define IFE_PLUS_E_PHY_ID 0x02A80320
+#define IFE_C_E_PHY_ID 0x02A80310
+#define I82580_I_PHY_ID 0x015403A0
+#define I350_I_PHY_ID 0x015403B0
+#define IGP04E1000_E_PHY_ID 0x02A80391
+#define M88_VENDOR 0x0141
+
+/* M88E1000 Specific Registers */
+#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
+#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
+#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */
+#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */
+#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
+#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
+
+#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */
+#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
+#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
+#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */
+#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */
+
+/* M88E1000 PHY Specific Control Register */
+#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reverse enabled */
+#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */
+/* 1=CLK125 low, 0=CLK125 toggling */
+#define M88E1000_PSCR_CLK125_DISABLE 0x0010
+#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
+ /* Manual MDI configuration */
+#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
+/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
+#define M88E1000_PSCR_AUTO_X_1000T 0x0040
+/* Auto crossover enabled all speeds */
+#define M88E1000_PSCR_AUTO_X_MODE 0x0060
+/*
+ * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold
+ * 0=Normal 10BASE-T Rx Threshold
+ */
+#define M88E1000_PSCR_EN_10BT_EXT_DIST 0x0080
+/* 1=5-bit interface in 100BASE-TX, 0=MII interface in 100BASE-TX */
+#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100
+#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */
+#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Tx */
+
+/* M88E1000 PHY Specific Status Register */
+#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */
+#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
+#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
+#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
+/*
+ * 0 = <50M
+ * 1 = 50-80M
+ * 2 = 80-110M
+ * 3 = 110-140M
+ * 4 = >140M
+ */
+#define M88E1000_PSSR_CABLE_LENGTH 0x0380
+#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
+#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
+#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */
+#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
+#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
+#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */
+#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
+#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
+
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/* M88E1000 Extended PHY Specific Control Register */
+#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
+/*
+ * 1 = Lost lock detect enabled.
+ * Will assert lost lock and bring
+ * link down if idle not seen
+ * within 1ms in 1000BASE-T
+ */
+#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000
+/*
+ * Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master
+ */
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00
+/*
+ * Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave
+ */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300
+#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
+
+/* M88E1111 Specific Registers */
+#define M88E1111_PHY_PAGE_SELECT1 0x16 /* for registers 0-28 */
+#define M88E1111_PHY_PAGE_SELECT2 0x1D /* for registers 30-31 */
+
+/* M88E1111 page select register mask */
+#define M88E1111_PHY_PAGE_SELECT_MASK1 0xFF
+#define M88E1111_PHY_PAGE_SELECT_MASK2 0x3F
+
+/* Intel I347AT4 Registers */
+
+#define I347AT4_PCDL 0x10 /* PHY Cable Diagnostics Length */
+#define I347AT4_PCDC 0x15 /* PHY Cable Diagnostics Control */
+#define I347AT4_PAGE_SELECT 0x16
+
+/* I347AT4 Extended PHY Specific Control Register */
+
+/*
+ * Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master
+ */
+#define I347AT4_PSCR_DOWNSHIFT_ENABLE 0x0800
+#define I347AT4_PSCR_DOWNSHIFT_MASK 0x7000
+#define I347AT4_PSCR_DOWNSHIFT_1X 0x0000
+#define I347AT4_PSCR_DOWNSHIFT_2X 0x1000
+#define I347AT4_PSCR_DOWNSHIFT_3X 0x2000
+#define I347AT4_PSCR_DOWNSHIFT_4X 0x3000
+#define I347AT4_PSCR_DOWNSHIFT_5X 0x4000
+#define I347AT4_PSCR_DOWNSHIFT_6X 0x5000
+#define I347AT4_PSCR_DOWNSHIFT_7X 0x6000
+#define I347AT4_PSCR_DOWNSHIFT_8X 0x7000
+
+/* I347AT4 PHY Cable Diagnostics Control */
+#define I347AT4_PCDC_CABLE_LENGTH_UNIT 0x0400 /* 0=cm 1=meters */
+
+/* M88E1112 only registers */
+#define M88E1112_VCT_DSP_DISTANCE 0x001A
+
+/* M88EC018 Rev 2 specific DownShift settings */
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00
+
+/*
+ * Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define GG82563_PAGE_SHIFT 5
+#define GG82563_REG(page, reg) \
+ (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+#define GG82563_MIN_ALT_REG 30
+
+/* GG82563 Specific Registers */
+#define GG82563_PHY_SPEC_CTRL \
+ GG82563_REG(0, 16) /* PHY Specific Control */
+#define GG82563_PHY_SPEC_STATUS \
+ GG82563_REG(0, 17) /* PHY Specific Status */
+#define GG82563_PHY_INT_ENABLE \
+ GG82563_REG(0, 18) /* Interrupt Enable */
+#define GG82563_PHY_SPEC_STATUS_2 \
+ GG82563_REG(0, 19) /* PHY Specific Status 2 */
+#define GG82563_PHY_RX_ERR_CNTR \
+ GG82563_REG(0, 21) /* Receive Error Counter */
+#define GG82563_PHY_PAGE_SELECT \
+ GG82563_REG(0, 22) /* Page Select */
+#define GG82563_PHY_SPEC_CTRL_2 \
+ GG82563_REG(0, 26) /* PHY Specific Control 2 */
+#define GG82563_PHY_PAGE_SELECT_ALT \
+ GG82563_REG(0, 29) /* Alternate Page Select */
+#define GG82563_PHY_TEST_CLK_CTRL \
+ GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */
+
+#define GG82563_PHY_MAC_SPEC_CTRL \
+ GG82563_REG(2, 21) /* MAC Specific Control Register */
+#define GG82563_PHY_MAC_SPEC_CTRL_2 \
+ GG82563_REG(2, 26) /* MAC Specific Control 2 */
+
+#define GG82563_PHY_DSP_DISTANCE \
+ GG82563_REG(5, 26) /* DSP Distance */
+
+/* Page 193 - Port Control Registers */
+#define GG82563_PHY_KMRN_MODE_CTRL \
+ GG82563_REG(193, 16) /* Kumeran Mode Control */
+#define GG82563_PHY_PORT_RESET \
+ GG82563_REG(193, 17) /* Port Reset */
+#define GG82563_PHY_REVISION_ID \
+ GG82563_REG(193, 18) /* Revision ID */
+#define GG82563_PHY_DEVICE_ID \
+ GG82563_REG(193, 19) /* Device ID */
+#define GG82563_PHY_PWR_MGMT_CTRL \
+ GG82563_REG(193, 20) /* Power Management Control */
+#define GG82563_PHY_RATE_ADAPT_CTRL \
+ GG82563_REG(193, 25) /* Rate Adaptation Control */
+
+/* Page 194 - KMRN Registers */
+#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \
+ GG82563_REG(194, 16) /* FIFO's Control/Status */
+#define GG82563_PHY_KMRN_CTRL \
+ GG82563_REG(194, 17) /* Control */
+#define GG82563_PHY_INBAND_CTRL \
+ GG82563_REG(194, 18) /* Inband Control */
+#define GG82563_PHY_KMRN_DIAGNOSTIC \
+ GG82563_REG(194, 19) /* Diagnostic */
+#define GG82563_PHY_ACK_TIMEOUTS \
+ GG82563_REG(194, 20) /* Acknowledge Timeouts */
+#define GG82563_PHY_ADV_ABILITY \
+ GG82563_REG(194, 21) /* Advertised Ability */
+#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \
+ GG82563_REG(194, 23) /* Link Partner Advertised Ability */
+#define GG82563_PHY_ADV_NEXT_PAGE \
+ GG82563_REG(194, 24) /* Advertised Next Page */
+#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \
+ GG82563_REG(194, 25) /* Link Partner Advertised Next page */
+#define GG82563_PHY_KMRN_MISC \
+ GG82563_REG(194, 26) /* Misc. */
+
+/* MDI Control */
+#define E1000_MDIC_DATA_MASK 0x0000FFFF
+#define E1000_MDIC_REG_MASK 0x001F0000
+#define E1000_MDIC_REG_SHIFT 16
+#define E1000_MDIC_PHY_MASK 0x03E00000
+#define E1000_MDIC_PHY_SHIFT 21
+#define E1000_MDIC_OP_WRITE 0x04000000
+#define E1000_MDIC_OP_READ 0x08000000
+#define E1000_MDIC_READY 0x10000000
+#define E1000_MDIC_INT_EN 0x20000000
+#define E1000_MDIC_ERROR 0x40000000
+#define E1000_MDIC_DEST 0x80000000
+
+/* SerDes Control */
+#define E1000_GEN_CTL_READY 0x80000000
+#define E1000_GEN_CTL_ADDRESS_SHIFT 8
+#define E1000_GEN_POLL_TIMEOUT 640
+
+/* LinkSec register fields */
+#define E1000_LSECTXCAP_SUM_MASK 0x00FF0000
+#define E1000_LSECTXCAP_SUM_SHIFT 16
+#define E1000_LSECRXCAP_SUM_MASK 0x00FF0000
+#define E1000_LSECRXCAP_SUM_SHIFT 16
+
+#define E1000_LSECTXCTRL_EN_MASK 0x00000003
+#define E1000_LSECTXCTRL_DISABLE 0x0
+#define E1000_LSECTXCTRL_AUTH 0x1
+#define E1000_LSECTXCTRL_AUTH_ENCRYPT 0x2
+#define E1000_LSECTXCTRL_AISCI 0x00000020
+#define E1000_LSECTXCTRL_PNTHRSH_MASK 0xFFFFFF00
+#define E1000_LSECTXCTRL_RSV_MASK 0x000000D8
+
+#define E1000_LSECRXCTRL_EN_MASK 0x0000000C
+#define E1000_LSECRXCTRL_EN_SHIFT 2
+#define E1000_LSECRXCTRL_DISABLE 0x0
+#define E1000_LSECRXCTRL_CHECK 0x1
+#define E1000_LSECRXCTRL_STRICT 0x2
+#define E1000_LSECRXCTRL_DROP 0x3
+#define E1000_LSECRXCTRL_PLSH 0x00000040
+#define E1000_LSECRXCTRL_RP 0x00000080
+#define E1000_LSECRXCTRL_RSV_MASK 0xFFFFFF33
+
+/* Tx Rate-Scheduler Config fields */
+#define E1000_RTTBCNRC_RS_ENA 0x80000000
+#define E1000_RTTBCNRC_RF_DEC_MASK 0x00003FFF
+#define E1000_RTTBCNRC_RF_INT_SHIFT 14
+#define E1000_RTTBCNRC_RF_INT_MASK \
+ (E1000_RTTBCNRC_RF_DEC_MASK << E1000_RTTBCNRC_RF_INT_SHIFT)
+
+/* DMA Coalescing register fields */
+#define E1000_DMACR_DMACWT_MASK 0x00003FFF /* DMA Coalescing
+ * Watchdog Timer */
+#define E1000_DMACR_DMACTHR_MASK 0x00FF0000 /* DMA Coalescing Rx
+ * Threshold */
+#define E1000_DMACR_DMACTHR_SHIFT 16
+#define E1000_DMACR_DMAC_LX_MASK 0x30000000 /* Lx when no PCIe
+ * transactions */
+#define E1000_DMACR_DMAC_LX_SHIFT 28
+#define E1000_DMACR_DMAC_EN 0x80000000 /* Enable DMA Coalescing */
+
+#define E1000_DMCTXTH_DMCTTHR_MASK 0x00000FFF /* DMA Coalescing Transmit
+ * Threshold */
+
+#define E1000_DMCTLX_TTLX_MASK 0x00000FFF /* Time to LX request */
+
+#define E1000_DMCRTRH_UTRESH_MASK 0x0007FFFF /* Rx Traffic Rate
+ * Threshold */
+#define E1000_DMCRTRH_LRPRCW 0x80000000 /* Rx packet rate in
+ * current window */
+
+#define E1000_DMCCNT_CCOUNT_MASK 0x01FFFFFF /* DMA Coal Rx Traffic
+ * Current Cnt */
+
+#define E1000_FCRTC_RTH_COAL_MASK 0x0003FFF0 /* Flow ctrl Rx Threshold
+ * High val */
+#define E1000_FCRTC_RTH_COAL_SHIFT 4
+#define E1000_PCIEMISC_LX_DECISION 0x00000080 /* Lx power decision based
+ on DMA coal */
+
+/* Proxy Filer Control */
+#define E1000_PROXYFC_D0 0x00000001 /* Enable offload in D0 */
+#define E1000_PROXYFC_EX 0x00000004 /* Directed exact proxy */
+#define E1000_PROXYFC_MC 0x00000008 /* Directed Multicast
+ * Proxy */
+#define E1000_PROXYFC_BC 0x00000010 /* Broadcast Proxy Enable */
+#define E1000_PROXYFC_ARP_DIRECTED 0x00000020 /* Directed ARP Proxy
+ * Enable */
+#define E1000_PROXYFC_IPV4 0x00000040 /* Directed IPv4 Enable */
+#define E1000_PROXYFC_IPV6 0x00000080 /* Directed IPv6 Enable */
+#define E1000_PROXYFC_NS 0x00000200 /* IPv4 Neighborhood
+ * Solicitation */
+#define E1000_PROXYFC_ARP 0x00000800 /* ARP Request Proxy
+ * Enable */
+/* Proxy Status */
+#define E1000_PROXYS_CLEAR 0xFFFFFFFF /* Clear */
+
+/* Firmware Status */
+#define E1000_FWSTS_FWRI 0x80000000 /* Firmware Reset
+ * Indication */
+
+
+#endif /* _E1000_DEFINES_H_ */
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_HW_H_
+#define _E1000_HW_H_
+
+#include "e1000_osdep.h"
+#include "e1000_regs.h"
+#include "e1000_defines.h"
+
+struct e1000_hw;
+
+#define E1000_DEV_ID_82576 0x10C9
+#define E1000_DEV_ID_82576_FIBER 0x10E6
+#define E1000_DEV_ID_82576_SERDES 0x10E7
+#define E1000_DEV_ID_82576_QUAD_COPPER 0x10E8
+#define E1000_DEV_ID_82576_QUAD_COPPER_ET2 0x1526
+#define E1000_DEV_ID_82576_NS 0x150A
+#define E1000_DEV_ID_82576_NS_SERDES 0x1518
+#define E1000_DEV_ID_82576_SERDES_QUAD 0x150D
+#define E1000_DEV_ID_82576_VF 0x10CA
+#define E1000_DEV_ID_I350_VF 0x1520
+#define E1000_DEV_ID_82575EB_COPPER 0x10A7
+#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9
+#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6
+#define E1000_DEV_ID_82580_COPPER 0x150E
+#define E1000_DEV_ID_82580_FIBER 0x150F
+#define E1000_DEV_ID_82580_SERDES 0x1510
+#define E1000_DEV_ID_82580_SGMII 0x1511
+#define E1000_DEV_ID_82580_COPPER_DUAL 0x1516
+#define E1000_DEV_ID_82580_QUAD_FIBER 0x1527
+#define E1000_DEV_ID_I350_COPPER 0x1521
+#define E1000_DEV_ID_I350_FIBER 0x1522
+#define E1000_DEV_ID_I350_SERDES 0x1523
+#define E1000_DEV_ID_I350_SGMII 0x1524
+#define E1000_DEV_ID_I350_DA4 0x1546
+#define E1000_DEV_ID_DH89XXCC_SGMII 0x0438
+#define E1000_DEV_ID_DH89XXCC_SERDES 0x043A
+#define E1000_DEV_ID_DH89XXCC_BACKPLANE 0x043C
+#define E1000_DEV_ID_DH89XXCC_SFP 0x0440
+#define E1000_REVISION_0 0
+#define E1000_REVISION_1 1
+#define E1000_REVISION_2 2
+#define E1000_REVISION_3 3
+#define E1000_REVISION_4 4
+
+#define E1000_FUNC_0 0
+#define E1000_FUNC_1 1
+#define E1000_FUNC_2 2
+#define E1000_FUNC_3 3
+
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2 6
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3 9
+
+enum e1000_mac_type {
+ e1000_undefined = 0,
+ e1000_82575,
+ e1000_82576,
+ e1000_82580,
+ e1000_i350,
+ e1000_vfadapt,
+ e1000_vfadapt_i350,
+ e1000_num_macs /* List is 1-based, so subtract 1 for TRUE count. */
+};
+
+enum e1000_media_type {
+ e1000_media_type_unknown = 0,
+ e1000_media_type_copper = 1,
+ e1000_media_type_fiber = 2,
+ e1000_media_type_internal_serdes = 3,
+ e1000_num_media_types
+};
+
+enum e1000_nvm_type {
+ e1000_nvm_unknown = 0,
+ e1000_nvm_none,
+ e1000_nvm_eeprom_spi,
+ e1000_nvm_eeprom_microwire,
+ e1000_nvm_flash_hw,
+ e1000_nvm_flash_sw
+};
+
+enum e1000_nvm_override {
+ e1000_nvm_override_none = 0,
+ e1000_nvm_override_spi_small,
+ e1000_nvm_override_spi_large,
+ e1000_nvm_override_microwire_small,
+ e1000_nvm_override_microwire_large
+};
+
+enum e1000_phy_type {
+ e1000_phy_unknown = 0,
+ e1000_phy_none,
+ e1000_phy_m88,
+ e1000_phy_igp,
+ e1000_phy_igp_2,
+ e1000_phy_gg82563,
+ e1000_phy_igp_3,
+ e1000_phy_ife,
+ e1000_phy_82580,
+ e1000_phy_vf,
+};
+
+enum e1000_bus_type {
+ e1000_bus_type_unknown = 0,
+ e1000_bus_type_pci,
+ e1000_bus_type_pcix,
+ e1000_bus_type_pci_express,
+ e1000_bus_type_reserved
+};
+
+enum e1000_bus_speed {
+ e1000_bus_speed_unknown = 0,
+ e1000_bus_speed_33,
+ e1000_bus_speed_66,
+ e1000_bus_speed_100,
+ e1000_bus_speed_120,
+ e1000_bus_speed_133,
+ e1000_bus_speed_2500,
+ e1000_bus_speed_5000,
+ e1000_bus_speed_reserved
+};
+
+enum e1000_bus_width {
+ e1000_bus_width_unknown = 0,
+ e1000_bus_width_pcie_x1,
+ e1000_bus_width_pcie_x2,
+ e1000_bus_width_pcie_x4 = 4,
+ e1000_bus_width_pcie_x8 = 8,
+ e1000_bus_width_32,
+ e1000_bus_width_64,
+ e1000_bus_width_reserved
+};
+
+enum e1000_1000t_rx_status {
+ e1000_1000t_rx_status_not_ok = 0,
+ e1000_1000t_rx_status_ok,
+ e1000_1000t_rx_status_undefined = 0xFF
+};
+
+enum e1000_rev_polarity {
+ e1000_rev_polarity_normal = 0,
+ e1000_rev_polarity_reversed,
+ e1000_rev_polarity_undefined = 0xFF
+};
+
+enum e1000_fc_mode {
+ e1000_fc_none = 0,
+ e1000_fc_rx_pause,
+ e1000_fc_tx_pause,
+ e1000_fc_full,
+ e1000_fc_default = 0xFF
+};
+
+enum e1000_ms_type {
+ e1000_ms_hw_default = 0,
+ e1000_ms_force_master,
+ e1000_ms_force_slave,
+ e1000_ms_auto
+};
+
+enum e1000_smart_speed {
+ e1000_smart_speed_default = 0,
+ e1000_smart_speed_on,
+ e1000_smart_speed_off
+};
+
+enum e1000_serdes_link_state {
+ e1000_serdes_link_down = 0,
+ e1000_serdes_link_autoneg_progress,
+ e1000_serdes_link_autoneg_complete,
+ e1000_serdes_link_forced_up
+};
+
+#define __le16 u16
+#define __le32 u32
+#define __le64 u64
+/* Receive Descriptor */
+struct e1000_rx_desc {
+ __le64 buffer_addr; /* Address of the descriptor's data buffer */
+ __le16 length; /* Length of data DMAed into data buffer */
+ __le16 csum; /* Packet checksum */
+ u8 status; /* Descriptor status */
+ u8 errors; /* Descriptor Errors */
+ __le16 special;
+};
+
+/* Receive Descriptor - Extended */
+union e1000_rx_desc_extended {
+ struct {
+ __le64 buffer_addr;
+ __le64 reserved;
+ } read;
+ struct {
+ struct {
+ __le32 mrq; /* Multiple Rx Queues */
+ union {
+ __le32 rss; /* RSS Hash */
+ struct {
+ __le16 ip_id; /* IP id */
+ __le16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ __le32 status_error; /* ext status/error */
+ __le16 length;
+ __le16 vlan; /* VLAN tag */
+ } upper;
+ } wb; /* writeback */
+};
+
+#define MAX_PS_BUFFERS 4
+/* Receive Descriptor - Packet Split */
+union e1000_rx_desc_packet_split {
+ struct {
+ /* one buffer for protocol header(s), three data buffers */
+ __le64 buffer_addr[MAX_PS_BUFFERS];
+ } read;
+ struct {
+ struct {
+ __le32 mrq; /* Multiple Rx Queues */
+ union {
+ __le32 rss; /* RSS Hash */
+ struct {
+ __le16 ip_id; /* IP id */
+ __le16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ __le32 status_error; /* ext status/error */
+ __le16 length0; /* length of buffer 0 */
+ __le16 vlan; /* VLAN tag */
+ } middle;
+ struct {
+ __le16 header_status;
+ __le16 length[3]; /* length of buffers 1-3 */
+ } upper;
+ __le64 reserved;
+ } wb; /* writeback */
+};
+
+/* Transmit Descriptor */
+struct e1000_tx_desc {
+ __le64 buffer_addr; /* Address of the descriptor's data buffer */
+ union {
+ __le32 data;
+ struct {
+ __le16 length; /* Data buffer length */
+ u8 cso; /* Checksum offset */
+ u8 cmd; /* Descriptor control */
+ } flags;
+ } lower;
+ union {
+ __le32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 css; /* Checksum start */
+ __le16 special;
+ } fields;
+ } upper;
+};
+
+/* Offload Context Descriptor */
+struct e1000_context_desc {
+ union {
+ __le32 ip_config;
+ struct {
+ u8 ipcss; /* IP checksum start */
+ u8 ipcso; /* IP checksum offset */
+ __le16 ipcse; /* IP checksum end */
+ } ip_fields;
+ } lower_setup;
+ union {
+ __le32 tcp_config;
+ struct {
+ u8 tucss; /* TCP checksum start */
+ u8 tucso; /* TCP checksum offset */
+ __le16 tucse; /* TCP checksum end */
+ } tcp_fields;
+ } upper_setup;
+ __le32 cmd_and_length;
+ union {
+ __le32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 hdr_len; /* Header length */
+ __le16 mss; /* Maximum segment size */
+ } fields;
+ } tcp_seg_setup;
+};
+
+/* Offload data descriptor */
+struct e1000_data_desc {
+ __le64 buffer_addr; /* Address of the descriptor's buffer address */
+ union {
+ __le32 data;
+ struct {
+ __le16 length; /* Data buffer length */
+ u8 typ_len_ext;
+ u8 cmd;
+ } flags;
+ } lower;
+ union {
+ __le32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 popts; /* Packet Options */
+ __le16 special;
+ } fields;
+ } upper;
+};
+
+/* Statistics counters collected by the MAC */
+struct e1000_hw_stats {
+ u64 crcerrs;
+ u64 algnerrc;
+ u64 symerrs;
+ u64 rxerrc;
+ u64 mpc;
+ u64 scc;
+ u64 ecol;
+ u64 mcc;
+ u64 latecol;
+ u64 colc;
+ u64 dc;
+ u64 tncrs;
+ u64 sec;
+ u64 cexterr;
+ u64 rlec;
+ u64 xonrxc;
+ u64 xontxc;
+ u64 xoffrxc;
+ u64 xofftxc;
+ u64 fcruc;
+ u64 prc64;
+ u64 prc127;
+ u64 prc255;
+ u64 prc511;
+ u64 prc1023;
+ u64 prc1522;
+ u64 gprc;
+ u64 bprc;
+ u64 mprc;
+ u64 gptc;
+ u64 gorc;
+ u64 gotc;
+ u64 rnbc;
+ u64 ruc;
+ u64 rfc;
+ u64 roc;
+ u64 rjc;
+ u64 mgprc;
+ u64 mgpdc;
+ u64 mgptc;
+ u64 tor;
+ u64 tot;
+ u64 tpr;
+ u64 tpt;
+ u64 ptc64;
+ u64 ptc127;
+ u64 ptc255;
+ u64 ptc511;
+ u64 ptc1023;
+ u64 ptc1522;
+ u64 mptc;
+ u64 bptc;
+ u64 tsctc;
+ u64 tsctfc;
+ u64 iac;
+ u64 icrxptc;
+ u64 icrxatc;
+ u64 ictxptc;
+ u64 ictxatc;
+ u64 ictxqec;
+ u64 ictxqmtc;
+ u64 icrxdmtc;
+ u64 icrxoc;
+ u64 cbtmpc;
+ u64 htdpmc;
+ u64 cbrdpc;
+ u64 cbrmpc;
+ u64 rpthc;
+ u64 hgptc;
+ u64 htcbdpc;
+ u64 hgorc;
+ u64 hgotc;
+ u64 lenerrs;
+ u64 scvpc;
+ u64 hrmpc;
+ u64 doosync;
+};
+
+struct e1000_vf_stats {
+ u64 base_gprc;
+ u64 base_gptc;
+ u64 base_gorc;
+ u64 base_gotc;
+ u64 base_mprc;
+ u64 base_gotlbc;
+ u64 base_gptlbc;
+ u64 base_gorlbc;
+ u64 base_gprlbc;
+
+ u32 last_gprc;
+ u32 last_gptc;
+ u32 last_gorc;
+ u32 last_gotc;
+ u32 last_mprc;
+ u32 last_gotlbc;
+ u32 last_gptlbc;
+ u32 last_gorlbc;
+ u32 last_gprlbc;
+
+ u64 gprc;
+ u64 gptc;
+ u64 gorc;
+ u64 gotc;
+ u64 mprc;
+ u64 gotlbc;
+ u64 gptlbc;
+ u64 gorlbc;
+ u64 gprlbc;
+};
+
+struct e1000_phy_stats {
+ u32 idle_errors;
+ u32 receive_errors;
+};
+
+struct e1000_host_mng_dhcp_cookie {
+ u32 signature;
+ u8 status;
+ u8 reserved0;
+ u16 vlan_id;
+ u32 reserved1;
+ u16 reserved2;
+ u8 reserved3;
+ u8 checksum;
+};
+
+/* Host Interface "Rev 1" */
+struct e1000_host_command_header {
+ u8 command_id;
+ u8 command_length;
+ u8 command_options;
+ u8 checksum;
+};
+
+#define E1000_HI_MAX_DATA_LENGTH 252
+struct e1000_host_command_info {
+ struct e1000_host_command_header command_header;
+ u8 command_data[E1000_HI_MAX_DATA_LENGTH];
+};
+
+/* Host Interface "Rev 2" */
+struct e1000_host_mng_command_header {
+ u8 command_id;
+ u8 checksum;
+ u16 reserved1;
+ u16 reserved2;
+ u16 command_length;
+};
+
+#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
+struct e1000_host_mng_command_info {
+ struct e1000_host_mng_command_header command_header;
+ u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
+};
+
+#include "e1000_mac.h"
+#include "e1000_phy.h"
+#include "e1000_nvm.h"
+#include "e1000_manage.h"
+#include "e1000_mbx.h"
+
+struct e1000_mac_operations {
+ /* Function pointers for the MAC. */
+ s32 (*init_params)(struct e1000_hw *);
+ s32 (*id_led_init)(struct e1000_hw *);
+ s32 (*blink_led)(struct e1000_hw *);
+ s32 (*check_for_link)(struct e1000_hw *);
+ bool (*check_mng_mode)(struct e1000_hw *hw);
+ s32 (*cleanup_led)(struct e1000_hw *);
+ void (*clear_hw_cntrs)(struct e1000_hw *);
+ void (*clear_vfta)(struct e1000_hw *);
+ s32 (*get_bus_info)(struct e1000_hw *);
+ void (*set_lan_id)(struct e1000_hw *);
+ s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
+ s32 (*led_on)(struct e1000_hw *);
+ s32 (*led_off)(struct e1000_hw *);
+ void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
+ s32 (*reset_hw)(struct e1000_hw *);
+ s32 (*init_hw)(struct e1000_hw *);
+ void (*shutdown_serdes)(struct e1000_hw *);
+ void (*power_up_serdes)(struct e1000_hw *);
+ s32 (*setup_link)(struct e1000_hw *);
+ s32 (*setup_physical_interface)(struct e1000_hw *);
+ s32 (*setup_led)(struct e1000_hw *);
+ void (*write_vfta)(struct e1000_hw *, u32, u32);
+ void (*config_collision_dist)(struct e1000_hw *);
+ void (*rar_set)(struct e1000_hw *, u8*, u32);
+ s32 (*read_mac_addr)(struct e1000_hw *);
+ s32 (*validate_mdi_setting)(struct e1000_hw *);
+ s32 (*mng_host_if_write)(struct e1000_hw *, u8*, u16, u16, u8*);
+ s32 (*mng_write_cmd_header)(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header*);
+ s32 (*mng_enable_host_if)(struct e1000_hw *);
+ s32 (*wait_autoneg)(struct e1000_hw *);
+};
+
+struct e1000_phy_operations {
+ s32 (*init_params)(struct e1000_hw *);
+ s32 (*acquire)(struct e1000_hw *);
+ s32 (*check_polarity)(struct e1000_hw *);
+ s32 (*check_reset_block)(struct e1000_hw *);
+ s32 (*commit)(struct e1000_hw *);
+ s32 (*force_speed_duplex)(struct e1000_hw *);
+ s32 (*get_cfg_done)(struct e1000_hw *hw);
+ s32 (*get_cable_length)(struct e1000_hw *);
+ s32 (*get_info)(struct e1000_hw *);
+ s32 (*read_reg)(struct e1000_hw *, u32, u16 *);
+ s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *);
+ void (*release)(struct e1000_hw *);
+ s32 (*reset)(struct e1000_hw *);
+ s32 (*set_d0_lplu_state)(struct e1000_hw *, bool);
+ s32 (*set_d3_lplu_state)(struct e1000_hw *, bool);
+ s32 (*write_reg)(struct e1000_hw *, u32, u16);
+ s32 (*write_reg_locked)(struct e1000_hw *, u32, u16);
+ void (*power_up)(struct e1000_hw *);
+ void (*power_down)(struct e1000_hw *);
+};
+
+struct e1000_nvm_operations {
+ s32 (*init_params)(struct e1000_hw *);
+ s32 (*acquire)(struct e1000_hw *);
+ s32 (*read)(struct e1000_hw *, u16, u16, u16 *);
+ void (*release)(struct e1000_hw *);
+ void (*reload)(struct e1000_hw *);
+ s32 (*update)(struct e1000_hw *);
+ s32 (*valid_led_default)(struct e1000_hw *, u16 *);
+ s32 (*validate)(struct e1000_hw *);
+ s32 (*write)(struct e1000_hw *, u16, u16, u16 *);
+};
+
+struct e1000_mac_info {
+ struct e1000_mac_operations ops;
+ u8 addr[ETH_ADDR_LEN];
+ u8 perm_addr[ETH_ADDR_LEN];
+
+ enum e1000_mac_type type;
+
+ u32 collision_delta;
+ u32 ledctl_default;
+ u32 ledctl_mode1;
+ u32 ledctl_mode2;
+ u32 mc_filter_type;
+ u32 tx_packet_delta;
+ u32 txcw;
+
+ u16 current_ifs_val;
+ u16 ifs_max_val;
+ u16 ifs_min_val;
+ u16 ifs_ratio;
+ u16 ifs_step_size;
+ u16 mta_reg_count;
+ u16 uta_reg_count;
+
+ /* Maximum size of the MTA register table in all supported adapters */
+ #define MAX_MTA_REG 128
+ u32 mta_shadow[MAX_MTA_REG];
+ u16 rar_entry_count;
+
+ u8 forced_speed_duplex;
+
+ bool adaptive_ifs;
+ bool has_fwsm;
+ bool arc_subsystem_valid;
+ bool asf_firmware_present;
+ bool autoneg;
+ bool autoneg_failed;
+ bool get_link_status;
+ bool in_ifs_mode;
+ enum e1000_serdes_link_state serdes_link_state;
+ bool serdes_has_link;
+ bool tx_pkt_filtering;
+};
+
+struct e1000_phy_info {
+ struct e1000_phy_operations ops;
+ enum e1000_phy_type type;
+
+ enum e1000_1000t_rx_status local_rx;
+ enum e1000_1000t_rx_status remote_rx;
+ enum e1000_ms_type ms_type;
+ enum e1000_ms_type original_ms_type;
+ enum e1000_rev_polarity cable_polarity;
+ enum e1000_smart_speed smart_speed;
+
+ u32 addr;
+ u32 id;
+ u32 reset_delay_us; /* in usec */
+ u32 revision;
+
+ enum e1000_media_type media_type;
+
+ u16 autoneg_advertised;
+ u16 autoneg_mask;
+ u16 cable_length;
+ u16 max_cable_length;
+ u16 min_cable_length;
+
+ u8 mdix;
+
+ bool disable_polarity_correction;
+ bool is_mdix;
+ bool polarity_correction;
+ bool reset_disable;
+ bool speed_downgraded;
+ bool autoneg_wait_to_complete;
+};
+
+struct e1000_nvm_info {
+ struct e1000_nvm_operations ops;
+ enum e1000_nvm_type type;
+ enum e1000_nvm_override override;
+
+ u32 flash_bank_size;
+ u32 flash_base_addr;
+
+ u16 word_size;
+ u16 delay_usec;
+ u16 address_bits;
+ u16 opcode_bits;
+ u16 page_size;
+};
+
+struct e1000_bus_info {
+ enum e1000_bus_type type;
+ enum e1000_bus_speed speed;
+ enum e1000_bus_width width;
+
+ u16 func;
+ u16 pci_cmd_word;
+};
+
+struct e1000_fc_info {
+ u32 high_water; /* Flow control high-water mark */
+ u32 low_water; /* Flow control low-water mark */
+ u16 pause_time; /* Flow control pause timer */
+ u16 refresh_time; /* Flow control refresh timer */
+ bool send_xon; /* Flow control send XON */
+ bool strict_ieee; /* Strict IEEE mode */
+ enum e1000_fc_mode current_mode; /* FC mode in effect */
+ enum e1000_fc_mode requested_mode; /* FC mode requested by caller */
+};
+
+struct e1000_mbx_operations {
+ s32 (*init_params)(struct e1000_hw *hw);
+ s32 (*read)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*write)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*check_for_msg)(struct e1000_hw *, u16);
+ s32 (*check_for_ack)(struct e1000_hw *, u16);
+ s32 (*check_for_rst)(struct e1000_hw *, u16);
+};
+
+struct e1000_mbx_stats {
+ u32 msgs_tx;
+ u32 msgs_rx;
+
+ u32 acks;
+ u32 reqs;
+ u32 rsts;
+};
+
+struct e1000_mbx_info {
+ struct e1000_mbx_operations ops;
+ struct e1000_mbx_stats stats;
+ u32 timeout;
+ u32 usec_delay;
+ u16 size;
+};
+
+struct e1000_dev_spec_82575 {
+ bool sgmii_active;
+ bool global_device_reset;
+ bool eee_disable;
+};
+
+struct e1000_dev_spec_vf {
+ u32 vf_number;
+ u32 v2p_mailbox;
+};
+
+struct e1000_hw {
+ void *back;
+
+ u8 *hw_addr;
+ u8 *flash_address;
+ unsigned long io_base;
+
+ struct e1000_mac_info mac;
+ struct e1000_fc_info fc;
+ struct e1000_phy_info phy;
+ struct e1000_nvm_info nvm;
+ struct e1000_bus_info bus;
+ struct e1000_mbx_info mbx;
+ struct e1000_host_mng_dhcp_cookie mng_cookie;
+
+ union {
+ struct e1000_dev_spec_82575 _82575;
+ struct e1000_dev_spec_vf vf;
+ } dev_spec;
+
+ u16 device_id;
+ u16 subsystem_vendor_id;
+ u16 subsystem_device_id;
+ u16 vendor_id;
+
+ u8 revision_id;
+};
+
+#include "e1000_82575.h"
+
+/* These functions must be implemented by drivers */
+s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
+s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
+
+#endif
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#include "e1000_api.h"
+
+static s32 e1000_set_default_fc_generic(struct e1000_hw *hw);
+static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw);
+static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw);
+static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
+static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
+
+/**
+ * e1000_init_mac_ops_generic - Initialize MAC function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Setups up the function pointers to no-op functions
+ **/
+void e1000_init_mac_ops_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ DEBUGFUNC("e1000_init_mac_ops_generic");
+
+ /* General Setup */
+ mac->ops.init_params = e1000_null_ops_generic;
+ mac->ops.init_hw = e1000_null_ops_generic;
+ mac->ops.reset_hw = e1000_null_ops_generic;
+ mac->ops.setup_physical_interface = e1000_null_ops_generic;
+ mac->ops.get_bus_info = e1000_null_ops_generic;
+ mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie;
+ mac->ops.read_mac_addr = e1000_read_mac_addr_generic;
+ mac->ops.config_collision_dist = e1000_config_collision_dist_generic;
+ mac->ops.clear_hw_cntrs = e1000_null_mac_generic;
+ /* LED */
+ mac->ops.cleanup_led = e1000_null_ops_generic;
+ mac->ops.setup_led = e1000_null_ops_generic;
+ mac->ops.blink_led = e1000_null_ops_generic;
+ mac->ops.led_on = e1000_null_ops_generic;
+ mac->ops.led_off = e1000_null_ops_generic;
+ /* LINK */
+ mac->ops.setup_link = e1000_null_ops_generic;
+ mac->ops.get_link_up_info = e1000_null_link_info;
+ mac->ops.check_for_link = e1000_null_ops_generic;
+ mac->ops.wait_autoneg = e1000_wait_autoneg_generic;
+ /* Management */
+ mac->ops.check_mng_mode = e1000_null_mng_mode;
+ mac->ops.mng_host_if_write = e1000_mng_host_if_write_generic;
+ mac->ops.mng_write_cmd_header = e1000_mng_write_cmd_header_generic;
+ mac->ops.mng_enable_host_if = e1000_mng_enable_host_if_generic;
+ /* VLAN, MC, etc. */
+ mac->ops.update_mc_addr_list = e1000_null_update_mc;
+ mac->ops.clear_vfta = e1000_null_mac_generic;
+ mac->ops.write_vfta = e1000_null_write_vfta;
+ mac->ops.rar_set = e1000_rar_set_generic;
+ mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic;
+}
+
+/**
+ * e1000_null_ops_generic - No-op function, returns 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_ops_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_null_ops_generic");
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_mac_generic - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_mac_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_null_mac_generic");
+ return;
+}
+
+/**
+ * e1000_null_link_info - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d)
+{
+ DEBUGFUNC("e1000_null_link_info");
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_mng_mode - No-op function, return FALSE
+ * @hw: pointer to the HW structure
+ **/
+bool e1000_null_mng_mode(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_null_mng_mode");
+ return FALSE;
+}
+
+/**
+ * e1000_null_update_mc - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a)
+{
+ DEBUGFUNC("e1000_null_update_mc");
+ return;
+}
+
+/**
+ * e1000_null_write_vfta - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b)
+{
+ DEBUGFUNC("e1000_null_write_vfta");
+ return;
+}
+
+/**
+ * e1000_null_rar_set - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a)
+{
+ DEBUGFUNC("e1000_null_rar_set");
+ return;
+}
+
+/**
+ * e1000_get_bus_info_pci_generic - Get PCI(x) bus information
+ * @hw: pointer to the HW structure
+ *
+ * Determines and stores the system bus information for a particular
+ * network interface. The following bus information is determined and stored:
+ * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
+ **/
+s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_bus_info *bus = &hw->bus;
+ u32 status = E1000_READ_REG(hw, E1000_STATUS);
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_get_bus_info_pci_generic");
+
+ /* PCI or PCI-X? */
+ bus->type = (status & E1000_STATUS_PCIX_MODE)
+ ? e1000_bus_type_pcix
+ : e1000_bus_type_pci;
+
+ /* Bus speed */
+ if (bus->type == e1000_bus_type_pci) {
+ bus->speed = (status & E1000_STATUS_PCI66)
+ ? e1000_bus_speed_66
+ : e1000_bus_speed_33;
+ } else {
+ switch (status & E1000_STATUS_PCIX_SPEED) {
+ case E1000_STATUS_PCIX_SPEED_66:
+ bus->speed = e1000_bus_speed_66;
+ break;
+ case E1000_STATUS_PCIX_SPEED_100:
+ bus->speed = e1000_bus_speed_100;
+ break;
+ case E1000_STATUS_PCIX_SPEED_133:
+ bus->speed = e1000_bus_speed_133;
+ break;
+ default:
+ bus->speed = e1000_bus_speed_reserved;
+ break;
+ }
+ }
+
+ /* Bus width */
+ bus->width = (status & E1000_STATUS_BUS64)
+ ? e1000_bus_width_64
+ : e1000_bus_width_32;
+
+ /* Which PCI(-X) function? */
+ mac->ops.set_lan_id(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_bus_info_pcie_generic - Get PCIe bus information
+ * @hw: pointer to the HW structure
+ *
+ * Determines and stores the system bus information for a particular
+ * network interface. The following bus information is determined and stored:
+ * bus speed, bus width, type (PCIe), and PCIe function.
+ **/
+s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_bus_info *bus = &hw->bus;
+ s32 ret_val;
+ u16 pcie_link_status;
+
+ DEBUGFUNC("e1000_get_bus_info_pcie_generic");
+
+ bus->type = e1000_bus_type_pci_express;
+
+ ret_val = e1000_read_pcie_cap_reg(hw,
+ PCIE_LINK_STATUS,
+ &pcie_link_status);
+ if (ret_val) {
+ bus->width = e1000_bus_width_unknown;
+ bus->speed = e1000_bus_speed_unknown;
+ } else {
+ switch (pcie_link_status & PCIE_LINK_SPEED_MASK) {
+ case PCIE_LINK_SPEED_2500:
+ bus->speed = e1000_bus_speed_2500;
+ break;
+ case PCIE_LINK_SPEED_5000:
+ bus->speed = e1000_bus_speed_5000;
+ break;
+ default:
+ bus->speed = e1000_bus_speed_unknown;
+ break;
+ }
+
+ bus->width = (enum e1000_bus_width)((pcie_link_status &
+ PCIE_LINK_WIDTH_MASK) >>
+ PCIE_LINK_WIDTH_SHIFT);
+ }
+
+ mac->ops.set_lan_id(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
+ *
+ * @hw: pointer to the HW structure
+ *
+ * Determines the LAN function id by reading memory-mapped registers
+ * and swaps the port value if requested.
+ **/
+static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+ u32 reg;
+
+ /*
+ * The status register reports the correct function number
+ * for the device regardless of function swap state.
+ */
+ reg = E1000_READ_REG(hw, E1000_STATUS);
+ bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
+}
+
+/**
+ * e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices
+ * @hw: pointer to the HW structure
+ *
+ * Determines the LAN function id by reading PCI config space.
+ **/
+void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+ u16 pci_header_type;
+ u32 status;
+
+ e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
+ if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ bus->func = (status & E1000_STATUS_FUNC_MASK)
+ >> E1000_STATUS_FUNC_SHIFT;
+ } else {
+ bus->func = 0;
+ }
+}
+
+/**
+ * e1000_set_lan_id_single_port - Set LAN id for a single port device
+ * @hw: pointer to the HW structure
+ *
+ * Sets the LAN function id to zero for a single port device.
+ **/
+void e1000_set_lan_id_single_port(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+
+ bus->func = 0;
+}
+
+/**
+ * e1000_clear_vfta_generic - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * Clears the register array which contains the VLAN filter table by
+ * setting all the values to 0.
+ **/
+void e1000_clear_vfta_generic(struct e1000_hw *hw)
+{
+ u32 offset;
+
+ DEBUGFUNC("e1000_clear_vfta_generic");
+
+ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
+ E1000_WRITE_FLUSH(hw);
+ }
+}
+
+/**
+ * e1000_write_vfta_generic - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: register offset in VLAN filter table
+ * @value: register value written to VLAN filter table
+ *
+ * Writes value at the given offset in the register array which stores
+ * the VLAN filter table.
+ **/
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
+{
+ DEBUGFUNC("e1000_write_vfta_generic");
+
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_init_rx_addrs_generic - Initialize receive address's
+ * @hw: pointer to the HW structure
+ * @rar_count: receive address registers
+ *
+ * Setup the receive address registers by setting the base receive address
+ * register to the devices MAC address and clearing all the other receive
+ * address registers to 0.
+ **/
+void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
+{
+ u32 i;
+ u8 mac_addr[ETH_ADDR_LEN] = {0};
+
+ DEBUGFUNC("e1000_init_rx_addrs_generic");
+
+ /* Setup the receive address */
+ DEBUGOUT("Programming MAC Address into RAR[0]\n");
+
+ hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
+
+ /* Zero out the other (rar_entry_count - 1) receive addresses */
+ DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
+ for (i = 1; i < rar_count; i++)
+ hw->mac.ops.rar_set(hw, mac_addr, i);
+}
+
+/**
+ * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
+ * @hw: pointer to the HW structure
+ *
+ * Checks the nvm for an alternate MAC address. An alternate MAC address
+ * can be setup by pre-boot software and must be treated like a permanent
+ * address and must override the actual permanent MAC address. If an
+ * alternate MAC address is found it is programmed into RAR0, replacing
+ * the permanent address that was installed into RAR0 by the Si on reset.
+ * This function will return SUCCESS unless it encounters an error while
+ * reading the EEPROM.
+ **/
+s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
+{
+ u32 i;
+ s32 ret_val = E1000_SUCCESS;
+ u16 offset, nvm_alt_mac_addr_offset, nvm_data;
+ u8 alt_mac_addr[ETH_ADDR_LEN];
+
+ DEBUGFUNC("e1000_check_alt_mac_addr_generic");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
+ if (ret_val)
+ goto out;
+
+ if (!(nvm_data & NVM_COMPAT_LOM))
+ goto out;
+
+ ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
+ &nvm_alt_mac_addr_offset);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (nvm_alt_mac_addr_offset == 0xFFFF) {
+ /* There is no Alternate MAC Address */
+ goto out;
+ }
+
+ if (hw->bus.func == E1000_FUNC_1)
+ nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
+ if (hw->bus.func == E1000_FUNC_2)
+ nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
+
+ if (hw->bus.func == E1000_FUNC_3)
+ nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
+ for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+ offset = nvm_alt_mac_addr_offset + (i >> 1);
+ ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
+ alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
+ }
+
+ /* if multicast bit is set, the alternate address will not be used */
+ if (alt_mac_addr[0] & 0x01) {
+ DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
+ goto out;
+ }
+
+ /*
+ * We have a valid alternate MAC address, and we want to treat it the
+ * same as the normal permanent MAC address stored by the HW into the
+ * RAR. Do this by mapping this address into RAR0.
+ */
+ hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_rar_set_generic - Set receive address register
+ * @hw: pointer to the HW structure
+ * @addr: pointer to the receive address
+ * @index: receive address array register
+ *
+ * Sets the receive address array register at index to the address passed
+ * in by addr.
+ **/
+void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ u32 rar_low, rar_high;
+
+ DEBUGFUNC("e1000_rar_set_generic");
+
+ /*
+ * HW expects these in little endian so we reverse the byte order
+ * from network order (big endian) to little endian
+ */
+ rar_low = ((u32) addr[0] |
+ ((u32) addr[1] << 8) |
+ ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+ rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+ /* If MAC address zero, no need to set the AV bit */
+ if (rar_low || rar_high)
+ rar_high |= E1000_RAH_AV;
+
+ /*
+ * Some bridges will combine consecutive 32-bit writes into
+ * a single burst write, which will malfunction on some parts.
+ * The flushes avoid this.
+ */
+ E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_update_mc_addr_list_generic - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ *
+ * Updates entire Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count)
+{
+ u32 hash_value, hash_bit, hash_reg;
+ int i;
+
+ DEBUGFUNC("e1000_update_mc_addr_list_generic");
+
+ /* clear mta_shadow */
+ memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
+
+ /* update mta_shadow from mc_addr_list */
+ for (i = 0; (u32) i < mc_addr_count; i++) {
+ hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
+
+ hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
+ hash_bit = hash_value & 0x1F;
+
+ hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
+ mc_addr_list += (ETH_ADDR_LEN);
+ }
+
+ /* replace the entire MTA table */
+ for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_hash_mc_addr_generic - Generate a multicast hash value
+ * @hw: pointer to the HW structure
+ * @mc_addr: pointer to a multicast address
+ *
+ * Generates a multicast address hash value which is used to determine
+ * the multicast filter table array address and new table value.
+ **/
+u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
+{
+ u32 hash_value, hash_mask;
+ u8 bit_shift = 0;
+
+ DEBUGFUNC("e1000_hash_mc_addr_generic");
+
+ /* Register count multiplied by bits per register */
+ hash_mask = (hw->mac.mta_reg_count * 32) - 1;
+
+ /*
+ * For a mc_filter_type of 0, bit_shift is the number of left-shifts
+ * where 0xFF would still fall within the hash mask.
+ */
+ while (hash_mask >> bit_shift != 0xFF)
+ bit_shift++;
+
+ /*
+ * The portion of the address that is used for the hash table
+ * is determined by the mc_filter_type setting.
+ * The algorithm is such that there is a total of 8 bits of shifting.
+ * The bit_shift for a mc_filter_type of 0 represents the number of
+ * left-shifts where the MSB of mc_addr[5] would still fall within
+ * the hash_mask. Case 0 does this exactly. Since there are a total
+ * of 8 bits of shifting, then mc_addr[4] will shift right the
+ * remaining number of bits. Thus 8 - bit_shift. The rest of the
+ * cases are a variation of this algorithm...essentially raising the
+ * number of bits to shift mc_addr[5] left, while still keeping the
+ * 8-bit shifting total.
+ *
+ * For example, given the following Destination MAC Address and an
+ * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
+ * we can see that the bit_shift for case 0 is 4. These are the hash
+ * values resulting from each mc_filter_type...
+ * [0] [1] [2] [3] [4] [5]
+ * 01 AA 00 12 34 56
+ * LSB MSB
+ *
+ * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
+ * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
+ * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
+ * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
+ */
+ switch (hw->mac.mc_filter_type) {
+ default:
+ case 0:
+ break;
+ case 1:
+ bit_shift += 1;
+ break;
+ case 2:
+ bit_shift += 2;
+ break;
+ case 3:
+ bit_shift += 4;
+ break;
+ }
+
+ hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
+ (((u16) mc_addr[5]) << bit_shift)));
+
+ return hash_value;
+}
+
+/**
+ * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
+ * @hw: pointer to the HW structure
+ *
+ * In certain situations, a system BIOS may report that the PCIx maximum
+ * memory read byte count (MMRBC) value is higher than than the actual
+ * value. We check the PCIx command register with the current PCIx status
+ * register.
+ **/
+void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
+{
+ u16 cmd_mmrbc;
+ u16 pcix_cmd;
+ u16 pcix_stat_hi_word;
+ u16 stat_mmrbc;
+
+ DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
+
+ /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
+ if (hw->bus.type != e1000_bus_type_pcix)
+ return;
+
+ e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+ e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
+ cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
+ PCIX_COMMAND_MMRBC_SHIFT;
+ stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
+ PCIX_STATUS_HI_MMRBC_SHIFT;
+ if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+ stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
+ if (cmd_mmrbc > stat_mmrbc) {
+ pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
+ pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
+ e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+ }
+}
+
+/**
+ * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the base hardware counters by reading the counter registers.
+ **/
+void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
+
+ E1000_READ_REG(hw, E1000_CRCERRS);
+ E1000_READ_REG(hw, E1000_SYMERRS);
+ E1000_READ_REG(hw, E1000_MPC);
+ E1000_READ_REG(hw, E1000_SCC);
+ E1000_READ_REG(hw, E1000_ECOL);
+ E1000_READ_REG(hw, E1000_MCC);
+ E1000_READ_REG(hw, E1000_LATECOL);
+ E1000_READ_REG(hw, E1000_COLC);
+ E1000_READ_REG(hw, E1000_DC);
+ E1000_READ_REG(hw, E1000_SEC);
+ E1000_READ_REG(hw, E1000_RLEC);
+ E1000_READ_REG(hw, E1000_XONRXC);
+ E1000_READ_REG(hw, E1000_XONTXC);
+ E1000_READ_REG(hw, E1000_XOFFRXC);
+ E1000_READ_REG(hw, E1000_XOFFTXC);
+ E1000_READ_REG(hw, E1000_FCRUC);
+ E1000_READ_REG(hw, E1000_GPRC);
+ E1000_READ_REG(hw, E1000_BPRC);
+ E1000_READ_REG(hw, E1000_MPRC);
+ E1000_READ_REG(hw, E1000_GPTC);
+ E1000_READ_REG(hw, E1000_GORCL);
+ E1000_READ_REG(hw, E1000_GORCH);
+ E1000_READ_REG(hw, E1000_GOTCL);
+ E1000_READ_REG(hw, E1000_GOTCH);
+ E1000_READ_REG(hw, E1000_RNBC);
+ E1000_READ_REG(hw, E1000_RUC);
+ E1000_READ_REG(hw, E1000_RFC);
+ E1000_READ_REG(hw, E1000_ROC);
+ E1000_READ_REG(hw, E1000_RJC);
+ E1000_READ_REG(hw, E1000_TORL);
+ E1000_READ_REG(hw, E1000_TORH);
+ E1000_READ_REG(hw, E1000_TOTL);
+ E1000_READ_REG(hw, E1000_TOTH);
+ E1000_READ_REG(hw, E1000_TPR);
+ E1000_READ_REG(hw, E1000_TPT);
+ E1000_READ_REG(hw, E1000_MPTC);
+ E1000_READ_REG(hw, E1000_BPTC);
+}
+
+/**
+ * e1000_check_for_copper_link_generic - Check for link (Copper)
+ * @hw: pointer to the HW structure
+ *
+ * Checks to see of the link status of the hardware has changed. If a
+ * change in link status has been detected, then we read the PHY registers
+ * to get the current speed/duplex if link exists.
+ **/
+s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_check_for_copper_link");
+
+ /*
+ * We only want to go out to the PHY registers to see if Auto-Neg
+ * has completed and/or if our link status has changed. The
+ * get_link_status flag is set upon receiving a Link Status
+ * Change or Rx Sequence Error interrupt.
+ */
+ if (!mac->get_link_status) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /*
+ * First we want to see if the MII Status Register reports
+ * link. If so, then we want to get the current speed/duplex
+ * of the PHY.
+ */
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link)
+ goto out; /* No link detected */
+
+ mac->get_link_status = FALSE;
+
+ /*
+ * Check if there was DownShift, must be checked
+ * immediately after link-up
+ */
+ e1000_check_downshift_generic(hw);
+
+ /*
+ * If we are forcing speed/duplex, then we simply return since
+ * we have already determined whether we have link or not.
+ */
+ if (!mac->autoneg) {
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ /*
+ * Auto-Neg is enabled. Auto Speed Detection takes care
+ * of MAC speed/duplex configuration. So we only need to
+ * configure Collision Distance in the MAC.
+ */
+ mac->ops.config_collision_dist(hw);
+
+ /*
+ * Configure Flow Control now that Auto-Neg has completed.
+ * First, we need to restore the desired flow control
+ * settings because we may have had to re-autoneg with a
+ * different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val)
+ DEBUGOUT("Error configuring flow control\n");
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_fiber_link_generic - Check for link (Fiber)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware. If link is not up and we have
+ * a signal, then we need to force link up.
+ **/
+s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 rxcw;
+ u32 ctrl;
+ u32 status;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_check_for_fiber_link_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+ /*
+ * If we don't have link (auto-negotiation failed or link partner
+ * cannot auto-negotiate), the cable is plugged in (we have signal),
+ * and our link partner is not trying to auto-negotiate with us (we
+ * are receiving idles or data), we need to force link up. We also
+ * need to give auto-negotiation time to complete, in case the cable
+ * was just plugged in. The autoneg_failed flag does this.
+ */
+ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+ if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
+ (!(rxcw & E1000_RXCW_C))) {
+ if (mac->autoneg_failed == 0) {
+ mac->autoneg_failed = 1;
+ goto out;
+ }
+ DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ goto out;
+ }
+ } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ /*
+ * If we are forcing link and we are receiving /C/ ordered
+ * sets, re-enable auto-negotiation in the TXCW register
+ * and disable forced link in the Device Control register
+ * in an attempt to auto-negotiate with our link partner.
+ */
+ DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
+ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+ mac->serdes_has_link = TRUE;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_serdes_link_generic - Check for link (Serdes)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware. If link is not up and we have
+ * a signal, then we need to force link up.
+ **/
+s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 rxcw;
+ u32 ctrl;
+ u32 status;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_check_for_serdes_link_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+ /*
+ * If we don't have link (auto-negotiation failed or link partner
+ * cannot auto-negotiate), and our link partner is not trying to
+ * auto-negotiate with us (we are receiving idles or data),
+ * we need to force link up. We also need to give auto-negotiation
+ * time to complete.
+ */
+ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+ if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+ if (mac->autoneg_failed == 0) {
+ mac->autoneg_failed = 1;
+ goto out;
+ }
+ DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ goto out;
+ }
+ } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ /*
+ * If we are forcing link and we are receiving /C/ ordered
+ * sets, re-enable auto-negotiation in the TXCW register
+ * and disable forced link in the Device Control register
+ * in an attempt to auto-negotiate with our link partner.
+ */
+ DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
+ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+ mac->serdes_has_link = TRUE;
+ } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
+ /*
+ * If we force link for non-auto-negotiation switch, check
+ * link status based on MAC synchronization for internal
+ * serdes media type.
+ */
+ /* SYNCH bit and IV bit are sticky. */
+ usec_delay(10);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+ if (rxcw & E1000_RXCW_SYNCH) {
+ if (!(rxcw & E1000_RXCW_IV)) {
+ mac->serdes_has_link = TRUE;
+ DEBUGOUT("SERDES: Link up - forced.\n");
+ }
+ } else {
+ mac->serdes_has_link = FALSE;
+ DEBUGOUT("SERDES: Link down - force failed.\n");
+ }
+ }
+
+ if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_LU) {
+ /* SYNCH bit and IV bit are sticky, so reread rxcw. */
+ usec_delay(10);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+ if (rxcw & E1000_RXCW_SYNCH) {
+ if (!(rxcw & E1000_RXCW_IV)) {
+ mac->serdes_has_link = TRUE;
+ DEBUGOUT("SERDES: Link up - autoneg "
+ "completed sucessfully.\n");
+ } else {
+ mac->serdes_has_link = FALSE;
+ DEBUGOUT("SERDES: Link down - invalid"
+ "codewords detected in autoneg.\n");
+ }
+ } else {
+ mac->serdes_has_link = FALSE;
+ DEBUGOUT("SERDES: Link down - no sync.\n");
+ }
+ } else {
+ mac->serdes_has_link = FALSE;
+ DEBUGOUT("SERDES: Link down - autoneg failed\n");
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_link_generic - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control. Calls the appropriate media-specific link configuration
+ * function. Assuming the adapter has a valid link partner, a valid link
+ * should be established. Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ **/
+s32 e1000_setup_link_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_link_generic");
+
+ /*
+ * In the case of the phy reset being blocked, we already have a link.
+ * We do not need to set it up again.
+ */
+ if (e1000_check_reset_block(hw))
+ goto out;
+
+ /*
+ * If requested flow control is set to default, set flow control
+ * based on the EEPROM flow control settings.
+ */
+ if (hw->fc.requested_mode == e1000_fc_default) {
+ ret_val = e1000_set_default_fc_generic(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ /*
+ * Save off the requested flow control mode for use later. Depending
+ * on the link partner's capabilities, we may or may not use this mode.
+ */
+ hw->fc.current_mode = hw->fc.requested_mode;
+
+ DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
+ hw->fc.current_mode);
+
+ /* Call the necessary media_type subroutine to configure the link. */
+ ret_val = hw->mac.ops.setup_physical_interface(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Initialize the flow control address, type, and PAUSE timer
+ * registers to their default values. This is done even if flow
+ * control is disabled, because it does not hurt anything to
+ * initialize these registers.
+ */
+ DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
+ E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
+ E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+ E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+
+ ret_val = e1000_set_fc_watermarks_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
+ * @hw: pointer to the HW structure
+ *
+ * Configures collision distance and flow control for fiber and serdes
+ * links. Upon successful setup, poll for link.
+ **/
+s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 ctrl;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /* Take the link out of reset */
+ ctrl &= ~E1000_CTRL_LRST;
+
+ mac->ops.config_collision_dist(hw);
+
+ ret_val = e1000_commit_fc_settings_generic(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Since auto-negotiation is enabled, take the link out of reset (the
+ * link will be in reset, because we previously reset the chip). This
+ * will restart auto-negotiation. If auto-negotiation is successful
+ * then the link-up status bit will be set and the flow control enable
+ * bits (RFCE and TFCE) will be set according to their negotiated value.
+ */
+ DEBUGOUT("Auto-negotiation enabled\n");
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+
+ /*
+ * For these adapters, the SW definable pin 1 is set when the optics
+ * detect a signal. If we have a signal, then poll for a "Link-Up"
+ * indication.
+ */
+ if (hw->phy.media_type == e1000_media_type_internal_serdes ||
+ (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
+ ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+ } else {
+ DEBUGOUT("No signal detected\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_config_collision_dist_generic - Configure collision distance
+ * @hw: pointer to the HW structure
+ *
+ * Configures the collision distance to the default value and is used
+ * during link setup.
+ **/
+void e1000_config_collision_dist_generic(struct e1000_hw *hw)
+{
+ u32 tctl;
+
+ DEBUGFUNC("e1000_config_collision_dist_generic");
+
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+
+ tctl &= ~E1000_TCTL_COLD;
+ tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_poll_fiber_serdes_link_generic - Poll for link up
+ * @hw: pointer to the HW structure
+ *
+ * Polls for link up by reading the status register, if link fails to come
+ * up with auto-negotiation, then the link is forced if a signal is detected.
+ **/
+static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 i, status;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
+
+ /*
+ * If we have a signal (the cable is plugged in, or assumed TRUE for
+ * serdes media) then poll for a "Link-Up" indication in the Device
+ * Status Register. Time-out if a link isn't seen in 500 milliseconds
+ * seconds (Auto-negotiation should complete in less than 500
+ * milliseconds even if the other end is doing it in SW).
+ */
+ for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
+ msec_delay(10);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_LU)
+ break;
+ }
+ if (i == FIBER_LINK_UP_LIMIT) {
+ DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+ mac->autoneg_failed = 1;
+ /*
+ * AutoNeg failed to achieve a link, so we'll call
+ * mac->check_for_link. This routine will force the
+ * link up if we detect a signal. This will allow us to
+ * communicate with non-autonegotiating link partners.
+ */
+ ret_val = mac->ops.check_for_link(hw);
+ if (ret_val) {
+ DEBUGOUT("Error while checking for link\n");
+ goto out;
+ }
+ mac->autoneg_failed = 0;
+ } else {
+ mac->autoneg_failed = 0;
+ DEBUGOUT("Valid Link Found\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_commit_fc_settings_generic - Configure flow control
+ * @hw: pointer to the HW structure
+ *
+ * Write the flow control settings to the Transmit Config Word Register (TXCW)
+ * base on the flow control settings in e1000_mac_info.
+ **/
+static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 txcw;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_commit_fc_settings_generic");
+
+ /*
+ * Check for a software override of the flow control settings, and
+ * setup the device accordingly. If auto-negotiation is enabled, then
+ * software will have to set the "PAUSE" bits to the correct value in
+ * the Transmit Config Word Register (TXCW) and re-start auto-
+ * negotiation. However, if auto-negotiation is disabled, then
+ * software will have to manually configure the two flow control enable
+ * bits in the CTRL register.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames,
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames but we
+ * do not support receiving pause frames).
+ * 3: Both Rx and Tx flow control (symmetric) are enabled.
+ */
+ switch (hw->fc.current_mode) {
+ case e1000_fc_none:
+ /* Flow control completely disabled by a software over-ride. */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+ break;
+ case e1000_fc_rx_pause:
+ /*
+ * Rx Flow control is enabled and Tx Flow control is disabled
+ * by a software over-ride. Since there really isn't a way to
+ * advertise that we are capable of Rx Pause ONLY, we will
+ * advertise that we support both symmetric and asymmetric Rx
+ * PAUSE. Later, we will disable the adapter's ability to send
+ * PAUSE frames.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ case e1000_fc_tx_pause:
+ /*
+ * Tx Flow control is enabled, and Rx Flow control is disabled,
+ * by a software over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+ break;
+ case e1000_fc_full:
+ /*
+ * Flow control (both Rx and Tx) is enabled by a software
+ * over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ break;
+ }
+
+ E1000_WRITE_REG(hw, E1000_TXCW, txcw);
+ mac->txcw = txcw;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
+ * @hw: pointer to the HW structure
+ *
+ * Sets the flow control high/low threshold (watermark) registers. If
+ * flow control XON frame transmission is enabled, then set XON frame
+ * transmission as well.
+ **/
+s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
+{
+ u32 fcrtl = 0, fcrth = 0;
+
+ DEBUGFUNC("e1000_set_fc_watermarks_generic");
+
+ /*
+ * Set the flow control receive threshold registers. Normally,
+ * these registers will be set to a default threshold that may be
+ * adjusted later by the driver's runtime code. However, if the
+ * ability to transmit pause frames is not enabled, then these
+ * registers will be set to 0.
+ */
+ if (hw->fc.current_mode & e1000_fc_tx_pause) {
+ /*
+ * We need to set up the Receive Threshold high and low water
+ * marks as well as (optionally) enabling the transmission of
+ * XON frames.
+ */
+ fcrtl = hw->fc.low_water;
+ if (hw->fc.send_xon)
+ fcrtl |= E1000_FCRTL_XONE;
+
+ fcrth = hw->fc.high_water;
+ }
+ E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
+ E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_default_fc_generic - Set flow control default values
+ * @hw: pointer to the HW structure
+ *
+ * Read the EEPROM for the default values for flow control and store the
+ * values.
+ **/
+static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 nvm_data;
+
+ DEBUGFUNC("e1000_set_default_fc_generic");
+
+ /*
+ * Read and store word 0x0F of the EEPROM. This word contains bits
+ * that determine the hardware's default PAUSE (flow control) mode,
+ * a bit that determines whether the HW defaults to enabling or
+ * disabling auto-negotiation, and the direction of the
+ * SW defined pins. If there is no SW over-ride of the flow
+ * control setting, then the variable hw->fc will
+ * be initialized based on a value in the EEPROM.
+ */
+ ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
+
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
+ hw->fc.requested_mode = e1000_fc_none;
+ else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
+ NVM_WORD0F_ASM_DIR)
+ hw->fc.requested_mode = e1000_fc_tx_pause;
+ else
+ hw->fc.requested_mode = e1000_fc_full;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_force_mac_fc_generic - Force the MAC's flow control settings
+ * @hw: pointer to the HW structure
+ *
+ * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
+ * device control register to reflect the adapter settings. TFCE and RFCE
+ * need to be explicitly set by software when a copper PHY is used because
+ * autonegotiation is managed by the PHY rather than the MAC. Software must
+ * also configure these bits when link is forced on a fiber connection.
+ **/
+s32 e1000_force_mac_fc_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_force_mac_fc_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /*
+ * Because we didn't get link via the internal auto-negotiation
+ * mechanism (we either forced link or we got link via PHY
+ * auto-neg), we have to manually enable/disable transmit an
+ * receive flow control.
+ *
+ * The "Case" statement below enables/disable flow control
+ * according to the "hw->fc.current_mode" parameter.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause
+ * frames but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * frames but we do not receive pause frames).
+ * 3: Both Rx and Tx flow control (symmetric) is enabled.
+ * other: No other values should be possible at this point.
+ */
+ DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
+
+ switch (hw->fc.current_mode) {
+ case e1000_fc_none:
+ ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+ break;
+ case e1000_fc_rx_pause:
+ ctrl &= (~E1000_CTRL_TFCE);
+ ctrl |= E1000_CTRL_RFCE;
+ break;
+ case e1000_fc_tx_pause:
+ ctrl &= (~E1000_CTRL_RFCE);
+ ctrl |= E1000_CTRL_TFCE;
+ break;
+ case e1000_fc_full:
+ ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_config_fc_after_link_up_generic - Configures flow control after link
+ * @hw: pointer to the HW structure
+ *
+ * Checks the status of auto-negotiation after link up to ensure that the
+ * speed and duplex were not forced. If the link needed to be forced, then
+ * flow control needs to be forced also. If auto-negotiation is enabled
+ * and did not fail, then we configure flow control based on our link
+ * partner.
+ **/
+s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+ u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
+ u16 speed, duplex;
+
+ DEBUGFUNC("e1000_config_fc_after_link_up_generic");
+
+ /*
+ * Check for the case where we have fiber media and auto-neg failed
+ * so we had to force link. In this case, we need to force the
+ * configuration of the MAC to match the "fc" parameter.
+ */
+ if (mac->autoneg_failed) {
+ if (hw->phy.media_type == e1000_media_type_fiber ||
+ hw->phy.media_type == e1000_media_type_internal_serdes)
+ ret_val = e1000_force_mac_fc_generic(hw);
+ } else {
+ if (hw->phy.media_type == e1000_media_type_copper)
+ ret_val = e1000_force_mac_fc_generic(hw);
+ }
+
+ if (ret_val) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ goto out;
+ }
+
+ /*
+ * Check for the case where we have copper media and auto-neg is
+ * enabled. In this case, we need to check and see if Auto-Neg
+ * has completed, and if so, how the PHY and link partner has
+ * flow control configured.
+ */
+ if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
+ /*
+ * Read the MII Status Register and check to see if AutoNeg
+ * has completed. We read this twice because this reg has
+ * some "sticky" (latched) bits.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ goto out;
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ goto out;
+
+ if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
+ DEBUGOUT("Copper PHY and Auto Neg "
+ "has not completed.\n");
+ goto out;
+ }
+
+ /*
+ * The AutoNeg process has completed, so we now need to
+ * read both the Auto Negotiation Advertisement
+ * Register (Address 4) and the Auto_Negotiation Base
+ * Page Ability Register (Address 5) to determine how
+ * flow control was negotiated.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
+ &mii_nway_adv_reg);
+ if (ret_val)
+ goto out;
+ ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
+ &mii_nway_lp_ability_reg);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Two bits in the Auto Negotiation Advertisement Register
+ * (Address 4) and two bits in the Auto Negotiation Base
+ * Page Ability Register (Address 5) determine flow control
+ * for both the PHY and the link partner. The following
+ * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+ * 1999, describes these PAUSE resolution bits and how flow
+ * control is determined based upon these settings.
+ * NOTE: DC = Don't Care
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+ *-------|---------|-------|---------|--------------------
+ * 0 | 0 | DC | DC | e1000_fc_none
+ * 0 | 1 | 0 | DC | e1000_fc_none
+ * 0 | 1 | 1 | 0 | e1000_fc_none
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ * 1 | 0 | 0 | DC | e1000_fc_none
+ * 1 | DC | 1 | DC | e1000_fc_full
+ * 1 | 1 | 0 | 0 | e1000_fc_none
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ *
+ * Are both PAUSE bits set to 1? If so, this implies
+ * Symmetric Flow Control is enabled at both ends. The
+ * ASM_DIR bits are irrelevant per the spec.
+ *
+ * For Symmetric Flow Control:
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | DC | 1 | DC | E1000_fc_full
+ *
+ */
+ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+ /*
+ * Now we need to check if the user selected Rx ONLY
+ * of pause frames. In this case, we had to advertise
+ * FULL flow control because we could not advertise Rx
+ * ONLY. Hence, we must now check to see if we need to
+ * turn OFF the TRANSMISSION of PAUSE frames.
+ */
+ if (hw->fc.requested_mode == e1000_fc_full) {
+ hw->fc.current_mode = e1000_fc_full;
+ DEBUGOUT("Flow Control = FULL.\r\n");
+ } else {
+ hw->fc.current_mode = e1000_fc_rx_pause;
+ DEBUGOUT("Flow Control = "
+ "Rx PAUSE frames only.\r\n");
+ }
+ }
+ /*
+ * For receiving PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ */
+ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc.current_mode = e1000_fc_tx_pause;
+ DEBUGOUT("Flow Control = Tx PAUSE frames only.\r\n");
+ }
+ /*
+ * For transmitting PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ */
+ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc.current_mode = e1000_fc_rx_pause;
+ DEBUGOUT("Flow Control = Rx PAUSE frames only.\r\n");
+ } else {
+ /*
+ * Per the IEEE spec, at this point flow control
+ * should be disabled.
+ */
+ hw->fc.current_mode = e1000_fc_none;
+ DEBUGOUT("Flow Control = NONE.\r\n");
+ }
+
+ /*
+ * Now we need to do one last check... If we auto-
+ * negotiated to HALF DUPLEX, flow control should not be
+ * enabled per IEEE 802.3 spec.
+ */
+ ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT("Error getting link speed and duplex\n");
+ goto out;
+ }
+
+ if (duplex == HALF_DUPLEX)
+ hw->fc.current_mode = e1000_fc_none;
+
+ /*
+ * Now we call a subroutine to actually force the MAC
+ * controller to use the correct flow control settings.
+ */
+ ret_val = e1000_force_mac_fc_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * Read the status register for the current speed/duplex and store the current
+ * speed and duplex for copper connections.
+ **/
+s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ u32 status;
+
+ DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
+
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_SPEED_1000) {
+ *speed = SPEED_1000;
+ DEBUGOUT("1000 Mbs, ");
+ } else if (status & E1000_STATUS_SPEED_100) {
+ *speed = SPEED_100;
+ DEBUGOUT("100 Mbs, ");
+ } else {
+ *speed = SPEED_10;
+ DEBUGOUT("10 Mbs, ");
+ }
+
+ if (status & E1000_STATUS_FD) {
+ *duplex = FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ } else {
+ *duplex = HALF_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * Sets the speed and duplex to gigabit full duplex (the only possible option)
+ * for fiber/serdes links.
+ **/
+s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex)
+{
+ DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
+
+ *speed = SPEED_1000;
+ *duplex = FULL_DUPLEX;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_hw_semaphore_generic - Acquire hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the HW semaphore to access the PHY or NVM
+ **/
+s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
+{
+ u32 swsm;
+ s32 ret_val = E1000_SUCCESS;
+ s32 timeout = hw->nvm.word_size + 1;
+ s32 i = 0;
+
+ DEBUGFUNC("e1000_get_hw_semaphore_generic");
+
+ /* Get the SW semaphore */
+ while (i < timeout) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ if (!(swsm & E1000_SWSM_SMBI))
+ break;
+
+ usec_delay(50);
+ i++;
+ }
+
+ if (i == timeout) {
+ DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ /* Get the FW semaphore. */
+ for (i = 0; i < timeout; i++) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+ /* Semaphore acquired if bit latched */
+ if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+ break;
+
+ usec_delay(50);
+ }
+
+ if (i == timeout) {
+ /* Release semaphores */
+ e1000_put_hw_semaphore_generic(hw);
+ DEBUGOUT("Driver can't access the NVM\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_put_hw_semaphore_generic - Release hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Release hardware semaphore used to access the PHY or NVM
+ **/
+void e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
+{
+ u32 swsm;
+
+ DEBUGFUNC("e1000_put_hw_semaphore_generic");
+
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+
+ swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm);
+}
+
+/**
+ * e1000_get_auto_rd_done_generic - Check for auto read completion
+ * @hw: pointer to the HW structure
+ *
+ * Check EEPROM for Auto Read done bit.
+ **/
+s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
+{
+ s32 i = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_get_auto_rd_done_generic");
+
+ while (i < AUTO_READ_DONE_TIMEOUT) {
+ if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
+ break;
+ msec_delay(1);
+ i++;
+ }
+
+ if (i == AUTO_READ_DONE_TIMEOUT) {
+ DEBUGOUT("Auto read by HW from NVM has not completed.\n");
+ ret_val = -E1000_ERR_RESET;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_valid_led_default_generic - Verify a valid default LED config
+ * @hw: pointer to the HW structure
+ * @data: pointer to the NVM (EEPROM)
+ *
+ * Read the EEPROM for the current default LED configuration. If the
+ * LED configuration is not valid, set to a valid LED configuration.
+ **/
+s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_valid_led_default_generic");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
+ *data = ID_LED_DEFAULT;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_id_led_init_generic -
+ * @hw: pointer to the HW structure
+ *
+ **/
+s32 e1000_id_led_init_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ const u32 ledctl_mask = 0x000000FF;
+ const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+ const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+ u16 data, i, temp;
+ const u16 led_mask = 0x0F;
+
+ DEBUGFUNC("e1000_id_led_init_generic");
+
+ ret_val = hw->nvm.ops.valid_led_default(hw, &data);
+ if (ret_val)
+ goto out;
+
+ mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
+ mac->ledctl_mode1 = mac->ledctl_default;
+ mac->ledctl_mode2 = mac->ledctl_default;
+
+ for (i = 0; i < 4; i++) {
+ temp = (data >> (i << 2)) & led_mask;
+ switch (temp) {
+ case ID_LED_ON1_DEF2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_ON1_OFF2:
+ mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode1 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_OFF1_DEF2:
+ case ID_LED_OFF1_ON2:
+ case ID_LED_OFF1_OFF2:
+ mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode1 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ switch (temp) {
+ case ID_LED_DEF1_ON2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_OFF1_ON2:
+ mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode2 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_DEF1_OFF2:
+ case ID_LED_ON1_OFF2:
+ case ID_LED_OFF1_OFF2:
+ mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode2 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_led_generic - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use and saves the current state
+ * of the LED so it can be later restored.
+ **/
+s32 e1000_setup_led_generic(struct e1000_hw *hw)
+{
+ u32 ledctl;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_led_generic");
+
+ if (hw->mac.ops.setup_led != e1000_setup_led_generic) {
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ if (hw->phy.media_type == e1000_media_type_fiber) {
+ ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+ hw->mac.ledctl_default = ledctl;
+ /* Turn off LED0 */
+ ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+ E1000_LEDCTL_LED0_BLINK |
+ E1000_LEDCTL_LED0_MODE_MASK);
+ ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+ E1000_LEDCTL_LED0_MODE_SHIFT);
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+ } else if (hw->phy.media_type == e1000_media_type_copper) {
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_cleanup_led_generic - Set LED config to default operation
+ * @hw: pointer to the HW structure
+ *
+ * Remove the current LED configuration and set the LED configuration
+ * to the default value, saved from the EEPROM.
+ **/
+s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_cleanup_led_generic");
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_blink_led_generic - Blink LED
+ * @hw: pointer to the HW structure
+ *
+ * Blink the LEDs which are set to be on.
+ **/
+s32 e1000_blink_led_generic(struct e1000_hw *hw)
+{
+ u32 ledctl_blink = 0;
+ u32 i;
+
+ DEBUGFUNC("e1000_blink_led_generic");
+
+ if (hw->phy.media_type == e1000_media_type_fiber) {
+ /* always blink LED0 for PCI-E fiber */
+ ledctl_blink = E1000_LEDCTL_LED0_BLINK |
+ (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
+ } else {
+ /*
+ * set the blink bit for each LED that's "on" (0x0E)
+ * in ledctl_mode2
+ */
+ ledctl_blink = hw->mac.ledctl_mode2;
+ for (i = 0; i < 4; i++)
+ if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
+ E1000_LEDCTL_MODE_LED_ON)
+ ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
+ (i * 8));
+ }
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_on_generic - Turn LED on
+ * @hw: pointer to the HW structure
+ *
+ * Turn LED on.
+ **/
+s32 e1000_led_on_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_led_on_generic");
+
+ switch (hw->phy.media_type) {
+ case e1000_media_type_fiber:
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ break;
+ case e1000_media_type_copper:
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
+ break;
+ default:
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off_generic - Turn LED off
+ * @hw: pointer to the HW structure
+ *
+ * Turn LED off.
+ **/
+s32 e1000_led_off_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_led_off_generic");
+
+ switch (hw->phy.media_type) {
+ case e1000_media_type_fiber:
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ break;
+ case e1000_media_type_copper:
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+ break;
+ default:
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
+ * @hw: pointer to the HW structure
+ * @no_snoop: bitmap of snoop events
+ *
+ * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
+ **/
+void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
+{
+ u32 gcr;
+
+ DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
+
+ if (hw->bus.type != e1000_bus_type_pci_express)
+ goto out;
+
+ if (no_snoop) {
+ gcr = E1000_READ_REG(hw, E1000_GCR);
+ gcr &= ~(PCIE_NO_SNOOP_ALL);
+ gcr |= no_snoop;
+ E1000_WRITE_REG(hw, E1000_GCR, gcr);
+ }
+out:
+ return;
+}
+
+/**
+ * e1000_disable_pcie_master_generic - Disables PCI-express master access
+ * @hw: pointer to the HW structure
+ *
+ * Returns E1000_SUCCESS if successful, else returns -10
+ * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
+ * the master requests to be disabled.
+ *
+ * Disables PCI-Express master access and verifies there are no pending
+ * requests.
+ **/
+s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 timeout = MASTER_DISABLE_TIMEOUT;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_disable_pcie_master_generic");
+
+ if (hw->bus.type != e1000_bus_type_pci_express)
+ goto out;
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ while (timeout) {
+ if (!(E1000_READ_REG(hw, E1000_STATUS) &
+ E1000_STATUS_GIO_MASTER_ENABLE))
+ break;
+ usec_delay(100);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("Master requests are pending.\n");
+ ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
+ * @hw: pointer to the HW structure
+ *
+ * Reset the Adaptive Interframe Spacing throttle to default values.
+ **/
+void e1000_reset_adaptive_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_reset_adaptive_generic");
+
+ if (!mac->adaptive_ifs) {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ goto out;
+ }
+
+ mac->current_ifs_val = 0;
+ mac->ifs_min_val = IFS_MIN;
+ mac->ifs_max_val = IFS_MAX;
+ mac->ifs_step_size = IFS_STEP;
+ mac->ifs_ratio = IFS_RATIO;
+
+ mac->in_ifs_mode = FALSE;
+ E1000_WRITE_REG(hw, E1000_AIT, 0);
+out:
+ return;
+}
+
+/**
+ * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
+ * @hw: pointer to the HW structure
+ *
+ * Update the Adaptive Interframe Spacing Throttle value based on the
+ * time between transmitted packets and time between collisions.
+ **/
+void e1000_update_adaptive_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_update_adaptive_generic");
+
+ if (!mac->adaptive_ifs) {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ goto out;
+ }
+
+ if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
+ if (mac->tx_packet_delta > MIN_NUM_XMITS) {
+ mac->in_ifs_mode = TRUE;
+ if (mac->current_ifs_val < mac->ifs_max_val) {
+ if (!mac->current_ifs_val)
+ mac->current_ifs_val = mac->ifs_min_val;
+ else
+ mac->current_ifs_val +=
+ mac->ifs_step_size;
+ E1000_WRITE_REG(hw, E1000_AIT, mac->current_ifs_val);
+ }
+ }
+ } else {
+ if (mac->in_ifs_mode &&
+ (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
+ mac->current_ifs_val = 0;
+ mac->in_ifs_mode = FALSE;
+ E1000_WRITE_REG(hw, E1000_AIT, 0);
+ }
+ }
+out:
+ return;
+}
+
+/**
+ * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
+ * @hw: pointer to the HW structure
+ *
+ * Verify that when not using auto-negotiation that MDI/MDIx is correctly
+ * set, which is forced to MDI mode only.
+ **/
+static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_validate_mdi_setting_generic");
+
+ if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
+ DEBUGOUT("Invalid MDI setting detected\n");
+ hw->phy.mdix = 1;
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
+ * @hw: pointer to the HW structure
+ * @reg: 32bit register offset such as E1000_SCTL
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes an address/data control type register. There are several of these
+ * and they all have the format address << 8 | data and bit 31 is polled for
+ * completion.
+ **/
+s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
+ u32 offset, u8 data)
+{
+ u32 i, regvalue = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
+
+ /* Set up the address and data */
+ regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
+ E1000_WRITE_REG(hw, reg, regvalue);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
+ usec_delay(5);
+ regvalue = E1000_READ_REG(hw, reg);
+ if (regvalue & E1000_GEN_CTL_READY)
+ break;
+ }
+ if (!(regvalue & E1000_GEN_CTL_READY)) {
+ DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_MAC_H_
+#define _E1000_MAC_H_
+
+/*
+ * Functions that should not be called directly from drivers but can be used
+ * by other files in this 'shared code'
+ */
+void e1000_init_mac_ops_generic(struct e1000_hw *hw);
+void e1000_null_mac_generic(struct e1000_hw *hw);
+s32 e1000_null_ops_generic(struct e1000_hw *hw);
+s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d);
+bool e1000_null_mng_mode(struct e1000_hw *hw);
+void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a);
+void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b);
+void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a);
+s32 e1000_blink_led_generic(struct e1000_hw *hw);
+s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw);
+s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw);
+s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw);
+s32 e1000_cleanup_led_generic(struct e1000_hw *hw);
+s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw);
+s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw);
+s32 e1000_force_mac_fc_generic(struct e1000_hw *hw);
+s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw);
+s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw);
+s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw);
+void e1000_set_lan_id_single_port(struct e1000_hw *hw);
+void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw);
+s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex);
+s32 e1000_id_led_init_generic(struct e1000_hw *hw);
+s32 e1000_led_on_generic(struct e1000_hw *hw);
+s32 e1000_led_off_generic(struct e1000_hw *hw);
+void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count);
+s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw);
+s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw);
+s32 e1000_setup_led_generic(struct e1000_hw *hw);
+s32 e1000_setup_link_generic(struct e1000_hw *hw);
+s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
+ u32 offset, u8 data);
+
+u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr);
+
+void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw);
+void e1000_clear_vfta_generic(struct e1000_hw *hw);
+void e1000_config_collision_dist_generic(struct e1000_hw *hw);
+void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count);
+void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw);
+void e1000_put_hw_semaphore_generic(struct e1000_hw *hw);
+void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
+s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw);
+void e1000_reset_adaptive_generic(struct e1000_hw *hw);
+void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop);
+void e1000_update_adaptive_generic(struct e1000_hw *hw);
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value);
+
+#endif
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#include "e1000_api.h"
+
+/**
+ * e1000_calculate_checksum - Calculate checksum for buffer
+ * @buffer: pointer to EEPROM
+ * @length: size of EEPROM to calculate a checksum for
+ *
+ * Calculates the checksum for some buffer on a specified length. The
+ * checksum calculated is returned.
+ **/
+u8 e1000_calculate_checksum(u8 *buffer, u32 length)
+{
+ u32 i;
+ u8 sum = 0;
+
+ DEBUGFUNC("e1000_calculate_checksum");
+
+ if (!buffer)
+ return 0;
+
+ for (i = 0; i < length; i++)
+ sum += buffer[i];
+
+ return (u8) (0 - sum);
+}
+
+/**
+ * e1000_mng_enable_host_if_generic - Checks host interface is enabled
+ * @hw: pointer to the HW structure
+ *
+ * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ * This function checks whether the HOST IF is enabled for command operation
+ * and also checks whether the previous command is completed. It busy waits
+ * in case of previous command is not completed.
+ **/
+s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw)
+{
+ u32 hicr;
+ s32 ret_val = E1000_SUCCESS;
+ u8 i;
+
+ DEBUGFUNC("e1000_mng_enable_host_if_generic");
+
+ if (!(hw->mac.arc_subsystem_valid)) {
+ DEBUGOUT("ARC subsystem not valid.\n");
+ ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+ goto out;
+ }
+
+ /* Check that the host interface is enabled. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if ((hicr & E1000_HICR_EN) == 0) {
+ DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+ ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+ goto out;
+ }
+ /* check the previous command is completed */
+ for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if (!(hicr & E1000_HICR_C))
+ break;
+ msec_delay_irq(1);
+ }
+
+ if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
+ DEBUGOUT("Previous command timeout failed .\n");
+ ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_mng_mode_generic - Generic check management mode
+ * @hw: pointer to the HW structure
+ *
+ * Reads the firmware semaphore register and returns TRUE (>0) if
+ * manageability is enabled, else FALSE (0).
+ **/
+bool e1000_check_mng_mode_generic(struct e1000_hw *hw)
+{
+ u32 fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+ DEBUGFUNC("e1000_check_mng_mode_generic");
+
+
+ return (fwsm & E1000_FWSM_MODE_MASK) ==
+ (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
+}
+
+/**
+ * e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on Tx
+ * @hw: pointer to the HW structure
+ *
+ * Enables packet filtering on transmit packets if manageability is enabled
+ * and host interface is enabled.
+ **/
+bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw)
+{
+ struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
+ u32 *buffer = (u32 *)&hw->mng_cookie;
+ u32 offset;
+ s32 ret_val, hdr_csum, csum;
+ u8 i, len;
+
+ DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic");
+
+ hw->mac.tx_pkt_filtering = TRUE;
+
+ /* No manageability, no filtering */
+ if (!hw->mac.ops.check_mng_mode(hw)) {
+ hw->mac.tx_pkt_filtering = FALSE;
+ goto out;
+ }
+
+ /*
+ * If we can't read from the host interface for whatever
+ * reason, disable filtering.
+ */
+ ret_val = hw->mac.ops.mng_enable_host_if(hw);
+ if (ret_val != E1000_SUCCESS) {
+ hw->mac.tx_pkt_filtering = FALSE;
+ goto out;
+ }
+
+ /* Read in the header. Length and offset are in dwords. */
+ len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
+ offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
+ for (i = 0; i < len; i++)
+ *(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF,
+ offset + i);
+ hdr_csum = hdr->checksum;
+ hdr->checksum = 0;
+ csum = e1000_calculate_checksum((u8 *)hdr,
+ E1000_MNG_DHCP_COOKIE_LENGTH);
+ /*
+ * If either the checksums or signature don't match, then
+ * the cookie area isn't considered valid, in which case we
+ * take the safe route of assuming Tx filtering is enabled.
+ */
+ if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
+ hw->mac.tx_pkt_filtering = TRUE;
+ goto out;
+ }
+
+ /* Cookie area is valid, make the final check for filtering. */
+ if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
+ hw->mac.tx_pkt_filtering = FALSE;
+ goto out;
+ }
+
+out:
+ return hw->mac.tx_pkt_filtering;
+}
+
+/**
+ * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface
+ * @length: size of the buffer
+ *
+ * Writes the DHCP information to the host interface.
+ **/
+s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer,
+ u16 length)
+{
+ struct e1000_host_mng_command_header hdr;
+ s32 ret_val;
+ u32 hicr;
+
+ DEBUGFUNC("e1000_mng_write_dhcp_info_generic");
+
+ hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
+ hdr.command_length = length;
+ hdr.reserved1 = 0;
+ hdr.reserved2 = 0;
+ hdr.checksum = 0;
+
+ /* Enable the host interface */
+ ret_val = hw->mac.ops.mng_enable_host_if(hw);
+ if (ret_val)
+ goto out;
+
+ /* Populate the host interface with the contents of "buffer". */
+ ret_val = hw->mac.ops.mng_host_if_write(hw, buffer, length,
+ sizeof(hdr), &(hdr.checksum));
+ if (ret_val)
+ goto out;
+
+ /* Write the manageability command header */
+ ret_val = hw->mac.ops.mng_write_cmd_header(hw, &hdr);
+ if (ret_val)
+ goto out;
+
+ /* Tell the ARC a new command is pending. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_mng_write_cmd_header_generic - Writes manageability command header
+ * @hw: pointer to the HW structure
+ * @hdr: pointer to the host interface command header
+ *
+ * Writes the command header after does the checksum calculation.
+ **/
+s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr)
+{
+ u16 i, length = sizeof(struct e1000_host_mng_command_header);
+
+ DEBUGFUNC("e1000_mng_write_cmd_header_generic");
+
+ /* Write the whole command header structure with new checksum. */
+
+ hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
+
+ length >>= 2;
+ /* Write the relevant command block into the ram area. */
+ for (i = 0; i < length; i++) {
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
+ *((u32 *) hdr + i));
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_mng_host_if_write_generic - Write to the manageability host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface buffer
+ * @length: size of the buffer
+ * @offset: location in the buffer to write to
+ * @sum: sum of the data (not checksum)
+ *
+ * This function writes the buffer content at the offset given on the host if.
+ * It also does alignment considerations to do the writes in most efficient
+ * way. Also fills up the sum of the buffer in *buffer parameter.
+ **/
+s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
+ u16 length, u16 offset, u8 *sum)
+{
+ u8 *tmp;
+ u8 *bufptr = buffer;
+ u32 data = 0;
+ s32 ret_val = E1000_SUCCESS;
+ u16 remaining, i, j, prev_bytes;
+
+ DEBUGFUNC("e1000_mng_host_if_write_generic");
+
+ /* sum = only sum of the data and it is not checksum */
+
+ if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
+ ret_val = -E1000_ERR_PARAM;
+ goto out;
+ }
+
+ tmp = (u8 *)&data;
+ prev_bytes = offset & 0x3;
+ offset >>= 2;
+
+ if (prev_bytes) {
+ data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset);
+ for (j = prev_bytes; j < sizeof(u32); j++) {
+ *(tmp + j) = *bufptr++;
+ *sum += *(tmp + j);
+ }
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data);
+ length -= j - prev_bytes;
+ offset++;
+ }
+
+ remaining = length & 0x3;
+ length -= remaining;
+
+ /* Calculate length in DWORDs */
+ length >>= 2;
+
+ /*
+ * The device driver writes the relevant command block into the
+ * ram area.
+ */
+ for (i = 0; i < length; i++) {
+ for (j = 0; j < sizeof(u32); j++) {
+ *(tmp + j) = *bufptr++;
+ *sum += *(tmp + j);
+ }
+
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i,
+ data);
+ }
+ if (remaining) {
+ for (j = 0; j < sizeof(u32); j++) {
+ if (j < remaining)
+ *(tmp + j) = *bufptr++;
+ else
+ *(tmp + j) = 0;
+
+ *sum += *(tmp + j);
+ }
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, data);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_enable_mng_pass_thru - Check if management passthrough is needed
+ * @hw: pointer to the HW structure
+ *
+ * Verifies the hardware needs to leave interface enabled so that frames can
+ * be directed to and from the management interface.
+ **/
+bool e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+{
+ u32 manc;
+ u32 fwsm, factps;
+ bool ret_val = FALSE;
+
+ DEBUGFUNC("e1000_enable_mng_pass_thru");
+
+ if (!hw->mac.asf_firmware_present)
+ goto out;
+
+ manc = E1000_READ_REG(hw, E1000_MANC);
+
+ if (!(manc & E1000_MANC_RCV_TCO_EN))
+ goto out;
+
+ if (hw->mac.has_fwsm) {
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+ factps = E1000_READ_REG(hw, E1000_FACTPS);
+
+ if (!(factps & E1000_FACTPS_MNGCG) &&
+ ((fwsm & E1000_FWSM_MODE_MASK) ==
+ (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
+ ret_val = TRUE;
+ goto out;
+ }
+ } else if ((manc & E1000_MANC_SMBUS_EN) &&
+ !(manc & E1000_MANC_ASF_EN)) {
+ ret_val = TRUE;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_host_interface_command - Writes buffer to host interface
+ * @hw: pointer to the HW structure
+ * @buffer: contains a command to write
+ * @length: the byte length of the buffer, must be multiple of 4 bytes
+ *
+ * Writes a buffer to the Host Interface. Upon success, returns E1000_SUCCESS
+ * else returns E1000_ERR_HOST_INTERFACE_COMMAND.
+ **/
+s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length)
+{
+ u32 hicr, i;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_host_interface_command");
+
+ if (!(hw->mac.arc_subsystem_valid)) {
+ DEBUGOUT("Hardware doesn't support host interface command.\n");
+ goto out;
+ }
+
+ if (!hw->mac.asf_firmware_present) {
+ DEBUGOUT("Firmware is not present.\n");
+ goto out;
+ }
+
+ if (length == 0 || length & 0x3 ||
+ length > E1000_HI_MAX_BLOCK_BYTE_LENGTH) {
+ DEBUGOUT("Buffer length failure.\n");
+ ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+ goto out;
+ }
+
+ /* Check that the host interface is enabled. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if ((hicr & E1000_HICR_EN) == 0) {
+ DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+ ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+ goto out;
+ }
+
+ /* Calculate length in DWORDs */
+ length >>= 2;
+
+ /*
+ * The device driver writes the relevant command block
+ * into the ram area.
+ */
+ for (i = 0; i < length; i++)
+ E1000_WRITE_REG_ARRAY_DWORD(hw,
+ E1000_HOST_IF,
+ i,
+ *((u32 *)buffer + i));
+
+ /* Setting this bit tells the ARC that a new command is pending. */
+ E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
+
+ for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) {
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if (!(hicr & E1000_HICR_C))
+ break;
+ msec_delay(1);
+ }
+
+ /* Check command successful completion. */
+ if (i == E1000_HI_COMMAND_TIMEOUT ||
+ (!(E1000_READ_REG(hw, E1000_HICR) & E1000_HICR_SV))) {
+ DEBUGOUT("Command has failed with no status valid.\n");
+ ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+ goto out;
+ }
+
+ for (i = 0; i < length; i++)
+ *((u32 *)buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw,
+ E1000_HOST_IF,
+ i);
+
+out:
+ return ret_val;
+}
+
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_MANAGE_H_
+#define _E1000_MANAGE_H_
+
+bool e1000_check_mng_mode_generic(struct e1000_hw *hw);
+bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw);
+s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw);
+s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
+ u16 length, u16 offset, u8 *sum);
+s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr);
+s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw,
+ u8 *buffer, u16 length);
+bool e1000_enable_mng_pass_thru(struct e1000_hw *hw);
+u8 e1000_calculate_checksum(u8 *buffer, u32 length);
+s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length);
+
+enum e1000_mng_mode {
+ e1000_mng_mode_none = 0,
+ e1000_mng_mode_asf,
+ e1000_mng_mode_pt,
+ e1000_mng_mode_ipmi,
+ e1000_mng_mode_host_if_only
+};
+
+#define E1000_FACTPS_MNGCG 0x20000000
+
+#define E1000_FWSM_MODE_MASK 0xE
+#define E1000_FWSM_MODE_SHIFT 1
+
+#define E1000_MNG_IAMT_MODE 0x3
+#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10
+#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0
+#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10
+#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
+#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1
+#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2
+
+#define E1000_VFTA_ENTRY_SHIFT 5
+#define E1000_VFTA_ENTRY_MASK 0x7F
+#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
+
+#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Num of bytes in range */
+#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Num of dwords in range */
+#define E1000_HI_COMMAND_TIMEOUT 500 /* Process HI command limit */
+
+#define E1000_HICR_EN 0x01 /* Enable bit - RO */
+/* Driver sets this bit when done to put command in RAM */
+#define E1000_HICR_C 0x02
+#define E1000_HICR_SV 0x04 /* Status Validity */
+#define E1000_HICR_FW_RESET_ENABLE 0x40
+#define E1000_HICR_FW_RESET 0x80
+
+/* Intel(R) Active Management Technology signature */
+#define E1000_IAMT_SIGNATURE 0x544D4149
+
+#endif
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#include "e1000_mbx.h"
+
+/**
+ * e1000_null_mbx_check_for_flag - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_null_mbx_check_for_flag(struct e1000_hw *hw, u16 mbx_id)
+{
+ DEBUGFUNC("e1000_null_mbx_check_flag");
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_mbx_transact - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_null_mbx_transact(struct e1000_hw *hw, u32 *msg, u16 size,
+ u16 mbx_id)
+{
+ DEBUGFUNC("e1000_null_mbx_rw_msg");
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_mbx - Reads a message from the mailbox
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to read
+ *
+ * returns SUCCESS if it successfuly read message from buffer
+ **/
+s32 e1000_read_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_read_mbx");
+
+ /* limit read to size of mailbox */
+ if (size > mbx->size)
+ size = mbx->size;
+
+ if (mbx->ops.read)
+ ret_val = mbx->ops.read(hw, msg, size, mbx_id);
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_mbx - Write a message to the mailbox
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully copied message into the buffer
+ **/
+s32 e1000_write_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_mbx");
+
+ if (size > mbx->size)
+ ret_val = -E1000_ERR_MBX;
+
+ else if (mbx->ops.write)
+ ret_val = mbx->ops.write(hw, msg, size, mbx_id);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_msg - checks to see if someone sent us mail
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns SUCCESS if the Status bit was found or else ERR_MBX
+ **/
+s32 e1000_check_for_msg(struct e1000_hw *hw, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_msg");
+
+ if (mbx->ops.check_for_msg)
+ ret_val = mbx->ops.check_for_msg(hw, mbx_id);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_ack - checks to see if someone sent us ACK
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns SUCCESS if the Status bit was found or else ERR_MBX
+ **/
+s32 e1000_check_for_ack(struct e1000_hw *hw, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_ack");
+
+ if (mbx->ops.check_for_ack)
+ ret_val = mbx->ops.check_for_ack(hw, mbx_id);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_rst - checks to see if other side has reset
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns SUCCESS if the Status bit was found or else ERR_MBX
+ **/
+s32 e1000_check_for_rst(struct e1000_hw *hw, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_rst");
+
+ if (mbx->ops.check_for_rst)
+ ret_val = mbx->ops.check_for_rst(hw, mbx_id);
+
+ return ret_val;
+}
+
+/**
+ * e1000_poll_for_msg - Wait for message notification
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully received a message notification
+ **/
+static s32 e1000_poll_for_msg(struct e1000_hw *hw, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ int countdown = mbx->timeout;
+
+ DEBUGFUNC("e1000_poll_for_msg");
+
+ if (!countdown || !mbx->ops.check_for_msg)
+ goto out;
+
+ while (countdown && mbx->ops.check_for_msg(hw, mbx_id)) {
+ countdown--;
+ if (!countdown)
+ break;
+ usec_delay(mbx->usec_delay);
+ }
+
+ /* if we failed, all future posted messages fail until reset */
+ if (!countdown)
+ mbx->timeout = 0;
+out:
+ return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
+}
+
+/**
+ * e1000_poll_for_ack - Wait for message acknowledgement
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully received a message acknowledgement
+ **/
+static s32 e1000_poll_for_ack(struct e1000_hw *hw, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ int countdown = mbx->timeout;
+
+ DEBUGFUNC("e1000_poll_for_ack");
+
+ if (!countdown || !mbx->ops.check_for_ack)
+ goto out;
+
+ while (countdown && mbx->ops.check_for_ack(hw, mbx_id)) {
+ countdown--;
+ if (!countdown)
+ break;
+ usec_delay(mbx->usec_delay);
+ }
+
+ /* if we failed, all future posted messages fail until reset */
+ if (!countdown)
+ mbx->timeout = 0;
+out:
+ return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
+}
+
+/**
+ * e1000_read_posted_mbx - Wait for message notification and receive message
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully received a message notification and
+ * copied it into the receive buffer.
+ **/
+s32 e1000_read_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_read_posted_mbx");
+
+ if (!mbx->ops.read)
+ goto out;
+
+ ret_val = e1000_poll_for_msg(hw, mbx_id);
+
+ /* if ack received read message, otherwise we timed out */
+ if (!ret_val)
+ ret_val = mbx->ops.read(hw, msg, size, mbx_id);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_posted_mbx - Write a message to the mailbox, wait for ack
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully copied message into the buffer and
+ * received an ack to that message within delay * timeout period
+ **/
+s32 e1000_write_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_write_posted_mbx");
+
+ /* exit if either we can't write or there isn't a defined timeout */
+ if (!mbx->ops.write || !mbx->timeout)
+ goto out;
+
+ /* send msg */
+ ret_val = mbx->ops.write(hw, msg, size, mbx_id);
+
+ /* if msg sent wait until we receive an ack */
+ if (!ret_val)
+ ret_val = e1000_poll_for_ack(hw, mbx_id);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_mbx_ops_generic - Initialize mbx function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Sets the function pointers to no-op functions
+ **/
+void e1000_init_mbx_ops_generic(struct e1000_hw *hw)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ mbx->ops.init_params = e1000_null_ops_generic;
+ mbx->ops.read = e1000_null_mbx_transact;
+ mbx->ops.write = e1000_null_mbx_transact;
+ mbx->ops.check_for_msg = e1000_null_mbx_check_for_flag;
+ mbx->ops.check_for_ack = e1000_null_mbx_check_for_flag;
+ mbx->ops.check_for_rst = e1000_null_mbx_check_for_flag;
+ mbx->ops.read_posted = e1000_read_posted_mbx;
+ mbx->ops.write_posted = e1000_write_posted_mbx;
+}
+
+/**
+ * e1000_read_v2p_mailbox - read v2p mailbox
+ * @hw: pointer to the HW structure
+ *
+ * This function is used to read the v2p mailbox without losing the read to
+ * clear status bits.
+ **/
+static u32 e1000_read_v2p_mailbox(struct e1000_hw *hw)
+{
+ u32 v2p_mailbox = E1000_READ_REG(hw, E1000_V2PMAILBOX(0));
+
+ v2p_mailbox |= hw->dev_spec.vf.v2p_mailbox;
+ hw->dev_spec.vf.v2p_mailbox |= v2p_mailbox & E1000_V2PMAILBOX_R2C_BITS;
+
+ return v2p_mailbox;
+}
+
+/**
+ * e1000_check_for_bit_vf - Determine if a status bit was set
+ * @hw: pointer to the HW structure
+ * @mask: bitmask for bits to be tested and cleared
+ *
+ * This function is used to check for the read to clear bits within
+ * the V2P mailbox.
+ **/
+static s32 e1000_check_for_bit_vf(struct e1000_hw *hw, u32 mask)
+{
+ u32 v2p_mailbox = e1000_read_v2p_mailbox(hw);
+ s32 ret_val = -E1000_ERR_MBX;
+
+ if (v2p_mailbox & mask)
+ ret_val = E1000_SUCCESS;
+
+ hw->dev_spec.vf.v2p_mailbox &= ~mask;
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_msg_vf - checks to see if the PF has sent mail
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns SUCCESS if the PF has set the Status bit or else ERR_MBX
+ **/
+static s32 e1000_check_for_msg_vf(struct e1000_hw *hw, u16 mbx_id)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_msg_vf");
+
+ if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFSTS)) {
+ ret_val = E1000_SUCCESS;
+ hw->mbx.stats.reqs++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_ack_vf - checks to see if the PF has ACK'd
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns SUCCESS if the PF has set the ACK bit or else ERR_MBX
+ **/
+static s32 e1000_check_for_ack_vf(struct e1000_hw *hw, u16 mbx_id)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_ack_vf");
+
+ if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFACK)) {
+ ret_val = E1000_SUCCESS;
+ hw->mbx.stats.acks++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_rst_vf - checks to see if the PF has reset
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns TRUE if the PF has set the reset done bit or else FALSE
+ **/
+static s32 e1000_check_for_rst_vf(struct e1000_hw *hw, u16 mbx_id)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_rst_vf");
+
+ if (!e1000_check_for_bit_vf(hw, (E1000_V2PMAILBOX_RSTD |
+ E1000_V2PMAILBOX_RSTI))) {
+ ret_val = E1000_SUCCESS;
+ hw->mbx.stats.rsts++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_obtain_mbx_lock_vf - obtain mailbox lock
+ * @hw: pointer to the HW structure
+ *
+ * return SUCCESS if we obtained the mailbox lock
+ **/
+static s32 e1000_obtain_mbx_lock_vf(struct e1000_hw *hw)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_obtain_mbx_lock_vf");
+
+ /* Take ownership of the buffer */
+ E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_VFU);
+
+ /* reserve mailbox for vf use */
+ if (e1000_read_v2p_mailbox(hw) & E1000_V2PMAILBOX_VFU)
+ ret_val = E1000_SUCCESS;
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_mbx_vf - Write a message to the mailbox
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully copied message into the buffer
+ **/
+static s32 e1000_write_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size,
+ u16 mbx_id)
+{
+ s32 ret_val;
+ u16 i;
+
+
+ DEBUGFUNC("e1000_write_mbx_vf");
+
+ /* lock the mailbox to prevent pf/vf race condition */
+ ret_val = e1000_obtain_mbx_lock_vf(hw);
+ if (ret_val)
+ goto out_no_write;
+
+ /* flush msg and acks as we are overwriting the message buffer */
+ e1000_check_for_msg_vf(hw, 0);
+ e1000_check_for_ack_vf(hw, 0);
+
+ /* copy the caller specified message to the mailbox memory buffer */
+ for (i = 0; i < size; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(0), i, msg[i]);
+
+ /* update stats */
+ hw->mbx.stats.msgs_tx++;
+
+ /* Drop VFU and interrupt the PF to tell it a message has been sent */
+ E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_REQ);
+
+out_no_write:
+ return ret_val;
+}
+
+/**
+ * e1000_read_mbx_vf - Reads a message from the inbox intended for vf
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to read
+ *
+ * returns SUCCESS if it successfuly read message from buffer
+ **/
+static s32 e1000_read_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size,
+ u16 mbx_id)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 i;
+
+ DEBUGFUNC("e1000_read_mbx_vf");
+
+ /* lock the mailbox to prevent pf/vf race condition */
+ ret_val = e1000_obtain_mbx_lock_vf(hw);
+ if (ret_val)
+ goto out_no_read;
+
+ /* copy the message from the mailbox memory buffer */
+ for (i = 0; i < size; i++)
+ msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(0), i);
+
+ /* Acknowledge receipt and release mailbox, then we're done */
+ E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_ACK);
+
+ /* update stats */
+ hw->mbx.stats.msgs_rx++;
+
+out_no_read:
+ return ret_val;
+}
+
+/**
+ * e1000_init_mbx_params_vf - set initial values for vf mailbox
+ * @hw: pointer to the HW structure
+ *
+ * Initializes the hw->mbx struct to correct values for vf mailbox
+ */
+s32 e1000_init_mbx_params_vf(struct e1000_hw *hw)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+
+ /* start mailbox as timed out and let the reset_hw call set the timeout
+ * value to begin communications */
+ mbx->timeout = 0;
+ mbx->usec_delay = E1000_VF_MBX_INIT_DELAY;
+
+ mbx->size = E1000_VFMAILBOX_SIZE;
+
+ mbx->ops.read = e1000_read_mbx_vf;
+ mbx->ops.write = e1000_write_mbx_vf;
+ mbx->ops.read_posted = e1000_read_posted_mbx;
+ mbx->ops.write_posted = e1000_write_posted_mbx;
+ mbx->ops.check_for_msg = e1000_check_for_msg_vf;
+ mbx->ops.check_for_ack = e1000_check_for_ack_vf;
+ mbx->ops.check_for_rst = e1000_check_for_rst_vf;
+
+ mbx->stats.msgs_tx = 0;
+ mbx->stats.msgs_rx = 0;
+ mbx->stats.reqs = 0;
+ mbx->stats.acks = 0;
+ mbx->stats.rsts = 0;
+
+ return E1000_SUCCESS;
+}
+
+static s32 e1000_check_for_bit_pf(struct e1000_hw *hw, u32 mask)
+{
+ u32 mbvficr = E1000_READ_REG(hw, E1000_MBVFICR);
+ s32 ret_val = -E1000_ERR_MBX;
+
+ if (mbvficr & mask) {
+ ret_val = E1000_SUCCESS;
+ E1000_WRITE_REG(hw, E1000_MBVFICR, mask);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_msg_pf - checks to see if the VF has sent mail
+ * @hw: pointer to the HW structure
+ * @vf_number: the VF index
+ *
+ * returns SUCCESS if the VF has set the Status bit or else ERR_MBX
+ **/
+static s32 e1000_check_for_msg_pf(struct e1000_hw *hw, u16 vf_number)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_msg_pf");
+
+ if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFREQ_VF1 << vf_number)) {
+ ret_val = E1000_SUCCESS;
+ hw->mbx.stats.reqs++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_ack_pf - checks to see if the VF has ACKed
+ * @hw: pointer to the HW structure
+ * @vf_number: the VF index
+ *
+ * returns SUCCESS if the VF has set the Status bit or else ERR_MBX
+ **/
+static s32 e1000_check_for_ack_pf(struct e1000_hw *hw, u16 vf_number)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_ack_pf");
+
+ if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFACK_VF1 << vf_number)) {
+ ret_val = E1000_SUCCESS;
+ hw->mbx.stats.acks++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_rst_pf - checks to see if the VF has reset
+ * @hw: pointer to the HW structure
+ * @vf_number: the VF index
+ *
+ * returns SUCCESS if the VF has set the Status bit or else ERR_MBX
+ **/
+static s32 e1000_check_for_rst_pf(struct e1000_hw *hw, u16 vf_number)
+{
+ u32 vflre = E1000_READ_REG(hw, E1000_VFLRE);
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_rst_pf");
+
+ if (vflre & (1 << vf_number)) {
+ ret_val = E1000_SUCCESS;
+ E1000_WRITE_REG(hw, E1000_VFLRE, (1 << vf_number));
+ hw->mbx.stats.rsts++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_obtain_mbx_lock_pf - obtain mailbox lock
+ * @hw: pointer to the HW structure
+ * @vf_number: the VF index
+ *
+ * return SUCCESS if we obtained the mailbox lock
+ **/
+static s32 e1000_obtain_mbx_lock_pf(struct e1000_hw *hw, u16 vf_number)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+ u32 p2v_mailbox;
+
+ DEBUGFUNC("e1000_obtain_mbx_lock_pf");
+
+ /* Take ownership of the buffer */
+ E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_PFU);
+
+ /* reserve mailbox for vf use */
+ p2v_mailbox = E1000_READ_REG(hw, E1000_P2VMAILBOX(vf_number));
+ if (p2v_mailbox & E1000_P2VMAILBOX_PFU)
+ ret_val = E1000_SUCCESS;
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_mbx_pf - Places a message in the mailbox
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @vf_number: the VF index
+ *
+ * returns SUCCESS if it successfully copied message into the buffer
+ **/
+static s32 e1000_write_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size,
+ u16 vf_number)
+{
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_write_mbx_pf");
+
+ /* lock the mailbox to prevent pf/vf race condition */
+ ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number);
+ if (ret_val)
+ goto out_no_write;
+
+ /* flush msg and acks as we are overwriting the message buffer */
+ e1000_check_for_msg_pf(hw, vf_number);
+ e1000_check_for_ack_pf(hw, vf_number);
+
+ /* copy the caller specified message to the mailbox memory buffer */
+ for (i = 0; i < size; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i, msg[i]);
+
+ /* Interrupt VF to tell it a message has been sent and release buffer*/
+ E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_STS);
+
+ /* update stats */
+ hw->mbx.stats.msgs_tx++;
+
+out_no_write:
+ return ret_val;
+
+}
+
+/**
+ * e1000_read_mbx_pf - Read a message from the mailbox
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @vf_number: the VF index
+ *
+ * This function copies a message from the mailbox buffer to the caller's
+ * memory buffer. The presumption is that the caller knows that there was
+ * a message due to a VF request so no polling for message is needed.
+ **/
+static s32 e1000_read_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size,
+ u16 vf_number)
+{
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_read_mbx_pf");
+
+ /* lock the mailbox to prevent pf/vf race condition */
+ ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number);
+ if (ret_val)
+ goto out_no_read;
+
+ /* copy the message to the mailbox memory buffer */
+ for (i = 0; i < size; i++)
+ msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i);
+
+ /* Acknowledge the message and release buffer */
+ E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_ACK);
+
+ /* update stats */
+ hw->mbx.stats.msgs_rx++;
+
+out_no_read:
+ return ret_val;
+}
+
+/**
+ * e1000_init_mbx_params_pf - set initial values for pf mailbox
+ * @hw: pointer to the HW structure
+ *
+ * Initializes the hw->mbx struct to correct values for pf mailbox
+ */
+s32 e1000_init_mbx_params_pf(struct e1000_hw *hw)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+
+ switch (hw->mac.type) {
+ case e1000_82576:
+ case e1000_i350:
+ mbx->timeout = 0;
+ mbx->usec_delay = 0;
+
+ mbx->size = E1000_VFMAILBOX_SIZE;
+
+ mbx->ops.read = e1000_read_mbx_pf;
+ mbx->ops.write = e1000_write_mbx_pf;
+ mbx->ops.read_posted = e1000_read_posted_mbx;
+ mbx->ops.write_posted = e1000_write_posted_mbx;
+ mbx->ops.check_for_msg = e1000_check_for_msg_pf;
+ mbx->ops.check_for_ack = e1000_check_for_ack_pf;
+ mbx->ops.check_for_rst = e1000_check_for_rst_pf;
+
+ mbx->stats.msgs_tx = 0;
+ mbx->stats.msgs_rx = 0;
+ mbx->stats.reqs = 0;
+ mbx->stats.acks = 0;
+ mbx->stats.rsts = 0;
+ default:
+ return E1000_SUCCESS;
+ }
+}
+
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_MBX_H_
+#define _E1000_MBX_H_
+
+#include "e1000_api.h"
+
+/* Define mailbox register bits */
+#define E1000_V2PMAILBOX_REQ 0x00000001 /* Request for PF Ready bit */
+#define E1000_V2PMAILBOX_ACK 0x00000002 /* Ack PF message received */
+#define E1000_V2PMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */
+#define E1000_V2PMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */
+#define E1000_V2PMAILBOX_PFSTS 0x00000010 /* PF wrote a message in the MB */
+#define E1000_V2PMAILBOX_PFACK 0x00000020 /* PF ack the previous VF msg */
+#define E1000_V2PMAILBOX_RSTI 0x00000040 /* PF has reset indication */
+#define E1000_V2PMAILBOX_RSTD 0x00000080 /* PF has indicated reset done */
+#define E1000_V2PMAILBOX_R2C_BITS 0x000000B0 /* All read to clear bits */
+
+#define E1000_P2VMAILBOX_STS 0x00000001 /* Initiate message send to VF */
+#define E1000_P2VMAILBOX_ACK 0x00000002 /* Ack message recv'd from VF */
+#define E1000_P2VMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */
+#define E1000_P2VMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */
+#define E1000_P2VMAILBOX_RVFU 0x00000010 /* Reset VFU - used when VF stuck */
+
+#define E1000_MBVFICR_VFREQ_MASK 0x000000FF /* bits for VF messages */
+#define E1000_MBVFICR_VFREQ_VF1 0x00000001 /* bit for VF 1 message */
+#define E1000_MBVFICR_VFACK_MASK 0x00FF0000 /* bits for VF acks */
+#define E1000_MBVFICR_VFACK_VF1 0x00010000 /* bit for VF 1 ack */
+
+#define E1000_VFMAILBOX_SIZE 16 /* 16 32 bit words - 64 bytes */
+
+/* If it's a E1000_VF_* msg then it originates in the VF and is sent to the
+ * PF. The reverse is TRUE if it is E1000_PF_*.
+ * Message ACK's are the value or'd with 0xF0000000
+ */
+#define E1000_VT_MSGTYPE_ACK 0x80000000 /* Messages below or'd with
+ * this are the ACK */
+#define E1000_VT_MSGTYPE_NACK 0x40000000 /* Messages below or'd with
+ * this are the NACK */
+#define E1000_VT_MSGTYPE_CTS 0x20000000 /* Indicates that VF is still
+ clear to send requests */
+#define E1000_VT_MSGINFO_SHIFT 16
+/* bits 23:16 are used for exra info for certain messages */
+#define E1000_VT_MSGINFO_MASK (0xFF << E1000_VT_MSGINFO_SHIFT)
+
+#define E1000_VF_RESET 0x01 /* VF requests reset */
+#define E1000_VF_SET_MAC_ADDR 0x02 /* VF requests to set MAC addr */
+#define E1000_VF_SET_MULTICAST 0x03 /* VF requests to set MC addr */
+#define E1000_VF_SET_MULTICAST_COUNT_MASK (0x1F << E1000_VT_MSGINFO_SHIFT)
+#define E1000_VF_SET_MULTICAST_OVERFLOW (0x80 << E1000_VT_MSGINFO_SHIFT)
+#define E1000_VF_SET_VLAN 0x04 /* VF requests to set VLAN */
+#define E1000_VF_SET_VLAN_ADD (0x01 << E1000_VT_MSGINFO_SHIFT)
+#define E1000_VF_SET_LPE 0x05 /* VF requests to set VMOLR.LPE */
+#define E1000_VF_SET_PROMISC 0x06 /*VF requests to clear VMOLR.ROPE/MPME*/
+#define E1000_VF_SET_PROMISC_UNICAST (0x01 << E1000_VT_MSGINFO_SHIFT)
+#define E1000_VF_SET_PROMISC_MULTICAST (0x02 << E1000_VT_MSGINFO_SHIFT)
+
+#define E1000_PF_CONTROL_MSG 0x0100 /* PF control message */
+
+#define E1000_VF_MBX_INIT_TIMEOUT 2000 /* number of retries on mailbox */
+#define E1000_VF_MBX_INIT_DELAY 500 /* microseconds between retries */
+
+s32 e1000_read_mbx(struct e1000_hw *, u32 *, u16, u16);
+s32 e1000_write_mbx(struct e1000_hw *, u32 *, u16, u16);
+s32 e1000_read_posted_mbx(struct e1000_hw *, u32 *, u16, u16);
+s32 e1000_write_posted_mbx(struct e1000_hw *, u32 *, u16, u16);
+s32 e1000_check_for_msg(struct e1000_hw *, u16);
+s32 e1000_check_for_ack(struct e1000_hw *, u16);
+s32 e1000_check_for_rst(struct e1000_hw *, u16);
+void e1000_init_mbx_ops_generic(struct e1000_hw *hw);
+s32 e1000_init_mbx_params_vf(struct e1000_hw *);
+s32 e1000_init_mbx_params_pf(struct e1000_hw *);
+
+#endif /* _E1000_MBX_H_ */
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#include "e1000_api.h"
+
+static void e1000_stop_nvm(struct e1000_hw *hw);
+static void e1000_reload_nvm_generic(struct e1000_hw *hw);
+
+/**
+ * e1000_init_nvm_ops_generic - Initialize NVM function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Setups up the function pointers to no-op functions
+ **/
+void e1000_init_nvm_ops_generic(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ DEBUGFUNC("e1000_init_nvm_ops_generic");
+
+ /* Initialize function pointers */
+ nvm->ops.init_params = e1000_null_ops_generic;
+ nvm->ops.acquire = e1000_null_ops_generic;
+ nvm->ops.read = e1000_null_read_nvm;
+ nvm->ops.release = e1000_null_nvm_generic;
+ nvm->ops.reload = e1000_reload_nvm_generic;
+ nvm->ops.update = e1000_null_ops_generic;
+ nvm->ops.valid_led_default = e1000_null_led_default;
+ nvm->ops.validate = e1000_null_ops_generic;
+ nvm->ops.write = e1000_null_write_nvm;
+}
+
+/**
+ * e1000_null_nvm_read - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c)
+{
+ DEBUGFUNC("e1000_null_read_nvm");
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_nvm_generic - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_nvm_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_null_nvm_generic");
+ return;
+}
+
+/**
+ * e1000_null_led_default - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data)
+{
+ DEBUGFUNC("e1000_null_led_default");
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_write_nvm - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c)
+{
+ DEBUGFUNC("e1000_null_write_nvm");
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_raise_eec_clk - Raise EEPROM clock
+ * @hw: pointer to the HW structure
+ * @eecd: pointer to the EEPROM
+ *
+ * Enable/Raise the EEPROM clock bit.
+ **/
+static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+ *eecd = *eecd | E1000_EECD_SK;
+ E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(hw->nvm.delay_usec);
+}
+
+/**
+ * e1000_lower_eec_clk - Lower EEPROM clock
+ * @hw: pointer to the HW structure
+ * @eecd: pointer to the EEPROM
+ *
+ * Clear/Lower the EEPROM clock bit.
+ **/
+static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+ *eecd = *eecd & ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(hw->nvm.delay_usec);
+}
+
+/**
+ * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
+ * @hw: pointer to the HW structure
+ * @data: data to send to the EEPROM
+ * @count: number of bits to shift out
+ *
+ * We need to shift 'count' bits out to the EEPROM. So, the value in the
+ * "data" parameter will be shifted out to the EEPROM one bit at a time.
+ * In order to do this, "data" must be broken down into bits.
+ **/
+static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u32 mask;
+
+ DEBUGFUNC("e1000_shift_out_eec_bits");
+
+ mask = 0x01 << (count - 1);
+ if (nvm->type == e1000_nvm_eeprom_microwire)
+ eecd &= ~E1000_EECD_DO;
+ else
+ if (nvm->type == e1000_nvm_eeprom_spi)
+ eecd |= E1000_EECD_DO;
+
+ do {
+ eecd &= ~E1000_EECD_DI;
+
+ if (data & mask)
+ eecd |= E1000_EECD_DI;
+
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(nvm->delay_usec);
+
+ e1000_raise_eec_clk(hw, &eecd);
+ e1000_lower_eec_clk(hw, &eecd);
+
+ mask >>= 1;
+ } while (mask);
+
+ eecd &= ~E1000_EECD_DI;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/**
+ * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
+ * @hw: pointer to the HW structure
+ * @count: number of bits to shift in
+ *
+ * In order to read a register from the EEPROM, we need to shift 'count' bits
+ * in from the EEPROM. Bits are "shifted in" by raising the clock input to
+ * the EEPROM (setting the SK bit), and then reading the value of the data out
+ * "DO" bit. During this "shifting in" process the data in "DI" bit should
+ * always be clear.
+ **/
+static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
+{
+ u32 eecd;
+ u32 i;
+ u16 data;
+
+ DEBUGFUNC("e1000_shift_in_eec_bits");
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+ data = 0;
+
+ for (i = 0; i < count; i++) {
+ data <<= 1;
+ e1000_raise_eec_clk(hw, &eecd);
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ eecd &= ~E1000_EECD_DI;
+ if (eecd & E1000_EECD_DO)
+ data |= 1;
+
+ e1000_lower_eec_clk(hw, &eecd);
+ }
+
+ return data;
+}
+
+/**
+ * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
+ * @hw: pointer to the HW structure
+ * @ee_reg: EEPROM flag for polling
+ *
+ * Polls the EEPROM status bit for either read or write completion based
+ * upon the value of 'ee_reg'.
+ **/
+s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
+{
+ u32 attempts = 100000;
+ u32 i, reg = 0;
+ s32 ret_val = -E1000_ERR_NVM;
+
+ DEBUGFUNC("e1000_poll_eerd_eewr_done");
+
+ for (i = 0; i < attempts; i++) {
+ if (ee_reg == E1000_NVM_POLL_READ)
+ reg = E1000_READ_REG(hw, E1000_EERD);
+ else
+ reg = E1000_READ_REG(hw, E1000_EEWR);
+
+ if (reg & E1000_NVM_RW_REG_DONE) {
+ ret_val = E1000_SUCCESS;
+ break;
+ }
+
+ usec_delay(5);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_acquire_nvm_generic - Generic request for access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ * Return successful if access grant bit set, else clear the request for
+ * EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
+{
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_acquire_nvm_generic");
+
+ E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ while (timeout) {
+ if (eecd & E1000_EECD_GNT)
+ break;
+ usec_delay(5);
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ timeout--;
+ }
+
+ if (!timeout) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ DEBUGOUT("Could not acquire NVM grant\n");
+ ret_val = -E1000_ERR_NVM;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_standby_nvm - Return EEPROM to standby state
+ * @hw: pointer to the HW structure
+ *
+ * Return the EEPROM to a standby state.
+ **/
+static void e1000_standby_nvm(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ DEBUGFUNC("e1000_standby_nvm");
+
+ if (nvm->type == e1000_nvm_eeprom_microwire) {
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+
+ e1000_raise_eec_clk(hw, &eecd);
+
+ /* Select EEPROM */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+
+ e1000_lower_eec_clk(hw, &eecd);
+ } else
+ if (nvm->type == e1000_nvm_eeprom_spi) {
+ /* Toggle CS to flush commands */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+ eecd &= ~E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+ }
+}
+
+/**
+ * e1000_stop_nvm - Terminate EEPROM command
+ * @hw: pointer to the HW structure
+ *
+ * Terminates the current command by inverting the EEPROM's chip select pin.
+ **/
+static void e1000_stop_nvm(struct e1000_hw *hw)
+{
+ u32 eecd;
+
+ DEBUGFUNC("e1000_stop_nvm");
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (hw->nvm.type == e1000_nvm_eeprom_spi) {
+ /* Pull CS high */
+ eecd |= E1000_EECD_CS;
+ e1000_lower_eec_clk(hw, &eecd);
+ } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
+ /* CS on Microwire is active-high */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ e1000_raise_eec_clk(hw, &eecd);
+ e1000_lower_eec_clk(hw, &eecd);
+ }
+}
+
+/**
+ * e1000_release_nvm_generic - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+void e1000_release_nvm_generic(struct e1000_hw *hw)
+{
+ u32 eecd;
+
+ DEBUGFUNC("e1000_release_nvm_generic");
+
+ e1000_stop_nvm(hw);
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/**
+ * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
+ * @hw: pointer to the HW structure
+ *
+ * Setups the EEPROM for reading and writing.
+ **/
+static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ s32 ret_val = E1000_SUCCESS;
+ u8 spi_stat_reg;
+
+ DEBUGFUNC("e1000_ready_nvm_eeprom");
+
+ if (nvm->type == e1000_nvm_eeprom_microwire) {
+ /* Clear SK and DI */
+ eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ /* Set CS */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ } else
+ if (nvm->type == e1000_nvm_eeprom_spi) {
+ u16 timeout = NVM_MAX_RETRY_SPI;
+
+ /* Clear SK and CS */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ usec_delay(1);
+
+ /*
+ * Read "Status Register" repeatedly until the LSB is cleared.
+ * The EEPROM will signal that the command has been completed
+ * by clearing bit 0 of the internal status register. If it's
+ * not cleared within 'timeout', then error out.
+ */
+ while (timeout) {
+ e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
+ hw->nvm.opcode_bits);
+ spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
+ if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
+ break;
+
+ usec_delay(5);
+ e1000_standby_nvm(hw);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("SPI NVM Status error\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_nvm_spi - Read EEPROM's using SPI
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM.
+ **/
+s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i = 0;
+ s32 ret_val;
+ u16 word_in;
+ u8 read_opcode = NVM_READ_OPCODE_SPI;
+
+ DEBUGFUNC("e1000_read_nvm_spi");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = nvm->ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ e1000_standby_nvm(hw);
+
+ if ((nvm->address_bits == 8) && (offset >= 128))
+ read_opcode |= NVM_A8_OPCODE_SPI;
+
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
+
+ /*
+ * Read the data. SPI NVMs increment the address with each byte
+ * read and will roll over if reading beyond the end. This allows
+ * us to read the whole NVM from any offset
+ */
+ for (i = 0; i < words; i++) {
+ word_in = e1000_shift_in_eec_bits(hw, 16);
+ data[i] = (word_in >> 8) | (word_in << 8);
+ }
+
+release:
+ nvm->ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_nvm_microwire - Reads EEPROM's using microwire
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM.
+ **/
+s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i = 0;
+ s32 ret_val;
+ u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
+
+ DEBUGFUNC("e1000_read_nvm_microwire");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = nvm->ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ for (i = 0; i < words; i++) {
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)(offset + i),
+ nvm->address_bits);
+
+ /*
+ * Read the data. For microwire, each word requires the
+ * overhead of setup and tear-down.
+ */
+ data[i] = e1000_shift_in_eec_bits(hw, 16);
+ e1000_standby_nvm(hw);
+ }
+
+release:
+ nvm->ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_nvm_eerd - Reads EEPROM using EERD register
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM using the EERD register.
+ **/
+s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i, eerd = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_nvm_eerd");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * too many words for the offset, and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ for (i = 0; i < words; i++) {
+ eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
+ E1000_NVM_RW_REG_START;
+
+ E1000_WRITE_REG(hw, E1000_EERD, eerd);
+ ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
+ if (ret_val)
+ break;
+
+ data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
+ E1000_NVM_RW_REG_DATA);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_nvm_spi - Write to EEPROM using SPI
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * Writes data to EEPROM at offset using SPI interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function , the
+ * EEPROM will most likely contain an invalid checksum.
+ **/
+s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ s32 ret_val;
+ u16 widx = 0;
+
+ DEBUGFUNC("e1000_write_nvm_spi");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = nvm->ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ while (widx < words) {
+ u8 write_opcode = NVM_WRITE_OPCODE_SPI;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ e1000_standby_nvm(hw);
+
+ /* Send the WRITE ENABLE command (8 bit opcode) */
+ e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
+ nvm->opcode_bits);
+
+ e1000_standby_nvm(hw);
+
+ /*
+ * Some SPI eeproms use the 8th address bit embedded in the
+ * opcode
+ */
+ if ((nvm->address_bits == 8) && (offset >= 128))
+ write_opcode |= NVM_A8_OPCODE_SPI;
+
+ /* Send the Write command (8-bit opcode + addr) */
+ e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
+ nvm->address_bits);
+
+ /* Loop to allow for up to whole page write of eeprom */
+ while (widx < words) {
+ u16 word_out = data[widx];
+ word_out = (word_out >> 8) | (word_out << 8);
+ e1000_shift_out_eec_bits(hw, word_out, 16);
+ widx++;
+
+ if ((((offset + widx) * 2) % nvm->page_size) == 0) {
+ e1000_standby_nvm(hw);
+ break;
+ }
+ }
+ }
+
+ msec_delay(10);
+release:
+ nvm->ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_nvm_microwire - Writes EEPROM using microwire
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * Writes data to EEPROM at offset using microwire interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function , the
+ * EEPROM will most likely contain an invalid checksum.
+ **/
+s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ s32 ret_val;
+ u32 eecd;
+ u16 words_written = 0;
+ u16 widx = 0;
+
+ DEBUGFUNC("e1000_write_nvm_microwire");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = nvm->ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
+ (u16)(nvm->opcode_bits + 2));
+
+ e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+ e1000_standby_nvm(hw);
+
+ while (words_written < words) {
+ e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
+ nvm->opcode_bits);
+
+ e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
+ nvm->address_bits);
+
+ e1000_shift_out_eec_bits(hw, data[words_written], 16);
+
+ e1000_standby_nvm(hw);
+
+ for (widx = 0; widx < 200; widx++) {
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (eecd & E1000_EECD_DO)
+ break;
+ usec_delay(50);
+ }
+
+ if (widx == 200) {
+ DEBUGOUT("NVM Write did not complete\n");
+ ret_val = -E1000_ERR_NVM;
+ goto release;
+ }
+
+ e1000_standby_nvm(hw);
+
+ words_written++;
+ }
+
+ e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
+ (u16)(nvm->opcode_bits + 2));
+
+ e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+release:
+ nvm->ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_pba_string_generic - Read device part number
+ * @hw: pointer to the HW structure
+ * @pba_num: pointer to device part number
+ * @pba_num_size: size of part number buffer
+ *
+ * Reads the product board assembly (PBA) number from the EEPROM and stores
+ * the value in pba_num.
+ **/
+s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
+ u32 pba_num_size)
+{
+ s32 ret_val;
+ u16 nvm_data;
+ u16 pba_ptr;
+ u16 offset;
+ u16 length;
+
+ DEBUGFUNC("e1000_read_pba_string_generic");
+
+ if (pba_num == NULL) {
+ DEBUGOUT("PBA string buffer was null\n");
+ ret_val = E1000_ERR_INVALID_ARGUMENT;
+ goto out;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ /*
+ * if nvm_data is not ptr guard the PBA must be in legacy format which
+ * means pba_ptr is actually our second data word for the PBA number
+ * and we can decode it into an ascii string
+ */
+ if (nvm_data != NVM_PBA_PTR_GUARD) {
+ DEBUGOUT("NVM PBA number is not stored as string\n");
+
+ /* we will need 11 characters to store the PBA */
+ if (pba_num_size < 11) {
+ DEBUGOUT("PBA string buffer too small\n");
+ return E1000_ERR_NO_SPACE;
+ }
+
+ /* extract hex string from data and pba_ptr */
+ pba_num[0] = (nvm_data >> 12) & 0xF;
+ pba_num[1] = (nvm_data >> 8) & 0xF;
+ pba_num[2] = (nvm_data >> 4) & 0xF;
+ pba_num[3] = nvm_data & 0xF;
+ pba_num[4] = (pba_ptr >> 12) & 0xF;
+ pba_num[5] = (pba_ptr >> 8) & 0xF;
+ pba_num[6] = '-';
+ pba_num[7] = 0;
+ pba_num[8] = (pba_ptr >> 4) & 0xF;
+ pba_num[9] = pba_ptr & 0xF;
+
+ /* put a null character on the end of our string */
+ pba_num[10] = '\0';
+
+ /* switch all the data but the '-' to hex char */
+ for (offset = 0; offset < 10; offset++) {
+ if (pba_num[offset] < 0xA)
+ pba_num[offset] += '0';
+ else if (pba_num[offset] < 0x10)
+ pba_num[offset] += 'A' - 0xA;
+ }
+
+ goto out;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (length == 0xFFFF || length == 0) {
+ DEBUGOUT("NVM PBA number section invalid length\n");
+ ret_val = E1000_ERR_NVM_PBA_SECTION;
+ goto out;
+ }
+ /* check if pba_num buffer is big enough */
+ if (pba_num_size < (((u32)length * 2) - 1)) {
+ DEBUGOUT("PBA string buffer too small\n");
+ ret_val = E1000_ERR_NO_SPACE;
+ goto out;
+ }
+
+ /* trim pba length from start of string */
+ pba_ptr++;
+ length--;
+
+ for (offset = 0; offset < length; offset++) {
+ ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ pba_num[offset * 2] = (u8)(nvm_data >> 8);
+ pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
+ }
+ pba_num[offset * 2] = '\0';
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_pba_length_generic - Read device part number length
+ * @hw: pointer to the HW structure
+ * @pba_num_size: size of part number buffer
+ *
+ * Reads the product board assembly (PBA) number length from the EEPROM and
+ * stores the value in pba_num_size.
+ **/
+s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size)
+{
+ s32 ret_val;
+ u16 nvm_data;
+ u16 pba_ptr;
+ u16 length;
+
+ DEBUGFUNC("e1000_read_pba_length_generic");
+
+ if (pba_num_size == NULL) {
+ DEBUGOUT("PBA buffer size was null\n");
+ ret_val = E1000_ERR_INVALID_ARGUMENT;
+ goto out;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ /* if data is not ptr guard the PBA must be in legacy format */
+ if (nvm_data != NVM_PBA_PTR_GUARD) {
+ *pba_num_size = 11;
+ goto out;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (length == 0xFFFF || length == 0) {
+ DEBUGOUT("NVM PBA number section invalid length\n");
+ ret_val = E1000_ERR_NVM_PBA_SECTION;
+ goto out;
+ }
+
+ /*
+ * Convert from length in u16 values to u8 chars, add 1 for NULL,
+ * and subtract 2 because length field is included in length.
+ */
+ *pba_num_size = ((u32)length * 2) - 1;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_mac_addr_generic - Read device MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the device MAC address from the EEPROM and stores the value.
+ * Since devices with two ports use the same EEPROM, we increment the
+ * last bit in the MAC address for the second port.
+ **/
+s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
+{
+ u32 rar_high;
+ u32 rar_low;
+ u16 i;
+
+ rar_high = E1000_READ_REG(hw, E1000_RAH(0));
+ rar_low = E1000_READ_REG(hw, E1000_RAL(0));
+
+ for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
+ hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
+
+ for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
+ hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
+
+ for (i = 0; i < ETH_ADDR_LEN; i++)
+ hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_generic");
+
+ for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
+ ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+
+ if (checksum != (u16) NVM_SUM) {
+ DEBUGOUT("NVM Checksum Invalid\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_generic - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ * up to the checksum. Then calculates the EEPROM checksum and writes the
+ * value to the EEPROM.
+ **/
+s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_update_nvm_checksum");
+
+ for (i = 0; i < NVM_CHECKSUM_REG; i++) {
+ ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error while updating checksum.\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+ checksum = (u16) NVM_SUM - checksum;
+ ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
+ if (ret_val)
+ DEBUGOUT("NVM Write Error while updating checksum.\n");
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_reload_nvm_generic - Reloads EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ * extended control register.
+ **/
+static void e1000_reload_nvm_generic(struct e1000_hw *hw)
+{
+ u32 ctrl_ext;
+
+ DEBUGFUNC("e1000_reload_nvm_generic");
+
+ usec_delay(10);
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+}
+
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_NVM_H_
+#define _E1000_NVM_H_
+
+void e1000_init_nvm_ops_generic(struct e1000_hw *hw);
+s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c);
+void e1000_null_nvm_generic(struct e1000_hw *hw);
+s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data);
+s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c);
+s32 e1000_acquire_nvm_generic(struct e1000_hw *hw);
+
+s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
+s32 e1000_read_mac_addr_generic(struct e1000_hw *hw);
+s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
+ u32 pba_num_size);
+s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size);
+s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data);
+s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data);
+s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw);
+s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data);
+s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw);
+void e1000_release_nvm_generic(struct e1000_hw *hw);
+
+#define E1000_STM_OPCODE 0xDB00
+
+#endif
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#include "e1000_api.h"
+
+/*
+ * NOTE: the following routines using the e1000
+ * naming style are provided to the shared
+ * code but are OS specific
+ */
+
+void
+e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
+{
+ return;
+}
+
+void
+e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
+{
+ *value = 0;
+ return;
+}
+
+/*
+ * Read the PCI Express capabilities
+ */
+int32_t
+e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
+{
+ return E1000_NOT_IMPLEMENTED;
+}
+
+/*
+ * Write the PCI Express capabilities
+ */
+int32_t
+e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
+{
+ return E1000_NOT_IMPLEMENTED;
+}
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_OSDEP_H_
+#define _E1000_OSDEP_H_
+
+#include <stdint.h>
+#include <stdio.h>
+#include <stdarg.h>
+#include <string.h>
+#include <rte_common.h>
+#include <rte_cycles.h>
+#include <rte_log.h>
+
+#include "../e1000_logs.h"
+
+/* Remove some compiler warnings for the files in this dir */
+#ifdef __INTEL_COMPILER
+#pragma warning(disable:2259) /* conversion may lose significant bits */
+#pragma warning(disable:869) /* Parameter was never referenced */
+#pragma warning(disable:181) /* Arg incompatible with format string */
+#else
+#pragma GCC diagnostic ignored "-Wunused-parameter"
+#pragma GCC diagnostic ignored "-Wformat"
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#if (((__GNUC__) >= 4) && ((__GNUC_MINOR__) >= 7))
+#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
+#endif
+#endif
+
+#define DELAY(x) rte_delay_us(x)
+#define usec_delay(x) DELAY(x)
+#define msec_delay(x) DELAY(1000*(x))
+#define msec_delay_irq(x) DELAY(1000*(x))
+
+#define DEBUGFUNC(F) DEBUGOUT(F);
+#define DEBUGOUT(S, args...) PMD_DRV_LOG(DEBUG, S, ##args)
+#define DEBUGOUT1(S, args...) DEBUGOUT(S, ##args)
+#define DEBUGOUT2(S, args...) DEBUGOUT(S, ##args)
+#define DEBUGOUT3(S, args...) DEBUGOUT(S, ##args)
+#define DEBUGOUT6(S, args...) DEBUGOUT(S, ##args)
+#define DEBUGOUT7(S, args...) DEBUGOUT(S, ##args)
+
+#define FALSE 0
+#define TRUE 1
+
+typedef uint64_t u64;
+typedef uint32_t u32;
+typedef uint16_t u16;
+typedef uint8_t u8;
+typedef int64_t s64;
+typedef int32_t s32;
+typedef int16_t s16;
+typedef int8_t s8;
+typedef int bool;
+
+#define __le16 u16
+#define __le32 u32
+#define __le64 u64
+
+#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, E1000_STATUS)
+
+#define E1000_PCI_REG(reg) (*((volatile uint32_t *)(reg)))
+
+#define E1000_PCI_REG_WRITE(reg, value) do { \
+ E1000_PCI_REG((reg)) = (value); \
+} while (0)
+
+#define E1000_PCI_REG_ADDR(hw, reg) \
+ ((volatile uint32_t *)((char *)(hw)->hw_addr + (reg)))
+
+#define E1000_PCI_REG_ARRAY_ADDR(hw, reg, index) \
+ E1000_PCI_REG_ADDR((hw), (reg) + ((index) << 2))
+
+static inline uint32_t e1000_read_addr(volatile void* addr)
+{
+ return E1000_PCI_REG(addr);
+}
+
+/* Register READ/WRITE macros */
+
+#define E1000_READ_REG(hw, reg) \
+ e1000_read_addr(E1000_PCI_REG_ADDR((hw), (reg)))
+
+#define E1000_WRITE_REG(hw, reg, value) \
+ E1000_PCI_REG_WRITE(E1000_PCI_REG_ADDR((hw), (reg)), (value))
+
+#define E1000_READ_REG_ARRAY(hw, reg, index) \
+ E1000_PCI_REG(E1000_PCI_REG_ARRAY_ADDR((hw), (reg), (index)))
+
+#define E1000_WRITE_REG_ARRAY(hw, reg, index, value) \
+ E1000_PCI_REG_WRITE(E1000_PCI_REG_ARRAY_ADDR((hw), (reg), (index)), (value))
+
+#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
+#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY
+
+#endif /* _E1000_OSDEP_H_ */
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#include "e1000_api.h"
+
+static s32 e1000_copper_link_autoneg(struct e1000_hw *hw);
+static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw);
+/* Cable length tables */
+static const u16 e1000_m88_cable_length_table[] = {
+ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
+#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
+ (sizeof(e1000_m88_cable_length_table) / \
+ sizeof(e1000_m88_cable_length_table[0]))
+
+static const u16 e1000_igp_2_cable_length_table[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
+ 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
+ 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
+ 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
+ 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
+ 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
+ 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
+ 124};
+#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
+ (sizeof(e1000_igp_2_cable_length_table) / \
+ sizeof(e1000_igp_2_cable_length_table[0]))
+
+/**
+ * e1000_init_phy_ops_generic - Initialize PHY function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Setups up the function pointers to no-op functions
+ **/
+void e1000_init_phy_ops_generic(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ DEBUGFUNC("e1000_init_phy_ops_generic");
+
+ /* Initialize function pointers */
+ phy->ops.init_params = e1000_null_ops_generic;
+ phy->ops.acquire = e1000_null_ops_generic;
+ phy->ops.check_polarity = e1000_null_ops_generic;
+ phy->ops.check_reset_block = e1000_null_ops_generic;
+ phy->ops.commit = e1000_null_ops_generic;
+ phy->ops.force_speed_duplex = e1000_null_ops_generic;
+ phy->ops.get_cfg_done = e1000_null_ops_generic;
+ phy->ops.get_cable_length = e1000_null_ops_generic;
+ phy->ops.get_info = e1000_null_ops_generic;
+ phy->ops.read_reg = e1000_null_read_reg;
+ phy->ops.read_reg_locked = e1000_null_read_reg;
+ phy->ops.release = e1000_null_phy_generic;
+ phy->ops.reset = e1000_null_ops_generic;
+ phy->ops.set_d0_lplu_state = e1000_null_lplu_state;
+ phy->ops.set_d3_lplu_state = e1000_null_lplu_state;
+ phy->ops.write_reg = e1000_null_write_reg;
+ phy->ops.write_reg_locked = e1000_null_write_reg;
+ phy->ops.power_up = e1000_null_phy_generic;
+ phy->ops.power_down = e1000_null_phy_generic;
+}
+
+/**
+ * e1000_null_read_reg - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ DEBUGFUNC("e1000_null_read_reg");
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_phy_generic - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_phy_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_null_phy_generic");
+ return;
+}
+
+/**
+ * e1000_null_lplu_state - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active)
+{
+ DEBUGFUNC("e1000_null_lplu_state");
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_write_reg - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ DEBUGFUNC("e1000_null_write_reg");
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_reset_block_generic - Check if PHY reset is blocked
+ * @hw: pointer to the HW structure
+ *
+ * Read the PHY management control register and check whether a PHY reset
+ * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise
+ * return E1000_BLK_PHY_RESET (12).
+ **/
+s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
+{
+ u32 manc;
+
+ DEBUGFUNC("e1000_check_reset_block");
+
+ manc = E1000_READ_REG(hw, E1000_MANC);
+
+ return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
+ E1000_BLK_PHY_RESET : E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_id - Retrieve the PHY ID and revision
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY registers and stores the PHY ID and possibly the PHY
+ * revision in the hardware structure.
+ **/
+s32 e1000_get_phy_id(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_id;
+
+ DEBUGFUNC("e1000_get_phy_id");
+
+ if (!(phy->ops.read_reg))
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
+ if (ret_val)
+ goto out;
+
+ phy->id = (u32)(phy_id << 16);
+ usec_delay(20);
+ ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
+ if (ret_val)
+ goto out;
+
+ phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
+ phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_reset_dsp_generic - Reset PHY DSP
+ * @hw: pointer to the HW structure
+ *
+ * Reset the digital signal processor.
+ **/
+s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_phy_reset_dsp_generic");
+
+ if (!(hw->phy.ops.write_reg))
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_mdic - Read MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the MDI control register in the PHY at offset and stores the
+ * information read to data.
+ **/
+s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, mdic = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_phy_reg_mdic");
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ return -E1000_ERR_PARAM;
+ }
+
+ /*
+ * Set up Op-code, Phy Address, and register offset in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = ((offset << E1000_MDIC_REG_SHIFT) |
+ (phy->addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_READ));
+
+ E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+ /*
+ * Poll the ready bit to see if the MDI read completed
+ * Increasing the time out as testing showed failures with
+ * the lower time out
+ */
+ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+ usec_delay(50);
+ mdic = E1000_READ_REG(hw, E1000_MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Read did not complete\n");
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ if (mdic & E1000_MDIC_ERROR) {
+ DEBUGOUT("MDI Error\n");
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ *data = (u16) mdic;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_mdic - Write MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write to register at offset
+ *
+ * Writes data to MDI control register in the PHY at offset.
+ **/
+s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, mdic = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_phy_reg_mdic");
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ return -E1000_ERR_PARAM;
+ }
+
+ /*
+ * Set up Op-code, Phy Address, and register offset in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = (((u32)data) |
+ (offset << E1000_MDIC_REG_SHIFT) |
+ (phy->addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_WRITE));
+
+ E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+ /*
+ * Poll the ready bit to see if the MDI read completed
+ * Increasing the time out as testing showed failures with
+ * the lower time out
+ */
+ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+ usec_delay(50);
+ mdic = E1000_READ_REG(hw, E1000_MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Write did not complete\n");
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ if (mdic & E1000_MDIC_ERROR) {
+ DEBUGOUT("MDI Error\n");
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_i2c - Read PHY register using i2c
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset using the i2c interface and stores the
+ * retrieved information in data.
+ **/
+s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, i2ccmd = 0;
+
+ DEBUGFUNC("e1000_read_phy_reg_i2c");
+
+ /*
+ * Set up Op-code, Phy Address, and register address in the I2CCMD
+ * register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+ (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+ (E1000_I2CCMD_OPCODE_READ));
+
+ E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+ /* Poll the ready bit to see if the I2C read completed */
+ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+ usec_delay(50);
+ i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+ if (i2ccmd & E1000_I2CCMD_READY)
+ break;
+ }
+ if (!(i2ccmd & E1000_I2CCMD_READY)) {
+ DEBUGOUT("I2CCMD Read did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (i2ccmd & E1000_I2CCMD_ERROR) {
+ DEBUGOUT("I2CCMD Error bit set\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Need to byte-swap the 16-bit value. */
+ *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_phy_reg_i2c - Write PHY register using i2c
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset using the i2c interface.
+ **/
+s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, i2ccmd = 0;
+ u16 phy_data_swapped;
+
+ DEBUGFUNC("e1000_write_phy_reg_i2c");
+
+ /* Swap the data bytes for the I2C interface */
+ phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
+
+ /*
+ * Set up Op-code, Phy Address, and register address in the I2CCMD
+ * register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+ (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+ E1000_I2CCMD_OPCODE_WRITE |
+ phy_data_swapped);
+
+ E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+ /* Poll the ready bit to see if the I2C read completed */
+ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+ usec_delay(50);
+ i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+ if (i2ccmd & E1000_I2CCMD_READY)
+ break;
+ }
+ if (!(i2ccmd & E1000_I2CCMD_READY)) {
+ DEBUGOUT("I2CCMD Write did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (i2ccmd & E1000_I2CCMD_ERROR) {
+ DEBUGOUT("I2CCMD Error bit set\n");
+ return -E1000_ERR_PHY;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_phy_reg_m88 - Read m88 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_phy_reg_m88");
+
+ if (!(hw->phy.ops.acquire))
+ goto out;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_m88 - Write m88 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_phy_reg_m88");
+
+ if (!(hw->phy.ops.acquire))
+ goto out;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * __e1000_read_phy_reg_igp - Read igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and stores the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ **/
+static s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
+ bool locked)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("__e1000_read_phy_reg_igp");
+
+ if (!locked) {
+ if (!(hw->phy.ops.acquire))
+ goto out;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ IGP01E1000_PHY_PAGE_SELECT,
+ (u16)offset);
+ if (ret_val)
+ goto release;
+ }
+
+ ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+release:
+ if (!locked)
+ hw->phy.ops.release(hw);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_igp - Read igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore then reads the PHY register at offset and stores the
+ * retrieved information in data.
+ * Release the acquired semaphore before exiting.
+ **/
+s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_phy_reg_igp(hw, offset, data, FALSE);
+}
+
+/**
+ * e1000_read_phy_reg_igp_locked - Read igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset and stores the retrieved information
+ * in data. Assumes semaphore already acquired.
+ **/
+s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_phy_reg_igp(hw, offset, data, TRUE);
+}
+
+/**
+ * e1000_write_phy_reg_igp - Write igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+static s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
+ bool locked)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_phy_reg_igp");
+
+ if (!locked) {
+ if (!(hw->phy.ops.acquire))
+ goto out;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ IGP01E1000_PHY_PAGE_SELECT,
+ (u16)offset);
+ if (ret_val)
+ goto release;
+ }
+
+ ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+release:
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_igp - Write igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_phy_reg_igp(hw, offset, data, FALSE);
+}
+
+/**
+ * e1000_write_phy_reg_igp_locked - Write igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset.
+ * Assumes semaphore already acquired.
+ **/
+s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_phy_reg_igp(hw, offset, data, TRUE);
+}
+
+/**
+ * __e1000_read_kmrn_reg - Read kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary. Then reads the PHY register at offset
+ * using the kumeran interface. The information retrieved is stored in data.
+ * Release any acquired semaphores before exiting.
+ **/
+static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
+ bool locked)
+{
+ u32 kmrnctrlsta;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("__e1000_read_kmrn_reg");
+
+ if (!locked) {
+ if (!(hw->phy.ops.acquire))
+ goto out;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+ E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+
+ usec_delay(2);
+
+ kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
+ *data = (u16)kmrnctrlsta;
+
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_kmrn_reg_generic - Read kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore then reads the PHY register at offset using the
+ * kumeran interface. The information retrieved is stored in data.
+ * Release the acquired semaphore before exiting.
+ **/
+s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_kmrn_reg(hw, offset, data, FALSE);
+}
+
+/**
+ * e1000_read_kmrn_reg_locked - Read kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset using the kumeran interface. The
+ * information retrieved is stored in data.
+ * Assumes semaphore already acquired.
+ **/
+s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_kmrn_reg(hw, offset, data, TRUE);
+}
+
+/**
+ * __e1000_write_kmrn_reg - Write kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary. Then write the data to PHY register
+ * at the offset using the kumeran interface. Release any acquired semaphores
+ * before exiting.
+ **/
+static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
+ bool locked)
+{
+ u32 kmrnctrlsta;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_kmrn_reg_generic");
+
+ if (!locked) {
+ if (!(hw->phy.ops.acquire))
+ goto out;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ E1000_KMRNCTRLSTA_OFFSET) | data;
+ E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+
+ usec_delay(2);
+
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_kmrn_reg_generic - Write kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore then writes the data to the PHY register at the offset
+ * using the kumeran interface. Release the acquired semaphore before exiting.
+ **/
+s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_kmrn_reg(hw, offset, data, FALSE);
+}
+
+/**
+ * e1000_write_kmrn_reg_locked - Write kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Write the data to PHY register at the offset using the kumeran interface.
+ * Assumes semaphore already acquired.
+ **/
+s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_kmrn_reg(hw, offset, data, TRUE);
+}
+
+/**
+ * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up Carrier-sense on Transmit and downshift values.
+ **/
+s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_copper_link_setup_82577");
+
+ if (hw->phy.reset_disable) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ if (hw->phy.type == e1000_phy_82580) {
+ ret_val = hw->phy.ops.reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Error resetting the PHY.\n");
+ goto out;
+ }
+ }
+
+ /* Enable CRS on Tx. This must be set for half-duplex operation. */
+ ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
+
+ /* Enable downshift */
+ phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
+
+ ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
+ * and downshift values are set also.
+ **/
+s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_copper_link_setup_m88");
+
+ if (phy->reset_disable) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /* Enable CRS on Tx. This must be set for half-duplex operation. */
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+ /*
+ * Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+ switch (phy->mdix) {
+ case 1:
+ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+ break;
+ case 2:
+ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+ break;
+ case 3:
+ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+ break;
+ case 0:
+ default:
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+ break;
+ }
+
+ /*
+ * Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+ if (phy->disable_polarity_correction == 1)
+ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+ ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ if (phy->revision < E1000_REVISION_4) {
+ /*
+ * Force TX_CLK in the Extended PHY Specific Control Register
+ * to 25MHz clock.
+ */
+ ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+ if ((phy->revision == E1000_REVISION_2) &&
+ (phy->id == M88E1111_I_PHY_ID)) {
+ /* 82573L PHY - set the downshift counter to 5x. */
+ phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
+ phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+ } else {
+ /* Configure Master and Slave downshift values */
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+ }
+ ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ goto out;
+ }
+
+ /* Commit the changes. */
+ ret_val = phy->ops.commit(hw);
+ if (ret_val) {
+ DEBUGOUT("Error committing the PHY changes\n");
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
+ * Also enables and sets the downshift parameters.
+ **/
+s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_copper_link_setup_m88_gen2");
+
+ if (phy->reset_disable) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /* Enable CRS on Tx. This must be set for half-duplex operation. */
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+ switch (phy->mdix) {
+ case 1:
+ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+ break;
+ case 2:
+ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+ break;
+ case 3:
+ /* M88E1112 does not support this mode) */
+ if (phy->id != M88E1112_E_PHY_ID) {
+ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+ break;
+ }
+ case 0:
+ default:
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+ break;
+ }
+
+ /*
+ * Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+ if (phy->disable_polarity_correction == 1)
+ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+ /* Enable downshift and setting it to X6 */
+ phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
+ phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
+ phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
+
+ ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ /* Commit the changes. */
+ ret_val = phy->ops.commit(hw);
+ if (ret_val) {
+ DEBUGOUT("Error committing the PHY changes\n");
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_copper_link_setup_igp - Setup igp PHY's for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
+ * igp PHY's.
+ **/
+s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_copper_link_setup_igp");
+
+ if (phy->reset_disable) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = hw->phy.ops.reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Error resetting the PHY.\n");
+ goto out;
+ }
+
+ /*
+ * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
+ * timeout issues when LFS is enabled.
+ */
+ msec_delay(100);
+
+ /* disable lplu d0 during driver init */
+ if (hw->phy.ops.set_d0_lplu_state) {
+ ret_val = hw->phy.ops.set_d0_lplu_state(hw, FALSE);
+ if (ret_val) {
+ DEBUGOUT("Error Disabling LPLU D0\n");
+ goto out;
+ }
+ }
+ /* Configure mdi-mdix settings */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+ switch (phy->mdix) {
+ case 1:
+ data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 2:
+ data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 0:
+ default:
+ data |= IGP01E1000_PSCR_AUTO_MDIX;
+ break;
+ }
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
+ if (ret_val)
+ goto out;
+
+ /* set auto-master slave resolution settings */
+ if (hw->mac.autoneg) {
+ /*
+ * when autonegotiation advertisement is only 1000Mbps then we
+ * should disable SmartSpeed and enable Auto MasterSlave
+ * resolution as hardware default.
+ */
+ if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
+ /* Disable SmartSpeed */
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+
+ /* Set auto Master/Slave resolution process */
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~CR_1000T_MS_ENABLE;
+ ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ /* load defaults for future use */
+ phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
+ ((data & CR_1000T_MS_VALUE) ?
+ e1000_ms_force_master :
+ e1000_ms_force_slave) :
+ e1000_ms_auto;
+
+ switch (phy->ms_type) {
+ case e1000_ms_force_master:
+ data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_force_slave:
+ data |= CR_1000T_MS_ENABLE;
+ data &= ~(CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_auto:
+ data &= ~CR_1000T_MS_ENABLE;
+ default:
+ break;
+ }
+ ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Performs initial bounds checking on autoneg advertisement parameter, then
+ * configure to advertise the full capability. Setup the PHY to autoneg
+ * and restart the negotiation process between the link partner. If
+ * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
+ **/
+static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_ctrl;
+
+ DEBUGFUNC("e1000_copper_link_autoneg");
+
+ /*
+ * Perform some bounds checking on the autoneg advertisement
+ * parameter.
+ */
+ phy->autoneg_advertised &= phy->autoneg_mask;
+
+ /*
+ * If autoneg_advertised is zero, we assume it was not defaulted
+ * by the calling code so we set to advertise full capability.
+ */
+ if (phy->autoneg_advertised == 0)
+ phy->autoneg_advertised = phy->autoneg_mask;
+
+ DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+ ret_val = e1000_phy_setup_autoneg(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Setting up Auto-Negotiation\n");
+ goto out;
+ }
+ DEBUGOUT("Restarting Auto-Neg\n");
+
+ /*
+ * Restart auto-negotiation by setting the Auto Neg Enable bit and
+ * the Auto Neg Restart bit in the PHY control register.
+ */
+ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
+ if (ret_val)
+ goto out;
+
+ phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+ ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Does the user want to wait for Auto-Neg to complete here, or
+ * check at a later time (for example, callback routine).
+ */
+ if (phy->autoneg_wait_to_complete) {
+ ret_val = hw->mac.ops.wait_autoneg(hw);
+ if (ret_val) {
+ DEBUGOUT("Error while waiting for "
+ "autoneg to complete\n");
+ goto out;
+ }
+ }
+
+ hw->mac.get_link_status = TRUE;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
+ * @hw: pointer to the HW structure
+ *
+ * Reads the MII auto-neg advertisement register and/or the 1000T control
+ * register and if the PHY is already setup for auto-negotiation, then
+ * return successful. Otherwise, setup advertisement and flow control to
+ * the appropriate values for the wanted auto-negotiation.
+ **/
+static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 mii_autoneg_adv_reg;
+ u16 mii_1000t_ctrl_reg = 0;
+
+ DEBUGFUNC("e1000_phy_setup_autoneg");
+
+ phy->autoneg_advertised &= phy->autoneg_mask;
+
+ /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+ ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+ if (ret_val)
+ goto out;
+
+ if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+ /* Read the MII 1000Base-T Control Register (Address 9). */
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
+ &mii_1000t_ctrl_reg);
+ if (ret_val)
+ goto out;
+ }
+
+ /*
+ * Need to parse both autoneg_advertised and fc and set up
+ * the appropriate PHY registers. First we will parse for
+ * autoneg_advertised software override. Since we can advertise
+ * a plethora of combinations, we need to check each bit
+ * individually.
+ */
+
+ /*
+ * First we clear all the 10/100 mb speed bits in the Auto-Neg
+ * Advertisement Register (Address 4) and the 1000 mb speed bits in
+ * the 1000Base-T Control Register (Address 9).
+ */
+ mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
+ NWAY_AR_100TX_HD_CAPS |
+ NWAY_AR_10T_FD_CAPS |
+ NWAY_AR_10T_HD_CAPS);
+ mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
+
+ DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
+
+ /* Do we want to advertise 10 Mb Half Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
+ DEBUGOUT("Advertise 10mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+ }
+
+ /* Do we want to advertise 10 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
+ DEBUGOUT("Advertise 10mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Half Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
+ DEBUGOUT("Advertise 100mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
+ DEBUGOUT("Advertise 100mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+ }
+
+ /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+ if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
+ DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
+
+ /* Do we want to advertise 1000 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
+ DEBUGOUT("Advertise 1000mb Full duplex\n");
+ mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+ }
+
+ /*
+ * Check for a software override of the flow control settings, and
+ * setup the PHY advertisement registers accordingly. If
+ * auto-negotiation is enabled, then software will have to set the
+ * "PAUSE" bits to the correct value in the Auto-Negotiation
+ * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
+ * negotiation.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * but we do not support receiving pause frames).
+ * 3: Both Rx and Tx flow control (symmetric) are enabled.
+ * other: No software override. The flow control configuration
+ * in the EEPROM is used.
+ */
+ switch (hw->fc.current_mode) {
+ case e1000_fc_none:
+ /*
+ * Flow control (Rx & Tx) is completely disabled by a
+ * software over-ride.
+ */
+ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case e1000_fc_rx_pause:
+ /*
+ * Rx Flow control is enabled, and Tx Flow control is
+ * disabled, by a software over-ride.
+ *
+ * Since there really isn't a way to advertise that we are
+ * capable of Rx Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric Rx PAUSE. Later
+ * (in e1000_config_fc_after_link_up) we will disable the
+ * hw's ability to send PAUSE frames.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case e1000_fc_tx_pause:
+ /*
+ * Tx Flow control is enabled, and Rx Flow control is
+ * disabled, by a software over-ride.
+ */
+ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+ mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+ break;
+ case e1000_fc_full:
+ /*
+ * Flow control (both Rx and Tx) is enabled by a software
+ * over-ride.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+ if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+ ret_val = phy->ops.write_reg(hw,
+ PHY_1000T_CTRL,
+ mii_1000t_ctrl_reg);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_generic - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Calls the appropriate function to configure the link for auto-neg or forced
+ * speed and duplex. Then we check for link, once link is established calls
+ * to configure collision distance and flow control are called. If link is
+ * not established, we return -E1000_ERR_PHY (-2).
+ **/
+s32 e1000_setup_copper_link_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_setup_copper_link_generic");
+
+ if (hw->mac.autoneg) {
+ /*
+ * Setup autoneg and flow control advertisement and perform
+ * autonegotiation.
+ */
+ ret_val = e1000_copper_link_autoneg(hw);
+ if (ret_val)
+ goto out;
+ } else {
+ /*
+ * PHY will be set to 10H, 10F, 100H or 100F
+ * depending on user settings.
+ */
+ DEBUGOUT("Forcing Speed and Duplex\n");
+ ret_val = hw->phy.ops.force_speed_duplex(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Forcing Speed and Duplex\n");
+ goto out;
+ }
+ }
+
+ /*
+ * Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ ret_val = e1000_phy_has_link_generic(hw,
+ COPPER_LINK_UP_LIMIT,
+ 10,
+ &link);
+ if (ret_val)
+ goto out;
+
+ if (link) {
+ DEBUGOUT("Valid link established!!!\n");
+ e1000_config_collision_dist_generic(hw);
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ } else {
+ DEBUGOUT("Unable to establish link!!!\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex. Clears the
+ * auto-crossover to force MDI manually. Waits for link and returns
+ * successful if link up is successful, else -E1000_ERR_PHY (-2).
+ **/
+s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
+
+ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Clear Auto-Crossover to force MDI manually. IGP requires MDI
+ * forced whenever speed and duplex are forced.
+ */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+ phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT1("IGP PSCR: %X\n", phy_data);
+
+ usec_delay(1);
+
+ if (phy->autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
+
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+
+ if (!link)
+ DEBUGOUT("Link taking longer than expected.\n");
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex. Clears the
+ * auto-crossover to force MDI manually. Resets the PHY to commit the
+ * changes. If time expires while waiting for link up, we reset the DSP.
+ * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
+ * successful completion, else return corresponding error code.
+ **/
+s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
+
+ /*
+ * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+ * forced whenever speed and duplex are forced.
+ */
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+ ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
+
+ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ /* Reset the phy to commit changes. */
+ ret_val = hw->phy.ops.commit(hw);
+ if (ret_val)
+ goto out;
+
+ if (phy->autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
+
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ if (hw->phy.type != e1000_phy_m88 ||
+ hw->phy.id == I347AT4_E_PHY_ID ||
+ hw->phy.id == M88E1340M_E_PHY_ID ||
+ hw->phy.id == M88E1112_E_PHY_ID) {
+ DEBUGOUT("Link taking longer than expected.\n");
+ } else {
+ /*
+ * We didn't get link.
+ * Reset the DSP and cross our fingers.
+ */
+ ret_val = phy->ops.write_reg(hw,
+ M88E1000_PHY_PAGE_SELECT,
+ 0x001d);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_phy_reset_dsp_generic(hw);
+ if (ret_val)
+ goto out;
+ }
+ }
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ goto out;
+ }
+
+ if (hw->phy.type != e1000_phy_m88 ||
+ hw->phy.id == I347AT4_E_PHY_ID ||
+ hw->phy.id == M88E1340M_E_PHY_ID ||
+ hw->phy.id == M88E1112_E_PHY_ID)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Resetting the phy means we need to re-force TX_CLK in the
+ * Extended PHY Specific Control Register to 25MHz clock from
+ * the reset value of 2.5MHz.
+ */
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+ ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * In addition, we must re-enable CRS on Tx for both half and full
+ * duplex.
+ */
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
+ * @hw: pointer to the HW structure
+ *
+ * Forces the speed and duplex settings of the PHY.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_ife");
+
+ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_force_speed_duplex_setup(hw, &data);
+
+ ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data);
+ if (ret_val)
+ goto out;
+
+ /* Disable MDI-X support for 10/100 */
+ ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IFE_PMC_AUTO_MDIX;
+ data &= ~IFE_PMC_FORCE_MDIX;
+
+ ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT1("IFE PMC: %X\n", data);
+
+ usec_delay(1);
+
+ if (phy->autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
+
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+
+ if (!link)
+ DEBUGOUT("Link taking longer than expected.\n");
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
+ * @hw: pointer to the HW structure
+ * @phy_ctrl: pointer to current value of PHY_CONTROL
+ *
+ * Forces speed and duplex on the PHY by doing the following: disable flow
+ * control, force speed/duplex on the MAC, disable auto speed detection,
+ * disable auto-negotiation, configure duplex, configure speed, configure
+ * the collision distance, write configuration to CTRL register. The
+ * caller must write to the PHY_CONTROL register for these settings to
+ * take affect.
+ **/
+void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
+
+ /* Turn off flow control when forcing speed/duplex */
+ hw->fc.current_mode = e1000_fc_none;
+
+ /* Force speed/duplex on the mac */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~E1000_CTRL_SPD_SEL;
+
+ /* Disable Auto Speed Detection */
+ ctrl &= ~E1000_CTRL_ASDE;
+
+ /* Disable autoneg on the phy */
+ *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
+
+ /* Forcing Full or Half Duplex? */
+ if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
+ ctrl &= ~E1000_CTRL_FD;
+ *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ } else {
+ ctrl |= E1000_CTRL_FD;
+ *phy_ctrl |= MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ }
+
+ /* Forcing 10mb or 100mb? */
+ if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
+ ctrl |= E1000_CTRL_SPD_100;
+ *phy_ctrl |= MII_CR_SPEED_100;
+ *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+ DEBUGOUT("Forcing 100mb\n");
+ } else {
+ ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+ *phy_ctrl |= MII_CR_SPEED_10;
+ *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+ DEBUGOUT("Forcing 10mb\n");
+ }
+
+ e1000_config_collision_dist_generic(hw);
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+}
+
+/**
+ * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained.
+ **/
+s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d3_lplu_state_generic");
+
+ if (!(hw->phy.ops.read_reg))
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+ if (ret_val)
+ goto out;
+
+ if (!active) {
+ data &= ~IGP02E1000_PM_D3_LPLU;
+ ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ goto out;
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+ data |= IGP02E1000_PM_D3_LPLU;
+ ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ goto out;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_downshift_generic - Checks whether a downshift in speed occurred
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * A downshift is detected by querying the PHY link health.
+ **/
+s32 e1000_check_downshift_generic(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, offset, mask;
+
+ DEBUGFUNC("e1000_check_downshift_generic");
+
+ switch (phy->type) {
+ case e1000_phy_m88:
+ case e1000_phy_gg82563:
+ offset = M88E1000_PHY_SPEC_STATUS;
+ mask = M88E1000_PSSR_DOWNSHIFT;
+ break;
+ case e1000_phy_igp_2:
+ case e1000_phy_igp_3:
+ offset = IGP01E1000_PHY_LINK_HEALTH;
+ mask = IGP01E1000_PLHR_SS_DOWNGRADE;
+ break;
+ default:
+ /* speed downshift not supported */
+ phy->speed_downgraded = FALSE;
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = phy->ops.read_reg(hw, offset, &phy_data);
+
+ if (!ret_val)
+ phy->speed_downgraded = (phy_data & mask) ? TRUE : FALSE;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_polarity_m88 - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_check_polarity_m88");
+
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
+
+ if (!ret_val)
+ phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_polarity_igp - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY port status register, and the
+ * current speed (since there is no polarity at 100Mbps).
+ **/
+s32 e1000_check_polarity_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data, offset, mask;
+
+ DEBUGFUNC("e1000_check_polarity_igp");
+
+ /*
+ * Polarity is determined based on the speed of
+ * our connection.
+ */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+ if (ret_val)
+ goto out;
+
+ if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
+ offset = IGP01E1000_PHY_PCS_INIT_REG;
+ mask = IGP01E1000_PHY_POLARITY_MASK;
+ } else {
+ /*
+ * This really only applies to 10Mbps since
+ * there is no polarity for 100Mbps (always 0).
+ */
+ offset = IGP01E1000_PHY_PORT_STATUS;
+ mask = IGP01E1000_PSSR_POLARITY_REVERSED;
+ }
+
+ ret_val = phy->ops.read_reg(hw, offset, &data);
+
+ if (!ret_val)
+ phy->cable_polarity = (data & mask)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_polarity_ife - Check cable polarity for IFE PHY
+ * @hw: pointer to the HW structure
+ *
+ * Polarity is determined on the polarity reversal feature being enabled.
+ **/
+s32 e1000_check_polarity_ife(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, offset, mask;
+
+ DEBUGFUNC("e1000_check_polarity_ife");
+
+ /*
+ * Polarity is determined based on the reversal feature being enabled.
+ */
+ if (phy->polarity_correction) {
+ offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
+ mask = IFE_PESC_POLARITY_REVERSED;
+ } else {
+ offset = IFE_PHY_SPECIAL_CONTROL;
+ mask = IFE_PSC_FORCE_POLARITY;
+ }
+
+ ret_val = phy->ops.read_reg(hw, offset, &phy_data);
+
+ if (!ret_val)
+ phy->cable_polarity = (phy_data & mask)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
+
+ return ret_val;
+}
+
+/**
+ * e1000_wait_autoneg_generic - Wait for auto-neg completion
+ * @hw: pointer to the HW structure
+ *
+ * Waits for auto-negotiation to complete or for the auto-negotiation time
+ * limit to expire, which ever happens first.
+ **/
+s32 e1000_wait_autoneg_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 i, phy_status;
+
+ DEBUGFUNC("e1000_wait_autoneg_generic");
+
+ if (!(hw->phy.ops.read_reg))
+ return E1000_SUCCESS;
+
+ /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
+ for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ break;
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ break;
+ if (phy_status & MII_SR_AUTONEG_COMPLETE)
+ break;
+ msec_delay(100);
+ }
+
+ /*
+ * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
+ * has completed.
+ */
+ return ret_val;
+}
+
+/**
+ * e1000_phy_has_link_generic - Polls PHY for link
+ * @hw: pointer to the HW structure
+ * @iterations: number of times to poll for link
+ * @usec_interval: delay between polling attempts
+ * @success: pointer to whether polling was successful or not
+ *
+ * Polls the PHY status register for link, 'iterations' number of times.
+ **/
+s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+ u32 usec_interval, bool *success)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 i, phy_status;
+
+ DEBUGFUNC("e1000_phy_has_link_generic");
+
+ if (!(hw->phy.ops.read_reg))
+ return E1000_SUCCESS;
+
+ for (i = 0; i < iterations; i++) {
+ /*
+ * Some PHYs require the PHY_STATUS register to be read
+ * twice due to the link bit being sticky. No harm doing
+ * it across the board.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ /*
+ * If the first read fails, another entity may have
+ * ownership of the resources, wait and try again to
+ * see if they have relinquished the resources yet.
+ */
+ usec_delay(usec_interval);
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ break;
+ if (phy_status & MII_SR_LINK_STATUS)
+ break;
+ if (usec_interval >= 1000)
+ msec_delay_irq(usec_interval/1000);
+ else
+ usec_delay(usec_interval);
+ }
+
+ *success = (i < iterations) ? TRUE : FALSE;
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_cable_length_m88 - Determine cable length for m88 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY specific status register to retrieve the cable length
+ * information. The cable length is determined by averaging the minimum and
+ * maximum values to get the "average" cable length. The m88 PHY has four
+ * possible cable length values, which are:
+ * Register Value Cable Length
+ * 0 < 50 meters
+ * 1 50 - 80 meters
+ * 2 80 - 110 meters
+ * 3 110 - 140 meters
+ * 4 > 140 meters
+ **/
+s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, index;
+
+ DEBUGFUNC("e1000_get_cable_length_m88");
+
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+ if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ phy->min_cable_length = e1000_m88_cable_length_table[index];
+ phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+ return ret_val;
+}
+
+s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, phy_data2, index, default_page, is_cm;
+
+ DEBUGFUNC("e1000_get_cable_length_m88_gen2");
+
+ switch (hw->phy.id) {
+ case M88E1340M_E_PHY_ID:
+ case I347AT4_E_PHY_ID:
+ /* Remember the original page select and set it to 7 */
+ ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
+ &default_page);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
+ if (ret_val)
+ goto out;
+
+ /* Get cable length from PHY Cable Diagnostics Control Reg */
+ ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ /* Check if the unit of cable length is meters or cm */
+ ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
+ if (ret_val)
+ goto out;
+
+ is_cm = !(phy_data & I347AT4_PCDC_CABLE_LENGTH_UNIT);
+
+ /* Populate the phy structure with cable length in meters */
+ phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
+ phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
+ phy->cable_length = phy_data / (is_cm ? 100 : 1);
+
+ /* Reset the page selec to its original value */
+ ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
+ default_page);
+ if (ret_val)
+ goto out;
+ break;
+ case M88E1112_E_PHY_ID:
+ /* Remember the original page select and set it to 5 */
+ ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
+ &default_page);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+ if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ phy->min_cable_length = e1000_m88_cable_length_table[index];
+ phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
+
+ phy->cable_length = (phy->min_cable_length +
+ phy->max_cable_length) / 2;
+
+ /* Reset the page select to its original value */
+ ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
+ default_page);
+ if (ret_val)
+ goto out;
+
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
+ * @hw: pointer to the HW structure
+ *
+ * The automatic gain control (agc) normalizes the amplitude of the
+ * received signal, adjusting for the attenuation produced by the
+ * cable. By reading the AGC registers, which represent the
+ * combination of coarse and fine gain value, the value can be put
+ * into a lookup table to obtain the approximate cable length
+ * for each channel.
+ **/
+s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_data, i, agc_value = 0;
+ u16 cur_agc_index, max_agc_index = 0;
+ u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
+ static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
+ IGP02E1000_PHY_AGC_A,
+ IGP02E1000_PHY_AGC_B,
+ IGP02E1000_PHY_AGC_C,
+ IGP02E1000_PHY_AGC_D
+ };
+
+ DEBUGFUNC("e1000_get_cable_length_igp_2");
+
+ /* Read the AGC registers for all channels */
+ for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Getting bits 15:9, which represent the combination of
+ * coarse and fine gain values. The result is a number
+ * that can be put into the lookup table to obtain the
+ * approximate cable length.
+ */
+ cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
+ IGP02E1000_AGC_LENGTH_MASK;
+
+ /* Array index bound check. */
+ if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
+ (cur_agc_index == 0)) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ /* Remove min & max AGC values from calculation. */
+ if (e1000_igp_2_cable_length_table[min_agc_index] >
+ e1000_igp_2_cable_length_table[cur_agc_index])
+ min_agc_index = cur_agc_index;
+ if (e1000_igp_2_cable_length_table[max_agc_index] <
+ e1000_igp_2_cable_length_table[cur_agc_index])
+ max_agc_index = cur_agc_index;
+
+ agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
+ }
+
+ agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
+ e1000_igp_2_cable_length_table[max_agc_index]);
+ agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
+
+ /* Calculate cable length with the error range of +/- 10 meters. */
+ phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
+ (agc_value - IGP02E1000_AGC_RANGE) : 0;
+ phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_info_m88 - Retrieve PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Valid for only copper links. Read the PHY status register (sticky read)
+ * to verify that link is up. Read the PHY special control register to
+ * determine the polarity and 10base-T extended distance. Read the PHY
+ * special status register to determine MDI/MDIx and current speed. If
+ * speed is 1000, then determine cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_get_phy_info_m88");
+
+ if (phy->media_type != e1000_media_type_copper) {
+ DEBUGOUT("Phy info is only valid for copper media\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ DEBUGOUT("Phy info is only valid if link is up\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
+ ? TRUE : FALSE;
+
+ ret_val = e1000_check_polarity_m88(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? TRUE : FALSE;
+
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+ ret_val = hw->phy.ops.get_cable_length(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+
+ phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+ } else {
+ /* Set values to "undefined" */
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_info_igp - Retrieve igp PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Read PHY status to determine if link is up. If link is up, then
+ * set/determine 10base-T extended distance and polarity correction. Read
+ * PHY port status to determine MDI/MDIx and speed. Based on the speed,
+ * determine on the cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ DEBUGFUNC("e1000_get_phy_info_igp");
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ DEBUGOUT("Phy info is only valid if link is up\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ phy->polarity_correction = TRUE;
+
+ ret_val = e1000_check_polarity_igp(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+ if (ret_val)
+ goto out;
+
+ phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? TRUE : FALSE;
+
+ if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
+ ret_val = phy->ops.get_cable_length(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
+ if (ret_val)
+ goto out;
+
+ phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+
+ phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+ } else {
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_info_ife - Retrieves various IFE PHY states
+ * @hw: pointer to the HW structure
+ *
+ * Populates "phy" structure with various feature states.
+ **/
+s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ DEBUGFUNC("e1000_get_phy_info_ife");
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ DEBUGOUT("Phy info is only valid if link is up\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
+ if (ret_val)
+ goto out;
+ phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
+ ? FALSE : TRUE;
+
+ if (phy->polarity_correction) {
+ ret_val = e1000_check_polarity_ife(hw);
+ if (ret_val)
+ goto out;
+ } else {
+ /* Polarity is forced */
+ phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
+ }
+
+ ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
+ if (ret_val)
+ goto out;
+
+ phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? TRUE : FALSE;
+
+ /* The following parameters are undefined for 10/100 operation. */
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_sw_reset_generic - PHY software reset
+ * @hw: pointer to the HW structure
+ *
+ * Does a software reset of the PHY by reading the PHY control register and
+ * setting/write the control register reset bit to the PHY.
+ **/
+s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_ctrl;
+
+ DEBUGFUNC("e1000_phy_sw_reset_generic");
+
+ if (!(hw->phy.ops.read_reg))
+ goto out;
+
+ ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
+ if (ret_val)
+ goto out;
+
+ phy_ctrl |= MII_CR_RESET;
+ ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
+ if (ret_val)
+ goto out;
+
+ usec_delay(1);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_hw_reset_generic - PHY hardware reset
+ * @hw: pointer to the HW structure
+ *
+ * Verify the reset block is not blocking us from resetting. Acquire
+ * semaphore (if necessary) and read/set/write the device control reset
+ * bit in the PHY. Wait the appropriate delay time for the device to
+ * reset and release the semaphore (if necessary).
+ **/
+s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_phy_hw_reset_generic");
+
+ ret_val = phy->ops.check_reset_block(hw);
+ if (ret_val) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = phy->ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(phy->reset_delay_us);
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(150);
+
+ phy->ops.release(hw);
+
+ ret_val = phy->ops.get_cfg_done(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_cfg_done_generic - Generic configuration done
+ * @hw: pointer to the HW structure
+ *
+ * Generic function to wait 10 milli-seconds for configuration to complete
+ * and return success.
+ **/
+s32 e1000_get_cfg_done_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_get_cfg_done_generic");
+
+ msec_delay_irq(10);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_init_script_igp3 - Inits the IGP3 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
+ **/
+s32 e1000_phy_init_script_igp3(struct e1000_hw *hw)
+{
+ DEBUGOUT("Running IGP 3 PHY init script\n");
+
+ /* PHY init IGP 3 */
+ /* Enable rise/fall, 10-mode work in class-A */
+ hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
+ /* Remove all caps from Replica path filter */
+ hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
+ /* Bias trimming for ADC, AFE and Driver (Default) */
+ hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
+ /* Increase Hybrid poly bias */
+ hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
+ /* Add 4% to Tx amplitude in Gig mode */
+ hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
+ /* Disable trimming (TTT) */
+ hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
+ /* Poly DC correction to 94.6% + 2% for all channels */
+ hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
+ /* ABS DC correction to 95.9% */
+ hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
+ /* BG temp curve trim */
+ hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
+ /* Increasing ADC OPAMP stage 1 currents to max */
+ hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
+ /* Force 1000 ( required for enabling PHY regs configuration) */
+ hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
+ /* Set upd_freq to 6 */
+ hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
+ /* Disable NPDFE */
+ hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
+ /* Disable adaptive fixed FFE (Default) */
+ hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
+ /* Enable FFE hysteresis */
+ hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
+ /* Fixed FFE for short cable lengths */
+ hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
+ /* Fixed FFE for medium cable lengths */
+ hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
+ /* Fixed FFE for long cable lengths */
+ hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
+ /* Enable Adaptive Clip Threshold */
+ hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
+ /* AHT reset limit to 1 */
+ hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
+ /* Set AHT master delay to 127 msec */
+ hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
+ /* Set scan bits for AHT */
+ hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
+ /* Set AHT Preset bits */
+ hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
+ /* Change integ_factor of channel A to 3 */
+ hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
+ /* Change prop_factor of channels BCD to 8 */
+ hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
+ /* Change cg_icount + enable integbp for channels BCD */
+ hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
+ /*
+ * Change cg_icount + enable integbp + change prop_factor_master
+ * to 8 for channel A
+ */
+ hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
+ /* Disable AHT in Slave mode on channel A */
+ hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
+ /*
+ * Enable LPLU and disable AN to 1000 in non-D0a states,
+ * Enable SPD+B2B
+ */
+ hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
+ /* Enable restart AN on an1000_dis change */
+ hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
+ /* Enable wh_fifo read clock in 10/100 modes */
+ hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
+ /* Restart AN, Speed selection is 1000 */
+ hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_type_from_id - Get PHY type from id
+ * @phy_id: phy_id read from the phy
+ *
+ * Returns the phy type from the id.
+ **/
+enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
+{
+ enum e1000_phy_type phy_type = e1000_phy_unknown;
+
+ switch (phy_id) {
+ case M88E1000_I_PHY_ID:
+ case M88E1000_E_PHY_ID:
+ case M88E1111_I_PHY_ID:
+ case M88E1011_I_PHY_ID:
+ case I347AT4_E_PHY_ID:
+ case M88E1112_E_PHY_ID:
+ case M88E1340M_E_PHY_ID:
+ phy_type = e1000_phy_m88;
+ break;
+ case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
+ phy_type = e1000_phy_igp_2;
+ break;
+ case GG82563_E_PHY_ID:
+ phy_type = e1000_phy_gg82563;
+ break;
+ case IGP03E1000_E_PHY_ID:
+ phy_type = e1000_phy_igp_3;
+ break;
+ case IFE_E_PHY_ID:
+ case IFE_PLUS_E_PHY_ID:
+ case IFE_C_E_PHY_ID:
+ phy_type = e1000_phy_ife;
+ break;
+ case I82580_I_PHY_ID:
+ phy_type = e1000_phy_82580;
+ break;
+ default:
+ phy_type = e1000_phy_unknown;
+ break;
+ }
+ return phy_type;
+}
+
+/**
+ * e1000_determine_phy_address - Determines PHY address.
+ * @hw: pointer to the HW structure
+ *
+ * This uses a trial and error method to loop through possible PHY
+ * addresses. It tests each by reading the PHY ID registers and
+ * checking for a match.
+ **/
+s32 e1000_determine_phy_address(struct e1000_hw *hw)
+{
+ s32 ret_val = -E1000_ERR_PHY_TYPE;
+ u32 phy_addr = 0;
+ u32 i;
+ enum e1000_phy_type phy_type = e1000_phy_unknown;
+
+ hw->phy.id = phy_type;
+
+ for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
+ hw->phy.addr = phy_addr;
+ i = 0;
+
+ do {
+ e1000_get_phy_id(hw);
+ phy_type = e1000_get_phy_type_from_id(hw->phy.id);
+
+ /*
+ * If phy_type is valid, break - we found our
+ * PHY address
+ */
+ if (phy_type != e1000_phy_unknown) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+ msec_delay(1);
+ i++;
+ } while (i < 10);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_up_phy_copper(struct e1000_hw *hw)
+{
+ u16 mii_reg = 0;
+
+ /* The PHY will retain its settings across a power down/up cycle */
+ hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
+ mii_reg &= ~MII_CR_POWER_DOWN;
+ hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
+}
+
+/**
+ * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_down_phy_copper(struct e1000_hw *hw)
+{
+ u16 mii_reg = 0;
+
+ /* The PHY will retain its settings across a power down/up cycle */
+ hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
+ mii_reg |= MII_CR_POWER_DOWN;
+ hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
+ msec_delay(1);
+}
+
+/**
+ * e1000_check_polarity_82577 - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_82577(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_check_polarity_82577");
+
+ ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
+
+ if (!ret_val)
+ phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
+
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex.
+ **/
+s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_82577");
+
+ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ usec_delay(1);
+
+ if (phy->autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n");
+
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+
+ if (!link)
+ DEBUGOUT("Link taking longer than expected.\n");
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Read PHY status to determine if link is up. If link is up, then
+ * set/determine 10base-T extended distance and polarity correction. Read
+ * PHY port status to determine MDI/MDIx and speed. Based on the speed,
+ * determine on the cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ DEBUGFUNC("e1000_get_phy_info_82577");
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ DEBUGOUT("Phy info is only valid if link is up\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ phy->polarity_correction = TRUE;
+
+ ret_val = e1000_check_polarity_82577(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
+ if (ret_val)
+ goto out;
+
+ phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? TRUE : FALSE;
+
+ if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
+ I82577_PHY_STATUS2_SPEED_1000MBPS) {
+ ret_val = hw->phy.ops.get_cable_length(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
+ if (ret_val)
+ goto out;
+
+ phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+
+ phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+ } else {
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Reads the diagnostic status register and verifies result is valid before
+ * placing it in the phy_cable_length field.
+ **/
+s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, length;
+
+ DEBUGFUNC("e1000_get_cable_length_82577");
+
+ ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
+ I82577_DSTATUS_CABLE_LENGTH_SHIFT;
+
+ if (length == E1000_CABLE_LENGTH_UNDEFINED)
+ ret_val = -E1000_ERR_PHY;
+
+ phy->cable_length = length;
+
+out:
+ return ret_val;
+}
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_PHY_H_
+#define _E1000_PHY_H_
+
+void e1000_init_phy_ops_generic(struct e1000_hw *hw);
+s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+void e1000_null_phy_generic(struct e1000_hw *hw);
+s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active);
+s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_check_downshift_generic(struct e1000_hw *hw);
+s32 e1000_check_polarity_m88(struct e1000_hw *hw);
+s32 e1000_check_polarity_igp(struct e1000_hw *hw);
+s32 e1000_check_polarity_ife(struct e1000_hw *hw);
+s32 e1000_check_reset_block_generic(struct e1000_hw *hw);
+s32 e1000_copper_link_setup_igp(struct e1000_hw *hw);
+s32 e1000_copper_link_setup_m88(struct e1000_hw *hw);
+s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw);
+s32 e1000_get_cable_length_m88(struct e1000_hw *hw);
+s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw);
+s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw);
+s32 e1000_get_cfg_done_generic(struct e1000_hw *hw);
+s32 e1000_get_phy_id(struct e1000_hw *hw);
+s32 e1000_get_phy_info_igp(struct e1000_hw *hw);
+s32 e1000_get_phy_info_m88(struct e1000_hw *hw);
+s32 e1000_get_phy_info_ife(struct e1000_hw *hw);
+s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw);
+void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
+s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw);
+s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw);
+s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active);
+s32 e1000_setup_copper_link_generic(struct e1000_hw *hw);
+s32 e1000_wait_autoneg_generic(struct e1000_hw *hw);
+s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
+s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+ u32 usec_interval, bool *success);
+s32 e1000_phy_init_script_igp3(struct e1000_hw *hw);
+enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id);
+s32 e1000_determine_phy_address(struct e1000_hw *hw);
+void e1000_power_up_phy_copper(struct e1000_hw *hw);
+void e1000_power_down_phy_copper(struct e1000_hw *hw);
+s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_copper_link_setup_82577(struct e1000_hw *hw);
+s32 e1000_check_polarity_82577(struct e1000_hw *hw);
+s32 e1000_get_phy_info_82577(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw);
+s32 e1000_get_cable_length_82577(struct e1000_hw *hw);
+
+#define E1000_MAX_PHY_ADDR 4
+
+/* IGP01E1000 Specific Registers */
+#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */
+#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */
+#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */
+#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */
+#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO */
+#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality */
+#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */
+#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */
+#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */
+#define IGP_PAGE_SHIFT 5
+#define PHY_REG_MASK 0x1F
+
+#define HV_INTC_FC_PAGE_START 768
+#define I82578_ADDR_REG 29
+#define I82577_ADDR_REG 16
+#define I82577_CFG_REG 22
+#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
+#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
+#define I82577_CTRL_REG 23
+
+/* 82577 specific PHY registers */
+#define I82577_PHY_CTRL_2 18
+#define I82577_PHY_LBK_CTRL 19
+#define I82577_PHY_STATUS_2 26
+#define I82577_PHY_DIAG_STATUS 31
+
+/* I82577 PHY Status 2 */
+#define I82577_PHY_STATUS2_REV_POLARITY 0x0400
+#define I82577_PHY_STATUS2_MDIX 0x0800
+#define I82577_PHY_STATUS2_SPEED_MASK 0x0300
+#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
+#define I82577_PHY_STATUS2_SPEED_100MBPS 0x0100
+
+/* I82577 PHY Control 2 */
+#define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
+#define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
+
+/* I82577 PHY Diagnostics Status */
+#define I82577_DSTATUS_CABLE_LENGTH 0x03FC
+#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
+
+/* 82580 PHY Power Management */
+#define E1000_82580_PHY_POWER_MGMT 0xE14
+#define E1000_82580_PM_SPD 0x0001 /* Smart Power Down */
+#define E1000_82580_PM_D0_LPLU 0x0002 /* For D0a states */
+#define E1000_82580_PM_D3_LPLU 0x0004 /* For all other states */
+
+#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
+#define IGP01E1000_PHY_POLARITY_MASK 0x0078
+
+#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */
+
+#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
+
+/* Enable flexible speed on link-up */
+#define IGP01E1000_GMII_FLEX_SPD 0x0010
+#define IGP01E1000_GMII_SPD 0x0020 /* Enable SPD */
+
+#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
+#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */
+#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */
+
+#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
+
+#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
+#define IGP01E1000_PSSR_MDIX 0x0800
+#define IGP01E1000_PSSR_SPEED_MASK 0xC000
+#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
+
+#define IGP02E1000_PHY_CHANNEL_NUM 4
+#define IGP02E1000_PHY_AGC_A 0x11B1
+#define IGP02E1000_PHY_AGC_B 0x12B1
+#define IGP02E1000_PHY_AGC_C 0x14B1
+#define IGP02E1000_PHY_AGC_D 0x18B1
+
+#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */
+#define IGP02E1000_AGC_LENGTH_MASK 0x7F
+#define IGP02E1000_AGC_RANGE 15
+
+#define IGP03E1000_PHY_MISC_CTRL 0x1B
+#define IGP03E1000_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Manually Set Duplex */
+
+#define E1000_CABLE_LENGTH_UNDEFINED 0xFF
+
+#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000
+#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16
+#define E1000_KMRNCTRLSTA_REN 0x00200000
+#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */
+#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */
+#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */
+#define E1000_KMRNCTRLSTA_IBIST_DISABLE 0x0200 /* Kumeran IBIST Disable */
+#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10
+#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */
+#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */
+#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */
+
+/* IFE PHY Extended Status Control */
+#define IFE_PESC_POLARITY_REVERSED 0x0100
+
+/* IFE PHY Special Control */
+#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010
+#define IFE_PSC_FORCE_POLARITY 0x0020
+#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100
+
+/* IFE PHY Special Control and LED Control */
+#define IFE_PSCL_PROBE_MODE 0x0020
+#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
+#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
+
+/* IFE PHY MDIX Control */
+#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
+#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */
+#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */
+
+#endif
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_REGS_H_
+#define _E1000_REGS_H_
+
+#define E1000_CTRL 0x00000 /* Device Control - RW */
+#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */
+#define E1000_STATUS 0x00008 /* Device Status - RO */
+#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
+#define E1000_EERD 0x00014 /* EEPROM Read - RW */
+#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
+#define E1000_FLA 0x0001C /* Flash Access - RW */
+#define E1000_MDIC 0x00020 /* MDI Control - RW */
+#define E1000_MDICNFG 0x00E04 /* MDI Config - RW */
+#define E1000_REGISTER_SET_SIZE 0x20000 /* CSR Size */
+#define E1000_EEPROM_INIT_CTRL_WORD_2 0x0F /* EEPROM Init Ctrl Word 2 */
+#define E1000_BARCTRL 0x5BBC /* BAR ctrl reg */
+#define E1000_BARCTRL_FLSIZE 0x0700 /* BAR ctrl Flsize */
+#define E1000_BARCTRL_CSRSIZE 0x2000 /* BAR ctrl CSR size */
+#define E1000_SCTL 0x00024 /* SerDes Control - RW */
+#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
+#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
+#define E1000_FEXT 0x0002C /* Future Extended - RW */
+#define E1000_FEXTNVM4 0x00024 /* Future Extended NVM 4 - RW */
+#define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */
+#define E1000_FCT 0x00030 /* Flow Control Type - RW */
+#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */
+#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
+#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
+#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
+#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
+#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
+#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
+#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */
+#define E1000_RCTL 0x00100 /* Rx Control - RW */
+#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
+#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */
+#define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */
+#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */
+#define E1000_EITR(_n) (0x01680 + (0x4 * (_n)))
+#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */
+#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */
+#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */
+#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */
+#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */
+#define E1000_GPIE 0x01514 /* General Purpose Interrupt Enable - RW */
+#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */
+#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */
+#define E1000_TCTL 0x00400 /* Tx Control - RW */
+#define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */
+#define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */
+#define E1000_TBT 0x00448 /* Tx Burst Timer - RW */
+#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
+#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
+#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
+#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
+#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
+#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
+#define E1000_PBS 0x01008 /* Packet Buffer Size */
+#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
+#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */
+#define E1000_FLASHT 0x01028 /* FLASH Timer Register */
+#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
+#define E1000_FLSWCTL 0x01030 /* FLASH control register */
+#define E1000_FLSWDATA 0x01034 /* FLASH data register */
+#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */
+#define E1000_FLOP 0x0103C /* FLASH Opcode Register */
+#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */
+#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */
+#define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */
+#define E1000_SWDSTS 0x01044 /* SW Device Status - RW */
+#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */
+#define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */
+#define E1000_VPDDIAG 0x01060 /* VPD Diagnostic - RO */
+#define E1000_ICR_V2 0x01500 /* Interrupt Cause - new location - RC */
+#define E1000_ICS_V2 0x01504 /* Interrupt Cause Set - new location - WO */
+#define E1000_IMS_V2 0x01508 /* Interrupt Mask Set/Read - new location - RW */
+#define E1000_IMC_V2 0x0150C /* Interrupt Mask Clear - new location - WO */
+#define E1000_IAM_V2 0x01510 /* Interrupt Ack Auto Mask - new location - RW */
+#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */
+#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
+#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
+#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */
+#define E1000_RDFPCQ(_n) (0x02430 + (0x4 * (_n)))
+#define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */
+#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */
+/* Split and Replication Rx Control - RW */
+#define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */
+#define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */
+#define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */
+#define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */
+#define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */
+#define E1000_PBDIAG 0x02458 /* Packet Buffer Diagnostic - RW */
+#define E1000_RXPBS 0x02404 /* Rx Packet Buffer Size - RW */
+#define E1000_IRPBS 0x02404 /* Same as RXPBS, renamed for newer adapters - RW */
+#define E1000_PBRWAC 0x024E8 /* Rx packet buffer wrap around counter - RO */
+#define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */
+#define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */
+/*
+ * Convenience macros
+ *
+ * Note: "_n" is the queue number of the register to be written to.
+ *
+ * Example usage:
+ * E1000_RDBAL_REG(current_rx_queue)
+ */
+#define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \
+ (0x0C000 + ((_n) * 0x40)))
+#define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \
+ (0x0C004 + ((_n) * 0x40)))
+#define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \
+ (0x0C008 + ((_n) * 0x40)))
+#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \
+ (0x0C00C + ((_n) * 0x40)))
+#define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \
+ (0x0C010 + ((_n) * 0x40)))
+#define E1000_RXCTL(_n) ((_n) < 4 ? (0x02814 + ((_n) * 0x100)) : \
+ (0x0C014 + ((_n) * 0x40)))
+#define E1000_DCA_RXCTRL(_n) E1000_RXCTL(_n)
+#define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \
+ (0x0C018 + ((_n) * 0x40)))
+#define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \
+ (0x0C028 + ((_n) * 0x40)))
+#define E1000_RQDPC(_n) ((_n) < 4 ? (0x02830 + ((_n) * 0x100)) : \
+ (0x0C030 + ((_n) * 0x40)))
+#define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \
+ (0x0E000 + ((_n) * 0x40)))
+#define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \
+ (0x0E004 + ((_n) * 0x40)))
+#define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \
+ (0x0E008 + ((_n) * 0x40)))
+#define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \
+ (0x0E010 + ((_n) * 0x40)))
+#define E1000_TXCTL(_n) ((_n) < 4 ? (0x03814 + ((_n) * 0x100)) : \
+ (0x0E014 + ((_n) * 0x40)))
+#define E1000_DCA_TXCTRL(_n) E1000_TXCTL(_n)
+#define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \
+ (0x0E018 + ((_n) * 0x40)))
+#define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \
+ (0x0E028 + ((_n) * 0x40)))
+#define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : \
+ (0x0E038 + ((_n) * 0x40)))
+#define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : \
+ (0x0E03C + ((_n) * 0x40)))
+#define E1000_TARC(_n) (0x03840 + ((_n) * 0x100))
+#define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */
+#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
+#define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */
+#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */
+#define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4))
+#define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \
+ (0x054E0 + ((_i - 16) * 8)))
+#define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \
+ (0x054E4 + ((_i - 16) * 8)))
+#define E1000_SHRAL(_i) (0x05438 + ((_i) * 8))
+#define E1000_SHRAH(_i) (0x0543C + ((_i) * 8))
+#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
+#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
+#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
+#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
+#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
+#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
+#define E1000_PBSLAC 0x03100 /* Packet Buffer Slave Access Control */
+#define E1000_PBSLAD(_n) (0x03110 + (0x4 * (_n))) /* Packet Buffer DWORD (_n) */
+#define E1000_TXPBS 0x03404 /* Tx Packet Buffer Size - RW */
+#define E1000_ITPBS 0x03404 /* Same as TXPBS, renamed for newer adpaters - RW */
+#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
+#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
+#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
+#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
+#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
+#define E1000_TDPUMB 0x0357C /* DMA Tx Descriptor uC Mail Box - RW */
+#define E1000_TDPUAD 0x03580 /* DMA Tx Descriptor uC Addr Command - RW */
+#define E1000_TDPUWD 0x03584 /* DMA Tx Descriptor uC Data Write - RW */
+#define E1000_TDPURD 0x03588 /* DMA Tx Descriptor uC Data Read - RW */
+#define E1000_TDPUCTL 0x0358C /* DMA Tx Descriptor uC Control - RW */
+#define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */
+#define E1000_DTXTCPFLGL 0x0359C /* DMA Tx Control flag low - RW */
+#define E1000_DTXTCPFLGH 0x035A0 /* DMA Tx Control flag high - RW */
+#define E1000_DTXMXSZRQ 0x03540 /* DMA Tx Max Total Allow Size Requests - RW */
+#define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */
+#define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */
+#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
+#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
+#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
+#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
+#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
+#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
+#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
+#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
+#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
+#define E1000_COLC 0x04028 /* Collision Count - R/clr */
+#define E1000_DC 0x04030 /* Defer Count - R/clr */
+#define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */
+#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
+#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
+#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
+#define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */
+#define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */
+#define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */
+#define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */
+#define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */
+#define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */
+#define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */
+#define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */
+#define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */
+#define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */
+#define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */
+#define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */
+#define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */
+#define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */
+#define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */
+#define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */
+#define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */
+#define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */
+#define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */
+#define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */
+#define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */
+#define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */
+#define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */
+#define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */
+#define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */
+#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
+#define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */
+#define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */
+#define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */
+#define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */
+#define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */
+#define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */
+#define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */
+#define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */
+#define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */
+#define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */
+#define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */
+#define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */
+#define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */
+#define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */
+#define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */
+#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */
+#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */
+#define E1000_IAC 0x04100 /* Interrupt Assertion Count */
+#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Pkt Timer Expire Count */
+#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Abs Timer Expire Count */
+#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Pkt Timer Expire Count */
+#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Abs Timer Expire Count */
+#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */
+#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Min Thresh Count */
+#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Desc Min Thresh Count */
+#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */
+
+#define E1000_VFGPRC 0x00F10
+#define E1000_VFGORC 0x00F18
+#define E1000_VFMPRC 0x00F3C
+#define E1000_VFGPTC 0x00F14
+#define E1000_VFGOTC 0x00F34
+#define E1000_VFGOTLBC 0x00F50
+#define E1000_VFGPTLBC 0x00F44
+#define E1000_VFGORLBC 0x00F48
+#define E1000_VFGPRLBC 0x00F40
+/* Virtualization statistical counters */
+#define E1000_PFVFGPRC(_n) (0x010010 + (0x100 * (_n)))
+#define E1000_PFVFGPTC(_n) (0x010014 + (0x100 * (_n)))
+#define E1000_PFVFGORC(_n) (0x010018 + (0x100 * (_n)))
+#define E1000_PFVFGOTC(_n) (0x010034 + (0x100 * (_n)))
+#define E1000_PFVFMPRC(_n) (0x010038 + (0x100 * (_n)))
+#define E1000_PFVFGPRLBC(_n) (0x010040 + (0x100 * (_n)))
+#define E1000_PFVFGPTLBC(_n) (0x010044 + (0x100 * (_n)))
+#define E1000_PFVFGORLBC(_n) (0x010048 + (0x100 * (_n)))
+#define E1000_PFVFGOTLBC(_n) (0x010050 + (0x100 * (_n)))
+
+#define E1000_LSECTXUT 0x04300 /* LinkSec Tx Untagged Packet Count - OutPktsUntagged */
+#define E1000_LSECTXPKTE 0x04304 /* LinkSec Encrypted Tx Packets Count - OutPktsEncrypted */
+#define E1000_LSECTXPKTP 0x04308 /* LinkSec Protected Tx Packet Count - OutPktsProtected */
+#define E1000_LSECTXOCTE 0x0430C /* LinkSec Encrypted Tx Octets Count - OutOctetsEncrypted */
+#define E1000_LSECTXOCTP 0x04310 /* LinkSec Protected Tx Octets Count - OutOctetsProtected */
+#define E1000_LSECRXUT 0x04314 /* LinkSec Untagged non-Strict Rx Packet Count - InPktsUntagged/InPktsNoTag */
+#define E1000_LSECRXOCTD 0x0431C /* LinkSec Rx Octets Decrypted Count - InOctetsDecrypted */
+#define E1000_LSECRXOCTV 0x04320 /* LinkSec Rx Octets Validated - InOctetsValidated */
+#define E1000_LSECRXBAD 0x04324 /* LinkSec Rx Bad Tag - InPktsBadTag */
+#define E1000_LSECRXNOSCI 0x04328 /* LinkSec Rx Packet No SCI Count - InPktsNoSci */
+#define E1000_LSECRXUNSCI 0x0432C /* LinkSec Rx Packet Unknown SCI Count - InPktsUnknownSci */
+#define E1000_LSECRXUNCH 0x04330 /* LinkSec Rx Unchecked Packets Count - InPktsUnchecked */
+#define E1000_LSECRXDELAY 0x04340 /* LinkSec Rx Delayed Packet Count - InPktsDelayed */
+#define E1000_LSECRXLATE 0x04350 /* LinkSec Rx Late Packets Count - InPktsLate */
+#define E1000_LSECRXOK(_n) (0x04360 + (0x04 * (_n))) /* LinkSec Rx Packet OK Count - InPktsOk */
+#define E1000_LSECRXINV(_n) (0x04380 + (0x04 * (_n))) /* LinkSec Rx Invalid Count - InPktsInvalid */
+#define E1000_LSECRXNV(_n) (0x043A0 + (0x04 * (_n))) /* LinkSec Rx Not Valid Count - InPktsNotValid */
+#define E1000_LSECRXUNSA 0x043C0 /* LinkSec Rx Unused SA Count - InPktsUnusedSa */
+#define E1000_LSECRXNUSA 0x043D0 /* LinkSec Rx Not Using SA Count - InPktsNotUsingSa */
+#define E1000_LSECTXCAP 0x0B000 /* LinkSec Tx Capabilities Register - RO */
+#define E1000_LSECRXCAP 0x0B300 /* LinkSec Rx Capabilities Register - RO */
+#define E1000_LSECTXCTRL 0x0B004 /* LinkSec Tx Control - RW */
+#define E1000_LSECRXCTRL 0x0B304 /* LinkSec Rx Control - RW */
+#define E1000_LSECTXSCL 0x0B008 /* LinkSec Tx SCI Low - RW */
+#define E1000_LSECTXSCH 0x0B00C /* LinkSec Tx SCI High - RW */
+#define E1000_LSECTXSA 0x0B010 /* LinkSec Tx SA0 - RW */
+#define E1000_LSECTXPN0 0x0B018 /* LinkSec Tx SA PN 0 - RW */
+#define E1000_LSECTXPN1 0x0B01C /* LinkSec Tx SA PN 1 - RW */
+#define E1000_LSECRXSCL 0x0B3D0 /* LinkSec Rx SCI Low - RW */
+#define E1000_LSECRXSCH 0x0B3E0 /* LinkSec Rx SCI High - RW */
+#define E1000_LSECTXKEY0(_n) (0x0B020 + (0x04 * (_n))) /* LinkSec Tx 128-bit Key 0 - WO */
+#define E1000_LSECTXKEY1(_n) (0x0B030 + (0x04 * (_n))) /* LinkSec Tx 128-bit Key 1 - WO */
+#define E1000_LSECRXSA(_n) (0x0B310 + (0x04 * (_n))) /* LinkSec Rx SAs - RW */
+#define E1000_LSECRXPN(_n) (0x0B330 + (0x04 * (_n))) /* LinkSec Rx SAs - RW */
+/*
+ * LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit
+ * key - RW.
+ */
+#define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m)))
+
+#define E1000_SSVPC 0x041A0 /* Switch Security Violation Packet Count */
+#define E1000_IPSCTRL 0xB430 /* IpSec Control Register */
+#define E1000_IPSRXCMD 0x0B408 /* IPSec Rx Command Register - RW */
+#define E1000_IPSRXIDX 0x0B400 /* IPSec Rx Index - RW */
+#define E1000_IPSRXIPADDR(_n) (0x0B420+ (0x04 * (_n))) /* IPSec Rx IPv4/v6 Address - RW */
+#define E1000_IPSRXKEY(_n) (0x0B410 + (0x04 * (_n))) /* IPSec Rx 128-bit Key - RW */
+#define E1000_IPSRXSALT 0x0B404 /* IPSec Rx Salt - RW */
+#define E1000_IPSRXSPI 0x0B40C /* IPSec Rx SPI - RW */
+#define E1000_IPSTXKEY(_n) (0x0B460 + (0x04 * (_n))) /* IPSec Tx 128-bit Key - RW */
+#define E1000_IPSTXSALT 0x0B454 /* IPSec Tx Salt - RW */
+#define E1000_IPSTXIDX 0x0B450 /* IPSec Tx SA IDX - RW */
+#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */
+#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */
+#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */
+#define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */
+#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */
+#define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */
+#define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */
+#define E1000_RPTHC 0x04104 /* Rx Packets To Host */
+#define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */
+#define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */
+#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */
+#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */
+#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */
+#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */
+#define E1000_LENERRS 0x04138 /* Length Errors Count */
+#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */
+#define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */
+#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */
+#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */
+#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */
+#define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Page - RW */
+#define E1000_1GSTAT_RCV 0x04228 /* 1GSTAT Code Violation Packet Count - RW */
+#define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */
+#define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */
+#define E1000_RFCTL 0x05008 /* Receive Filter Control*/
+#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
+#define E1000_RA 0x05400 /* Receive Address - RW Array */
+#define E1000_RA2 0x054E0 /* 2nd half of receive address array - RW Array */
+#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
+#define E1000_VT_CTL 0x0581C /* VMDq Control - RW */
+#define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */
+#define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */
+#define E1000_WUC 0x05800 /* Wakeup Control - RW */
+#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
+#define E1000_WUS 0x05810 /* Wakeup Status - RO */
+#define E1000_MANC 0x05820 /* Management Control - RW */
+#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
+#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
+#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
+#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
+#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
+#define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */
+#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
+#define E1000_HOST_IF 0x08800 /* Host Interface */
+#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
+#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
+#define E1000_FHFT(_n) (0x09000 + (_n * 0x100)) /* Flexible Host Filter Table */
+#define E1000_FHFT_EXT(_n) (0x09A00 + (_n * 0x100)) /* Ext Flexible Host Filter Table */
+
+
+#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */
+#define E1000_MDPHYA 0x0003C /* PHY address - RW */
+#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */
+#define E1000_MDEF(_n) (0x05890 + (4 * (_n))) /* Mngmt Decision Filters */
+#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */
+#define E1000_CCMCTL 0x05B48 /* CCM Control Register */
+#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */
+#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */
+#define E1000_GCR 0x05B00 /* PCI-Ex Control */
+#define E1000_GCR2 0x05B64 /* PCI-Ex Control #2 */
+#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */
+#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */
+#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */
+#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */
+#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */
+#define E1000_SWSM 0x05B50 /* SW Semaphore */
+#define E1000_FWSM 0x05B54 /* FW Semaphore */
+#define E1000_SWSM2 0x05B58 /* Driver-only SW semaphore (not used by BOOT agents) */
+#define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */
+#define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */
+#define E1000_UFUSE 0x05B78 /* UFUSE - RO */
+#define E1000_FFLT_DBG 0x05F04 /* Debug Register */
+#define E1000_HICR 0x08F00 /* Host Interface Control */
+#define E1000_FWSTS 0x08F0C /* FW Status */
+
+/* RSS registers */
+#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */
+#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */
+#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */
+#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate Interrupt Ext*/
+#define E1000_IMIRVP 0x05AC0 /* Immediate Interrupt Rx VLAN Priority - RW */
+#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) /* MSI-X Allocation Register
+ * (_i) - RW */
+#define E1000_MSIXTADD(_i) (0x0C000 + ((_i) * 0x10)) /* MSI-X Table entry addr
+ * low reg - RW */
+#define E1000_MSIXTUADD(_i) (0x0C004 + ((_i) * 0x10)) /* MSI-X Table entry addr
+ * upper reg - RW */
+#define E1000_MSIXTMSG(_i) (0x0C008 + ((_i) * 0x10)) /* MSI-X Table entry
+ * message reg - RW */
+#define E1000_MSIXVCTRL(_i) (0x0C00C + ((_i) * 0x10)) /* MSI-X Table entry
+ * vector ctrl reg - RW */
+#define E1000_MSIXPBA 0x0E000 /* MSI-X Pending bit array */
+#define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) /* Redirection Table - RW */
+#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW */
+#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */
+#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */
+/* VT Registers */
+#define E1000_SWPBS 0x03004 /* Switch Packet Buffer Size - RW */
+#define E1000_MBVFICR 0x00C80 /* Mailbox VF Cause - RWC */
+#define E1000_MBVFIMR 0x00C84 /* Mailbox VF int Mask - RW */
+#define E1000_VFLRE 0x00C88 /* VF Register Events - RWC */
+#define E1000_VFRE 0x00C8C /* VF Receive Enables */
+#define E1000_VFTE 0x00C90 /* VF Transmit Enables */
+#define E1000_QDE 0x02408 /* Queue Drop Enable - RW */
+#define E1000_DTXSWC 0x03500 /* DMA Tx Switch Control - RW */
+#define E1000_WVBR 0x03554 /* VM Wrong Behavior - RWS */
+#define E1000_RPLOLR 0x05AF0 /* Replication Offload - RW */
+#define E1000_UTA 0x0A000 /* Unicast Table Array - RW */
+#define E1000_IOVTCL 0x05BBC /* IOV Control Register */
+#define E1000_VMRCTL 0X05D80 /* Virtual Mirror Rule Control */
+#define E1000_VMRVLAN 0x05D90 /* Virtual Mirror Rule VLAN */
+#define E1000_VMRVM 0x05DA0 /* Virtual Mirror Rule VM */
+#define E1000_MDFB 0x03558 /* Malicious Driver free block */
+#define E1000_LVMMC 0x03548 /* Last VM Misbehavior cause */
+#define E1000_TXSWC 0x05ACC /* Tx Switch Control */
+#define E1000_SCCRL 0x05DB0 /* Storm Control Control */
+#define E1000_BSCTRH 0x05DB8 /* Broadcast Storm Control Threshold */
+#define E1000_MSCTRH 0x05DBC /* Multicast Storm Control Threshold */
+/* These act per VF so an array friendly macro is used */
+#define E1000_V2PMAILBOX(_n) (0x00C40 + (4 * (_n)))
+#define E1000_P2VMAILBOX(_n) (0x00C00 + (4 * (_n)))
+#define E1000_VMBMEM(_n) (0x00800 + (64 * (_n)))
+#define E1000_VFVMBMEM(_n) (0x00800 + (_n))
+#define E1000_VMOLR(_n) (0x05AD0 + (4 * (_n)))
+#define E1000_VLVF(_n) (0x05D00 + (4 * (_n))) /* VLAN Virtual Machine
+ * Filter - RW */
+#define E1000_VMVIR(_n) (0x03700 + (4 * (_n)))
+#define E1000_DVMOLR(_n) (0x0C038 + (0x40 * (_n))) /* DMA VM offload */
+/* Time Sync */
+#define E1000_TSYNCRXCTL 0x0B620 /* Rx Time Sync Control register - RW */
+#define E1000_TSYNCTXCTL 0x0B614 /* Tx Time Sync Control register - RW */
+#define E1000_TSYNCRXCFG 0x05F50 /* Time Sync Rx Configuration - RW */
+#define E1000_RXSTMPL 0x0B624 /* Rx timestamp Low - RO */
+#define E1000_RXSTMPH 0x0B628 /* Rx timestamp High - RO */
+#define E1000_RXSATRL 0x0B62C /* Rx timestamp attribute low - RO */
+#define E1000_RXSATRH 0x0B630 /* Rx timestamp attribute high - RO */
+#define E1000_TXSTMPL 0x0B618 /* Tx timestamp value Low - RO */
+#define E1000_TXSTMPH 0x0B61C /* Tx timestamp value High - RO */
+#define E1000_SYSTIML 0x0B600 /* System time register Low - RO */
+#define E1000_SYSTIMH 0x0B604 /* System time register High - RO */
+#define E1000_TIMINCA 0x0B608 /* Increment attributes register - RW */
+#define E1000_TSAUXC 0x0B640 /* Timesync Auxiliary Control register */
+#define E1000_SYSTIMR 0x0B6F8 /* System time register Residue */
+
+/* Filtering Registers */
+#define E1000_SAQF(_n) (0x05980 + (4 * (_n))) /* Source Address Queue Fltr */
+#define E1000_DAQF(_n) (0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */
+#define E1000_SPQF(_n) (0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */
+#define E1000_FTQF(_n) (0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */
+#define E1000_TTQF(_n) (0x059E0 + (4 * (_n))) /* 2-tuple Queue Fltr */
+#define E1000_SYNQF(_n) (0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */
+#define E1000_ETQF(_n) (0x05CB0 + (4 * (_n))) /* EType Queue Fltr */
+
+#define E1000_RTTDCS 0x3600 /* Reedtown Tx Desc plane control and status */
+#define E1000_RTTPCS 0x3474 /* Reedtown Tx Packet Plane control and status */
+#define E1000_RTRPCS 0x2474 /* Rx packet plane control and status */
+#define E1000_RTRUP2TC 0x05AC4 /* Rx User Priority to Traffic Class */
+#define E1000_RTTUP2TC 0x0418 /* Transmit User Priority to Traffic Class */
+#define E1000_RTTDTCRC(_n) (0x3610 + ((_n) * 4)) /* Tx Desc plane TC Rate-scheduler config */
+#define E1000_RTTPTCRC(_n) (0x3480 + ((_n) * 4)) /* Tx Packet plane TC Rate-Scheduler Config */
+#define E1000_RTRPTCRC(_n) (0x2480 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler Config */
+#define E1000_RTTDTCRS(_n) (0x3630 + ((_n) * 4)) /* Tx Desc Plane TC Rate-Scheduler Status */
+#define E1000_RTTDTCRM(_n) (0x3650 + ((_n) * 4)) /* Tx Desc Plane TC Rate-Scheduler MMW */
+#define E1000_RTTPTCRS(_n) (0x34A0 + ((_n) * 4)) /* Tx Packet plane TC Rate-Scheduler Status */
+#define E1000_RTTPTCRM(_n) (0x34C0 + ((_n) * 4)) /* Tx Packet plane TC Rate-scheduler MMW */
+#define E1000_RTRPTCRS(_n) (0x24A0 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler Status */
+#define E1000_RTRPTCRM(_n) (0x24C0 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler MMW */
+#define E1000_RTTDVMRM(_n) (0x3670 + ((_n) * 4)) /* Tx Desc plane VM Rate-Scheduler MMW*/
+#define E1000_RTTBCNRM(_n) (0x3690 + ((_n) * 4)) /* Tx BCN Rate-Scheduler MMW */
+#define E1000_RTTDQSEL 0x3604 /* Tx Desc Plane Queue Select */
+#define E1000_RTTDVMRC 0x3608 /* Tx Desc Plane VM Rate-Scheduler Config */
+#define E1000_RTTDVMRS 0x360C /* Tx Desc Plane VM Rate-Scheduler Status */
+#define E1000_RTTBCNRC 0x36B0 /* Tx BCN Rate-Scheduler Config */
+#define E1000_RTTBCNRS 0x36B4 /* Tx BCN Rate-Scheduler Status */
+#define E1000_RTTBCNCR 0xB200 /* Tx BCN Control Register */
+#define E1000_RTTBCNTG 0x35A4 /* Tx BCN Tagging */
+#define E1000_RTTBCNCP 0xB208 /* Tx BCN Congestion point */
+#define E1000_RTRBCNCR 0xB20C /* Rx BCN Control Register */
+#define E1000_RTTBCNRD 0x36B8 /* Tx BCN Rate Drift */
+#define E1000_PFCTOP 0x1080 /* Priority Flow Control Type and Opcode */
+#define E1000_RTTBCNIDX 0xB204 /* Tx BCN Congestion Point */
+#define E1000_RTTBCNACH 0x0B214 /* Tx BCN Control High */
+#define E1000_RTTBCNACL 0x0B210 /* Tx BCN Control Low */
+
+/* DMA Coalescing registers */
+#define E1000_DMACR 0x02508 /* Control Register */
+#define E1000_DMCTXTH 0x03550 /* Transmit Threshold */
+#define E1000_DMCTLX 0x02514 /* Time to Lx Request */
+#define E1000_DMCRTRH 0x05DD0 /* Receive Packet Rate Threshold */
+#define E1000_DMCCNT 0x05DD4 /* Current Rx Count */
+#define E1000_FCRTC 0x02170 /* Flow Control Rx high watermark */
+#define E1000_PCIEMISC 0x05BB8 /* PCIE misc config register */
+
+/* PCIe Parity Status Register */
+#define E1000_PCIEERRSTS 0x05BA8
+
+#define E1000_PROXYS 0x5F64 /* Proxying Status */
+#define E1000_PROXYFC 0x5F60 /* Proxying Filter Control */
+/* Thermal sensor configuration and status registers */
+#define E1000_THMJT 0x08100 /* Junction Temperature */
+#define E1000_THLOWTC 0x08104 /* Low Threshold Control */
+#define E1000_THMIDTC 0x08108 /* Mid Threshold Control */
+#define E1000_THHIGHTC 0x0810C /* High Threshold Control */
+#define E1000_THSTAT 0x08110 /* Thermal Sensor Status */
+
+/*Energy Efficient Ethernet "EEE" registers */
+#define E1000_IPCNFG 0x0E38 /* Internal PHY Configuration */
+#define E1000_LTRC 0x01A0 /* Latency Tolerance Reporting Control */
+#define E1000_EEER 0x0E30 /* Energy Efficient Ethernet "EEE"*/
+#define E1000_EEE_SU 0x0E34 /* EEE Setup */
+#define E1000_TLPIC 0x4148 /* EEE Tx LPI Count - TLPIC */
+#define E1000_RLPIC 0x414C /* EEE Rx LPI Count - RLPIC */
+
+/* OS2BMC Registers */
+#define E1000_B2OSPC 0x08FE0 /* BMC2OS packets sent by BMC */
+#define E1000_B2OGPRC 0x04158 /* BMC2OS packets received by host */
+#define E1000_O2BGPTC 0x08FE4 /* OS2BMC packets received by BMC */
+#define E1000_O2BSPC 0x0415C /* OS2BMC packets transmitted by host */
+
+#endif
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+
+#include "e1000_api.h"
+
+
+static s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
+static void e1000_release_vf(struct e1000_hw *hw);
+static s32 e1000_acquire_vf(struct e1000_hw *hw);
+static s32 e1000_setup_link_vf(struct e1000_hw *hw);
+static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
+static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
+static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+static s32 e1000_init_hw_vf(struct e1000_hw *hw);
+static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
+static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
+static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
+static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
+
+/**
+ * e1000_init_phy_params_vf - Inits PHY params
+ * @hw: pointer to the HW structure
+ *
+ * Doesn't do much - there's no PHY available to the VF.
+ **/
+static s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_phy_params_vf");
+ hw->phy.type = e1000_phy_vf;
+ hw->phy.ops.acquire = e1000_acquire_vf;
+ hw->phy.ops.release = e1000_release_vf;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_nvm_params_vf - Inits NVM params
+ * @hw: pointer to the HW structure
+ *
+ * Doesn't do much - there's no NVM available to the VF.
+ **/
+static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_nvm_params_vf");
+ hw->nvm.type = e1000_nvm_none;
+ hw->nvm.ops.acquire = e1000_acquire_vf;
+ hw->nvm.ops.release = e1000_release_vf;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_vf - Inits MAC params
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_init_mac_params_vf");
+
+ /* Set media type */
+ /*
+ * Virtual functions don't care what they're media type is as they
+ * have no direct access to the PHY, or the media. That is handled
+ * by the physical function driver.
+ */
+ hw->phy.media_type = e1000_media_type_unknown;
+
+ /* No ASF features for the VF driver */
+ mac->asf_firmware_present = FALSE;
+ /* ARC subsystem not supported */
+ mac->arc_subsystem_valid = FALSE;
+ /* Disable adaptive IFS mode so the generic funcs don't do anything */
+ mac->adaptive_ifs = FALSE;
+ /* VF's have no MTA Registers - PF feature only */
+ mac->mta_reg_count = 128;
+ /* VF's have no access to RAR entries */
+ mac->rar_entry_count = 1;
+
+ /* Function pointers */
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_vf;
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
+ /* reset */
+ mac->ops.reset_hw = e1000_reset_hw_vf;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_vf;
+ /* check for link */
+ mac->ops.check_for_link = e1000_check_for_link_vf;
+ /* link info */
+ mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
+ /* set mac address */
+ mac->ops.rar_set = e1000_rar_set_vf;
+ /* read mac address */
+ mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
+
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_function_pointers_vf - Inits function pointers
+ * @hw: pointer to the HW structure
+ **/
+void e1000_init_function_pointers_vf(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_vf");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_vf;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
+ hw->phy.ops.init_params = e1000_init_phy_params_vf;
+ hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
+}
+
+/**
+ * e1000_acquire_vf - Acquire rights to access PHY or NVM.
+ * @hw: pointer to the HW structure
+ *
+ * There is no PHY or NVM so we want all attempts to acquire these to fail.
+ * In addition, the MAC registers to access PHY/NVM don't exist so we don't
+ * even want any SW to attempt to use them.
+ **/
+static s32 e1000_acquire_vf(struct e1000_hw *hw)
+{
+ return -E1000_ERR_PHY;
+}
+
+/**
+ * e1000_release_vf - Release PHY or NVM
+ * @hw: pointer to the HW structure
+ *
+ * There is no PHY or NVM so we want all attempts to acquire these to fail.
+ * In addition, the MAC registers to access PHY/NVM don't exist so we don't
+ * even want any SW to attempt to use them.
+ **/
+static void e1000_release_vf(struct e1000_hw *hw)
+{
+ return;
+}
+
+/**
+ * e1000_setup_link_vf - Sets up link.
+ * @hw: pointer to the HW structure
+ *
+ * Virtual functions cannot change link.
+ **/
+static s32 e1000_setup_link_vf(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_setup_link_vf");
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_bus_info_pcie_vf - Gets the bus info.
+ * @hw: pointer to the HW structure
+ *
+ * Virtual functions are not really on their own bus.
+ **/
+static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+
+ DEBUGFUNC("e1000_get_bus_info_pcie_vf");
+
+ /* Do not set type PCI-E because we don't want disable master to run */
+ bus->type = e1000_bus_type_reserved;
+ bus->speed = e1000_bus_speed_2500;
+
+ return 0;
+}
+
+/**
+ * e1000_get_link_up_info_vf - Gets link info.
+ * @hw: pointer to the HW structure
+ * @speed: pointer to 16 bit value to store link speed.
+ * @duplex: pointer to 16 bit value to store duplex.
+ *
+ * Since we cannot read the PHY and get accurate link info, we must rely upon
+ * the status register's data which is often stale and inaccurate.
+ **/
+static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ s32 status;
+
+ DEBUGFUNC("e1000_get_link_up_info_vf");
+
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_SPEED_1000) {
+ *speed = SPEED_1000;
+ DEBUGOUT("1000 Mbs, ");
+ } else if (status & E1000_STATUS_SPEED_100) {
+ *speed = SPEED_100;
+ DEBUGOUT("100 Mbs, ");
+ } else {
+ *speed = SPEED_10;
+ DEBUGOUT("10 Mbs, ");
+ }
+
+ if (status & E1000_STATUS_FD) {
+ *duplex = FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ } else {
+ *duplex = HALF_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_reset_hw_vf - Resets the HW
+ * @hw: pointer to the HW structure
+ *
+ * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
+ * This is all the reset we can perform on a VF.
+ **/
+static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ u32 timeout = E1000_VF_INIT_TIMEOUT;
+ s32 ret_val = -E1000_ERR_MAC_INIT;
+ u32 ctrl, msgbuf[3];
+ u8 *addr = (u8 *)(&msgbuf[1]);
+
+ DEBUGFUNC("e1000_reset_hw_vf");
+
+ DEBUGOUT("Issuing a function level reset to MAC\n");
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+ /* we cannot reset while the RSTI / RSTD bits are asserted */
+ while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
+ timeout--;
+ usec_delay(5);
+ }
+
+ if (timeout) {
+ /* mailbox timeout can now become active */
+ mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
+
+ msgbuf[0] = E1000_VF_RESET;
+ mbx->ops.write_posted(hw, msgbuf, 1, 0);
+
+ msec_delay(10);
+
+ /* set our "perm_addr" based on info provided by PF */
+ ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
+ if (!ret_val) {
+ if (msgbuf[0] == (E1000_VF_RESET |
+ E1000_VT_MSGTYPE_ACK))
+ memcpy(hw->mac.perm_addr, addr, 6);
+ else
+ ret_val = -E1000_ERR_MAC_INIT;
+ }
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_vf - Inits the HW
+ * @hw: pointer to the HW structure
+ *
+ * Not much to do here except clear the PF Reset indication if there is one.
+ **/
+static s32 e1000_init_hw_vf(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_hw_vf");
+
+ /* attempt to set and restore our mac address */
+ e1000_rar_set_vf(hw, hw->mac.addr, 0);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_rar_set_vf - set device MAC address
+ * @hw: pointer to the HW structure
+ * @addr: pointer to the receive address
+ * @index receive address array register
+ **/
+static void e1000_rar_set_vf(struct e1000_hw *hw, u8 * addr, u32 index)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ u32 msgbuf[3];
+ u8 *msg_addr = (u8 *)(&msgbuf[1]);
+ s32 ret_val;
+
+ memset(msgbuf, 0, 12);
+ msgbuf[0] = E1000_VF_SET_MAC_ADDR;
+ memcpy(msg_addr, addr, 6);
+ ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
+
+ if (!ret_val)
+ ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
+
+ msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
+
+ /* if nacked the address was rejected, use "perm_addr" */
+ if (!ret_val &&
+ (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
+ e1000_read_mac_addr_vf(hw);
+}
+
+/**
+ * e1000_hash_mc_addr_vf - Generate a multicast hash value
+ * @hw: pointer to the HW structure
+ * @mc_addr: pointer to a multicast address
+ *
+ * Generates a multicast address hash value which is used to determine
+ * the multicast filter table array address and new table value.
+ **/
+static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
+{
+ u32 hash_value, hash_mask;
+ u8 bit_shift = 0;
+
+ DEBUGFUNC("e1000_hash_mc_addr_generic");
+
+ /* Register count multiplied by bits per register */
+ hash_mask = (hw->mac.mta_reg_count * 32) - 1;
+
+ /*
+ * The bit_shift is the number of left-shifts
+ * where 0xFF would still fall within the hash mask.
+ */
+ while (hash_mask >> bit_shift != 0xFF)
+ bit_shift++;
+
+ hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
+ (((u16) mc_addr[5]) << bit_shift)));
+
+ return hash_value;
+}
+
+/**
+ * e1000_update_mc_addr_list_vf - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ *
+ * Updates the Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ u32 msgbuf[E1000_VFMAILBOX_SIZE];
+ u16 *hash_list = (u16 *)&msgbuf[1];
+ u32 hash_value;
+ u32 i;
+
+ DEBUGFUNC("e1000_update_mc_addr_list_vf");
+
+ /* Each entry in the list uses 1 16 bit word. We have 30
+ * 16 bit words available in our HW msg buffer (minus 1 for the
+ * msg type). That's 30 hash values if we pack 'em right. If
+ * there are more than 30 MC addresses to add then punt the
+ * extras for now and then add code to handle more than 30 later.
+ * It would be unusual for a server to request that many multi-cast
+ * addresses except for in large enterprise network environments.
+ */
+
+ DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
+
+ if (mc_addr_count > 30) {
+ msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
+ mc_addr_count = 30;
+ }
+
+ msgbuf[0] = E1000_VF_SET_MULTICAST;
+ msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
+
+ for (i = 0; i < mc_addr_count; i++) {
+ hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
+ DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
+ hash_list[i] = hash_value & 0x0FFF;
+ mc_addr_list += ETH_ADDR_LEN;
+ }
+
+ mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE, 0);
+}
+
+/**
+ * e1000_vfta_set_vf - Set/Unset vlan filter table address
+ * @hw: pointer to the HW structure
+ * @vid: determines the vfta register and bit to set/unset
+ * @set: if TRUE then set bit, else clear bit
+ **/
+void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ u32 msgbuf[2];
+
+ msgbuf[0] = E1000_VF_SET_VLAN;
+ msgbuf[1] = vid;
+ /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
+ if (set)
+ msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
+
+ mbx->ops.write_posted(hw, msgbuf, 2, 0);
+}
+
+/** e1000_rlpml_set_vf - Set the maximum receive packet length
+ * @hw: pointer to the HW structure
+ * @max_size: value to assign to max frame size
+ **/
+void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ u32 msgbuf[2];
+
+ msgbuf[0] = E1000_VF_SET_LPE;
+ msgbuf[1] = max_size;
+
+ mbx->ops.write_posted(hw, msgbuf, 2, 0);
+}
+
+/**
+ * e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
+ * @hw: pointer to the HW structure
+ * @uni: boolean indicating unicast promisc status
+ * @multi: boolean indicating multicast promisc status
+ **/
+s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ u32 msgbuf = E1000_VF_SET_PROMISC;
+ s32 ret_val;
+
+ switch (type) {
+ case e1000_promisc_multicast:
+ msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
+ break;
+ case e1000_promisc_enabled:
+ msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
+ case e1000_promisc_unicast:
+ msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
+ case e1000_promisc_disabled:
+ break;
+ default:
+ return -E1000_ERR_MAC_INIT;
+ }
+
+ ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
+
+ if (!ret_val)
+ ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
+
+ if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
+ ret_val = -E1000_ERR_MAC_INIT;
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_mac_addr_vf - Read device MAC address
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
+{
+ int i;
+
+ for (i = 0; i < ETH_ADDR_LEN; i++)
+ hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_for_link_vf - Check for link for a virtual interface
+ * @hw: pointer to the HW structure
+ *
+ * Checks to see if the underlying PF is still talking to the VF and
+ * if it is then it reports the link state to the hardware, otherwise
+ * it reports link down and returns an error.
+ **/
+static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+ u32 in_msg = 0;
+
+ DEBUGFUNC("e1000_check_for_link_vf");
+
+ /*
+ * We only want to run this if there has been a rst asserted.
+ * in this case that could mean a link change, device reset,
+ * or a virtual function reset
+ */
+
+ /* If we were hit with a reset or timeout drop the link */
+ if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
+ mac->get_link_status = TRUE;
+
+ if (!mac->get_link_status)
+ goto out;
+
+ /* if link status is down no point in checking to see if pf is up */
+ if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
+ goto out;
+
+ /* if the read failed it could just be a mailbox collision, best wait
+ * until we are called again and don't report an error */
+ if (mbx->ops.read(hw, &in_msg, 1, 0))
+ goto out;
+
+ /* if incoming message isn't clear to send we are waiting on response */
+ if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
+ /* message is not CTS and is NACK we have lost CTS status */
+ if (in_msg & E1000_VT_MSGTYPE_NACK)
+ ret_val = -E1000_ERR_MAC_INIT;
+ goto out;
+ }
+
+ /* at this point we know the PF is talking to us, check and see if
+ * we are still accepting timeout or if we had a timeout failure.
+ * if we failed then we will need to reinit */
+ if (!mbx->timeout) {
+ ret_val = -E1000_ERR_MAC_INIT;
+ goto out;
+ }
+
+ /* if we passed all the tests above then the link is up and we no
+ * longer need to check for link */
+ mac->get_link_status = FALSE;
+
+out:
+ return ret_val;
+}
+
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_VF_H_
+#define _E1000_VF_H_
+
+#include "e1000_osdep.h"
+#include "e1000_regs.h"
+#include "e1000_defines.h"
+
+struct e1000_hw;
+
+#define E1000_DEV_ID_82576_VF 0x10CA
+#define E1000_DEV_ID_I350_VF 0x1520
+
+#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */
+
+/* Additional Descriptor Control definitions */
+#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Tx Queue */
+#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Rx Queue */
+
+/* SRRCTL bit definitions */
+#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */
+#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00
+#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */
+#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000
+#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
+#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000
+#define E1000_SRRCTL_DROP_EN 0x80000000
+
+#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F
+#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00
+
+/* Interrupt Defines */
+#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */
+#define E1000_EITR(_n) (0x01680 + ((_n) << 2))
+#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */
+#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */
+#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */
+#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */
+#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */
+#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */
+#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */
+#define E1000_IVAR_VALID 0x80
+
+/* Receive Descriptor - Advanced */
+union e1000_adv_rx_desc {
+ struct {
+ u64 pkt_addr; /* Packet buffer address */
+ u64 hdr_addr; /* Header buffer address */
+ } read;
+ struct {
+ struct {
+ union {
+ u32 data;
+ struct {
+ /* RSS type, Packet type */
+ u16 pkt_info;
+ /* Split Header, header buffer len */
+ u16 hdr_info;
+ } hs_rss;
+ } lo_dword;
+ union {
+ u32 rss; /* RSS Hash */
+ struct {
+ u16 ip_id; /* IP id */
+ u16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ u32 status_error; /* ext status/error */
+ u16 length; /* Packet length */
+ u16 vlan; /* VLAN tag */
+ } upper;
+ } wb; /* writeback */
+};
+
+#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
+#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
+
+/* Transmit Descriptor - Advanced */
+union e1000_adv_tx_desc {
+ struct {
+ u64 buffer_addr; /* Address of descriptor's data buf */
+ u32 cmd_type_len;
+ u32 olinfo_status;
+ } read;
+ struct {
+ u64 rsvd; /* Reserved */
+ u32 nxtseq_seed;
+ u32 status;
+ } wb;
+};
+
+/* Adv Transmit Descriptor Config Masks */
+#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */
+#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */
+#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */
+#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */
+#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */
+#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */
+#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */
+#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */
+
+/* Context descriptors */
+struct e1000_adv_tx_context_desc {
+ u32 vlan_macip_lens;
+ u32 seqnum_seed;
+ u32 type_tucmd_mlhl;
+ u32 mss_l4len_idx;
+};
+
+#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */
+#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */
+#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */
+#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */
+#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */
+
+enum e1000_mac_type {
+ e1000_undefined = 0,
+ e1000_vfadapt,
+ e1000_vfadapt_i350,
+ e1000_num_macs /* List is 1-based, so subtract 1 for TRUE count. */
+};
+
+struct e1000_vf_stats {
+ u64 base_gprc;
+ u64 base_gptc;
+ u64 base_gorc;
+ u64 base_gotc;
+ u64 base_mprc;
+ u64 base_gotlbc;
+ u64 base_gptlbc;
+ u64 base_gorlbc;
+ u64 base_gprlbc;
+
+ u32 last_gprc;
+ u32 last_gptc;
+ u32 last_gorc;
+ u32 last_gotc;
+ u32 last_mprc;
+ u32 last_gotlbc;
+ u32 last_gptlbc;
+ u32 last_gorlbc;
+ u32 last_gprlbc;
+
+ u64 gprc;
+ u64 gptc;
+ u64 gorc;
+ u64 gotc;
+ u64 mprc;
+ u64 gotlbc;
+ u64 gptlbc;
+ u64 gorlbc;
+ u64 gprlbc;
+};
+
+#include "e1000_mbx.h"
+
+struct e1000_mac_operations {
+ /* Function pointers for the MAC. */
+ s32 (*init_params)(struct e1000_hw *);
+ s32 (*check_for_link)(struct e1000_hw *);
+ void (*clear_vfta)(struct e1000_hw *);
+ s32 (*get_bus_info)(struct e1000_hw *);
+ s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
+ void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
+ s32 (*reset_hw)(struct e1000_hw *);
+ s32 (*init_hw)(struct e1000_hw *);
+ s32 (*setup_link)(struct e1000_hw *);
+ void (*write_vfta)(struct e1000_hw *, u32, u32);
+ void (*rar_set)(struct e1000_hw *, u8*, u32);
+ s32 (*read_mac_addr)(struct e1000_hw *);
+};
+
+struct e1000_mac_info {
+ struct e1000_mac_operations ops;
+ u8 addr[6];
+ u8 perm_addr[6];
+
+ enum e1000_mac_type type;
+
+ u16 mta_reg_count;
+ u16 rar_entry_count;
+
+ bool get_link_status;
+};
+
+struct e1000_mbx_operations {
+ s32 (*init_params)(struct e1000_hw *hw);
+ s32 (*read)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*write)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*check_for_msg)(struct e1000_hw *, u16);
+ s32 (*check_for_ack)(struct e1000_hw *, u16);
+ s32 (*check_for_rst)(struct e1000_hw *, u16);
+};
+
+struct e1000_mbx_stats {
+ u32 msgs_tx;
+ u32 msgs_rx;
+
+ u32 acks;
+ u32 reqs;
+ u32 rsts;
+};
+
+struct e1000_mbx_info {
+ struct e1000_mbx_operations ops;
+ struct e1000_mbx_stats stats;
+ u32 timeout;
+ u32 usec_delay;
+ u16 size;
+};
+
+struct e1000_dev_spec_vf {
+ u32 vf_number;
+ u32 v2p_mailbox;
+};
+
+struct e1000_hw {
+ void *back;
+
+ u8 *hw_addr;
+ u8 *flash_address;
+ unsigned long io_base;
+
+ struct e1000_mac_info mac;
+ struct e1000_mbx_info mbx;
+
+ union {
+ struct e1000_dev_spec_vf vf;
+ } dev_spec;
+
+ u16 device_id;
+ u16 subsystem_vendor_id;
+ u16 subsystem_device_id;
+ u16 vendor_id;
+
+ u8 revision_id;
+};
+
+enum e1000_promisc_type {
+ e1000_promisc_disabled = 0, /* all promisc modes disabled */
+ e1000_promisc_unicast = 1, /* unicast promiscuous enabled */
+ e1000_promisc_multicast = 2, /* multicast promiscuous enabled */
+ e1000_promisc_enabled = 3, /* both uni and multicast promisc */
+ e1000_num_promisc_types
+};
+
+/* These functions must be implemented by drivers */
+s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_vfta_set_vf(struct e1000_hw *, u16, bool);
+void e1000_rlpml_set_vf(struct e1000_hw *, u16);
+s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type);
+#endif /* _E1000_VF_H_ */
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+
+#ifdef HAVE_KERNEL_OPTION_HEADERS
+#include "opt_device_polling.h"
+#include "opt_inet.h"
+#include "opt_altq.h"
+#endif
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#if __FreeBSD_version >= 800000
+#include <sys/buf_ring.h>
+#endif
+#include <sys/bus.h>
+#include <sys/endian.h>
+#include <sys/kernel.h>
+#include <sys/kthread.h>
+#include <sys/malloc.h>
+#include <sys/mbuf.h>
+#include <sys/module.h>
+#include <sys/rman.h>
+#include <sys/socket.h>
+#include <sys/sockio.h>
+#include <sys/sysctl.h>
+#include <sys/taskqueue.h>
+#include <sys/eventhandler.h>
+#include <sys/pcpu.h>
+#include <sys/smp.h>
+#include <machine/smp.h>
+#include <machine/bus.h>
+#include <machine/resource.h>
+
+#include <net/bpf.h>
+#include <net/ethernet.h>
+#include <net/if.h>
+#include <net/if_arp.h>
+#include <net/if_dl.h>
+#include <net/if_media.h>
+
+#include <net/if_types.h>
+#include <net/if_vlan_var.h>
+
+#include <netinet/in_systm.h>
+#include <netinet/in.h>
+#include <netinet/if_ether.h>
+#include <netinet/ip.h>
+#include <netinet/ip6.h>
+#include <netinet/tcp.h>
+#include <netinet/tcp_lro.h>
+#include <netinet/udp.h>
+
+#include <machine/in_cksum.h>
+#include <dev/led/led.h>
+#include <dev/pci/pcivar.h>
+#include <dev/pci/pcireg.h>
+
+#include "e1000_api.h"
+#include "e1000_82575.h"
+#include "if_igb.h"
+
+/*********************************************************************
+ * Set this to one to display debug statistics
+ *********************************************************************/
+int igb_display_debug_stats = 0;
+
+/*********************************************************************
+ * Driver version:
+ *********************************************************************/
+char igb_driver_version[] = "version - 2.2.3";
+
+
+/*********************************************************************
+ * PCI Device ID Table
+ *
+ * Used by probe to select devices to load on
+ * Last field stores an index into e1000_strings
+ * Last entry must be all 0s
+ *
+ * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
+ *********************************************************************/
+
+static igb_vendor_info_t igb_vendor_info_array[] =
+{
+ { 0x8086, E1000_DEV_ID_82575EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576_NS, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576_NS_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576_SERDES_QUAD,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576_QUAD_COPPER,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576_VF, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82580_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82580_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82580_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82580_SGMII, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82580_COPPER_DUAL,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82580_QUAD_FIBER,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_DH89XXCC_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_DH89XXCC_SGMII, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_DH89XXCC_SFP, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_I350_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_I350_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_I350_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_I350_SGMII, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_I350_VF, PCI_ANY_ID, PCI_ANY_ID, 0},
+ /* required last entry */
+ { 0, 0, 0, 0, 0}
+};
+
+/*********************************************************************
+ * Table of branding strings for all supported NICs.
+ *********************************************************************/
+
+static char *igb_strings[] = {
+ "Intel(R) PRO/1000 Network Connection"
+};
+
+/*********************************************************************
+ * Function prototypes
+ *********************************************************************/
+static int igb_probe(device_t);
+static int igb_attach(device_t);
+static int igb_detach(device_t);
+static int igb_shutdown(device_t);
+static int igb_suspend(device_t);
+static int igb_resume(device_t);
+static void igb_start(struct ifnet *);
+static void igb_start_locked(struct tx_ring *, struct ifnet *ifp);
+#if __FreeBSD_version >= 800000
+static int igb_mq_start(struct ifnet *, struct mbuf *);
+static int igb_mq_start_locked(struct ifnet *,
+ struct tx_ring *, struct mbuf *);
+static void igb_qflush(struct ifnet *);
+#endif
+static int igb_ioctl(struct ifnet *, u_long, caddr_t);
+static void igb_init(void *);
+static void igb_init_locked(struct adapter *);
+static void igb_stop(void *);
+static void igb_media_status(struct ifnet *, struct ifmediareq *);
+static int igb_media_change(struct ifnet *);
+static void igb_identify_hardware(struct adapter *);
+static int igb_allocate_pci_resources(struct adapter *);
+static int igb_allocate_msix(struct adapter *);
+static int igb_allocate_legacy(struct adapter *);
+static int igb_setup_msix(struct adapter *);
+static void igb_free_pci_resources(struct adapter *);
+static void igb_local_timer(void *);
+static void igb_reset(struct adapter *);
+static int igb_setup_interface(device_t, struct adapter *);
+static int igb_allocate_queues(struct adapter *);
+static void igb_configure_queues(struct adapter *);
+
+static int igb_allocate_transmit_buffers(struct tx_ring *);
+static void igb_setup_transmit_structures(struct adapter *);
+static void igb_setup_transmit_ring(struct tx_ring *);
+static void igb_initialize_transmit_units(struct adapter *);
+static void igb_free_transmit_structures(struct adapter *);
+static void igb_free_transmit_buffers(struct tx_ring *);
+
+static int igb_allocate_receive_buffers(struct rx_ring *);
+static int igb_setup_receive_structures(struct adapter *);
+static int igb_setup_receive_ring(struct rx_ring *);
+static void igb_initialize_receive_units(struct adapter *);
+static void igb_free_receive_structures(struct adapter *);
+static void igb_free_receive_buffers(struct rx_ring *);
+static void igb_free_receive_ring(struct rx_ring *);
+
+static void igb_enable_intr(struct adapter *);
+static void igb_disable_intr(struct adapter *);
+static void igb_update_stats_counters(struct adapter *);
+static bool igb_txeof(struct tx_ring *);
+
+static __inline void igb_rx_discard(struct rx_ring *, int);
+static __inline void igb_rx_input(struct rx_ring *,
+ struct ifnet *, struct mbuf *, u32);
+
+static bool igb_rxeof(struct igb_queue *, int, int *);
+static void igb_rx_checksum(u32, struct mbuf *, u32);
+static int igb_tx_ctx_setup(struct tx_ring *, struct mbuf *);
+static bool igb_tso_setup(struct tx_ring *, struct mbuf *, u32 *);
+static void igb_set_promisc(struct adapter *);
+static void igb_disable_promisc(struct adapter *);
+static void igb_set_multi(struct adapter *);
+static void igb_update_link_status(struct adapter *);
+static void igb_refresh_mbufs(struct rx_ring *, int);
+
+static void igb_register_vlan(void *, struct ifnet *, u16);
+static void igb_unregister_vlan(void *, struct ifnet *, u16);
+static void igb_setup_vlan_hw_support(struct adapter *);
+
+static int igb_xmit(struct tx_ring *, struct mbuf **);
+static int igb_dma_malloc(struct adapter *, bus_size_t,
+ struct igb_dma_alloc *, int);
+static void igb_dma_free(struct adapter *, struct igb_dma_alloc *);
+static int igb_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
+static void igb_print_nvm_info(struct adapter *);
+static int igb_is_valid_ether_addr(u8 *);
+static void igb_add_hw_stats(struct adapter *);
+
+static void igb_vf_init_stats(struct adapter *);
+static void igb_update_vf_stats_counters(struct adapter *);
+
+/* Management and WOL Support */
+static void igb_init_manageability(struct adapter *);
+static void igb_release_manageability(struct adapter *);
+static void igb_get_hw_control(struct adapter *);
+static void igb_release_hw_control(struct adapter *);
+static void igb_enable_wakeup(device_t);
+static void igb_led_func(void *, int);
+
+static int igb_irq_fast(void *);
+static void igb_msix_que(void *);
+static void igb_msix_link(void *);
+static void igb_handle_que(void *context, int pending);
+static void igb_handle_link(void *context, int pending);
+
+static void igb_set_sysctl_value(struct adapter *, const char *,
+ const char *, int *, int);
+static int igb_set_flowcntl(SYSCTL_HANDLER_ARGS);
+
+#ifdef DEVICE_POLLING
+static poll_handler_t igb_poll;
+#endif /* POLLING */
+
+/*********************************************************************
+ * FreeBSD Device Interface Entry Points
+ *********************************************************************/
+
+static device_method_t igb_methods[] = {
+ /* Device interface */
+ DEVMETHOD(device_probe, igb_probe),
+ DEVMETHOD(device_attach, igb_attach),
+ DEVMETHOD(device_detach, igb_detach),
+ DEVMETHOD(device_shutdown, igb_shutdown),
+ DEVMETHOD(device_suspend, igb_suspend),
+ DEVMETHOD(device_resume, igb_resume),
+ {0, 0}
+};
+
+static driver_t igb_driver = {
+ "igb", igb_methods, sizeof(struct adapter),
+};
+
+static devclass_t igb_devclass;
+DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
+MODULE_DEPEND(igb, pci, 1, 1, 1);
+MODULE_DEPEND(igb, ether, 1, 1, 1);
+
+/*********************************************************************
+ * Tunable default values.
+ *********************************************************************/
+
+/* Descriptor defaults */
+static int igb_rxd = IGB_DEFAULT_RXD;
+static int igb_txd = IGB_DEFAULT_TXD;
+TUNABLE_INT("hw.igb.rxd", &igb_rxd);
+TUNABLE_INT("hw.igb.txd", &igb_txd);
+
+/*
+** AIM: Adaptive Interrupt Moderation
+** which means that the interrupt rate
+** is varied over time based on the
+** traffic for that interrupt vector
+*/
+static int igb_enable_aim = TRUE;
+TUNABLE_INT("hw.igb.enable_aim", &igb_enable_aim);
+
+/*
+ * MSIX should be the default for best performance,
+ * but this allows it to be forced off for testing.
+ */
+static int igb_enable_msix = 1;
+TUNABLE_INT("hw.igb.enable_msix", &igb_enable_msix);
+
+/*
+** Tuneable Interrupt rate
+*/
+static int igb_max_interrupt_rate = 8000;
+TUNABLE_INT("hw.igb.max_interrupt_rate", &igb_max_interrupt_rate);
+
+/*
+** Header split causes the packet header to
+** be dma'd to a seperate mbuf from the payload.
+** this can have memory alignment benefits. But
+** another plus is that small packets often fit
+** into the header and thus use no cluster. Its
+** a very workload dependent type feature.
+*/
+static bool igb_header_split = FALSE;
+TUNABLE_INT("hw.igb.hdr_split", &igb_header_split);
+
+/*
+** This will autoconfigure based on
+** the number of CPUs if left at 0.
+*/
+static int igb_num_queues = 0;
+TUNABLE_INT("hw.igb.num_queues", &igb_num_queues);
+
+/* How many packets rxeof tries to clean at a time */
+static int igb_rx_process_limit = 100;
+TUNABLE_INT("hw.igb.rx_process_limit", &igb_rx_process_limit);
+
+/* Flow control setting - default to FULL */
+static int igb_fc_setting = e1000_fc_full;
+TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
+
+/* Energy Efficient Ethernet - default to off */
+static int igb_eee_disabled = TRUE;
+TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
+
+/*
+** DMA Coalescing, only for i350 - default to off,
+** this feature is for power savings
+*/
+static int igb_dma_coalesce = FALSE;
+TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
+
+/*********************************************************************
+ * Device identification routine
+ *
+ * igb_probe determines if the driver should be loaded on
+ * adapter based on PCI vendor/device id of the adapter.
+ *
+ * return BUS_PROBE_DEFAULT on success, positive on failure
+ *********************************************************************/
+
+static int
+igb_probe(device_t dev)
+{
+ char adapter_name[60];
+ uint16_t pci_vendor_id = 0;
+ uint16_t pci_device_id = 0;
+ uint16_t pci_subvendor_id = 0;
+ uint16_t pci_subdevice_id = 0;
+ igb_vendor_info_t *ent;
+
+ INIT_DEBUGOUT("igb_probe: begin");
+
+ pci_vendor_id = pci_get_vendor(dev);
+ if (pci_vendor_id != IGB_VENDOR_ID)
+ return (ENXIO);
+
+ pci_device_id = pci_get_device(dev);
+ pci_subvendor_id = pci_get_subvendor(dev);
+ pci_subdevice_id = pci_get_subdevice(dev);
+
+ ent = igb_vendor_info_array;
+ while (ent->vendor_id != 0) {
+ if ((pci_vendor_id == ent->vendor_id) &&
+ (pci_device_id == ent->device_id) &&
+
+ ((pci_subvendor_id == ent->subvendor_id) ||
+ (ent->subvendor_id == PCI_ANY_ID)) &&
+
+ ((pci_subdevice_id == ent->subdevice_id) ||
+ (ent->subdevice_id == PCI_ANY_ID))) {
+ sprintf(adapter_name, "%s %s",
+ igb_strings[ent->index],
+ igb_driver_version);
+ device_set_desc_copy(dev, adapter_name);
+ return (BUS_PROBE_DEFAULT);
+ }
+ ent++;
+ }
+
+ return (ENXIO);
+}
+
+/*********************************************************************
+ * Device initialization routine
+ *
+ * The attach entry point is called when the driver is being loaded.
+ * This routine identifies the type of hardware, allocates all resources
+ * and initializes the hardware.
+ *
+ * return 0 on success, positive on failure
+ *********************************************************************/
+
+static int
+igb_attach(device_t dev)
+{
+ struct adapter *adapter;
+ int error = 0;
+ u16 eeprom_data;
+
+ INIT_DEBUGOUT("igb_attach: begin");
+
+ adapter = device_get_softc(dev);
+ adapter->dev = adapter->osdep.dev = dev;
+ IGB_CORE_LOCK_INIT(adapter, device_get_nameunit(dev));
+
+ /* SYSCTL stuff */
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
+ OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
+ igb_sysctl_nvm_info, "I", "NVM Information");
+
+ SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
+ OID_AUTO, "enable_aim", CTLTYPE_INT|CTLFLAG_RW,
+ &igb_enable_aim, 1, "Interrupt Moderation");
+
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
+ OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
+ adapter, 0, igb_set_flowcntl, "I", "Flow Control");
+
+ callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0);
+
+ /* Determine hardware and mac info */
+ igb_identify_hardware(adapter);
+
+ /* Setup PCI resources */
+ if (igb_allocate_pci_resources(adapter)) {
+ device_printf(dev, "Allocation of PCI resources failed\n");
+ error = ENXIO;
+ goto err_pci;
+ }
+
+ /* Do Shared Code initialization */
+ if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
+ device_printf(dev, "Setup of Shared code failed\n");
+ error = ENXIO;
+ goto err_pci;
+ }
+
+ e1000_get_bus_info(&adapter->hw);
+
+ /* Sysctl for limiting the amount of work done in the taskqueue */
+ igb_set_sysctl_value(adapter, "rx_processing_limit",
+ "max number of rx packets to process", &adapter->rx_process_limit,
+ igb_rx_process_limit);
+
+ /*
+ * Validate number of transmit and receive descriptors. It
+ * must not exceed hardware maximum, and must be multiple
+ * of E1000_DBA_ALIGN.
+ */
+ if (((igb_txd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN) != 0 ||
+ (igb_txd > IGB_MAX_TXD) || (igb_txd < IGB_MIN_TXD)) {
+ device_printf(dev, "Using %d TX descriptors instead of %d!\n",
+ IGB_DEFAULT_TXD, igb_txd);
+ adapter->num_tx_desc = IGB_DEFAULT_TXD;
+ } else
+ adapter->num_tx_desc = igb_txd;
+ if (((igb_rxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN) != 0 ||
+ (igb_rxd > IGB_MAX_RXD) || (igb_rxd < IGB_MIN_RXD)) {
+ device_printf(dev, "Using %d RX descriptors instead of %d!\n",
+ IGB_DEFAULT_RXD, igb_rxd);
+ adapter->num_rx_desc = IGB_DEFAULT_RXD;
+ } else
+ adapter->num_rx_desc = igb_rxd;
+
+ adapter->hw.mac.autoneg = DO_AUTO_NEG;
+ adapter->hw.phy.autoneg_wait_to_complete = FALSE;
+ adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+
+ /* Copper options */
+ if (adapter->hw.phy.media_type == e1000_media_type_copper) {
+ adapter->hw.phy.mdix = AUTO_ALL_MODES;
+ adapter->hw.phy.disable_polarity_correction = FALSE;
+ adapter->hw.phy.ms_type = IGB_MASTER_SLAVE;
+ }
+
+ /*
+ * Set the frame limits assuming
+ * standard ethernet sized frames.
+ */
+ adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
+ adapter->min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE;
+
+ /*
+ ** Allocate and Setup Queues
+ */
+ if (igb_allocate_queues(adapter)) {
+ error = ENOMEM;
+ goto err_pci;
+ }
+
+ /* Allocate the appropriate stats memory */
+ if (adapter->vf_ifp) {
+ adapter->stats =
+ (struct e1000_vf_stats *)malloc(sizeof \
+ (struct e1000_vf_stats), M_DEVBUF, M_NOWAIT | M_ZERO);
+ igb_vf_init_stats(adapter);
+ } else
+ adapter->stats =
+ (struct e1000_hw_stats *)malloc(sizeof \
+ (struct e1000_hw_stats), M_DEVBUF, M_NOWAIT | M_ZERO);
+ if (adapter->stats == NULL) {
+ device_printf(dev, "Can not allocate stats memory\n");
+ error = ENOMEM;
+ goto err_late;
+ }
+
+ /* Allocate multicast array memory. */
+ adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN *
+ MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
+ if (adapter->mta == NULL) {
+ device_printf(dev, "Can not allocate multicast setup array\n");
+ error = ENOMEM;
+ goto err_late;
+ }
+
+ /* Some adapter-specific advanced features */
+ if (adapter->hw.mac.type >= e1000_i350) {
+ igb_set_sysctl_value(adapter, "dma_coalesce",
+ "configure dma coalesce",
+ &adapter->dma_coalesce, igb_dma_coalesce);
+ igb_set_sysctl_value(adapter, "eee_disabled",
+ "enable Energy Efficient Ethernet",
+ &adapter->hw.dev_spec._82575.eee_disable,
+ igb_eee_disabled);
+ e1000_set_eee_i350(&adapter->hw);
+ }
+
+ /*
+ ** Start from a known state, this is
+ ** important in reading the nvm and
+ ** mac from that.
+ */
+ e1000_reset_hw(&adapter->hw);
+
+ /* Make sure we have a good EEPROM before we read from it */
+ if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
+ /*
+ ** Some PCI-E parts fail the first check due to
+ ** the link being in sleep state, call it again,
+ ** if it fails a second time its a real issue.
+ */
+ if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
+ device_printf(dev,
+ "The EEPROM Checksum Is Not Valid\n");
+ error = EIO;
+ goto err_late;
+ }
+ }
+
+ /*
+ ** Copy the permanent MAC address out of the EEPROM
+ */
+ if (e1000_read_mac_addr(&adapter->hw) < 0) {
+ device_printf(dev, "EEPROM read error while reading MAC"
+ " address\n");
+ error = EIO;
+ goto err_late;
+ }
+ /* Check its sanity */
+ if (!igb_is_valid_ether_addr(adapter->hw.mac.addr)) {
+ device_printf(dev, "Invalid MAC address\n");
+ error = EIO;
+ goto err_late;
+ }
+
+ /*
+ ** Configure Interrupts
+ */
+ if ((adapter->msix > 1) && (igb_enable_msix))
+ error = igb_allocate_msix(adapter);
+ else /* MSI or Legacy */
+ error = igb_allocate_legacy(adapter);
+ if (error)
+ goto err_late;
+
+ /* Setup OS specific network interface */
+ if (igb_setup_interface(dev, adapter) != 0)
+ goto err_late;
+
+ /* Now get a good starting state */
+ igb_reset(adapter);
+
+ /* Initialize statistics */
+ igb_update_stats_counters(adapter);
+
+ adapter->hw.mac.get_link_status = 1;
+ igb_update_link_status(adapter);
+
+ /* Indicate SOL/IDER usage */
+ if (e1000_check_reset_block(&adapter->hw))
+ device_printf(dev,
+ "PHY reset is blocked due to SOL/IDER session.\n");
+
+ /* Determine if we have to control management hardware */
+ adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
+
+ /*
+ * Setup Wake-on-Lan
+ */
+ /* APME bit in EEPROM is mapped to WUC.APME */
+ eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC) & E1000_WUC_APME;
+ if (eeprom_data)
+ adapter->wol = E1000_WUFC_MAG;
+
+ /* Register for VLAN events */
+ adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
+ igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
+ adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
+ igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
+
+ igb_add_hw_stats(adapter);
+
+ /* Tell the stack that the interface is not active */
+ adapter->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+
+ adapter->led_dev = led_create(igb_led_func, adapter,
+ device_get_nameunit(dev));
+
+ INIT_DEBUGOUT("igb_attach: end");
+
+ return (0);
+
+err_late:
+ igb_free_transmit_structures(adapter);
+ igb_free_receive_structures(adapter);
+ igb_release_hw_control(adapter);
+ if (adapter->ifp != NULL)
+ if_free(adapter->ifp);
+err_pci:
+ igb_free_pci_resources(adapter);
+ free(adapter->mta, M_DEVBUF);
+ IGB_CORE_LOCK_DESTROY(adapter);
+
+ return (error);
+}
+
+/*********************************************************************
+ * Device removal routine
+ *
+ * The detach entry point is called when the driver is being removed.
+ * This routine stops the adapter and deallocates all the resources
+ * that were allocated for driver operation.
+ *
+ * return 0 on success, positive on failure
+ *********************************************************************/
+
+static int
+igb_detach(device_t dev)
+{
+ struct adapter *adapter = device_get_softc(dev);
+ struct ifnet *ifp = adapter->ifp;
+
+ INIT_DEBUGOUT("igb_detach: begin");
+
+ /* Make sure VLANS are not using driver */
+ if (adapter->ifp->if_vlantrunk != NULL) {
+ device_printf(dev,"Vlan in use, detach first\n");
+ return (EBUSY);
+ }
+
+ if (adapter->led_dev != NULL)
+ led_destroy(adapter->led_dev);
+
+#ifdef DEVICE_POLLING
+ if (ifp->if_capenable & IFCAP_POLLING)
+ ether_poll_deregister(ifp);
+#endif
+
+ IGB_CORE_LOCK(adapter);
+ adapter->in_detach = 1;
+ igb_stop(adapter);
+ IGB_CORE_UNLOCK(adapter);
+
+ e1000_phy_hw_reset(&adapter->hw);
+
+ /* Give control back to firmware */
+ igb_release_manageability(adapter);
+ igb_release_hw_control(adapter);
+
+ if (adapter->wol) {
+ E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
+ E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
+ igb_enable_wakeup(dev);
+ }
+
+ /* Unregister VLAN events */
+ if (adapter->vlan_attach != NULL)
+ EVENTHANDLER_DEREGISTER(vlan_config, adapter->vlan_attach);
+ if (adapter->vlan_detach != NULL)
+ EVENTHANDLER_DEREGISTER(vlan_unconfig, adapter->vlan_detach);
+
+ ether_ifdetach(adapter->ifp);
+
+ callout_drain(&adapter->timer);
+
+ igb_free_pci_resources(adapter);
+ bus_generic_detach(dev);
+ if_free(ifp);
+
+ igb_free_transmit_structures(adapter);
+ igb_free_receive_structures(adapter);
+ free(adapter->mta, M_DEVBUF);
+
+ IGB_CORE_LOCK_DESTROY(adapter);
+
+ return (0);
+}
+
+/*********************************************************************
+ *
+ * Shutdown entry point
+ *
+ **********************************************************************/
+
+static int
+igb_shutdown(device_t dev)
+{
+ return igb_suspend(dev);
+}
+
+/*
+ * Suspend/resume device methods.
+ */
+static int
+igb_suspend(device_t dev)
+{
+ struct adapter *adapter = device_get_softc(dev);
+
+ IGB_CORE_LOCK(adapter);
+
+ igb_stop(adapter);
+
+ igb_release_manageability(adapter);
+ igb_release_hw_control(adapter);
+
+ if (adapter->wol) {
+ E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
+ E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
+ igb_enable_wakeup(dev);
+ }
+
+ IGB_CORE_UNLOCK(adapter);
+
+ return bus_generic_suspend(dev);
+}
+
+static int
+igb_resume(device_t dev)
+{
+ struct adapter *adapter = device_get_softc(dev);
+ struct ifnet *ifp = adapter->ifp;
+
+ IGB_CORE_LOCK(adapter);
+ igb_init_locked(adapter);
+ igb_init_manageability(adapter);
+
+ if ((ifp->if_flags & IFF_UP) &&
+ (ifp->if_drv_flags & IFF_DRV_RUNNING))
+ igb_start(ifp);
+
+ IGB_CORE_UNLOCK(adapter);
+
+ return bus_generic_resume(dev);
+}
+
+
+/*********************************************************************
+ * Transmit entry point
+ *
+ * igb_start is called by the stack to initiate a transmit.
+ * The driver will remain in this routine as long as there are
+ * packets to transmit and transmit resources are available.
+ * In case resources are not available stack is notified and
+ * the packet is requeued.
+ **********************************************************************/
+
+static void
+igb_start_locked(struct tx_ring *txr, struct ifnet *ifp)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct mbuf *m_head;
+
+ IGB_TX_LOCK_ASSERT(txr);
+
+ if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
+ IFF_DRV_RUNNING)
+ return;
+ if (!adapter->link_active)
+ return;
+
+ /* Call cleanup if number of TX descriptors low */
+ if (txr->tx_avail <= IGB_TX_CLEANUP_THRESHOLD)
+ igb_txeof(txr);
+
+ while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
+ if (txr->tx_avail <= IGB_MAX_SCATTER) {
+ ifp->if_drv_flags |= IFF_DRV_OACTIVE;
+ break;
+ }
+ IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
+ if (m_head == NULL)
+ break;
+ /*
+ * Encapsulation can modify our pointer, and or make it
+ * NULL on failure. In that event, we can't requeue.
+ */
+ if (igb_xmit(txr, &m_head)) {
+ if (m_head == NULL)
+ break;
+ ifp->if_drv_flags |= IFF_DRV_OACTIVE;
+ IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
+ break;
+ }
+
+ /* Send a copy of the frame to the BPF listener */
+ ETHER_BPF_MTAP(ifp, m_head);
+
+ /* Set watchdog on */
+ txr->watchdog_time = ticks;
+ txr->queue_status = IGB_QUEUE_WORKING;
+ }
+}
+
+/*
+ * Legacy TX driver routine, called from the
+ * stack, always uses tx[0], and spins for it.
+ * Should not be used with multiqueue tx
+ */
+static void
+igb_start(struct ifnet *ifp)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct tx_ring *txr = adapter->tx_rings;
+
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
+ IGB_TX_LOCK(txr);
+ igb_start_locked(txr, ifp);
+ IGB_TX_UNLOCK(txr);
+ }
+ return;
+}
+
+#if __FreeBSD_version >= 800000
+/*
+** Multiqueue Transmit driver
+**
+*/
+static int
+igb_mq_start(struct ifnet *ifp, struct mbuf *m)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct igb_queue *que;
+ struct tx_ring *txr;
+ int i = 0, err = 0;
+
+ /* Which queue to use */
+ if ((m->m_flags & M_FLOWID) != 0)
+ i = m->m_pkthdr.flowid % adapter->num_queues;
+
+ txr = &adapter->tx_rings[i];
+ que = &adapter->queues[i];
+
+ if (IGB_TX_TRYLOCK(txr)) {
+ err = igb_mq_start_locked(ifp, txr, m);
+ IGB_TX_UNLOCK(txr);
+ } else {
+ err = drbr_enqueue(ifp, txr->br, m);
+ taskqueue_enqueue(que->tq, &que->que_task);
+ }
+
+ return (err);
+}
+
+static int
+igb_mq_start_locked(struct ifnet *ifp, struct tx_ring *txr, struct mbuf *m)
+{
+ struct adapter *adapter = txr->adapter;
+ struct mbuf *next;
+ int err = 0, enq;
+
+ IGB_TX_LOCK_ASSERT(txr);
+
+ if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
+ IFF_DRV_RUNNING || adapter->link_active == 0) {
+ if (m != NULL)
+ err = drbr_enqueue(ifp, txr->br, m);
+ return (err);
+ }
+
+ enq = 0;
+ if (m == NULL) {
+ next = drbr_dequeue(ifp, txr->br);
+ } else if (drbr_needs_enqueue(ifp, txr->br)) {
+ if ((err = drbr_enqueue(ifp, txr->br, m)) != 0)
+ return (err);
+ next = drbr_dequeue(ifp, txr->br);
+ } else
+ next = m;
+
+ /* Process the queue */
+ while (next != NULL) {
+ if ((err = igb_xmit(txr, &next)) != 0) {
+ if (next != NULL)
+ err = drbr_enqueue(ifp, txr->br, next);
+ break;
+ }
+ enq++;
+ drbr_stats_update(ifp, next->m_pkthdr.len, next->m_flags);
+ ETHER_BPF_MTAP(ifp, next);
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
+ break;
+ if (txr->tx_avail <= IGB_TX_CLEANUP_THRESHOLD)
+ igb_txeof(txr);
+ if (txr->tx_avail <= IGB_MAX_SCATTER) {
+ ifp->if_drv_flags |= IFF_DRV_OACTIVE;
+ break;
+ }
+ next = drbr_dequeue(ifp, txr->br);
+ }
+ if (enq > 0) {
+ /* Set the watchdog */
+ txr->queue_status = IGB_QUEUE_WORKING;
+ txr->watchdog_time = ticks;
+ }
+ return (err);
+}
+
+/*
+** Flush all ring buffers
+*/
+static void
+igb_qflush(struct ifnet *ifp)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct tx_ring *txr = adapter->tx_rings;
+ struct mbuf *m;
+
+ for (int i = 0; i < adapter->num_queues; i++, txr++) {
+ IGB_TX_LOCK(txr);
+ while ((m = buf_ring_dequeue_sc(txr->br)) != NULL)
+ m_freem(m);
+ IGB_TX_UNLOCK(txr);
+ }
+ if_qflush(ifp);
+}
+#endif /* __FreeBSD_version >= 800000 */
+
+/*********************************************************************
+ * Ioctl entry point
+ *
+ * igb_ioctl is called when the user wants to configure the
+ * interface.
+ *
+ * return 0 on success, positive on failure
+ **********************************************************************/
+
+static int
+igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct ifreq *ifr = (struct ifreq *)data;
+#ifdef INET
+ struct ifaddr *ifa = (struct ifaddr *)data;
+#endif
+ int error = 0;
+
+ if (adapter->in_detach)
+ return (error);
+
+ switch (command) {
+ case SIOCSIFADDR:
+#ifdef INET
+ if (ifa->ifa_addr->sa_family == AF_INET) {
+ /*
+ * XXX
+ * Since resetting hardware takes a very long time
+ * and results in link renegotiation we only
+ * initialize the hardware only when it is absolutely
+ * required.
+ */
+ ifp->if_flags |= IFF_UP;
+ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
+ IGB_CORE_LOCK(adapter);
+ igb_init_locked(adapter);
+ IGB_CORE_UNLOCK(adapter);
+ }
+ if (!(ifp->if_flags & IFF_NOARP))
+ arp_ifinit(ifp, ifa);
+ } else
+#endif
+ error = ether_ioctl(ifp, command, data);
+ break;
+ case SIOCSIFMTU:
+ {
+ int max_frame_size;
+
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
+
+ IGB_CORE_LOCK(adapter);
+ max_frame_size = 9234;
+ if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
+ ETHER_CRC_LEN) {
+ IGB_CORE_UNLOCK(adapter);
+ error = EINVAL;
+ break;
+ }
+
+ ifp->if_mtu = ifr->ifr_mtu;
+ adapter->max_frame_size =
+ ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
+ igb_init_locked(adapter);
+ IGB_CORE_UNLOCK(adapter);
+ break;
+ }
+ case SIOCSIFFLAGS:
+ IOCTL_DEBUGOUT("ioctl rcv'd:\
+ SIOCSIFFLAGS (Set Interface Flags)");
+ IGB_CORE_LOCK(adapter);
+ if (ifp->if_flags & IFF_UP) {
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
+ if ((ifp->if_flags ^ adapter->if_flags) &
+ (IFF_PROMISC | IFF_ALLMULTI)) {
+ igb_disable_promisc(adapter);
+ igb_set_promisc(adapter);
+ }
+ } else
+ igb_init_locked(adapter);
+ } else
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING)
+ igb_stop(adapter);
+ adapter->if_flags = ifp->if_flags;
+ IGB_CORE_UNLOCK(adapter);
+ break;
+ case SIOCADDMULTI:
+ case SIOCDELMULTI:
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
+ IGB_CORE_LOCK(adapter);
+ igb_disable_intr(adapter);
+ igb_set_multi(adapter);
+#ifdef DEVICE_POLLING
+ if (!(ifp->if_capenable & IFCAP_POLLING))
+#endif
+ igb_enable_intr(adapter);
+ IGB_CORE_UNLOCK(adapter);
+ }
+ break;
+ case SIOCSIFMEDIA:
+ /*
+ ** As the speed/duplex settings are being
+ ** changed, we need toreset the PHY.
+ */
+ adapter->hw.phy.reset_disable = FALSE;
+ /* Check SOL/IDER usage */
+ IGB_CORE_LOCK(adapter);
+ if (e1000_check_reset_block(&adapter->hw)) {
+ IGB_CORE_UNLOCK(adapter);
+ device_printf(adapter->dev, "Media change is"
+ " blocked due to SOL/IDER session.\n");
+ break;
+ }
+ IGB_CORE_UNLOCK(adapter);
+ case SIOCGIFMEDIA:
+ IOCTL_DEBUGOUT("ioctl rcv'd: \
+ SIOCxIFMEDIA (Get/Set Interface Media)");
+ error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
+ break;
+ case SIOCSIFCAP:
+ {
+ int mask, reinit;
+
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
+ reinit = 0;
+ mask = ifr->ifr_reqcap ^ ifp->if_capenable;
+#ifdef DEVICE_POLLING
+ if (mask & IFCAP_POLLING) {
+ if (ifr->ifr_reqcap & IFCAP_POLLING) {
+ error = ether_poll_register(igb_poll, ifp);
+ if (error)
+ return (error);
+ IGB_CORE_LOCK(adapter);
+ igb_disable_intr(adapter);
+ ifp->if_capenable |= IFCAP_POLLING;
+ IGB_CORE_UNLOCK(adapter);
+ } else {
+ error = ether_poll_deregister(ifp);
+ /* Enable interrupt even in error case */
+ IGB_CORE_LOCK(adapter);
+ igb_enable_intr(adapter);
+ ifp->if_capenable &= ~IFCAP_POLLING;
+ IGB_CORE_UNLOCK(adapter);
+ }
+ }
+#endif
+ if (mask & IFCAP_HWCSUM) {
+ ifp->if_capenable ^= IFCAP_HWCSUM;
+ reinit = 1;
+ }
+ if (mask & IFCAP_TSO4) {
+ ifp->if_capenable ^= IFCAP_TSO4;
+ reinit = 1;
+ }
+ if (mask & IFCAP_VLAN_HWTAGGING) {
+ ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
+ reinit = 1;
+ }
+ if (mask & IFCAP_VLAN_HWFILTER) {
+ ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
+ reinit = 1;
+ }
+ if (mask & IFCAP_LRO) {
+ ifp->if_capenable ^= IFCAP_LRO;
+ reinit = 1;
+ }
+ if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING))
+ igb_init(adapter);
+ VLAN_CAPABILITIES(ifp);
+ break;
+ }
+
+ default:
+ error = ether_ioctl(ifp, command, data);
+ break;
+ }
+
+ return (error);
+}
+
+
+/*********************************************************************
+ * Init entry point
+ *
+ * This routine is used in two ways. It is used by the stack as
+ * init entry point in network interface structure. It is also used
+ * by the driver as a hw/sw initialization routine to get to a
+ * consistent state.
+ *
+ * return 0 on success, positive on failure
+ **********************************************************************/
+
+static void
+igb_init_locked(struct adapter *adapter)
+{
+ struct ifnet *ifp = adapter->ifp;
+ device_t dev = adapter->dev;
+
+ INIT_DEBUGOUT("igb_init: begin");
+
+ IGB_CORE_LOCK_ASSERT(adapter);
+
+ igb_disable_intr(adapter);
+ callout_stop(&adapter->timer);
+
+ /* Get the latest mac address, User can use a LAA */
+ bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac.addr,
+ ETHER_ADDR_LEN);
+
+ /* Put the address into the Receive Address Array */
+ e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
+
+ igb_reset(adapter);
+ igb_update_link_status(adapter);
+
+ E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
+
+ /* Set hardware offload abilities */
+ ifp->if_hwassist = 0;
+ if (ifp->if_capenable & IFCAP_TXCSUM) {
+ ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP);
+#if __FreeBSD_version >= 800000
+ if (adapter->hw.mac.type == e1000_82576)
+ ifp->if_hwassist |= CSUM_SCTP;
+#endif
+ }
+
+ if (ifp->if_capenable & IFCAP_TSO4)
+ ifp->if_hwassist |= CSUM_TSO;
+
+ /* Configure for OS presence */
+ igb_init_manageability(adapter);
+
+ /* Prepare transmit descriptors and buffers */
+ igb_setup_transmit_structures(adapter);
+ igb_initialize_transmit_units(adapter);
+
+ /* Setup Multicast table */
+ igb_set_multi(adapter);
+
+ /*
+ ** Figure out the desired mbuf pool
+ ** for doing jumbo/packetsplit
+ */
+ if (adapter->max_frame_size <= 2048)
+ adapter->rx_mbuf_sz = MCLBYTES;
+ else if (adapter->max_frame_size <= 4096)
+ adapter->rx_mbuf_sz = MJUMPAGESIZE;
+ else
+ adapter->rx_mbuf_sz = MJUM9BYTES;
+
+ /* Prepare receive descriptors and buffers */
+ if (igb_setup_receive_structures(adapter)) {
+ device_printf(dev, "Could not setup receive structures\n");
+ return;
+ }
+ igb_initialize_receive_units(adapter);
+
+ /* Enable VLAN support */
+ if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
+ igb_setup_vlan_hw_support(adapter);
+
+ /* Don't lose promiscuous settings */
+ igb_set_promisc(adapter);
+
+ ifp->if_drv_flags |= IFF_DRV_RUNNING;
+ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
+
+ callout_reset(&adapter->timer, hz, igb_local_timer, adapter);
+ e1000_clear_hw_cntrs_base_generic(&adapter->hw);
+
+ if (adapter->msix > 1) /* Set up queue routing */
+ igb_configure_queues(adapter);
+
+ /* this clears any pending interrupts */
+ E1000_READ_REG(&adapter->hw, E1000_ICR);
+#ifdef DEVICE_POLLING
+ /*
+ * Only enable interrupts if we are not polling, make sure
+ * they are off otherwise.
+ */
+ if (ifp->if_capenable & IFCAP_POLLING)
+ igb_disable_intr(adapter);
+ else
+#endif /* DEVICE_POLLING */
+ {
+ igb_enable_intr(adapter);
+ E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
+ }
+
+ /* Set Energy Efficient Ethernet */
+ e1000_set_eee_i350(&adapter->hw);
+
+ /* Don't reset the phy next time init gets called */
+ adapter->hw.phy.reset_disable = TRUE;
+}
+
+static void
+igb_init(void *arg)
+{
+ struct adapter *adapter = arg;
+
+ IGB_CORE_LOCK(adapter);
+ igb_init_locked(adapter);
+ IGB_CORE_UNLOCK(adapter);
+}
+
+
+static void
+igb_handle_que(void *context, int pending)
+{
+ struct igb_queue *que = context;
+ struct adapter *adapter = que->adapter;
+ struct tx_ring *txr = que->txr;
+ struct ifnet *ifp = adapter->ifp;
+
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
+ bool more;
+
+ more = igb_rxeof(que, -1, NULL);
+
+ IGB_TX_LOCK(txr);
+ if (igb_txeof(txr))
+ more = TRUE;
+#if __FreeBSD_version >= 800000
+ if (!drbr_empty(ifp, txr->br))
+ igb_mq_start_locked(ifp, txr, NULL);
+#else
+ igb_start_locked(txr, ifp);
+#endif
+ IGB_TX_UNLOCK(txr);
+ if (more || (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
+ taskqueue_enqueue(que->tq, &que->que_task);
+ return;
+ }
+ }
+
+#ifdef DEVICE_POLLING
+ if (ifp->if_capenable & IFCAP_POLLING)
+ return;
+#endif
+ /* Reenable this interrupt */
+ if (que->eims)
+ E1000_WRITE_REG(&adapter->hw, E1000_EIMS, que->eims);
+ else
+ igb_enable_intr(adapter);
+}
+
+/* Deal with link in a sleepable context */
+static void
+igb_handle_link(void *context, int pending)
+{
+ struct adapter *adapter = context;
+
+ adapter->hw.mac.get_link_status = 1;
+ igb_update_link_status(adapter);
+}
+
+/*********************************************************************
+ *
+ * MSI/Legacy Deferred
+ * Interrupt Service routine
+ *
+ *********************************************************************/
+static int
+igb_irq_fast(void *arg)
+{
+ struct adapter *adapter = arg;
+ struct igb_queue *que = adapter->queues;
+ u32 reg_icr;
+
+
+ reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
+
+ /* Hot eject? */
+ if (reg_icr == 0xffffffff)
+ return FILTER_STRAY;
+
+ /* Definitely not our interrupt. */
+ if (reg_icr == 0x0)
+ return FILTER_STRAY;
+
+ if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
+ return FILTER_STRAY;
+
+ /*
+ * Mask interrupts until the taskqueue is finished running. This is
+ * cheap, just assume that it is needed. This also works around the
+ * MSI message reordering errata on certain systems.
+ */
+ igb_disable_intr(adapter);
+ taskqueue_enqueue(que->tq, &que->que_task);
+
+ /* Link status change */
+ if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
+ taskqueue_enqueue(que->tq, &adapter->link_task);
+
+ if (reg_icr & E1000_ICR_RXO)
+ adapter->rx_overruns++;
+ return FILTER_HANDLED;
+}
+
+#ifdef DEVICE_POLLING
+/*********************************************************************
+ *
+ * Legacy polling routine : if using this code you MUST be sure that
+ * multiqueue is not defined, ie, set igb_num_queues to 1.
+ *
+ *********************************************************************/
+#if __FreeBSD_version >= 800000
+#define POLL_RETURN_COUNT(a) (a)
+static int
+#else
+#define POLL_RETURN_COUNT(a)
+static void
+#endif
+igb_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct igb_queue *que = adapter->queues;
+ struct tx_ring *txr = adapter->tx_rings;
+ u32 reg_icr, rx_done = 0;
+ u32 loop = IGB_MAX_LOOP;
+ bool more;
+
+ IGB_CORE_LOCK(adapter);
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
+ IGB_CORE_UNLOCK(adapter);
+ return POLL_RETURN_COUNT(rx_done);
+ }
+
+ if (cmd == POLL_AND_CHECK_STATUS) {
+ reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
+ /* Link status change */
+ if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
+ igb_handle_link(adapter, 0);
+
+ if (reg_icr & E1000_ICR_RXO)
+ adapter->rx_overruns++;
+ }
+ IGB_CORE_UNLOCK(adapter);
+
+ igb_rxeof(que, count, &rx_done);
+
+ IGB_TX_LOCK(txr);
+ do {
+ more = igb_txeof(txr);
+ } while (loop-- && more);
+#if __FreeBSD_version >= 800000
+ if (!drbr_empty(ifp, txr->br))
+ igb_mq_start_locked(ifp, txr, NULL);
+#else
+ igb_start_locked(txr, ifp);
+#endif
+ IGB_TX_UNLOCK(txr);
+ return POLL_RETURN_COUNT(rx_done);
+}
+#endif /* DEVICE_POLLING */
+
+/*********************************************************************
+ *
+ * MSIX TX Interrupt Service routine
+ *
+ **********************************************************************/
+static void
+igb_msix_que(void *arg)
+{
+ struct igb_queue *que = arg;
+ struct adapter *adapter = que->adapter;
+ struct tx_ring *txr = que->txr;
+ struct rx_ring *rxr = que->rxr;
+ u32 newitr = 0;
+ bool more_tx, more_rx;
+
+ E1000_WRITE_REG(&adapter->hw, E1000_EIMC, que->eims);
+ ++que->irqs;
+
+ IGB_TX_LOCK(txr);
+ more_tx = igb_txeof(txr);
+ IGB_TX_UNLOCK(txr);
+
+ more_rx = igb_rxeof(que, adapter->rx_process_limit, NULL);
+
+ if (igb_enable_aim == FALSE)
+ goto no_calc;
+ /*
+ ** Do Adaptive Interrupt Moderation:
+ ** - Write out last calculated setting
+ ** - Calculate based on average size over
+ ** the last interval.
+ */
+ if (que->eitr_setting)
+ E1000_WRITE_REG(&adapter->hw,
+ E1000_EITR(que->msix), que->eitr_setting);
+
+ que->eitr_setting = 0;
+
+ /* Idle, do nothing */
+ if ((txr->bytes == 0) && (rxr->bytes == 0))
+ goto no_calc;
+
+ /* Used half Default if sub-gig */
+ if (adapter->link_speed != 1000)
+ newitr = IGB_DEFAULT_ITR / 2;
+ else {
+ if ((txr->bytes) && (txr->packets))
+ newitr = txr->bytes/txr->packets;
+ if ((rxr->bytes) && (rxr->packets))
+ newitr = max(newitr,
+ (rxr->bytes / rxr->packets));
+ newitr += 24; /* account for hardware frame, crc */
+ /* set an upper boundary */
+ newitr = min(newitr, 3000);
+ /* Be nice to the mid range */
+ if ((newitr > 300) && (newitr < 1200))
+ newitr = (newitr / 3);
+ else
+ newitr = (newitr / 2);
+ }
+ newitr &= 0x7FFC; /* Mask invalid bits */
+ if (adapter->hw.mac.type == e1000_82575)
+ newitr |= newitr << 16;
+ else
+ newitr |= E1000_EITR_CNT_IGNR;
+
+ /* save for next interrupt */
+ que->eitr_setting = newitr;
+
+ /* Reset state */
+ txr->bytes = 0;
+ txr->packets = 0;
+ rxr->bytes = 0;
+ rxr->packets = 0;
+
+no_calc:
+ /* Schedule a clean task if needed*/
+ if (more_tx || more_rx ||
+ (adapter->ifp->if_drv_flags & IFF_DRV_OACTIVE))
+ taskqueue_enqueue(que->tq, &que->que_task);
+ else
+ /* Reenable this interrupt */
+ E1000_WRITE_REG(&adapter->hw, E1000_EIMS, que->eims);
+ return;
+}
+
+
+/*********************************************************************
+ *
+ * MSIX Link Interrupt Service routine
+ *
+ **********************************************************************/
+
+static void
+igb_msix_link(void *arg)
+{
+ struct adapter *adapter = arg;
+ u32 icr;
+
+ ++adapter->link_irq;
+ icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
+ if (!(icr & E1000_ICR_LSC))
+ goto spurious;
+ igb_handle_link(adapter, 0);
+
+spurious:
+ /* Rearm */
+ E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
+ E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
+ return;
+}
+
+
+/*********************************************************************
+ *
+ * Media Ioctl callback
+ *
+ * This routine is called whenever the user queries the status of
+ * the interface using ifconfig.
+ *
+ **********************************************************************/
+static void
+igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
+{
+ struct adapter *adapter = ifp->if_softc;
+ u_char fiber_type = IFM_1000_SX;
+
+ INIT_DEBUGOUT("igb_media_status: begin");
+
+ IGB_CORE_LOCK(adapter);
+ igb_update_link_status(adapter);
+
+ ifmr->ifm_status = IFM_AVALID;
+ ifmr->ifm_active = IFM_ETHER;
+
+ if (!adapter->link_active) {
+ IGB_CORE_UNLOCK(adapter);
+ return;
+ }
+
+ ifmr->ifm_status |= IFM_ACTIVE;
+
+ if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
+ (adapter->hw.phy.media_type == e1000_media_type_internal_serdes))
+ ifmr->ifm_active |= fiber_type | IFM_FDX;
+ else {
+ switch (adapter->link_speed) {
+ case 10:
+ ifmr->ifm_active |= IFM_10_T;
+ break;
+ case 100:
+ ifmr->ifm_active |= IFM_100_TX;
+ break;
+ case 1000:
+ ifmr->ifm_active |= IFM_1000_T;
+ break;
+ }
+ if (adapter->link_duplex == FULL_DUPLEX)
+ ifmr->ifm_active |= IFM_FDX;
+ else
+ ifmr->ifm_active |= IFM_HDX;
+ }
+ IGB_CORE_UNLOCK(adapter);
+}
+
+/*********************************************************************
+ *
+ * Media Ioctl callback
+ *
+ * This routine is called when the user changes speed/duplex using
+ * media/mediopt option with ifconfig.
+ *
+ **********************************************************************/
+static int
+igb_media_change(struct ifnet *ifp)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct ifmedia *ifm = &adapter->media;
+
+ INIT_DEBUGOUT("igb_media_change: begin");
+
+ if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
+ return (EINVAL);
+
+ IGB_CORE_LOCK(adapter);
+ switch (IFM_SUBTYPE(ifm->ifm_media)) {
+ case IFM_AUTO:
+ adapter->hw.mac.autoneg = DO_AUTO_NEG;
+ adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+ break;
+ case IFM_1000_LX:
+ case IFM_1000_SX:
+ case IFM_1000_T:
+ adapter->hw.mac.autoneg = DO_AUTO_NEG;
+ adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
+ break;
+ case IFM_100_TX:
+ adapter->hw.mac.autoneg = FALSE;
+ adapter->hw.phy.autoneg_advertised = 0;
+ if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
+ else
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
+ break;
+ case IFM_10_T:
+ adapter->hw.mac.autoneg = FALSE;
+ adapter->hw.phy.autoneg_advertised = 0;
+ if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
+ else
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
+ break;
+ default:
+ device_printf(adapter->dev, "Unsupported media type\n");
+ }
+
+ igb_init_locked(adapter);
+ IGB_CORE_UNLOCK(adapter);
+
+ return (0);
+}
+
+
+/*********************************************************************
+ *
+ * This routine maps the mbufs to Advanced TX descriptors.
+ * used by the 82575 adapter.
+ *
+ **********************************************************************/
+
+static int
+igb_xmit(struct tx_ring *txr, struct mbuf **m_headp)
+{
+ struct adapter *adapter = txr->adapter;
+ bus_dma_segment_t segs[IGB_MAX_SCATTER];
+ bus_dmamap_t map;
+ struct igb_tx_buffer *tx_buffer, *tx_buffer_mapped;
+ union e1000_adv_tx_desc *txd = NULL;
+ struct mbuf *m_head;
+ u32 olinfo_status = 0, cmd_type_len = 0;
+ int nsegs, i, j, error, first, last = 0;
+ u32 hdrlen = 0;
+
+ m_head = *m_headp;
+
+
+ /* Set basic descriptor constants */
+ cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
+ cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
+ if (m_head->m_flags & M_VLANTAG)
+ cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
+
+ /*
+ * Map the packet for DMA.
+ *
+ * Capture the first descriptor index,
+ * this descriptor will have the index
+ * of the EOP which is the only one that
+ * now gets a DONE bit writeback.
+ */
+ first = txr->next_avail_desc;
+ tx_buffer = &txr->tx_buffers[first];
+ tx_buffer_mapped = tx_buffer;
+ map = tx_buffer->map;
+
+ error = bus_dmamap_load_mbuf_sg(txr->txtag, map,
+ *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
+
+ if (error == EFBIG) {
+ struct mbuf *m;
+
+ m = m_defrag(*m_headp, M_DONTWAIT);
+ if (m == NULL) {
+ adapter->mbuf_defrag_failed++;
+ m_freem(*m_headp);
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ *m_headp = m;
+
+ /* Try it again */
+ error = bus_dmamap_load_mbuf_sg(txr->txtag, map,
+ *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
+
+ if (error == ENOMEM) {
+ adapter->no_tx_dma_setup++;
+ return (error);
+ } else if (error != 0) {
+ adapter->no_tx_dma_setup++;
+ m_freem(*m_headp);
+ *m_headp = NULL;
+ return (error);
+ }
+ } else if (error == ENOMEM) {
+ adapter->no_tx_dma_setup++;
+ return (error);
+ } else if (error != 0) {
+ adapter->no_tx_dma_setup++;
+ m_freem(*m_headp);
+ *m_headp = NULL;
+ return (error);
+ }
+
+ /* Check again to be sure we have enough descriptors */
+ if (nsegs > (txr->tx_avail - 2)) {
+ txr->no_desc_avail++;
+ bus_dmamap_unload(txr->txtag, map);
+ return (ENOBUFS);
+ }
+ m_head = *m_headp;
+
+ /*
+ * Set up the context descriptor:
+ * used when any hardware offload is done.
+ * This includes CSUM, VLAN, and TSO. It
+ * will use the first descriptor.
+ */
+ if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
+ if (igb_tso_setup(txr, m_head, &hdrlen)) {
+ cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
+ olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
+ olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
+ } else
+ return (ENXIO);
+ } else if (igb_tx_ctx_setup(txr, m_head))
+ olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
+
+ /* Calculate payload length */
+ olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
+ << E1000_ADVTXD_PAYLEN_SHIFT);
+
+ /* 82575 needs the queue index added */
+ if (adapter->hw.mac.type == e1000_82575)
+ olinfo_status |= txr->me << 4;
+
+ /* Set up our transmit descriptors */
+ i = txr->next_avail_desc;
+ for (j = 0; j < nsegs; j++) {
+ bus_size_t seg_len;
+ bus_addr_t seg_addr;
+
+ tx_buffer = &txr->tx_buffers[i];
+ txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
+ seg_addr = segs[j].ds_addr;
+ seg_len = segs[j].ds_len;
+
+ txd->read.buffer_addr = htole64(seg_addr);
+ txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
+ txd->read.olinfo_status = htole32(olinfo_status);
+ last = i;
+ if (++i == adapter->num_tx_desc)
+ i = 0;
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+ }
+
+ txr->next_avail_desc = i;
+ txr->tx_avail -= nsegs;
+
+ tx_buffer->m_head = m_head;
+ tx_buffer_mapped->map = tx_buffer->map;
+ tx_buffer->map = map;
+ bus_dmamap_sync(txr->txtag, map, BUS_DMASYNC_PREWRITE);
+
+ /*
+ * Last Descriptor of Packet
+ * needs End Of Packet (EOP)
+ * and Report Status (RS)
+ */
+ txd->read.cmd_type_len |=
+ htole32(E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_RS);
+ /*
+ * Keep track in the first buffer which
+ * descriptor will be written back
+ */
+ tx_buffer = &txr->tx_buffers[first];
+ tx_buffer->next_eop = last;
+ txr->watchdog_time = ticks;
+
+ /*
+ * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
+ * that this frame is available to transmit.
+ */
+ bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+ E1000_WRITE_REG(&adapter->hw, E1000_TDT(txr->me), i);
+ ++txr->tx_packets;
+
+ return (0);
+
+}
+
+static void
+igb_set_promisc(struct adapter *adapter)
+{
+ struct ifnet *ifp = adapter->ifp;
+ struct e1000_hw *hw = &adapter->hw;
+ u32 reg;
+
+ if (adapter->vf_ifp) {
+ e1000_promisc_set_vf(hw, e1000_promisc_enabled);
+ return;
+ }
+
+ reg = E1000_READ_REG(hw, E1000_RCTL);
+ if (ifp->if_flags & IFF_PROMISC) {
+ reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+ E1000_WRITE_REG(hw, E1000_RCTL, reg);
+ } else if (ifp->if_flags & IFF_ALLMULTI) {
+ reg |= E1000_RCTL_MPE;
+ reg &= ~E1000_RCTL_UPE;
+ E1000_WRITE_REG(hw, E1000_RCTL, reg);
+ }
+}
+
+static void
+igb_disable_promisc(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ u32 reg;
+
+ if (adapter->vf_ifp) {
+ e1000_promisc_set_vf(hw, e1000_promisc_disabled);
+ return;
+ }
+ reg = E1000_READ_REG(hw, E1000_RCTL);
+ reg &= (~E1000_RCTL_UPE);
+ reg &= (~E1000_RCTL_MPE);
+ E1000_WRITE_REG(hw, E1000_RCTL, reg);
+}
+
+
+/*********************************************************************
+ * Multicast Update
+ *
+ * This routine is called whenever multicast address list is updated.
+ *
+ **********************************************************************/
+
+static void
+igb_set_multi(struct adapter *adapter)
+{
+ struct ifnet *ifp = adapter->ifp;
+ struct ifmultiaddr *ifma;
+ u32 reg_rctl = 0;
+ u8 *mta;
+
+ int mcnt = 0;
+
+ IOCTL_DEBUGOUT("igb_set_multi: begin");
+
+ mta = adapter->mta;
+ bzero(mta, sizeof(uint8_t) * ETH_ADDR_LEN *
+ MAX_NUM_MULTICAST_ADDRESSES);
+
+#if __FreeBSD_version < 800000
+ IF_ADDR_LOCK(ifp);
+#else
+ if_maddr_rlock(ifp);
+#endif
+ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
+ if (ifma->ifma_addr->sa_family != AF_LINK)
+ continue;
+
+ if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
+ break;
+
+ bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
+ &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
+ mcnt++;
+ }
+#if __FreeBSD_version < 800000
+ IF_ADDR_UNLOCK(ifp);
+#else
+ if_maddr_runlock(ifp);
+#endif
+
+ if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+ reg_rctl |= E1000_RCTL_MPE;
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+ } else
+ e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
+}
+
+
+/*********************************************************************
+ * Timer routine:
+ * This routine checks for link status,
+ * updates statistics, and does the watchdog.
+ *
+ **********************************************************************/
+
+static void
+igb_local_timer(void *arg)
+{
+ struct adapter *adapter = arg;
+ device_t dev = adapter->dev;
+ struct tx_ring *txr = adapter->tx_rings;
+
+
+ IGB_CORE_LOCK_ASSERT(adapter);
+
+ igb_update_link_status(adapter);
+ igb_update_stats_counters(adapter);
+
+ /*
+ ** If flow control has paused us since last checking
+ ** it invalidates the watchdog timing, so dont run it.
+ */
+ if (adapter->pause_frames) {
+ adapter->pause_frames = 0;
+ goto out;
+ }
+
+ /*
+ ** Watchdog: check for time since any descriptor was cleaned
+ */
+ for (int i = 0; i < adapter->num_queues; i++, txr++)
+ if (txr->queue_status == IGB_QUEUE_HUNG)
+ goto timeout;
+out:
+ callout_reset(&adapter->timer, hz, igb_local_timer, adapter);
+#ifndef DEVICE_POLLING
+ /* Schedule all queue interrupts - deadlock protection */
+ E1000_WRITE_REG(&adapter->hw, E1000_EICS, adapter->que_mask);
+#endif
+ return;
+
+timeout:
+ device_printf(adapter->dev, "Watchdog timeout -- resetting\n");
+ device_printf(dev,"Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
+ E1000_READ_REG(&adapter->hw, E1000_TDH(txr->me)),
+ E1000_READ_REG(&adapter->hw, E1000_TDT(txr->me)));
+ device_printf(dev,"TX(%d) desc avail = %d,"
+ "Next TX to Clean = %d\n",
+ txr->me, txr->tx_avail, txr->next_to_clean);
+ adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
+ adapter->watchdog_events++;
+ igb_init_locked(adapter);
+}
+
+static void
+igb_update_link_status(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ struct ifnet *ifp = adapter->ifp;
+ device_t dev = adapter->dev;
+ struct tx_ring *txr = adapter->tx_rings;
+ u32 link_check, thstat, ctrl;
+
+ link_check = thstat = ctrl = 0;
+
+ /* Get the cached link value or read for real */
+ switch (hw->phy.media_type) {
+ case e1000_media_type_copper:
+ if (hw->mac.get_link_status) {
+ /* Do the work to read phy */
+ e1000_check_for_link(hw);
+ link_check = !hw->mac.get_link_status;
+ } else
+ link_check = TRUE;
+ break;
+ case e1000_media_type_fiber:
+ e1000_check_for_link(hw);
+ link_check = (E1000_READ_REG(hw, E1000_STATUS) &
+ E1000_STATUS_LU);
+ break;
+ case e1000_media_type_internal_serdes:
+ e1000_check_for_link(hw);
+ link_check = adapter->hw.mac.serdes_has_link;
+ break;
+ /* VF device is type_unknown */
+ case e1000_media_type_unknown:
+ e1000_check_for_link(hw);
+ link_check = !hw->mac.get_link_status;
+ /* Fall thru */
+ default:
+ break;
+ }
+
+ /* Check for thermal downshift or shutdown */
+ if (hw->mac.type == e1000_i350) {
+ thstat = E1000_READ_REG(hw, E1000_THSTAT);
+ ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ }
+
+ /* Now we check if a transition has happened */
+ if (link_check && (adapter->link_active == 0)) {
+ e1000_get_speed_and_duplex(&adapter->hw,
+ &adapter->link_speed, &adapter->link_duplex);
+ if (bootverbose)
+ device_printf(dev, "Link is up %d Mbps %s\n",
+ adapter->link_speed,
+ ((adapter->link_duplex == FULL_DUPLEX) ?
+ "Full Duplex" : "Half Duplex"));
+ adapter->link_active = 1;
+ ifp->if_baudrate = adapter->link_speed * 1000000;
+ if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
+ (thstat & E1000_THSTAT_LINK_THROTTLE))
+ device_printf(dev, "Link: thermal downshift\n");
+ /* This can sleep */
+ if_link_state_change(ifp, LINK_STATE_UP);
+ } else if (!link_check && (adapter->link_active == 1)) {
+ ifp->if_baudrate = adapter->link_speed = 0;
+ adapter->link_duplex = 0;
+ if (bootverbose)
+ device_printf(dev, "Link is Down\n");
+ if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
+ (thstat & E1000_THSTAT_PWR_DOWN))
+ device_printf(dev, "Link: thermal shutdown\n");
+ adapter->link_active = 0;
+ /* This can sleep */
+ if_link_state_change(ifp, LINK_STATE_DOWN);
+ /* Turn off watchdogs */
+ for (int i = 0; i < adapter->num_queues; i++, txr++)
+ txr->queue_status = IGB_QUEUE_IDLE;
+ }
+}
+
+/*********************************************************************
+ *
+ * This routine disables all traffic on the adapter by issuing a
+ * global reset on the MAC and deallocates TX/RX buffers.
+ *
+ **********************************************************************/
+
+static void
+igb_stop(void *arg)
+{
+ struct adapter *adapter = arg;
+ struct ifnet *ifp = adapter->ifp;
+ struct tx_ring *txr = adapter->tx_rings;
+
+ IGB_CORE_LOCK_ASSERT(adapter);
+
+ INIT_DEBUGOUT("igb_stop: begin");
+
+ igb_disable_intr(adapter);
+
+ callout_stop(&adapter->timer);
+
+ /* Tell the stack that the interface is no longer active */
+ ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+
+ /* Unarm watchdog timer. */
+ for (int i = 0; i < adapter->num_queues; i++, txr++) {
+ IGB_TX_LOCK(txr);
+ txr->queue_status = IGB_QUEUE_IDLE;
+ IGB_TX_UNLOCK(txr);
+ }
+
+ e1000_reset_hw(&adapter->hw);
+ E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
+
+ e1000_led_off(&adapter->hw);
+ e1000_cleanup_led(&adapter->hw);
+}
+
+
+/*********************************************************************
+ *
+ * Determine hardware revision.
+ *
+ **********************************************************************/
+static void
+igb_identify_hardware(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+
+ /* Make sure our PCI config space has the necessary stuff set */
+ adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
+ if (!((adapter->hw.bus.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
+ (adapter->hw.bus.pci_cmd_word & PCIM_CMD_MEMEN))) {
+ INIT_DEBUGOUT("Memory Access and/or Bus Master "
+ "bits were not set!\n");
+ adapter->hw.bus.pci_cmd_word |=
+ (PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN);
+ pci_write_config(dev, PCIR_COMMAND,
+ adapter->hw.bus.pci_cmd_word, 2);
+ }
+
+ /* Save off the information about this board */
+ adapter->hw.vendor_id = pci_get_vendor(dev);
+ adapter->hw.device_id = pci_get_device(dev);
+ adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
+ adapter->hw.subsystem_vendor_id =
+ pci_read_config(dev, PCIR_SUBVEND_0, 2);
+ adapter->hw.subsystem_device_id =
+ pci_read_config(dev, PCIR_SUBDEV_0, 2);
+
+ /* Set MAC type early for PCI setup */
+ e1000_set_mac_type(&adapter->hw);
+
+ /* Are we a VF device? */
+ if ((adapter->hw.mac.type == e1000_vfadapt) ||
+ (adapter->hw.mac.type == e1000_vfadapt_i350))
+ adapter->vf_ifp = 1;
+ else
+ adapter->vf_ifp = 0;
+}
+
+static int
+igb_allocate_pci_resources(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ int rid;
+
+ rid = PCIR_BAR(0);
+ adapter->pci_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
+ &rid, RF_ACTIVE);
+ if (adapter->pci_mem == NULL) {
+ device_printf(dev, "Unable to allocate bus resource: memory\n");
+ return (ENXIO);
+ }
+ adapter->osdep.mem_bus_space_tag =
+ rman_get_bustag(adapter->pci_mem);
+ adapter->osdep.mem_bus_space_handle =
+ rman_get_bushandle(adapter->pci_mem);
+ adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
+
+ adapter->num_queues = 1; /* Defaults for Legacy or MSI */
+
+ /* This will setup either MSI/X or MSI */
+ adapter->msix = igb_setup_msix(adapter);
+ adapter->hw.back = &adapter->osdep;
+
+ return (0);
+}
+
+/*********************************************************************
+ *
+ * Setup the Legacy or MSI Interrupt handler
+ *
+ **********************************************************************/
+static int
+igb_allocate_legacy(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ struct igb_queue *que = adapter->queues;
+ int error, rid = 0;
+
+ /* Turn off all interrupts */
+ E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
+
+ /* MSI RID is 1 */
+ if (adapter->msix == 1)
+ rid = 1;
+
+ /* We allocate a single interrupt resource */
+ adapter->res = bus_alloc_resource_any(dev,
+ SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
+ if (adapter->res == NULL) {
+ device_printf(dev, "Unable to allocate bus resource: "
+ "interrupt\n");
+ return (ENXIO);
+ }
+
+ /*
+ * Try allocating a fast interrupt and the associated deferred
+ * processing contexts.
+ */
+ TASK_INIT(&que->que_task, 0, igb_handle_que, que);
+ /* Make tasklet for deferred link handling */
+ TASK_INIT(&adapter->link_task, 0, igb_handle_link, adapter);
+ que->tq = taskqueue_create_fast("igb_taskq", M_NOWAIT,
+ taskqueue_thread_enqueue, &que->tq);
+ taskqueue_start_threads(&que->tq, 1, PI_NET, "%s taskq",
+ device_get_nameunit(adapter->dev));
+ if ((error = bus_setup_intr(dev, adapter->res,
+ INTR_TYPE_NET | INTR_MPSAFE, igb_irq_fast, NULL,
+ adapter, &adapter->tag)) != 0) {
+ device_printf(dev, "Failed to register fast interrupt "
+ "handler: %d\n", error);
+ taskqueue_free(que->tq);
+ que->tq = NULL;
+ return (error);
+ }
+
+ return (0);
+}
+
+
+/*********************************************************************
+ *
+ * Setup the MSIX Queue Interrupt handlers:
+ *
+ **********************************************************************/
+static int
+igb_allocate_msix(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ struct igb_queue *que = adapter->queues;
+ int error, rid, vector = 0;
+
+
+ for (int i = 0; i < adapter->num_queues; i++, vector++, que++) {
+ rid = vector +1;
+ que->res = bus_alloc_resource_any(dev,
+ SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
+ if (que->res == NULL) {
+ device_printf(dev,
+ "Unable to allocate bus resource: "
+ "MSIX Queue Interrupt\n");
+ return (ENXIO);
+ }
+ error = bus_setup_intr(dev, que->res,
+ INTR_TYPE_NET | INTR_MPSAFE, NULL,
+ igb_msix_que, que, &que->tag);
+ if (error) {
+ que->res = NULL;
+ device_printf(dev, "Failed to register Queue handler");
+ return (error);
+ }
+#if __FreeBSD_version >= 800504
+ bus_describe_intr(dev, que->res, que->tag, "que %d", i);
+#endif
+ que->msix = vector;
+ if (adapter->hw.mac.type == e1000_82575)
+ que->eims = E1000_EICR_TX_QUEUE0 << i;
+ else
+ que->eims = 1 << vector;
+ /*
+ ** Bind the msix vector, and thus the
+ ** rings to the corresponding cpu.
+ */
+ if (adapter->num_queues > 1)
+ bus_bind_intr(dev, que->res, i);
+ /* Make tasklet for deferred handling */
+ TASK_INIT(&que->que_task, 0, igb_handle_que, que);
+ que->tq = taskqueue_create_fast("igb_que", M_NOWAIT,
+ taskqueue_thread_enqueue, &que->tq);
+ taskqueue_start_threads(&que->tq, 1, PI_NET, "%s que",
+ device_get_nameunit(adapter->dev));
+ }
+
+ /* And Link */
+ rid = vector + 1;
+ adapter->res = bus_alloc_resource_any(dev,
+ SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
+ if (adapter->res == NULL) {
+ device_printf(dev,
+ "Unable to allocate bus resource: "
+ "MSIX Link Interrupt\n");
+ return (ENXIO);
+ }
+ if ((error = bus_setup_intr(dev, adapter->res,
+ INTR_TYPE_NET | INTR_MPSAFE, NULL,
+ igb_msix_link, adapter, &adapter->tag)) != 0) {
+ device_printf(dev, "Failed to register Link handler");
+ return (error);
+ }
+#if __FreeBSD_version >= 800504
+ bus_describe_intr(dev, adapter->res, adapter->tag, "link");
+#endif
+ adapter->linkvec = vector;
+
+ return (0);
+}
+
+
+static void
+igb_configure_queues(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ struct igb_queue *que;
+ u32 tmp, ivar = 0, newitr = 0;
+
+ /* First turn on RSS capability */
+ if (adapter->hw.mac.type != e1000_82575)
+ E1000_WRITE_REG(hw, E1000_GPIE,
+ E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
+ E1000_GPIE_PBA | E1000_GPIE_NSICR);
+
+ /* Turn on MSIX */
+ switch (adapter->hw.mac.type) {
+ case e1000_82580:
+ case e1000_i350:
+ case e1000_vfadapt:
+ case e1000_vfadapt_i350:
+ /* RX entries */
+ for (int i = 0; i < adapter->num_queues; i++) {
+ u32 index = i >> 1;
+ ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
+ que = &adapter->queues[i];
+ if (i & 1) {
+ ivar &= 0xFF00FFFF;
+ ivar |= (que->msix | E1000_IVAR_VALID) << 16;
+ } else {
+ ivar &= 0xFFFFFF00;
+ ivar |= que->msix | E1000_IVAR_VALID;
+ }
+ E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
+ }
+ /* TX entries */
+ for (int i = 0; i < adapter->num_queues; i++) {
+ u32 index = i >> 1;
+ ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
+ que = &adapter->queues[i];
+ if (i & 1) {
+ ivar &= 0x00FFFFFF;
+ ivar |= (que->msix | E1000_IVAR_VALID) << 24;
+ } else {
+ ivar &= 0xFFFF00FF;
+ ivar |= (que->msix | E1000_IVAR_VALID) << 8;
+ }
+ E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
+ adapter->que_mask |= que->eims;
+ }
+
+ /* And for the link interrupt */
+ ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
+ adapter->link_mask = 1 << adapter->linkvec;
+ E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
+ break;
+ case e1000_82576:
+ /* RX entries */
+ for (int i = 0; i < adapter->num_queues; i++) {
+ u32 index = i & 0x7; /* Each IVAR has two entries */
+ ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
+ que = &adapter->queues[i];
+ if (i < 8) {
+ ivar &= 0xFFFFFF00;
+ ivar |= que->msix | E1000_IVAR_VALID;
+ } else {
+ ivar &= 0xFF00FFFF;
+ ivar |= (que->msix | E1000_IVAR_VALID) << 16;
+ }
+ E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
+ adapter->que_mask |= que->eims;
+ }
+ /* TX entries */
+ for (int i = 0; i < adapter->num_queues; i++) {
+ u32 index = i & 0x7; /* Each IVAR has two entries */
+ ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
+ que = &adapter->queues[i];
+ if (i < 8) {
+ ivar &= 0xFFFF00FF;
+ ivar |= (que->msix | E1000_IVAR_VALID) << 8;
+ } else {
+ ivar &= 0x00FFFFFF;
+ ivar |= (que->msix | E1000_IVAR_VALID) << 24;
+ }
+ E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
+ adapter->que_mask |= que->eims;
+ }
+
+ /* And for the link interrupt */
+ ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
+ adapter->link_mask = 1 << adapter->linkvec;
+ E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
+ break;
+
+ case e1000_82575:
+ /* enable MSI-X support*/
+ tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ tmp |= E1000_CTRL_EXT_PBA_CLR;
+ /* Auto-Mask interrupts upon ICR read. */
+ tmp |= E1000_CTRL_EXT_EIAME;
+ tmp |= E1000_CTRL_EXT_IRCA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
+
+ /* Queues */
+ for (int i = 0; i < adapter->num_queues; i++) {
+ que = &adapter->queues[i];
+ tmp = E1000_EICR_RX_QUEUE0 << i;
+ tmp |= E1000_EICR_TX_QUEUE0 << i;
+ que->eims = tmp;
+ E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
+ i, que->eims);
+ adapter->que_mask |= que->eims;
+ }
+
+ /* Link */
+ E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
+ E1000_EIMS_OTHER);
+ adapter->link_mask |= E1000_EIMS_OTHER;
+ default:
+ break;
+ }
+
+ /* Set the starting interrupt rate */
+ if (igb_max_interrupt_rate > 0)
+ newitr = (4000000 / igb_max_interrupt_rate) & 0x7FFC;
+
+ if (hw->mac.type == e1000_82575)
+ newitr |= newitr << 16;
+ else
+ newitr |= E1000_EITR_CNT_IGNR;
+
+ for (int i = 0; i < adapter->num_queues; i++) {
+ que = &adapter->queues[i];
+ E1000_WRITE_REG(hw, E1000_EITR(que->msix), newitr);
+ }
+
+ return;
+}
+
+
+static void
+igb_free_pci_resources(struct adapter *adapter)
+{
+ struct igb_queue *que = adapter->queues;
+ device_t dev = adapter->dev;
+ int rid;
+
+ /*
+ ** There is a slight possibility of a failure mode
+ ** in attach that will result in entering this function
+ ** before interrupt resources have been initialized, and
+ ** in that case we do not want to execute the loops below
+ ** We can detect this reliably by the state of the adapter
+ ** res pointer.
+ */
+ if (adapter->res == NULL)
+ goto mem;
+
+ /*
+ * First release all the interrupt resources:
+ */
+ for (int i = 0; i < adapter->num_queues; i++, que++) {
+ rid = que->msix + 1;
+ if (que->tag != NULL) {
+ bus_teardown_intr(dev, que->res, que->tag);
+ que->tag = NULL;
+ }
+ if (que->res != NULL)
+ bus_release_resource(dev,
+ SYS_RES_IRQ, rid, que->res);
+ }
+
+ /* Clean the Legacy or Link interrupt last */
+ if (adapter->linkvec) /* we are doing MSIX */
+ rid = adapter->linkvec + 1;
+ else
+ (adapter->msix != 0) ? (rid = 1):(rid = 0);
+
+ if (adapter->tag != NULL) {
+ bus_teardown_intr(dev, adapter->res, adapter->tag);
+ adapter->tag = NULL;
+ }
+ if (adapter->res != NULL)
+ bus_release_resource(dev, SYS_RES_IRQ, rid, adapter->res);
+
+mem:
+ if (adapter->msix)
+ pci_release_msi(dev);
+
+ if (adapter->msix_mem != NULL)
+ bus_release_resource(dev, SYS_RES_MEMORY,
+ PCIR_BAR(IGB_MSIX_BAR), adapter->msix_mem);
+
+ if (adapter->pci_mem != NULL)
+ bus_release_resource(dev, SYS_RES_MEMORY,
+ PCIR_BAR(0), adapter->pci_mem);
+
+}
+
+/*
+ * Setup Either MSI/X or MSI
+ */
+static int
+igb_setup_msix(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ int rid, want, queues, msgs;
+
+ /* tuneable override */
+ if (igb_enable_msix == 0)
+ goto msi;
+
+ /* First try MSI/X */
+ rid = PCIR_BAR(IGB_MSIX_BAR);
+ adapter->msix_mem = bus_alloc_resource_any(dev,
+ SYS_RES_MEMORY, &rid, RF_ACTIVE);
+ if (!adapter->msix_mem) {
+ /* May not be enabled */
+ device_printf(adapter->dev,
+ "Unable to map MSIX table \n");
+ goto msi;
+ }
+
+ msgs = pci_msix_count(dev);
+ if (msgs == 0) { /* system has msix disabled */
+ bus_release_resource(dev, SYS_RES_MEMORY,
+ PCIR_BAR(IGB_MSIX_BAR), adapter->msix_mem);
+ adapter->msix_mem = NULL;
+ goto msi;
+ }
+
+ /* Figure out a reasonable auto config value */
+ queues = (mp_ncpus > (msgs-1)) ? (msgs-1) : mp_ncpus;
+
+ /* Manual override */
+ if (igb_num_queues != 0)
+ queues = igb_num_queues;
+ if (queues > 8) /* max queues */
+ queues = 8;
+
+ /* Can have max of 4 queues on 82575 */
+ if ((adapter->hw.mac.type == e1000_82575) && (queues > 4))
+ queues = 4;
+
+ /* Limit the VF devices to one queue */
+ if (adapter->vf_ifp)
+ queues = 1;
+
+ /*
+ ** One vector (RX/TX pair) per queue
+ ** plus an additional for Link interrupt
+ */
+ want = queues + 1;
+ if (msgs >= want)
+ msgs = want;
+ else {
+ device_printf(adapter->dev,
+ "MSIX Configuration Problem, "
+ "%d vectors configured, but %d queues wanted!\n",
+ msgs, want);
+ return (ENXIO);
+ }
+ if ((msgs) && pci_alloc_msix(dev, &msgs) == 0) {
+ device_printf(adapter->dev,
+ "Using MSIX interrupts with %d vectors\n", msgs);
+ adapter->num_queues = queues;
+ return (msgs);
+ }
+msi:
+ msgs = pci_msi_count(dev);
+ if (msgs == 1 && pci_alloc_msi(dev, &msgs) == 0)
+ device_printf(adapter->dev,"Using MSI interrupt\n");
+ return (msgs);
+}
+
+/*********************************************************************
+ *
+ * Set up an fresh starting state
+ *
+ **********************************************************************/
+static void
+igb_reset(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ struct e1000_hw *hw = &adapter->hw;
+ struct e1000_fc_info *fc = &hw->fc;
+ struct ifnet *ifp = adapter->ifp;
+ u32 pba = 0;
+ u16 hwm;
+
+ INIT_DEBUGOUT("igb_reset: begin");
+
+ /* Let the firmware know the OS is in control */
+ igb_get_hw_control(adapter);
+
+ /*
+ * Packet Buffer Allocation (PBA)
+ * Writing PBA sets the receive portion of the buffer
+ * the remainder is used for the transmit buffer.
+ */
+ switch (hw->mac.type) {
+ case e1000_82575:
+ pba = E1000_PBA_32K;
+ break;
+ case e1000_82576:
+ case e1000_vfadapt:
+ pba = E1000_READ_REG(hw, E1000_RXPBS);
+ pba &= E1000_RXPBS_SIZE_MASK_82576;
+ break;
+ case e1000_82580:
+ case e1000_i350:
+ case e1000_vfadapt_i350:
+ pba = E1000_READ_REG(hw, E1000_RXPBS);
+ pba = e1000_rxpbs_adjust_82580(pba);
+ break;
+ pba = E1000_PBA_35K;
+ default:
+ break;
+ }
+
+ /* Special needs in case of Jumbo frames */
+ if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
+ u32 tx_space, min_tx, min_rx;
+ pba = E1000_READ_REG(hw, E1000_PBA);
+ tx_space = pba >> 16;
+ pba &= 0xffff;
+ min_tx = (adapter->max_frame_size +
+ sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
+ min_tx = roundup2(min_tx, 1024);
+ min_tx >>= 10;
+ min_rx = adapter->max_frame_size;
+ min_rx = roundup2(min_rx, 1024);
+ min_rx >>= 10;
+ if (tx_space < min_tx &&
+ ((min_tx - tx_space) < pba)) {
+ pba = pba - (min_tx - tx_space);
+ /*
+ * if short on rx space, rx wins
+ * and must trump tx adjustment
+ */
+ if (pba < min_rx)
+ pba = min_rx;
+ }
+ E1000_WRITE_REG(hw, E1000_PBA, pba);
+ }
+
+ INIT_DEBUGOUT1("igb_init: pba=%dK",pba);
+
+ /*
+ * These parameters control the automatic generation (Tx) and
+ * response (Rx) to Ethernet PAUSE frames.
+ * - High water mark should allow for at least two frames to be
+ * received after sending an XOFF.
+ * - Low water mark works best when it is very near the high water mark.
+ * This allows the receiver to restart by sending XON when it has
+ * drained a bit.
+ */
+ hwm = min(((pba << 10) * 9 / 10),
+ ((pba << 10) - 2 * adapter->max_frame_size));
+
+ if (hw->mac.type < e1000_82576) {
+ fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
+ fc->low_water = fc->high_water - 8;
+ } else {
+ fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
+ fc->low_water = fc->high_water - 16;
+ }
+
+ fc->pause_time = IGB_FC_PAUSE_TIME;
+ fc->send_xon = TRUE;
+
+ /* Issue a global reset */
+ e1000_reset_hw(hw);
+ E1000_WRITE_REG(hw, E1000_WUC, 0);
+
+ if (e1000_init_hw(hw) < 0)
+ device_printf(dev, "Hardware Initialization Failed\n");
+
+ /* Setup DMA Coalescing */
+ if ((hw->mac.type == e1000_i350) &&
+ (adapter->dma_coalesce == TRUE)) {
+ u32 reg;
+
+ hwm = (pba - 4) << 10;
+ reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
+ & E1000_DMACR_DMACTHR_MASK);
+
+ /* transition to L0x or L1 if available..*/
+ reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
+
+ /* timer = +-1000 usec in 32usec intervals */
+ reg |= (1000 >> 5);
+ E1000_WRITE_REG(hw, E1000_DMACR, reg);
+
+ /* No lower threshold */
+ E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
+
+ /* set hwm to PBA - 2 * max frame size */
+ E1000_WRITE_REG(hw, E1000_FCRTC, hwm);
+
+ /* Set the interval before transition */
+ reg = E1000_READ_REG(hw, E1000_DMCTLX);
+ reg |= 0x800000FF; /* 255 usec */
+ E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
+
+ /* free space in tx packet buffer to wake from DMA coal */
+ E1000_WRITE_REG(hw, E1000_DMCTXTH,
+ (20480 - (2 * adapter->max_frame_size)) >> 6);
+
+ /* make low power state decision controlled by DMA coal */
+ reg = E1000_READ_REG(hw, E1000_PCIEMISC);
+ E1000_WRITE_REG(hw, E1000_PCIEMISC,
+ reg | E1000_PCIEMISC_LX_DECISION);
+ device_printf(dev, "DMA Coalescing enabled\n");
+ }
+
+ E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
+ e1000_get_phy_info(hw);
+ e1000_check_for_link(hw);
+ return;
+}
+
+/*********************************************************************
+ *
+ * Setup networking device structure and register an interface.
+ *
+ **********************************************************************/
+static int
+igb_setup_interface(device_t dev, struct adapter *adapter)
+{
+ struct ifnet *ifp;
+
+ INIT_DEBUGOUT("igb_setup_interface: begin");
+
+ ifp = adapter->ifp = if_alloc(IFT_ETHER);
+ if (ifp == NULL) {
+ device_printf(dev, "can not allocate ifnet structure\n");
+ return (-1);
+ }
+ if_initname(ifp, device_get_name(dev), device_get_unit(dev));
+ ifp->if_mtu = ETHERMTU;
+ ifp->if_init = igb_init;
+ ifp->if_softc = adapter;
+ ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
+ ifp->if_ioctl = igb_ioctl;
+ ifp->if_start = igb_start;
+#if __FreeBSD_version >= 800000
+ ifp->if_transmit = igb_mq_start;
+ ifp->if_qflush = igb_qflush;
+#endif
+ IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1);
+ ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1;
+ IFQ_SET_READY(&ifp->if_snd);
+
+ ether_ifattach(ifp, adapter->hw.mac.addr);
+
+ ifp->if_capabilities = ifp->if_capenable = 0;
+
+ ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
+ ifp->if_capabilities |= IFCAP_TSO4;
+ ifp->if_capabilities |= IFCAP_JUMBO_MTU;
+ ifp->if_capenable = ifp->if_capabilities;
+
+ /* Don't enable LRO by default */
+ ifp->if_capabilities |= IFCAP_LRO;
+
+#ifdef DEVICE_POLLING
+ ifp->if_capabilities |= IFCAP_POLLING;
+#endif
+
+ /*
+ * Tell the upper layer(s) we
+ * support full VLAN capability.
+ */
+ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
+ ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
+ ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
+
+ /*
+ ** Dont turn this on by default, if vlans are
+ ** created on another pseudo device (eg. lagg)
+ ** then vlan events are not passed thru, breaking
+ ** operation, but with HW FILTER off it works. If
+ ** using vlans directly on the em driver you can
+ ** enable this and get full hardware tag filtering.
+ */
+ ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
+
+ /*
+ * Specify the media types supported by this adapter and register
+ * callbacks to update media and link information
+ */
+ ifmedia_init(&adapter->media, IFM_IMASK,
+ igb_media_change, igb_media_status);
+ if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
+ (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
+ 0, NULL);
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
+ } else {
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
+ 0, NULL);
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
+ 0, NULL);
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
+ 0, NULL);
+ if (adapter->hw.phy.type != e1000_phy_ife) {
+ ifmedia_add(&adapter->media,
+ IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
+ ifmedia_add(&adapter->media,
+ IFM_ETHER | IFM_1000_T, 0, NULL);
+ }
+ }
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
+ ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
+ return (0);
+}
+
+
+/*
+ * Manage DMA'able memory.
+ */
+static void
+igb_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
+{
+ if (error)
+ return;
+ *(bus_addr_t *) arg = segs[0].ds_addr;
+}
+
+static int
+igb_dma_malloc(struct adapter *adapter, bus_size_t size,
+ struct igb_dma_alloc *dma, int mapflags)
+{
+ int error;
+
+ error = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */
+ IGB_DBA_ALIGN, 0, /* alignment, bounds */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ size, /* maxsize */
+ 1, /* nsegments */
+ size, /* maxsegsize */
+ 0, /* flags */
+ NULL, /* lockfunc */
+ NULL, /* lockarg */
+ &dma->dma_tag);
+ if (error) {
+ device_printf(adapter->dev,
+ "%s: bus_dma_tag_create failed: %d\n",
+ __func__, error);
+ goto fail_0;
+ }
+
+ error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
+ BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dma->dma_map);
+ if (error) {
+ device_printf(adapter->dev,
+ "%s: bus_dmamem_alloc(%ju) failed: %d\n",
+ __func__, (uintmax_t)size, error);
+ goto fail_2;
+ }
+
+ dma->dma_paddr = 0;
+ error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
+ size, igb_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT);
+ if (error || dma->dma_paddr == 0) {
+ device_printf(adapter->dev,
+ "%s: bus_dmamap_load failed: %d\n",
+ __func__, error);
+ goto fail_3;
+ }
+
+ return (0);
+
+fail_3:
+ bus_dmamap_unload(dma->dma_tag, dma->dma_map);
+fail_2:
+ bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
+ bus_dma_tag_destroy(dma->dma_tag);
+fail_0:
+ dma->dma_map = NULL;
+ dma->dma_tag = NULL;
+
+ return (error);
+}
+
+static void
+igb_dma_free(struct adapter *adapter, struct igb_dma_alloc *dma)
+{
+ if (dma->dma_tag == NULL)
+ return;
+ if (dma->dma_map != NULL) {
+ bus_dmamap_sync(dma->dma_tag, dma->dma_map,
+ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(dma->dma_tag, dma->dma_map);
+ bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
+ dma->dma_map = NULL;
+ }
+ bus_dma_tag_destroy(dma->dma_tag);
+ dma->dma_tag = NULL;
+}
+
+
+/*********************************************************************
+ *
+ * Allocate memory for the transmit and receive rings, and then
+ * the descriptors associated with each, called only once at attach.
+ *
+ **********************************************************************/
+static int
+igb_allocate_queues(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ struct igb_queue *que = NULL;
+ struct tx_ring *txr = NULL;
+ struct rx_ring *rxr = NULL;
+ int rsize, tsize, error = E1000_SUCCESS;
+ int txconf = 0, rxconf = 0;
+
+ /* First allocate the top level queue structs */
+ if (!(adapter->queues =
+ (struct igb_queue *) malloc(sizeof(struct igb_queue) *
+ adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
+ device_printf(dev, "Unable to allocate queue memory\n");
+ error = ENOMEM;
+ goto fail;
+ }
+
+ /* Next allocate the TX ring struct memory */
+ if (!(adapter->tx_rings =
+ (struct tx_ring *) malloc(sizeof(struct tx_ring) *
+ adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
+ device_printf(dev, "Unable to allocate TX ring memory\n");
+ error = ENOMEM;
+ goto tx_fail;
+ }
+
+ /* Now allocate the RX */
+ if (!(adapter->rx_rings =
+ (struct rx_ring *) malloc(sizeof(struct rx_ring) *
+ adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
+ device_printf(dev, "Unable to allocate RX ring memory\n");
+ error = ENOMEM;
+ goto rx_fail;
+ }
+
+ tsize = roundup2(adapter->num_tx_desc *
+ sizeof(union e1000_adv_tx_desc), IGB_DBA_ALIGN);
+ /*
+ * Now set up the TX queues, txconf is needed to handle the
+ * possibility that things fail midcourse and we need to
+ * undo memory gracefully
+ */
+ for (int i = 0; i < adapter->num_queues; i++, txconf++) {
+ /* Set up some basics */
+ txr = &adapter->tx_rings[i];
+ txr->adapter = adapter;
+ txr->me = i;
+
+ /* Initialize the TX lock */
+ snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
+ device_get_nameunit(dev), txr->me);
+ mtx_init(&txr->tx_mtx, txr->mtx_name, NULL, MTX_DEF);
+
+ if (igb_dma_malloc(adapter, tsize,
+ &txr->txdma, BUS_DMA_NOWAIT)) {
+ device_printf(dev,
+ "Unable to allocate TX Descriptor memory\n");
+ error = ENOMEM;
+ goto err_tx_desc;
+ }
+ txr->tx_base = (struct e1000_tx_desc *)txr->txdma.dma_vaddr;
+ bzero((void *)txr->tx_base, tsize);
+
+ /* Now allocate transmit buffers for the ring */
+ if (igb_allocate_transmit_buffers(txr)) {
+ device_printf(dev,
+ "Critical Failure setting up transmit buffers\n");
+ error = ENOMEM;
+ goto err_tx_desc;
+ }
+#if __FreeBSD_version >= 800000
+ /* Allocate a buf ring */
+ txr->br = buf_ring_alloc(IGB_BR_SIZE, M_DEVBUF,
+ M_WAITOK, &txr->tx_mtx);
+#endif
+ }
+
+ /*
+ * Next the RX queues...
+ */
+ rsize = roundup2(adapter->num_rx_desc *
+ sizeof(union e1000_adv_rx_desc), IGB_DBA_ALIGN);
+ for (int i = 0; i < adapter->num_queues; i++, rxconf++) {
+ rxr = &adapter->rx_rings[i];
+ rxr->adapter = adapter;
+ rxr->me = i;
+
+ /* Initialize the RX lock */
+ snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
+ device_get_nameunit(dev), txr->me);
+ mtx_init(&rxr->rx_mtx, rxr->mtx_name, NULL, MTX_DEF);
+
+ if (igb_dma_malloc(adapter, rsize,
+ &rxr->rxdma, BUS_DMA_NOWAIT)) {
+ device_printf(dev,
+ "Unable to allocate RxDescriptor memory\n");
+ error = ENOMEM;
+ goto err_rx_desc;
+ }
+ rxr->rx_base = (union e1000_adv_rx_desc *)rxr->rxdma.dma_vaddr;
+ bzero((void *)rxr->rx_base, rsize);
+
+ /* Allocate receive buffers for the ring*/
+ if (igb_allocate_receive_buffers(rxr)) {
+ device_printf(dev,
+ "Critical Failure setting up receive buffers\n");
+ error = ENOMEM;
+ goto err_rx_desc;
+ }
+ }
+
+ /*
+ ** Finally set up the queue holding structs
+ */
+ for (int i = 0; i < adapter->num_queues; i++) {
+ que = &adapter->queues[i];
+ que->adapter = adapter;
+ que->txr = &adapter->tx_rings[i];
+ que->rxr = &adapter->rx_rings[i];
+ }
+
+ return (0);
+
+err_rx_desc:
+ for (rxr = adapter->rx_rings; rxconf > 0; rxr++, rxconf--)
+ igb_dma_free(adapter, &rxr->rxdma);
+err_tx_desc:
+ for (txr = adapter->tx_rings; txconf > 0; txr++, txconf--)
+ igb_dma_free(adapter, &txr->txdma);
+ free(adapter->rx_rings, M_DEVBUF);
+rx_fail:
+#if __FreeBSD_version >= 800000
+ buf_ring_free(txr->br, M_DEVBUF);
+#endif
+ free(adapter->tx_rings, M_DEVBUF);
+tx_fail:
+ free(adapter->queues, M_DEVBUF);
+fail:
+ return (error);
+}
+
+/*********************************************************************
+ *
+ * Allocate memory for tx_buffer structures. The tx_buffer stores all
+ * the information needed to transmit a packet on the wire. This is
+ * called only once at attach, setup is done every reset.
+ *
+ **********************************************************************/
+static int
+igb_allocate_transmit_buffers(struct tx_ring *txr)
+{
+ struct adapter *adapter = txr->adapter;
+ device_t dev = adapter->dev;
+ struct igb_tx_buffer *txbuf;
+ int error, i;
+
+ /*
+ * Setup DMA descriptor areas.
+ */
+ if ((error = bus_dma_tag_create(bus_get_dma_tag(dev),
+ 1, 0, /* alignment, bounds */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ IGB_TSO_SIZE, /* maxsize */
+ IGB_MAX_SCATTER, /* nsegments */
+ PAGE_SIZE, /* maxsegsize */
+ 0, /* flags */
+ NULL, /* lockfunc */
+ NULL, /* lockfuncarg */
+ &txr->txtag))) {
+ device_printf(dev,"Unable to allocate TX DMA tag\n");
+ goto fail;
+ }
+
+ if (!(txr->tx_buffers =
+ (struct igb_tx_buffer *) malloc(sizeof(struct igb_tx_buffer) *
+ adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO))) {
+ device_printf(dev, "Unable to allocate tx_buffer memory\n");
+ error = ENOMEM;
+ goto fail;
+ }
+
+ /* Create the descriptor buffer dma maps */
+ txbuf = txr->tx_buffers;
+ for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) {
+ error = bus_dmamap_create(txr->txtag, 0, &txbuf->map);
+ if (error != 0) {
+ device_printf(dev, "Unable to create TX DMA map\n");
+ goto fail;
+ }
+ }
+
+ return 0;
+fail:
+ /* We free all, it handles case where we are in the middle */
+ igb_free_transmit_structures(adapter);
+ return (error);
+}
+
+/*********************************************************************
+ *
+ * Initialize a transmit ring.
+ *
+ **********************************************************************/
+static void
+igb_setup_transmit_ring(struct tx_ring *txr)
+{
+ struct adapter *adapter = txr->adapter;
+ struct igb_tx_buffer *txbuf;
+ int i;
+
+ /* Clear the old descriptor contents */
+ IGB_TX_LOCK(txr);
+ bzero((void *)txr->tx_base,
+ (sizeof(union e1000_adv_tx_desc)) * adapter->num_tx_desc);
+ /* Reset indices */
+ txr->next_avail_desc = 0;
+ txr->next_to_clean = 0;
+
+ /* Free any existing tx buffers. */
+ txbuf = txr->tx_buffers;
+ for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) {
+ if (txbuf->m_head != NULL) {
+ bus_dmamap_sync(txr->txtag, txbuf->map,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(txr->txtag, txbuf->map);
+ m_freem(txbuf->m_head);
+ txbuf->m_head = NULL;
+ }
+ /* clear the watch index */
+ txbuf->next_eop = -1;
+ }
+
+ /* Set number of descriptors available */
+ txr->tx_avail = adapter->num_tx_desc;
+
+ bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+ IGB_TX_UNLOCK(txr);
+}
+
+/*********************************************************************
+ *
+ * Initialize all transmit rings.
+ *
+ **********************************************************************/
+static void
+igb_setup_transmit_structures(struct adapter *adapter)
+{
+ struct tx_ring *txr = adapter->tx_rings;
+
+ for (int i = 0; i < adapter->num_queues; i++, txr++)
+ igb_setup_transmit_ring(txr);
+
+ return;
+}
+
+/*********************************************************************
+ *
+ * Enable transmit unit.
+ *
+ **********************************************************************/
+static void
+igb_initialize_transmit_units(struct adapter *adapter)
+{
+ struct tx_ring *txr = adapter->tx_rings;
+ struct e1000_hw *hw = &adapter->hw;
+ u32 tctl, txdctl;
+
+ INIT_DEBUGOUT("igb_initialize_transmit_units: begin");
+ tctl = txdctl = 0;
+
+ /* Setup the Tx Descriptor Rings */
+ for (int i = 0; i < adapter->num_queues; i++, txr++) {
+ u64 bus_addr = txr->txdma.dma_paddr;
+
+ E1000_WRITE_REG(hw, E1000_TDLEN(i),
+ adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
+ E1000_WRITE_REG(hw, E1000_TDBAH(i),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_TDBAL(i),
+ (uint32_t)bus_addr);
+
+ /* Setup the HW Tx Head and Tail descriptor pointers */
+ E1000_WRITE_REG(hw, E1000_TDT(i), 0);
+ E1000_WRITE_REG(hw, E1000_TDH(i), 0);
+
+ HW_DEBUGOUT2("Base = %x, Length = %x\n",
+ E1000_READ_REG(hw, E1000_TDBAL(i)),
+ E1000_READ_REG(hw, E1000_TDLEN(i)));
+
+ txr->queue_status = IGB_QUEUE_IDLE;
+
+ txdctl |= IGB_TX_PTHRESH;
+ txdctl |= IGB_TX_HTHRESH << 8;
+ txdctl |= IGB_TX_WTHRESH << 16;
+ txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
+ }
+
+ if (adapter->vf_ifp)
+ return;
+
+ e1000_config_collision_dist(hw);
+
+ /* Program the Transmit Control Register */
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+ tctl &= ~E1000_TCTL_CT;
+ tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
+ (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
+
+ /* This write will effectively turn on the transmit unit. */
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+}
+
+/*********************************************************************
+ *
+ * Free all transmit rings.
+ *
+ **********************************************************************/
+static void
+igb_free_transmit_structures(struct adapter *adapter)
+{
+ struct tx_ring *txr = adapter->tx_rings;
+
+ for (int i = 0; i < adapter->num_queues; i++, txr++) {
+ IGB_TX_LOCK(txr);
+ igb_free_transmit_buffers(txr);
+ igb_dma_free(adapter, &txr->txdma);
+ IGB_TX_UNLOCK(txr);
+ IGB_TX_LOCK_DESTROY(txr);
+ }
+ free(adapter->tx_rings, M_DEVBUF);
+}
+
+/*********************************************************************
+ *
+ * Free transmit ring related data structures.
+ *
+ **********************************************************************/
+static void
+igb_free_transmit_buffers(struct tx_ring *txr)
+{
+ struct adapter *adapter = txr->adapter;
+ struct igb_tx_buffer *tx_buffer;
+ int i;
+
+ INIT_DEBUGOUT("free_transmit_ring: begin");
+
+ if (txr->tx_buffers == NULL)
+ return;
+
+ tx_buffer = txr->tx_buffers;
+ for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
+ if (tx_buffer->m_head != NULL) {
+ bus_dmamap_sync(txr->txtag, tx_buffer->map,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(txr->txtag,
+ tx_buffer->map);
+ m_freem(tx_buffer->m_head);
+ tx_buffer->m_head = NULL;
+ if (tx_buffer->map != NULL) {
+ bus_dmamap_destroy(txr->txtag,
+ tx_buffer->map);
+ tx_buffer->map = NULL;
+ }
+ } else if (tx_buffer->map != NULL) {
+ bus_dmamap_unload(txr->txtag,
+ tx_buffer->map);
+ bus_dmamap_destroy(txr->txtag,
+ tx_buffer->map);
+ tx_buffer->map = NULL;
+ }
+ }
+#if __FreeBSD_version >= 800000
+ if (txr->br != NULL)
+ buf_ring_free(txr->br, M_DEVBUF);
+#endif
+ if (txr->tx_buffers != NULL) {
+ free(txr->tx_buffers, M_DEVBUF);
+ txr->tx_buffers = NULL;
+ }
+ if (txr->txtag != NULL) {
+ bus_dma_tag_destroy(txr->txtag);
+ txr->txtag = NULL;
+ }
+ return;
+}
+
+/**********************************************************************
+ *
+ * Setup work for hardware segmentation offload (TSO)
+ *
+ **********************************************************************/
+static boolean_t
+igb_tso_setup(struct tx_ring *txr, struct mbuf *mp, u32 *hdrlen)
+{
+ struct adapter *adapter = txr->adapter;
+ struct e1000_adv_tx_context_desc *TXD;
+ struct igb_tx_buffer *tx_buffer;
+ u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
+ u32 mss_l4len_idx = 0;
+ u16 vtag = 0;
+ int ctxd, ehdrlen, ip_hlen, tcp_hlen;
+ struct ether_vlan_header *eh;
+ struct ip *ip;
+ struct tcphdr *th;
+
+
+ /*
+ * Determine where frame payload starts.
+ * Jump over vlan headers if already present
+ */
+ eh = mtod(mp, struct ether_vlan_header *);
+ if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN))
+ ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
+ else
+ ehdrlen = ETHER_HDR_LEN;
+
+ /* Ensure we have at least the IP+TCP header in the first mbuf. */
+ if (mp->m_len < ehdrlen + sizeof(struct ip) + sizeof(struct tcphdr))
+ return FALSE;
+
+ /* Only supports IPV4 for now */
+ ctxd = txr->next_avail_desc;
+ tx_buffer = &txr->tx_buffers[ctxd];
+ TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[ctxd];
+
+ ip = (struct ip *)(mp->m_data + ehdrlen);
+ if (ip->ip_p != IPPROTO_TCP)
+ return FALSE; /* 0 */
+ ip->ip_sum = 0;
+ ip_hlen = ip->ip_hl << 2;
+ th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
+ th->th_sum = in_pseudo(ip->ip_src.s_addr,
+ ip->ip_dst.s_addr, htons(IPPROTO_TCP));
+ tcp_hlen = th->th_off << 2;
+ /*
+ * Calculate header length, this is used
+ * in the transmit desc in igb_xmit
+ */
+ *hdrlen = ehdrlen + ip_hlen + tcp_hlen;
+
+ /* VLAN MACLEN IPLEN */
+ if (mp->m_flags & M_VLANTAG) {
+ vtag = htole16(mp->m_pkthdr.ether_vtag);
+ vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT);
+ }
+
+ vlan_macip_lens |= (ehdrlen << E1000_ADVTXD_MACLEN_SHIFT);
+ vlan_macip_lens |= ip_hlen;
+ TXD->vlan_macip_lens |= htole32(vlan_macip_lens);
+
+ /* ADV DTYPE TUCMD */
+ type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
+ TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl);
+
+ /* MSS L4LEN IDX */
+ mss_l4len_idx |= (mp->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
+ mss_l4len_idx |= (tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT);
+ /* 82575 needs the queue index added */
+ if (adapter->hw.mac.type == e1000_82575)
+ mss_l4len_idx |= txr->me << 4;
+ TXD->mss_l4len_idx = htole32(mss_l4len_idx);
+
+ TXD->seqnum_seed = htole32(0);
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+
+ if (++ctxd == adapter->num_tx_desc)
+ ctxd = 0;
+
+ txr->tx_avail--;
+ txr->next_avail_desc = ctxd;
+ return TRUE;
+}
+
+
+/*********************************************************************
+ *
+ * Context Descriptor setup for VLAN or CSUM
+ *
+ **********************************************************************/
+
+static bool
+igb_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp)
+{
+ struct adapter *adapter = txr->adapter;
+ struct e1000_adv_tx_context_desc *TXD;
+ struct igb_tx_buffer *tx_buffer;
+ u32 vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
+ struct ether_vlan_header *eh;
+ struct ip *ip = NULL;
+ struct ip6_hdr *ip6;
+ int ehdrlen, ctxd, ip_hlen = 0;
+ u16 etype, vtag = 0;
+ u8 ipproto = 0;
+ bool offload = TRUE;
+
+ if ((mp->m_pkthdr.csum_flags & CSUM_OFFLOAD) == 0)
+ offload = FALSE;
+
+ vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
+ ctxd = txr->next_avail_desc;
+ tx_buffer = &txr->tx_buffers[ctxd];
+ TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[ctxd];
+
+ /*
+ ** In advanced descriptors the vlan tag must
+ ** be placed into the context descriptor, thus
+ ** we need to be here just for that setup.
+ */
+ if (mp->m_flags & M_VLANTAG) {
+ vtag = htole16(mp->m_pkthdr.ether_vtag);
+ vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT);
+ } else if (offload == FALSE)
+ return FALSE;
+
+ /*
+ * Determine where frame payload starts.
+ * Jump over vlan headers if already present,
+ * helpful for QinQ too.
+ */
+ eh = mtod(mp, struct ether_vlan_header *);
+ if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
+ etype = ntohs(eh->evl_proto);
+ ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
+ } else {
+ etype = ntohs(eh->evl_encap_proto);
+ ehdrlen = ETHER_HDR_LEN;
+ }
+
+ /* Set the ether header length */
+ vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
+
+ switch (etype) {
+ case ETHERTYPE_IP:
+ ip = (struct ip *)(mp->m_data + ehdrlen);
+ ip_hlen = ip->ip_hl << 2;
+ if (mp->m_len < ehdrlen + ip_hlen) {
+ offload = FALSE;
+ break;
+ }
+ ipproto = ip->ip_p;
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
+ break;
+ case ETHERTYPE_IPV6:
+ ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
+ ip_hlen = sizeof(struct ip6_hdr);
+ ipproto = ip6->ip6_nxt;
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
+ break;
+ default:
+ offload = FALSE;
+ break;
+ }
+
+ vlan_macip_lens |= ip_hlen;
+ type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
+
+ switch (ipproto) {
+ case IPPROTO_TCP:
+ if (mp->m_pkthdr.csum_flags & CSUM_TCP)
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
+ break;
+ case IPPROTO_UDP:
+ if (mp->m_pkthdr.csum_flags & CSUM_UDP)
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
+ break;
+#if __FreeBSD_version >= 800000
+ case IPPROTO_SCTP:
+ if (mp->m_pkthdr.csum_flags & CSUM_SCTP)
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP;
+ break;
+#endif
+ default:
+ offload = FALSE;
+ break;
+ }
+
+ /* 82575 needs the queue index added */
+ if (adapter->hw.mac.type == e1000_82575)
+ mss_l4len_idx = txr->me << 4;
+
+ /* Now copy bits into descriptor */
+ TXD->vlan_macip_lens |= htole32(vlan_macip_lens);
+ TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl);
+ TXD->seqnum_seed = htole32(0);
+ TXD->mss_l4len_idx = htole32(mss_l4len_idx);
+
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+
+ /* We've consumed the first desc, adjust counters */
+ if (++ctxd == adapter->num_tx_desc)
+ ctxd = 0;
+ txr->next_avail_desc = ctxd;
+ --txr->tx_avail;
+
+ return (offload);
+}
+
+
+/**********************************************************************
+ *
+ * Examine each tx_buffer in the used queue. If the hardware is done
+ * processing the packet then free associated resources. The
+ * tx_buffer is put back on the free queue.
+ *
+ * TRUE return means there's work in the ring to clean, FALSE its empty.
+ **********************************************************************/
+static bool
+igb_txeof(struct tx_ring *txr)
+{
+ struct adapter *adapter = txr->adapter;
+ int first, last, done, processed;
+ struct igb_tx_buffer *tx_buffer;
+ struct e1000_tx_desc *tx_desc, *eop_desc;
+ struct ifnet *ifp = adapter->ifp;
+
+ IGB_TX_LOCK_ASSERT(txr);
+
+ if (txr->tx_avail == adapter->num_tx_desc) {
+ txr->queue_status = IGB_QUEUE_IDLE;
+ return FALSE;
+ }
+
+ processed = 0;
+ first = txr->next_to_clean;
+ tx_desc = &txr->tx_base[first];
+ tx_buffer = &txr->tx_buffers[first];
+ last = tx_buffer->next_eop;
+ eop_desc = &txr->tx_base[last];
+
+ /*
+ * What this does is get the index of the
+ * first descriptor AFTER the EOP of the
+ * first packet, that way we can do the
+ * simple comparison on the inner while loop.
+ */
+ if (++last == adapter->num_tx_desc)
+ last = 0;
+ done = last;
+
+ bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
+ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
+
+ while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
+ /* We clean the range of the packet */
+ while (first != done) {
+ tx_desc->upper.data = 0;
+ tx_desc->lower.data = 0;
+ tx_desc->buffer_addr = 0;
+ ++txr->tx_avail;
+ ++processed;
+
+ if (tx_buffer->m_head) {
+ txr->bytes +=
+ tx_buffer->m_head->m_pkthdr.len;
+ bus_dmamap_sync(txr->txtag,
+ tx_buffer->map,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(txr->txtag,
+ tx_buffer->map);
+
+ m_freem(tx_buffer->m_head);
+ tx_buffer->m_head = NULL;
+ }
+ tx_buffer->next_eop = -1;
+ txr->watchdog_time = ticks;
+
+ if (++first == adapter->num_tx_desc)
+ first = 0;
+
+ tx_buffer = &txr->tx_buffers[first];
+ tx_desc = &txr->tx_base[first];
+ }
+ ++txr->packets;
+ ++ifp->if_opackets;
+ /* See if we can continue to the next packet */
+ last = tx_buffer->next_eop;
+ if (last != -1) {
+ eop_desc = &txr->tx_base[last];
+ /* Get new done point */
+ if (++last == adapter->num_tx_desc) last = 0;
+ done = last;
+ } else
+ break;
+ }
+ bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+ txr->next_to_clean = first;
+
+ /*
+ ** Watchdog calculation, we know there's
+ ** work outstanding or the first return
+ ** would have been taken, so none processed
+ ** for too long indicates a hang.
+ */
+ if ((!processed) && ((ticks - txr->watchdog_time) > IGB_WATCHDOG))
+ txr->queue_status = IGB_QUEUE_HUNG;
+
+ /*
+ * If we have a minimum free, clear IFF_DRV_OACTIVE
+ * to tell the stack that it is OK to send packets.
+ */
+ if (txr->tx_avail > IGB_TX_CLEANUP_THRESHOLD) {
+ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
+ /* All clean, turn off the watchdog */
+ if (txr->tx_avail == adapter->num_tx_desc) {
+ txr->queue_status = IGB_QUEUE_IDLE;
+ return (FALSE);
+ }
+ }
+ return (TRUE);
+}
+
+/*********************************************************************
+ *
+ * Refresh mbuf buffers for RX descriptor rings
+ * - now keeps its own state so discards due to resource
+ * exhaustion are unnecessary, if an mbuf cannot be obtained
+ * it just returns, keeping its placeholder, thus it can simply
+ * be recalled to try again.
+ *
+ **********************************************************************/
+static void
+igb_refresh_mbufs(struct rx_ring *rxr, int limit)
+{
+ struct adapter *adapter = rxr->adapter;
+ bus_dma_segment_t hseg[1];
+ bus_dma_segment_t pseg[1];
+ struct igb_rx_buf *rxbuf;
+ struct mbuf *mh, *mp;
+ int i, j, nsegs, error;
+ bool refreshed = FALSE;
+
+ i = j = rxr->next_to_refresh;
+ /*
+ ** Get one descriptor beyond
+ ** our work mark to control
+ ** the loop.
+ */
+ if (++j == adapter->num_rx_desc)
+ j = 0;
+
+ while (j != limit) {
+ rxbuf = &rxr->rx_buffers[i];
+ /* No hdr mbuf used with header split off */
+ if (rxr->hdr_split == FALSE)
+ goto no_split;
+ if (rxbuf->m_head == NULL) {
+ mh = m_gethdr(M_DONTWAIT, MT_DATA);
+ if (mh == NULL)
+ goto update;
+ } else
+ mh = rxbuf->m_head;
+
+ mh->m_pkthdr.len = mh->m_len = MHLEN;
+ mh->m_len = MHLEN;
+ mh->m_flags |= M_PKTHDR;
+ /* Get the memory mapping */
+ error = bus_dmamap_load_mbuf_sg(rxr->htag,
+ rxbuf->hmap, mh, hseg, &nsegs, BUS_DMA_NOWAIT);
+ if (error != 0) {
+ printf("Refresh mbufs: hdr dmamap load"
+ " failure - %d\n", error);
+ m_free(mh);
+ rxbuf->m_head = NULL;
+ goto update;
+ }
+ rxbuf->m_head = mh;
+ bus_dmamap_sync(rxr->htag, rxbuf->hmap,
+ BUS_DMASYNC_PREREAD);
+ rxr->rx_base[i].read.hdr_addr =
+ htole64(hseg[0].ds_addr);
+no_split:
+ if (rxbuf->m_pack == NULL) {
+ mp = m_getjcl(M_DONTWAIT, MT_DATA,
+ M_PKTHDR, adapter->rx_mbuf_sz);
+ if (mp == NULL)
+ goto update;
+ } else
+ mp = rxbuf->m_pack;
+
+ mp->m_pkthdr.len = mp->m_len = adapter->rx_mbuf_sz;
+ /* Get the memory mapping */
+ error = bus_dmamap_load_mbuf_sg(rxr->ptag,
+ rxbuf->pmap, mp, pseg, &nsegs, BUS_DMA_NOWAIT);
+ if (error != 0) {
+ printf("Refresh mbufs: payload dmamap load"
+ " failure - %d\n", error);
+ m_free(mp);
+ rxbuf->m_pack = NULL;
+ goto update;
+ }
+ rxbuf->m_pack = mp;
+ bus_dmamap_sync(rxr->ptag, rxbuf->pmap,
+ BUS_DMASYNC_PREREAD);
+ rxr->rx_base[i].read.pkt_addr =
+ htole64(pseg[0].ds_addr);
+ refreshed = TRUE; /* I feel wefreshed :) */
+
+ i = j; /* our next is precalculated */
+ rxr->next_to_refresh = i;
+ if (++j == adapter->num_rx_desc)
+ j = 0;
+ }
+update:
+ if (refreshed) /* update tail */
+ E1000_WRITE_REG(&adapter->hw,
+ E1000_RDT(rxr->me), rxr->next_to_refresh);
+ return;
+}
+
+
+/*********************************************************************
+ *
+ * Allocate memory for rx_buffer structures. Since we use one
+ * rx_buffer per received packet, the maximum number of rx_buffer's
+ * that we'll need is equal to the number of receive descriptors
+ * that we've allocated.
+ *
+ **********************************************************************/
+static int
+igb_allocate_receive_buffers(struct rx_ring *rxr)
+{
+ struct adapter *adapter = rxr->adapter;
+ device_t dev = adapter->dev;
+ struct igb_rx_buf *rxbuf;
+ int i, bsize, error;
+
+ bsize = sizeof(struct igb_rx_buf) * adapter->num_rx_desc;
+ if (!(rxr->rx_buffers =
+ (struct igb_rx_buf *) malloc(bsize,
+ M_DEVBUF, M_NOWAIT | M_ZERO))) {
+ device_printf(dev, "Unable to allocate rx_buffer memory\n");
+ error = ENOMEM;
+ goto fail;
+ }
+
+ if ((error = bus_dma_tag_create(bus_get_dma_tag(dev),
+ 1, 0, /* alignment, bounds */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ MSIZE, /* maxsize */
+ 1, /* nsegments */
+ MSIZE, /* maxsegsize */
+ 0, /* flags */
+ NULL, /* lockfunc */
+ NULL, /* lockfuncarg */
+ &rxr->htag))) {
+ device_printf(dev, "Unable to create RX DMA tag\n");
+ goto fail;
+ }
+
+ if ((error = bus_dma_tag_create(bus_get_dma_tag(dev),
+ 1, 0, /* alignment, bounds */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ MJUM9BYTES, /* maxsize */
+ 1, /* nsegments */
+ MJUM9BYTES, /* maxsegsize */
+ 0, /* flags */
+ NULL, /* lockfunc */
+ NULL, /* lockfuncarg */
+ &rxr->ptag))) {
+ device_printf(dev, "Unable to create RX payload DMA tag\n");
+ goto fail;
+ }
+
+ for (i = 0; i < adapter->num_rx_desc; i++) {
+ rxbuf = &rxr->rx_buffers[i];
+ error = bus_dmamap_create(rxr->htag,
+ BUS_DMA_NOWAIT, &rxbuf->hmap);
+ if (error) {
+ device_printf(dev,
+ "Unable to create RX head DMA maps\n");
+ goto fail;
+ }
+ error = bus_dmamap_create(rxr->ptag,
+ BUS_DMA_NOWAIT, &rxbuf->pmap);
+ if (error) {
+ device_printf(dev,
+ "Unable to create RX packet DMA maps\n");
+ goto fail;
+ }
+ }
+
+ return (0);
+
+fail:
+ /* Frees all, but can handle partial completion */
+ igb_free_receive_structures(adapter);
+ return (error);
+}
+
+
+static void
+igb_free_receive_ring(struct rx_ring *rxr)
+{
+ struct adapter *adapter = rxr->adapter;
+ struct igb_rx_buf *rxbuf;
+
+
+ for (int i = 0; i < adapter->num_rx_desc; i++) {
+ rxbuf = &rxr->rx_buffers[i];
+ if (rxbuf->m_head != NULL) {
+ bus_dmamap_sync(rxr->htag, rxbuf->hmap,
+ BUS_DMASYNC_POSTREAD);
+ bus_dmamap_unload(rxr->htag, rxbuf->hmap);
+ rxbuf->m_head->m_flags |= M_PKTHDR;
+ m_freem(rxbuf->m_head);
+ }
+ if (rxbuf->m_pack != NULL) {
+ bus_dmamap_sync(rxr->ptag, rxbuf->pmap,
+ BUS_DMASYNC_POSTREAD);
+ bus_dmamap_unload(rxr->ptag, rxbuf->pmap);
+ rxbuf->m_pack->m_flags |= M_PKTHDR;
+ m_freem(rxbuf->m_pack);
+ }
+ rxbuf->m_head = NULL;
+ rxbuf->m_pack = NULL;
+ }
+}
+
+
+/*********************************************************************
+ *
+ * Initialize a receive ring and its buffers.
+ *
+ **********************************************************************/
+static int
+igb_setup_receive_ring(struct rx_ring *rxr)
+{
+ struct adapter *adapter;
+ struct ifnet *ifp;
+ device_t dev;
+ struct igb_rx_buf *rxbuf;
+ bus_dma_segment_t pseg[1], hseg[1];
+ struct lro_ctrl *lro = &rxr->lro;
+ int rsize, nsegs, error = 0;
+
+ adapter = rxr->adapter;
+ dev = adapter->dev;
+ ifp = adapter->ifp;
+
+ /* Clear the ring contents */
+ IGB_RX_LOCK(rxr);
+ rsize = roundup2(adapter->num_rx_desc *
+ sizeof(union e1000_adv_rx_desc), IGB_DBA_ALIGN);
+ bzero((void *)rxr->rx_base, rsize);
+
+ /*
+ ** Free current RX buffer structures and their mbufs
+ */
+ igb_free_receive_ring(rxr);
+
+ /* Configure for header split? */
+ if (igb_header_split)
+ rxr->hdr_split = TRUE;
+
+ /* Now replenish the ring mbufs */
+ for (int j = 0; j < adapter->num_rx_desc; ++j) {
+ struct mbuf *mh, *mp;
+
+ rxbuf = &rxr->rx_buffers[j];
+ if (rxr->hdr_split == FALSE)
+ goto skip_head;
+
+ /* First the header */
+ rxbuf->m_head = m_gethdr(M_DONTWAIT, MT_DATA);
+ if (rxbuf->m_head == NULL) {
+ error = ENOBUFS;
+ goto fail;
+ }
+ m_adj(rxbuf->m_head, ETHER_ALIGN);
+ mh = rxbuf->m_head;
+ mh->m_len = mh->m_pkthdr.len = MHLEN;
+ mh->m_flags |= M_PKTHDR;
+ /* Get the memory mapping */
+ error = bus_dmamap_load_mbuf_sg(rxr->htag,
+ rxbuf->hmap, rxbuf->m_head, hseg,
+ &nsegs, BUS_DMA_NOWAIT);
+ if (error != 0) /* Nothing elegant to do here */
+ goto fail;
+ bus_dmamap_sync(rxr->htag,
+ rxbuf->hmap, BUS_DMASYNC_PREREAD);
+ /* Update descriptor */
+ rxr->rx_base[j].read.hdr_addr = htole64(hseg[0].ds_addr);
+
+skip_head:
+ /* Now the payload cluster */
+ rxbuf->m_pack = m_getjcl(M_DONTWAIT, MT_DATA,
+ M_PKTHDR, adapter->rx_mbuf_sz);
+ if (rxbuf->m_pack == NULL) {
+ error = ENOBUFS;
+ goto fail;
+ }
+ mp = rxbuf->m_pack;
+ mp->m_pkthdr.len = mp->m_len = adapter->rx_mbuf_sz;
+ /* Get the memory mapping */
+ error = bus_dmamap_load_mbuf_sg(rxr->ptag,
+ rxbuf->pmap, mp, pseg,
+ &nsegs, BUS_DMA_NOWAIT);
+ if (error != 0)
+ goto fail;
+ bus_dmamap_sync(rxr->ptag,
+ rxbuf->pmap, BUS_DMASYNC_PREREAD);
+ /* Update descriptor */
+ rxr->rx_base[j].read.pkt_addr = htole64(pseg[0].ds_addr);
+ }
+
+ /* Setup our descriptor indices */
+ rxr->next_to_check = 0;
+ rxr->next_to_refresh = adapter->num_rx_desc - 1;
+ rxr->lro_enabled = FALSE;
+ rxr->rx_split_packets = 0;
+ rxr->rx_bytes = 0;
+
+ rxr->fmp = NULL;
+ rxr->lmp = NULL;
+ rxr->discard = FALSE;
+
+ bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+ /*
+ ** Now set up the LRO interface, we
+ ** also only do head split when LRO
+ ** is enabled, since so often they
+ ** are undesireable in similar setups.
+ */
+ if (ifp->if_capenable & IFCAP_LRO) {
+ error = tcp_lro_init(lro);
+ if (error) {
+ device_printf(dev, "LRO Initialization failed!\n");
+ goto fail;
+ }
+ INIT_DEBUGOUT("RX LRO Initialized\n");
+ rxr->lro_enabled = TRUE;
+ lro->ifp = adapter->ifp;
+ }
+
+ IGB_RX_UNLOCK(rxr);
+ return (0);
+
+fail:
+ igb_free_receive_ring(rxr);
+ IGB_RX_UNLOCK(rxr);
+ return (error);
+}
+
+
+/*********************************************************************
+ *
+ * Initialize all receive rings.
+ *
+ **********************************************************************/
+static int
+igb_setup_receive_structures(struct adapter *adapter)
+{
+ struct rx_ring *rxr = adapter->rx_rings;
+ int i;
+
+ for (i = 0; i < adapter->num_queues; i++, rxr++)
+ if (igb_setup_receive_ring(rxr))
+ goto fail;
+
+ return (0);
+fail:
+ /*
+ * Free RX buffers allocated so far, we will only handle
+ * the rings that completed, the failing case will have
+ * cleaned up for itself. 'i' is the endpoint.
+ */
+ for (int j = 0; j > i; ++j) {
+ rxr = &adapter->rx_rings[i];
+ IGB_RX_LOCK(rxr);
+ igb_free_receive_ring(rxr);
+ IGB_RX_UNLOCK(rxr);
+ }
+
+ return (ENOBUFS);
+}
+
+/*********************************************************************
+ *
+ * Enable receive unit.
+ *
+ **********************************************************************/
+static void
+igb_initialize_receive_units(struct adapter *adapter)
+{
+ struct rx_ring *rxr = adapter->rx_rings;
+ struct ifnet *ifp = adapter->ifp;
+ struct e1000_hw *hw = &adapter->hw;
+ u32 rctl, rxcsum, psize, srrctl = 0;
+
+ INIT_DEBUGOUT("igb_initialize_receive_unit: begin");
+
+ /*
+ * Make sure receives are disabled while setting
+ * up the descriptor ring
+ */
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
+
+ /*
+ ** Set up for header split
+ */
+ if (igb_header_split) {
+ /* Use a standard mbuf for the header */
+ srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
+ srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
+ } else
+ srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
+
+ /*
+ ** Set up for jumbo frames
+ */
+ if (ifp->if_mtu > ETHERMTU) {
+ rctl |= E1000_RCTL_LPE;
+ if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
+ srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
+ rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
+ } else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
+ srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
+ rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
+ }
+ /* Set maximum packet len */
+ psize = adapter->max_frame_size;
+ /* are we on a vlan? */
+ if (adapter->ifp->if_vlantrunk != NULL)
+ psize += VLAN_TAG_SIZE;
+ E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
+ } else {
+ rctl &= ~E1000_RCTL_LPE;
+ srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
+ rctl |= E1000_RCTL_SZ_2048;
+ }
+
+ /* Setup the Base and Length of the Rx Descriptor Rings */
+ for (int i = 0; i < adapter->num_queues; i++, rxr++) {
+ u64 bus_addr = rxr->rxdma.dma_paddr;
+ u32 rxdctl;
+
+ E1000_WRITE_REG(hw, E1000_RDLEN(i),
+ adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
+ E1000_WRITE_REG(hw, E1000_RDBAH(i),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_RDBAL(i),
+ (uint32_t)bus_addr);
+ E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
+ /* Enable this Queue */
+ rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
+ rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
+ rxdctl &= 0xFFF00000;
+ rxdctl |= IGB_RX_PTHRESH;
+ rxdctl |= IGB_RX_HTHRESH << 8;
+ rxdctl |= IGB_RX_WTHRESH << 16;
+ E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
+ }
+
+ /*
+ ** Setup for RX MultiQueue
+ */
+ rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
+ if (adapter->num_queues >1) {
+ u32 random[10], mrqc, shift = 0;
+ union igb_reta {
+ u32 dword;
+ u8 bytes[4];
+ } reta;
+
+ arc4rand(&random, sizeof(random), 0);
+ if (adapter->hw.mac.type == e1000_82575)
+ shift = 6;
+ /* Warning FM follows */
+ for (int i = 0; i < 128; i++) {
+ reta.bytes[i & 3] =
+ (i % adapter->num_queues) << shift;
+ if ((i & 3) == 3)
+ E1000_WRITE_REG(hw,
+ E1000_RETA(i >> 2), reta.dword);
+ }
+ /* Now fill in hash table */
+ mrqc = E1000_MRQC_ENABLE_RSS_4Q;
+ for (int i = 0; i < 10; i++)
+ E1000_WRITE_REG_ARRAY(hw,
+ E1000_RSSRK(0), i, random[i]);
+
+ mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
+ E1000_MRQC_RSS_FIELD_IPV4_TCP);
+ mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
+ E1000_MRQC_RSS_FIELD_IPV6_TCP);
+ mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
+ E1000_MRQC_RSS_FIELD_IPV6_UDP);
+ mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
+ E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
+
+ E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+
+ /*
+ ** NOTE: Receive Full-Packet Checksum Offload
+ ** is mutually exclusive with Multiqueue. However
+ ** this is not the same as TCP/IP checksums which
+ ** still work.
+ */
+ rxcsum |= E1000_RXCSUM_PCSD;
+#if __FreeBSD_version >= 800000
+ /* For SCTP Offload */
+ if ((hw->mac.type == e1000_82576)
+ && (ifp->if_capenable & IFCAP_RXCSUM))
+ rxcsum |= E1000_RXCSUM_CRCOFL;
+#endif
+ } else {
+ /* Non RSS setup */
+ if (ifp->if_capenable & IFCAP_RXCSUM) {
+ rxcsum |= E1000_RXCSUM_IPPCSE;
+#if __FreeBSD_version >= 800000
+ if (adapter->hw.mac.type == e1000_82576)
+ rxcsum |= E1000_RXCSUM_CRCOFL;
+#endif
+ } else
+ rxcsum &= ~E1000_RXCSUM_TUOFL;
+ }
+ E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
+
+ /* Setup the Receive Control Register */
+ rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+ rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
+ E1000_RCTL_RDMTS_HALF |
+ (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
+ /* Strip CRC bytes. */
+ rctl |= E1000_RCTL_SECRC;
+ /* Make sure VLAN Filters are off */
+ rctl &= ~E1000_RCTL_VFE;
+ /* Don't store bad packets */
+ rctl &= ~E1000_RCTL_SBP;
+
+ /* Enable Receives */
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+ /*
+ * Setup the HW Rx Head and Tail Descriptor Pointers
+ * - needs to be after enable
+ */
+ for (int i = 0; i < adapter->num_queues; i++) {
+ rxr = &adapter->rx_rings[i];
+ E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
+ E1000_WRITE_REG(hw, E1000_RDT(i), rxr->next_to_refresh);
+ }
+ return;
+}
+
+/*********************************************************************
+ *
+ * Free receive rings.
+ *
+ **********************************************************************/
+static void
+igb_free_receive_structures(struct adapter *adapter)
+{
+ struct rx_ring *rxr = adapter->rx_rings;
+
+ for (int i = 0; i < adapter->num_queues; i++, rxr++) {
+ struct lro_ctrl *lro = &rxr->lro;
+ igb_free_receive_buffers(rxr);
+ tcp_lro_free(lro);
+ igb_dma_free(adapter, &rxr->rxdma);
+ }
+
+ free(adapter->rx_rings, M_DEVBUF);
+}
+
+/*********************************************************************
+ *
+ * Free receive ring data structures.
+ *
+ **********************************************************************/
+static void
+igb_free_receive_buffers(struct rx_ring *rxr)
+{
+ struct adapter *adapter = rxr->adapter;
+ struct igb_rx_buf *rxbuf;
+ int i;
+
+ INIT_DEBUGOUT("free_receive_structures: begin");
+
+ /* Cleanup any existing buffers */
+ if (rxr->rx_buffers != NULL) {
+ for (i = 0; i < adapter->num_rx_desc; i++) {
+ rxbuf = &rxr->rx_buffers[i];
+ if (rxbuf->m_head != NULL) {
+ bus_dmamap_sync(rxr->htag, rxbuf->hmap,
+ BUS_DMASYNC_POSTREAD);
+ bus_dmamap_unload(rxr->htag, rxbuf->hmap);
+ rxbuf->m_head->m_flags |= M_PKTHDR;
+ m_freem(rxbuf->m_head);
+ }
+ if (rxbuf->m_pack != NULL) {
+ bus_dmamap_sync(rxr->ptag, rxbuf->pmap,
+ BUS_DMASYNC_POSTREAD);
+ bus_dmamap_unload(rxr->ptag, rxbuf->pmap);
+ rxbuf->m_pack->m_flags |= M_PKTHDR;
+ m_freem(rxbuf->m_pack);
+ }
+ rxbuf->m_head = NULL;
+ rxbuf->m_pack = NULL;
+ if (rxbuf->hmap != NULL) {
+ bus_dmamap_destroy(rxr->htag, rxbuf->hmap);
+ rxbuf->hmap = NULL;
+ }
+ if (rxbuf->pmap != NULL) {
+ bus_dmamap_destroy(rxr->ptag, rxbuf->pmap);
+ rxbuf->pmap = NULL;
+ }
+ }
+ if (rxr->rx_buffers != NULL) {
+ free(rxr->rx_buffers, M_DEVBUF);
+ rxr->rx_buffers = NULL;
+ }
+ }
+
+ if (rxr->htag != NULL) {
+ bus_dma_tag_destroy(rxr->htag);
+ rxr->htag = NULL;
+ }
+ if (rxr->ptag != NULL) {
+ bus_dma_tag_destroy(rxr->ptag);
+ rxr->ptag = NULL;
+ }
+}
+
+static __inline void
+igb_rx_discard(struct rx_ring *rxr, int i)
+{
+ struct igb_rx_buf *rbuf;
+
+ rbuf = &rxr->rx_buffers[i];
+
+ /* Partially received? Free the chain */
+ if (rxr->fmp != NULL) {
+ rxr->fmp->m_flags |= M_PKTHDR;
+ m_freem(rxr->fmp);
+ rxr->fmp = NULL;
+ rxr->lmp = NULL;
+ }
+
+ /*
+ ** With advanced descriptors the writeback
+ ** clobbers the buffer addrs, so its easier
+ ** to just free the existing mbufs and take
+ ** the normal refresh path to get new buffers
+ ** and mapping.
+ */
+ if (rbuf->m_head) {
+ m_free(rbuf->m_head);
+ rbuf->m_head = NULL;
+ }
+
+ if (rbuf->m_pack) {
+ m_free(rbuf->m_pack);
+ rbuf->m_pack = NULL;
+ }
+
+ return;
+}
+
+static __inline void
+igb_rx_input(struct rx_ring *rxr, struct ifnet *ifp, struct mbuf *m, u32 ptype)
+{
+
+ /*
+ * ATM LRO is only for IPv4/TCP packets and TCP checksum of the packet
+ * should be computed by hardware. Also it should not have VLAN tag in
+ * ethernet header.
+ */
+ if (rxr->lro_enabled &&
+ (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
+ (ptype & E1000_RXDADV_PKTTYPE_ETQF) == 0 &&
+ (ptype & (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP)) ==
+ (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP) &&
+ (m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
+ (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
+ /*
+ * Send to the stack if:
+ ** - LRO not enabled, or
+ ** - no LRO resources, or
+ ** - lro enqueue fails
+ */
+ if (rxr->lro.lro_cnt != 0)
+ if (tcp_lro_rx(&rxr->lro, m, 0) == 0)
+ return;
+ }
+ IGB_RX_UNLOCK(rxr);
+ (*ifp->if_input)(ifp, m);
+ IGB_RX_LOCK(rxr);
+}
+
+/*********************************************************************
+ *
+ * This routine executes in interrupt context. It replenishes
+ * the mbufs in the descriptor and sends data which has been
+ * dma'ed into host memory to upper layer.
+ *
+ * We loop at most count times if count is > 0, or until done if
+ * count < 0.
+ *
+ * Return TRUE if more to clean, FALSE otherwise
+ *********************************************************************/
+static bool
+igb_rxeof(struct igb_queue *que, int count, int *done)
+{
+ struct adapter *adapter = que->adapter;
+ struct rx_ring *rxr = que->rxr;
+ struct ifnet *ifp = adapter->ifp;
+ struct lro_ctrl *lro = &rxr->lro;
+ struct lro_entry *queued;
+ int i, processed = 0, rxdone = 0;
+ u32 ptype, staterr = 0;
+ union e1000_adv_rx_desc *cur;
+
+ IGB_RX_LOCK(rxr);
+ /* Sync the ring. */
+ bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
+ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
+
+ /* Main clean loop */
+ for (i = rxr->next_to_check; count != 0;) {
+ struct mbuf *sendmp, *mh, *mp;
+ struct igb_rx_buf *rxbuf;
+ u16 hlen, plen, hdr, vtag;
+ bool eop = FALSE;
+
+ cur = &rxr->rx_base[i];
+ staterr = le32toh(cur->wb.upper.status_error);
+ if ((staterr & E1000_RXD_STAT_DD) == 0)
+ break;
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
+ break;
+ count--;
+ sendmp = mh = mp = NULL;
+ cur->wb.upper.status_error = 0;
+ rxbuf = &rxr->rx_buffers[i];
+ plen = le16toh(cur->wb.upper.length);
+ ptype = le32toh(cur->wb.lower.lo_dword.data) & IGB_PKTTYPE_MASK;
+ if ((adapter->hw.mac.type == e1000_i350) &&
+ (staterr & E1000_RXDEXT_STATERR_LB))
+ vtag = be16toh(cur->wb.upper.vlan);
+ else
+ vtag = le16toh(cur->wb.upper.vlan);
+ hdr = le16toh(cur->wb.lower.lo_dword.hs_rss.hdr_info);
+ eop = ((staterr & E1000_RXD_STAT_EOP) == E1000_RXD_STAT_EOP);
+
+ /* Make sure all segments of a bad packet are discarded */
+ if (((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) != 0) ||
+ (rxr->discard)) {
+ ifp->if_ierrors++;
+ ++rxr->rx_discarded;
+ if (!eop) /* Catch subsequent segs */
+ rxr->discard = TRUE;
+ else
+ rxr->discard = FALSE;
+ igb_rx_discard(rxr, i);
+ goto next_desc;
+ }
+
+ /*
+ ** The way the hardware is configured to
+ ** split, it will ONLY use the header buffer
+ ** when header split is enabled, otherwise we
+ ** get normal behavior, ie, both header and
+ ** payload are DMA'd into the payload buffer.
+ **
+ ** The fmp test is to catch the case where a
+ ** packet spans multiple descriptors, in that
+ ** case only the first header is valid.
+ */
+ if (rxr->hdr_split && rxr->fmp == NULL) {
+ hlen = (hdr & E1000_RXDADV_HDRBUFLEN_MASK) >>
+ E1000_RXDADV_HDRBUFLEN_SHIFT;
+ if (hlen > IGB_HDR_BUF)
+ hlen = IGB_HDR_BUF;
+ mh = rxr->rx_buffers[i].m_head;
+ mh->m_len = hlen;
+ /* clear buf pointer for refresh */
+ rxbuf->m_head = NULL;
+ /*
+ ** Get the payload length, this
+ ** could be zero if its a small
+ ** packet.
+ */
+ if (plen > 0) {
+ mp = rxr->rx_buffers[i].m_pack;
+ mp->m_len = plen;
+ mh->m_next = mp;
+ /* clear buf pointer */
+ rxbuf->m_pack = NULL;
+ rxr->rx_split_packets++;
+ }
+ } else {
+ /*
+ ** Either no header split, or a
+ ** secondary piece of a fragmented
+ ** split packet.
+ */
+ mh = rxr->rx_buffers[i].m_pack;
+ mh->m_len = plen;
+ /* clear buf info for refresh */
+ rxbuf->m_pack = NULL;
+ }
+
+ ++processed; /* So we know when to refresh */
+
+ /* Initial frame - setup */
+ if (rxr->fmp == NULL) {
+ mh->m_pkthdr.len = mh->m_len;
+ /* Save the head of the chain */
+ rxr->fmp = mh;
+ rxr->lmp = mh;
+ if (mp != NULL) {
+ /* Add payload if split */
+ mh->m_pkthdr.len += mp->m_len;
+ rxr->lmp = mh->m_next;
+ }
+ } else {
+ /* Chain mbuf's together */
+ rxr->lmp->m_next = mh;
+ rxr->lmp = rxr->lmp->m_next;
+ rxr->fmp->m_pkthdr.len += mh->m_len;
+ }
+
+ if (eop) {
+ rxr->fmp->m_pkthdr.rcvif = ifp;
+ ifp->if_ipackets++;
+ rxr->rx_packets++;
+ /* capture data for AIM */
+ rxr->packets++;
+ rxr->bytes += rxr->fmp->m_pkthdr.len;
+ rxr->rx_bytes += rxr->fmp->m_pkthdr.len;
+
+ if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
+ igb_rx_checksum(staterr, rxr->fmp, ptype);
+
+ if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
+ (staterr & E1000_RXD_STAT_VP) != 0) {
+ rxr->fmp->m_pkthdr.ether_vtag = vtag;
+ rxr->fmp->m_flags |= M_VLANTAG;
+ }
+#if __FreeBSD_version >= 800000
+ rxr->fmp->m_pkthdr.flowid = que->msix;
+ rxr->fmp->m_flags |= M_FLOWID;
+#endif
+ sendmp = rxr->fmp;
+ /* Make sure to set M_PKTHDR. */
+ sendmp->m_flags |= M_PKTHDR;
+ rxr->fmp = NULL;
+ rxr->lmp = NULL;
+ }
+
+next_desc:
+ bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+ /* Advance our pointers to the next descriptor. */
+ if (++i == adapter->num_rx_desc)
+ i = 0;
+ /*
+ ** Send to the stack or LRO
+ */
+ if (sendmp != NULL) {
+ rxr->next_to_check = i;
+ igb_rx_input(rxr, ifp, sendmp, ptype);
+ i = rxr->next_to_check;
+ rxdone++;
+ }
+
+ /* Every 8 descriptors we go to refresh mbufs */
+ if (processed == 8) {
+ igb_refresh_mbufs(rxr, i);
+ processed = 0;
+ }
+ }
+
+ /* Catch any remainders */
+ if (igb_rx_unrefreshed(rxr))
+ igb_refresh_mbufs(rxr, i);
+
+ rxr->next_to_check = i;
+
+ /*
+ * Flush any outstanding LRO work
+ */
+ while ((queued = SLIST_FIRST(&lro->lro_active)) != NULL) {
+ SLIST_REMOVE_HEAD(&lro->lro_active, next);
+ tcp_lro_flush(lro, queued);
+ }
+
+ if (done != NULL)
+ *done = rxdone;
+
+ IGB_RX_UNLOCK(rxr);
+ return ((staterr & E1000_RXD_STAT_DD) ? TRUE : FALSE);
+}
+
+/*********************************************************************
+ *
+ * Verify that the hardware indicated that the checksum is valid.
+ * Inform the stack about the status of checksum so that stack
+ * doesn't spend time verifying the checksum.
+ *
+ *********************************************************************/
+static void
+igb_rx_checksum(u32 staterr, struct mbuf *mp, u32 ptype)
+{
+ u16 status = (u16)staterr;
+ u8 errors = (u8) (staterr >> 24);
+ int sctp;
+
+ /* Ignore Checksum bit is set */
+ if (status & E1000_RXD_STAT_IXSM) {
+ mp->m_pkthdr.csum_flags = 0;
+ return;
+ }
+
+ if ((ptype & E1000_RXDADV_PKTTYPE_ETQF) == 0 &&
+ (ptype & E1000_RXDADV_PKTTYPE_SCTP) != 0)
+ sctp = 1;
+ else
+ sctp = 0;
+ if (status & E1000_RXD_STAT_IPCS) {
+ /* Did it pass? */
+ if (!(errors & E1000_RXD_ERR_IPE)) {
+ /* IP Checksum Good */
+ mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
+ mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
+ } else
+ mp->m_pkthdr.csum_flags = 0;
+ }
+
+ if (status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
+ u16 type = (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
+#if __FreeBSD_version >= 800000
+ if (sctp) /* reassign */
+ type = CSUM_SCTP_VALID;
+#endif
+ /* Did it pass? */
+ if (!(errors & E1000_RXD_ERR_TCPE)) {
+ mp->m_pkthdr.csum_flags |= type;
+ if (sctp == 0)
+ mp->m_pkthdr.csum_data = htons(0xffff);
+ }
+ }
+ return;
+}
+
+/*
+ * This routine is run via an vlan
+ * config EVENT
+ */
+static void
+igb_register_vlan(void *arg, struct ifnet *ifp, u16 vtag)
+{
+ struct adapter *adapter = ifp->if_softc;
+ u32 index, bit;
+
+ if (ifp->if_softc != arg) /* Not our event */
+ return;
+
+ if ((vtag == 0) || (vtag > 4095)) /* Invalid */
+ return;
+
+ IGB_CORE_LOCK(adapter);
+ index = (vtag >> 5) & 0x7F;
+ bit = vtag & 0x1F;
+ adapter->shadow_vfta[index] |= (1 << bit);
+ ++adapter->num_vlans;
+ /* Change hw filter setting */
+ if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
+ igb_setup_vlan_hw_support(adapter);
+ IGB_CORE_UNLOCK(adapter);
+}
+
+/*
+ * This routine is run via an vlan
+ * unconfig EVENT
+ */
+static void
+igb_unregister_vlan(void *arg, struct ifnet *ifp, u16 vtag)
+{
+ struct adapter *adapter = ifp->if_softc;
+ u32 index, bit;
+
+ if (ifp->if_softc != arg)
+ return;
+
+ if ((vtag == 0) || (vtag > 4095)) /* Invalid */
+ return;
+
+ IGB_CORE_LOCK(adapter);
+ index = (vtag >> 5) & 0x7F;
+ bit = vtag & 0x1F;
+ adapter->shadow_vfta[index] &= ~(1 << bit);
+ --adapter->num_vlans;
+ /* Change hw filter setting */
+ if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
+ igb_setup_vlan_hw_support(adapter);
+ IGB_CORE_UNLOCK(adapter);
+}
+
+static void
+igb_setup_vlan_hw_support(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ struct ifnet *ifp = adapter->ifp;
+ u32 reg;
+
+ if (adapter->vf_ifp) {
+ e1000_rlpml_set_vf(hw,
+ adapter->max_frame_size + VLAN_TAG_SIZE);
+ return;
+ }
+
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg |= E1000_CTRL_VME;
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+
+ /* Enable the Filter Table */
+ if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
+ reg = E1000_READ_REG(hw, E1000_RCTL);
+ reg &= ~E1000_RCTL_CFIEN;
+ reg |= E1000_RCTL_VFE;
+ E1000_WRITE_REG(hw, E1000_RCTL, reg);
+ }
+
+ /* Update the frame size */
+ E1000_WRITE_REG(&adapter->hw, E1000_RLPML,
+ adapter->max_frame_size + VLAN_TAG_SIZE);
+
+ /* Don't bother with table if no vlans */
+ if ((adapter->num_vlans == 0) ||
+ ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
+ return;
+ /*
+ ** A soft reset zero's out the VFTA, so
+ ** we need to repopulate it now.
+ */
+ for (int i = 0; i < IGB_VFTA_SIZE; i++)
+ if (adapter->shadow_vfta[i] != 0) {
+ if (adapter->vf_ifp)
+ e1000_vfta_set_vf(hw,
+ adapter->shadow_vfta[i], TRUE);
+ else
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
+ i, adapter->shadow_vfta[i]);
+ }
+}
+
+static void
+igb_enable_intr(struct adapter *adapter)
+{
+ /* With RSS set up what to auto clear */
+ if (adapter->msix_mem) {
+ u32 mask = (adapter->que_mask | adapter->link_mask);
+ E1000_WRITE_REG(&adapter->hw, E1000_EIAC, mask);
+ E1000_WRITE_REG(&adapter->hw, E1000_EIAM, mask);
+ E1000_WRITE_REG(&adapter->hw, E1000_EIMS, mask);
+ E1000_WRITE_REG(&adapter->hw, E1000_IMS,
+ E1000_IMS_LSC);
+ } else {
+ E1000_WRITE_REG(&adapter->hw, E1000_IMS,
+ IMS_ENABLE_MASK);
+ }
+ E1000_WRITE_FLUSH(&adapter->hw);
+
+ return;
+}
+
+static void
+igb_disable_intr(struct adapter *adapter)
+{
+ if (adapter->msix_mem) {
+ E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0);
+ E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0);
+ }
+ E1000_WRITE_REG(&adapter->hw, E1000_IMC, ~0);
+ E1000_WRITE_FLUSH(&adapter->hw);
+ return;
+}
+
+/*
+ * Bit of a misnomer, what this really means is
+ * to enable OS management of the system... aka
+ * to disable special hardware management features
+ */
+static void
+igb_init_manageability(struct adapter *adapter)
+{
+ if (adapter->has_manage) {
+ int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
+ int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
+
+ /* disable hardware interception of ARP */
+ manc &= ~(E1000_MANC_ARP_EN);
+
+ /* enable receiving management packets to the host */
+ manc |= E1000_MANC_EN_MNG2HOST;
+ manc2h |= 1 << 5; /* Mng Port 623 */
+ manc2h |= 1 << 6; /* Mng Port 664 */
+ E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
+ E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
+ }
+}
+
+/*
+ * Give control back to hardware management
+ * controller if there is one.
+ */
+static void
+igb_release_manageability(struct adapter *adapter)
+{
+ if (adapter->has_manage) {
+ int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
+
+ /* re-enable hardware interception of ARP */
+ manc |= E1000_MANC_ARP_EN;
+ manc &= ~E1000_MANC_EN_MNG2HOST;
+
+ E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
+ }
+}
+
+/*
+ * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that
+ * the driver is loaded.
+ *
+ */
+static void
+igb_get_hw_control(struct adapter *adapter)
+{
+ u32 ctrl_ext;
+
+ if (adapter->vf_ifp)
+ return;
+
+ /* Let firmware know the driver has taken over */
+ ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
+ ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
+}
+
+/*
+ * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that the
+ * driver is no longer loaded.
+ *
+ */
+static void
+igb_release_hw_control(struct adapter *adapter)
+{
+ u32 ctrl_ext;
+
+ if (adapter->vf_ifp)
+ return;
+
+ /* Let firmware taken over control of h/w */
+ ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
+ ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
+}
+
+static int
+igb_is_valid_ether_addr(uint8_t *addr)
+{
+ char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
+
+ if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
+ return (FALSE);
+ }
+
+ return (TRUE);
+}
+
+
+/*
+ * Enable PCI Wake On Lan capability
+ */
+static void
+igb_enable_wakeup(device_t dev)
+{
+ u16 cap, status;
+ u8 id;
+
+ /* First find the capabilities pointer*/
+ cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
+ /* Read the PM Capabilities */
+ id = pci_read_config(dev, cap, 1);
+ if (id != PCIY_PMG) /* Something wrong */
+ return;
+ /* OK, we have the power capabilities, so
+ now get the status register */
+ cap += PCIR_POWER_STATUS;
+ status = pci_read_config(dev, cap, 2);
+ status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
+ pci_write_config(dev, cap, status, 2);
+ return;
+}
+
+static void
+igb_led_func(void *arg, int onoff)
+{
+ struct adapter *adapter = arg;
+
+ IGB_CORE_LOCK(adapter);
+ if (onoff) {
+ e1000_setup_led(&adapter->hw);
+ e1000_led_on(&adapter->hw);
+ } else {
+ e1000_led_off(&adapter->hw);
+ e1000_cleanup_led(&adapter->hw);
+ }
+ IGB_CORE_UNLOCK(adapter);
+}
+
+/**********************************************************************
+ *
+ * Update the board statistics counters.
+ *
+ **********************************************************************/
+static void
+igb_update_stats_counters(struct adapter *adapter)
+{
+ struct ifnet *ifp;
+ struct e1000_hw *hw = &adapter->hw;
+ struct e1000_hw_stats *stats;
+
+ /*
+ ** The virtual function adapter has only a
+ ** small controlled set of stats, do only
+ ** those and return.
+ */
+ if (adapter->vf_ifp) {
+ igb_update_vf_stats_counters(adapter);
+ return;
+ }
+
+ stats = (struct e1000_hw_stats *)adapter->stats;
+
+ if(adapter->hw.phy.media_type == e1000_media_type_copper ||
+ (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
+ stats->symerrs +=
+ E1000_READ_REG(hw,E1000_SYMERRS);
+ stats->sec += E1000_READ_REG(hw, E1000_SEC);
+ }
+
+ stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
+ stats->mpc += E1000_READ_REG(hw, E1000_MPC);
+ stats->scc += E1000_READ_REG(hw, E1000_SCC);
+ stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
+
+ stats->mcc += E1000_READ_REG(hw, E1000_MCC);
+ stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
+ stats->colc += E1000_READ_REG(hw, E1000_COLC);
+ stats->dc += E1000_READ_REG(hw, E1000_DC);
+ stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
+ stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
+ stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
+ /*
+ ** For watchdog management we need to know if we have been
+ ** paused during the last interval, so capture that here.
+ */
+ adapter->pause_frames = E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
+ stats->xoffrxc += adapter->pause_frames;
+ stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
+ stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
+ stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
+ stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
+ stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
+ stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
+ stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
+ stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
+ stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
+ stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
+ stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
+ stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
+
+ /* For the 64-bit byte counters the low dword must be read first. */
+ /* Both registers clear on the read of the high dword */
+
+ stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
+ ((u64)E1000_READ_REG(hw, E1000_GORCH) << 32);
+ stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
+ ((u64)E1000_READ_REG(hw, E1000_GOTCH) << 32);
+
+ stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
+ stats->ruc += E1000_READ_REG(hw, E1000_RUC);
+ stats->rfc += E1000_READ_REG(hw, E1000_RFC);
+ stats->roc += E1000_READ_REG(hw, E1000_ROC);
+ stats->rjc += E1000_READ_REG(hw, E1000_RJC);
+
+ stats->tor += E1000_READ_REG(hw, E1000_TORH);
+ stats->tot += E1000_READ_REG(hw, E1000_TOTH);
+
+ stats->tpr += E1000_READ_REG(hw, E1000_TPR);
+ stats->tpt += E1000_READ_REG(hw, E1000_TPT);
+ stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
+ stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
+ stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
+ stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
+ stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
+ stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
+ stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
+ stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
+
+ /* Interrupt Counts */
+
+ stats->iac += E1000_READ_REG(hw, E1000_IAC);
+ stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
+ stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
+ stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
+ stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
+ stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
+ stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
+ stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
+ stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
+
+ /* Host to Card Statistics */
+
+ stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
+ stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
+ stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
+ stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
+ stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
+ stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
+ stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
+ stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
+ ((u64)E1000_READ_REG(hw, E1000_HGORCH) << 32));
+ stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
+ ((u64)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
+ stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
+ stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
+ stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
+
+ stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
+ stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
+ stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
+ stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
+ stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
+ stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
+
+ ifp = adapter->ifp;
+ ifp->if_collisions = stats->colc;
+
+ /* Rx Errors */
+ ifp->if_ierrors = adapter->dropped_pkts + stats->rxerrc +
+ stats->crcerrs + stats->algnerrc +
+ stats->ruc + stats->roc + stats->mpc + stats->cexterr;
+
+ /* Tx Errors */
+ ifp->if_oerrors = stats->ecol +
+ stats->latecol + adapter->watchdog_events;
+
+ /* Driver specific counters */
+ adapter->device_control = E1000_READ_REG(hw, E1000_CTRL);
+ adapter->rx_control = E1000_READ_REG(hw, E1000_RCTL);
+ adapter->int_mask = E1000_READ_REG(hw, E1000_IMS);
+ adapter->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
+ adapter->packet_buf_alloc_tx =
+ ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
+ adapter->packet_buf_alloc_rx =
+ (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
+}
+
+
+/**********************************************************************
+ *
+ * Initialize the VF board statistics counters.
+ *
+ **********************************************************************/
+static void
+igb_vf_init_stats(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ struct e1000_vf_stats *stats;
+
+ stats = (struct e1000_vf_stats *)adapter->stats;
+ if (stats == NULL)
+ return;
+ stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
+ stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
+ stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
+ stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
+ stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
+}
+
+/**********************************************************************
+ *
+ * Update the VF board statistics counters.
+ *
+ **********************************************************************/
+static void
+igb_update_vf_stats_counters(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ struct e1000_vf_stats *stats;
+
+ if (adapter->link_speed == 0)
+ return;
+
+ stats = (struct e1000_vf_stats *)adapter->stats;
+
+ UPDATE_VF_REG(E1000_VFGPRC,
+ stats->last_gprc, stats->gprc);
+ UPDATE_VF_REG(E1000_VFGORC,
+ stats->last_gorc, stats->gorc);
+ UPDATE_VF_REG(E1000_VFGPTC,
+ stats->last_gptc, stats->gptc);
+ UPDATE_VF_REG(E1000_VFGOTC,
+ stats->last_gotc, stats->gotc);
+ UPDATE_VF_REG(E1000_VFMPRC,
+ stats->last_mprc, stats->mprc);
+}
+
+/* Export a single 32-bit register via a read-only sysctl. */
+static int
+igb_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
+{
+ struct adapter *adapter;
+ u_int val;
+
+ adapter = oidp->oid_arg1;
+ val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
+ return (sysctl_handle_int(oidp, &val, 0, req));
+}
+
+/*
+** Tuneable interrupt rate handler
+*/
+static int
+igb_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)
+{
+ struct igb_queue *que = ((struct igb_queue *)oidp->oid_arg1);
+ int error;
+ u32 reg, usec, rate;
+
+ reg = E1000_READ_REG(&que->adapter->hw, E1000_EITR(que->msix));
+ usec = ((reg & 0x7FFC) >> 2);
+ if (usec > 0)
+ rate = 1000000 / usec;
+ else
+ rate = 0;
+ error = sysctl_handle_int(oidp, &rate, 0, req);
+ if (error || !req->newptr)
+ return error;
+ return 0;
+}
+
+/*
+ * Add sysctl variables, one per statistic, to the system.
+ */
+static void
+igb_add_hw_stats(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+
+ struct tx_ring *txr = adapter->tx_rings;
+ struct rx_ring *rxr = adapter->rx_rings;
+
+ struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
+ struct sysctl_oid *tree = device_get_sysctl_tree(dev);
+ struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
+ struct e1000_hw_stats *stats = adapter->stats;
+
+ struct sysctl_oid *stat_node, *queue_node, *int_node, *host_node;
+ struct sysctl_oid_list *stat_list, *queue_list, *int_list, *host_list;
+
+#define QUEUE_NAME_LEN 32
+ char namebuf[QUEUE_NAME_LEN];
+
+ /* Driver Statistics */
+ SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "link_irq",
+ CTLFLAG_RD, &adapter->link_irq, 0,
+ "Link MSIX IRQ Handled");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
+ CTLFLAG_RD, &adapter->dropped_pkts,
+ "Driver dropped packets");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_dma_fail",
+ CTLFLAG_RD, &adapter->no_tx_dma_setup,
+ "Driver tx dma failure in xmit");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
+ CTLFLAG_RD, &adapter->rx_overruns,
+ "RX overruns");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
+ CTLFLAG_RD, &adapter->watchdog_events,
+ "Watchdog timeouts");
+
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "device_control",
+ CTLFLAG_RD, &adapter->device_control,
+ "Device Control Register");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_control",
+ CTLFLAG_RD, &adapter->rx_control,
+ "Receiver Control Register");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "interrupt_mask",
+ CTLFLAG_RD, &adapter->int_mask,
+ "Interrupt Mask");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "extended_int_mask",
+ CTLFLAG_RD, &adapter->eint_mask,
+ "Extended Interrupt Mask");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_buf_alloc",
+ CTLFLAG_RD, &adapter->packet_buf_alloc_tx,
+ "Transmit Buffer Packet Allocation");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_buf_alloc",
+ CTLFLAG_RD, &adapter->packet_buf_alloc_rx,
+ "Receive Buffer Packet Allocation");
+ SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
+ CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
+ "Flow Control High Watermark");
+ SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
+ CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
+ "Flow Control Low Watermark");
+
+ for (int i = 0; i < adapter->num_queues; i++, rxr++, txr++) {
+ struct lro_ctrl *lro = &rxr->lro;
+
+ snprintf(namebuf, QUEUE_NAME_LEN, "queue%d", i);
+ queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
+ CTLFLAG_RD, NULL, "Queue Name");
+ queue_list = SYSCTL_CHILDREN(queue_node);
+
+ SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
+ CTLFLAG_RD, &adapter->queues[i],
+ sizeof(&adapter->queues[i]),
+ igb_sysctl_interrupt_rate_handler,
+ "IU", "Interrupt Rate");
+
+ SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
+ CTLFLAG_RD, adapter, E1000_TDH(txr->me),
+ igb_sysctl_reg_handler, "IU",
+ "Transmit Descriptor Head");
+ SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
+ CTLFLAG_RD, adapter, E1000_TDT(txr->me),
+ igb_sysctl_reg_handler, "IU",
+ "Transmit Descriptor Tail");
+ SYSCTL_ADD_QUAD(ctx, queue_list, OID_AUTO, "no_desc_avail",
+ CTLFLAG_RD, &txr->no_desc_avail,
+ "Queue No Descriptor Available");
+ SYSCTL_ADD_QUAD(ctx, queue_list, OID_AUTO, "tx_packets",
+ CTLFLAG_RD, &txr->tx_packets,
+ "Queue Packets Transmitted");
+
+ SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
+ CTLFLAG_RD, adapter, E1000_RDH(rxr->me),
+ igb_sysctl_reg_handler, "IU",
+ "Receive Descriptor Head");
+ SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
+ CTLFLAG_RD, adapter, E1000_RDT(rxr->me),
+ igb_sysctl_reg_handler, "IU",
+ "Receive Descriptor Tail");
+ SYSCTL_ADD_QUAD(ctx, queue_list, OID_AUTO, "rx_packets",
+ CTLFLAG_RD, &rxr->rx_packets,
+ "Queue Packets Received");
+ SYSCTL_ADD_QUAD(ctx, queue_list, OID_AUTO, "rx_bytes",
+ CTLFLAG_RD, &rxr->rx_bytes,
+ "Queue Bytes Received");
+ SYSCTL_ADD_UINT(ctx, queue_list, OID_AUTO, "lro_queued",
+ CTLFLAG_RD, &lro->lro_queued, 0,
+ "LRO Queued");
+ SYSCTL_ADD_UINT(ctx, queue_list, OID_AUTO, "lro_flushed",
+ CTLFLAG_RD, &lro->lro_flushed, 0,
+ "LRO Flushed");
+ }
+
+ /* MAC stats get their own sub node */
+
+ stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
+ CTLFLAG_RD, NULL, "MAC Statistics");
+ stat_list = SYSCTL_CHILDREN(stat_node);
+
+ /*
+ ** VF adapter has a very limited set of stats
+ ** since its not managing the metal, so to speak.
+ */
+ if (adapter->vf_ifp) {
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
+ CTLFLAG_RD, &stats->gprc,
+ "Good Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
+ CTLFLAG_RD, &stats->gptc,
+ "Good Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
+ CTLFLAG_RD, &stats->gorc,
+ "Good Octets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
+ CTLFLAG_RD, &stats->gotc,
+ "Good Octets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
+ CTLFLAG_RD, &stats->mprc,
+ "Multicast Packets Received");
+ return;
+ }
+
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "excess_coll",
+ CTLFLAG_RD, &stats->ecol,
+ "Excessive collisions");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "single_coll",
+ CTLFLAG_RD, &stats->scc,
+ "Single collisions");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
+ CTLFLAG_RD, &stats->mcc,
+ "Multiple collisions");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "late_coll",
+ CTLFLAG_RD, &stats->latecol,
+ "Late collisions");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "collision_count",
+ CTLFLAG_RD, &stats->colc,
+ "Collision Count");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
+ CTLFLAG_RD, &stats->symerrs,
+ "Symbol Errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
+ CTLFLAG_RD, &stats->sec,
+ "Sequence Errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "defer_count",
+ CTLFLAG_RD, &stats->dc,
+ "Defer Count");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "missed_packets",
+ CTLFLAG_RD, &stats->mpc,
+ "Missed Packets");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
+ CTLFLAG_RD, &stats->rnbc,
+ "Receive No Buffers");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
+ CTLFLAG_RD, &stats->ruc,
+ "Receive Undersize");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
+ CTLFLAG_RD, &stats->rfc,
+ "Fragmented Packets Received ");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
+ CTLFLAG_RD, &stats->roc,
+ "Oversized Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
+ CTLFLAG_RD, &stats->rjc,
+ "Recevied Jabber");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_errs",
+ CTLFLAG_RD, &stats->rxerrc,
+ "Receive Errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "crc_errs",
+ CTLFLAG_RD, &stats->crcerrs,
+ "CRC errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
+ CTLFLAG_RD, &stats->algnerrc,
+ "Alignment Errors");
+ /* On 82575 these are collision counts */
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
+ CTLFLAG_RD, &stats->cexterr,
+ "Collision/Carrier extension errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
+ CTLFLAG_RD, &stats->xonrxc,
+ "XON Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xon_txd",
+ CTLFLAG_RD, &stats->xontxc,
+ "XON Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
+ CTLFLAG_RD, &stats->xoffrxc,
+ "XOFF Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
+ CTLFLAG_RD, &stats->xofftxc,
+ "XOFF Transmitted");
+ /* Packet Reception Stats */
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
+ CTLFLAG_RD, &stats->tpr,
+ "Total Packets Received ");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
+ CTLFLAG_RD, &stats->gprc,
+ "Good Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
+ CTLFLAG_RD, &stats->bprc,
+ "Broadcast Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
+ CTLFLAG_RD, &stats->mprc,
+ "Multicast Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
+ CTLFLAG_RD, &stats->prc64,
+ "64 byte frames received ");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
+ CTLFLAG_RD, &stats->prc127,
+ "65-127 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
+ CTLFLAG_RD, &stats->prc255,
+ "128-255 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
+ CTLFLAG_RD, &stats->prc511,
+ "256-511 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
+ CTLFLAG_RD, &stats->prc1023,
+ "512-1023 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
+ CTLFLAG_RD, &stats->prc1522,
+ "1023-1522 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
+ CTLFLAG_RD, &stats->gorc,
+ "Good Octets Received");
+
+ /* Packet Transmission Stats */
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
+ CTLFLAG_RD, &stats->gotc,
+ "Good Octets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
+ CTLFLAG_RD, &stats->tpt,
+ "Total Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
+ CTLFLAG_RD, &stats->gptc,
+ "Good Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
+ CTLFLAG_RD, &stats->bptc,
+ "Broadcast Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
+ CTLFLAG_RD, &stats->mptc,
+ "Multicast Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
+ CTLFLAG_RD, &stats->ptc64,
+ "64 byte frames transmitted ");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
+ CTLFLAG_RD, &stats->ptc127,
+ "65-127 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
+ CTLFLAG_RD, &stats->ptc255,
+ "128-255 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
+ CTLFLAG_RD, &stats->ptc511,
+ "256-511 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
+ CTLFLAG_RD, &stats->ptc1023,
+ "512-1023 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
+ CTLFLAG_RD, &stats->ptc1522,
+ "1024-1522 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tso_txd",
+ CTLFLAG_RD, &stats->tsctc,
+ "TSO Contexts Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
+ CTLFLAG_RD, &stats->tsctfc,
+ "TSO Contexts Failed");
+
+
+ /* Interrupt Stats */
+
+ int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
+ CTLFLAG_RD, NULL, "Interrupt Statistics");
+ int_list = SYSCTL_CHILDREN(int_node);
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "asserts",
+ CTLFLAG_RD, &stats->iac,
+ "Interrupt Assertion Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
+ CTLFLAG_RD, &stats->icrxptc,
+ "Interrupt Cause Rx Pkt Timer Expire Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
+ CTLFLAG_RD, &stats->icrxatc,
+ "Interrupt Cause Rx Abs Timer Expire Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
+ CTLFLAG_RD, &stats->ictxptc,
+ "Interrupt Cause Tx Pkt Timer Expire Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
+ CTLFLAG_RD, &stats->ictxatc,
+ "Interrupt Cause Tx Abs Timer Expire Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
+ CTLFLAG_RD, &stats->ictxqec,
+ "Interrupt Cause Tx Queue Empty Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
+ CTLFLAG_RD, &stats->ictxqmtc,
+ "Interrupt Cause Tx Queue Min Thresh Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
+ CTLFLAG_RD, &stats->icrxdmtc,
+ "Interrupt Cause Rx Desc Min Thresh Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_overrun",
+ CTLFLAG_RD, &stats->icrxoc,
+ "Interrupt Cause Receiver Overrun Count");
+
+ /* Host to Card Stats */
+
+ host_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "host",
+ CTLFLAG_RD, NULL,
+ "Host to Card Statistics");
+
+ host_list = SYSCTL_CHILDREN(host_node);
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "breaker_tx_pkt",
+ CTLFLAG_RD, &stats->cbtmpc,
+ "Circuit Breaker Tx Packet Count");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "host_tx_pkt_discard",
+ CTLFLAG_RD, &stats->htdpmc,
+ "Host Transmit Discarded Packets");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "rx_pkt",
+ CTLFLAG_RD, &stats->rpthc,
+ "Rx Packets To Host");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "breaker_rx_pkts",
+ CTLFLAG_RD, &stats->cbrmpc,
+ "Circuit Breaker Rx Packet Count");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "breaker_rx_pkt_drop",
+ CTLFLAG_RD, &stats->cbrdpc,
+ "Circuit Breaker Rx Dropped Count");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "tx_good_pkt",
+ CTLFLAG_RD, &stats->hgptc,
+ "Host Good Packets Tx Count");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "breaker_tx_pkt_drop",
+ CTLFLAG_RD, &stats->htcbdpc,
+ "Host Tx Circuit Breaker Dropped Count");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "rx_good_bytes",
+ CTLFLAG_RD, &stats->hgorc,
+ "Host Good Octets Received Count");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "tx_good_bytes",
+ CTLFLAG_RD, &stats->hgotc,
+ "Host Good Octets Transmit Count");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "length_errors",
+ CTLFLAG_RD, &stats->lenerrs,
+ "Length Errors");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "serdes_violation_pkt",
+ CTLFLAG_RD, &stats->scvpc,
+ "SerDes/SGMII Code Violation Pkt Count");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "header_redir_missed",
+ CTLFLAG_RD, &stats->hrmpc,
+ "Header Redirection Missed Packet Count");
+}
+
+
+/**********************************************************************
+ *
+ * This routine provides a way to dump out the adapter eeprom,
+ * often a useful debug/service tool. This only dumps the first
+ * 32 words, stuff that matters is in that extent.
+ *
+ **********************************************************************/
+static int
+igb_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
+{
+ struct adapter *adapter;
+ int error;
+ int result;
+
+ result = -1;
+ error = sysctl_handle_int(oidp, &result, 0, req);
+
+ if (error || !req->newptr)
+ return (error);
+
+ /*
+ * This value will cause a hex dump of the
+ * first 32 16-bit words of the EEPROM to
+ * the screen.
+ */
+ if (result == 1) {
+ adapter = (struct adapter *)arg1;
+ igb_print_nvm_info(adapter);
+ }
+
+ return (error);
+}
+
+static void
+igb_print_nvm_info(struct adapter *adapter)
+{
+ u16 eeprom_data;
+ int i, j, row = 0;
+
+ /* Its a bit crude, but it gets the job done */
+ printf("\nInterface EEPROM Dump:\n");
+ printf("Offset\n0x0000 ");
+ for (i = 0, j = 0; i < 32; i++, j++) {
+ if (j == 8) { /* Make the offset block */
+ j = 0; ++row;
+ printf("\n0x00%x0 ",row);
+ }
+ e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
+ printf("%04x ", eeprom_data);
+ }
+ printf("\n");
+}
+
+static void
+igb_set_sysctl_value(struct adapter *adapter, const char *name,
+ const char *description, int *limit, int value)
+{
+ *limit = value;
+ SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
+ OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description);
+}
+
+/*
+** Set flow control using sysctl:
+** Flow control values:
+** 0 - off
+** 1 - rx pause
+** 2 - tx pause
+** 3 - full
+*/
+static int
+igb_set_flowcntl(SYSCTL_HANDLER_ARGS)
+{
+ int error;
+ struct adapter *adapter;
+
+ error = sysctl_handle_int(oidp, &igb_fc_setting, 0, req);
+
+ if (error)
+ return (error);
+
+ adapter = (struct adapter *) arg1;
+ switch (igb_fc_setting) {
+ case e1000_fc_rx_pause:
+ case e1000_fc_tx_pause:
+ case e1000_fc_full:
+ adapter->hw.fc.requested_mode = igb_fc_setting;
+ break;
+ case e1000_fc_none:
+ default:
+ adapter->hw.fc.requested_mode = e1000_fc_none;
+ }
+
+ adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
+ e1000_force_mac_fc(&adapter->hw);
+ return error;
+}
--- /dev/null
+/******************************************************************************
+
+ Copyright (c) 2001-2011, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _IGB_H_DEFINED_
+#define _IGB_H_DEFINED_
+
+/* Tunables */
+
+/*
+ * IGB_TXD: Maximum number of Transmit Descriptors
+ *
+ * This value is the number of transmit descriptors allocated by the driver.
+ * Increasing this value allows the driver to queue more transmits. Each
+ * descriptor is 16 bytes.
+ * Since TDLEN should be multiple of 128bytes, the number of transmit
+ * desscriptors should meet the following condition.
+ * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0
+ */
+#define IGB_MIN_TXD 256
+#define IGB_DEFAULT_TXD 1024
+#define IGB_MAX_TXD 4096
+
+/*
+ * IGB_RXD: Maximum number of Transmit Descriptors
+ *
+ * This value is the number of receive descriptors allocated by the driver.
+ * Increasing this value allows the driver to buffer more incoming packets.
+ * Each descriptor is 16 bytes. A receive buffer is also allocated for each
+ * descriptor. The maximum MTU size is 16110.
+ * Since TDLEN should be multiple of 128bytes, the number of transmit
+ * desscriptors should meet the following condition.
+ * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0
+ */
+#define IGB_MIN_RXD 256
+#define IGB_DEFAULT_RXD 1024
+#define IGB_MAX_RXD 4096
+
+/*
+ * IGB_TIDV - Transmit Interrupt Delay Value
+ * Valid Range: 0-65535 (0=off)
+ * Default Value: 64
+ * This value delays the generation of transmit interrupts in units of
+ * 1.024 microseconds. Transmit interrupt reduction can improve CPU
+ * efficiency if properly tuned for specific network traffic. If the
+ * system is reporting dropped transmits, this value may be set too high
+ * causing the driver to run out of available transmit descriptors.
+ */
+#define IGB_TIDV 64
+
+/*
+ * IGB_TADV - Transmit Absolute Interrupt Delay Value
+ * Valid Range: 0-65535 (0=off)
+ * Default Value: 64
+ * This value, in units of 1.024 microseconds, limits the delay in which a
+ * transmit interrupt is generated. Useful only if IGB_TIDV is non-zero,
+ * this value ensures that an interrupt is generated after the initial
+ * packet is sent on the wire within the set amount of time. Proper tuning,
+ * along with IGB_TIDV, may improve traffic throughput in specific
+ * network conditions.
+ */
+#define IGB_TADV 64
+
+/*
+ * IGB_RDTR - Receive Interrupt Delay Timer (Packet Timer)
+ * Valid Range: 0-65535 (0=off)
+ * Default Value: 0
+ * This value delays the generation of receive interrupts in units of 1.024
+ * microseconds. Receive interrupt reduction can improve CPU efficiency if
+ * properly tuned for specific network traffic. Increasing this value adds
+ * extra latency to frame reception and can end up decreasing the throughput
+ * of TCP traffic. If the system is reporting dropped receives, this value
+ * may be set too high, causing the driver to run out of available receive
+ * descriptors.
+ *
+ * CAUTION: When setting IGB_RDTR to a value other than 0, adapters
+ * may hang (stop transmitting) under certain network conditions.
+ * If this occurs a WATCHDOG message is logged in the system
+ * event log. In addition, the controller is automatically reset,
+ * restoring the network connection. To eliminate the potential
+ * for the hang ensure that IGB_RDTR is set to 0.
+ */
+#define IGB_RDTR 0
+
+/*
+ * Receive Interrupt Absolute Delay Timer (Not valid for 82542/82543/82544)
+ * Valid Range: 0-65535 (0=off)
+ * Default Value: 64
+ * This value, in units of 1.024 microseconds, limits the delay in which a
+ * receive interrupt is generated. Useful only if IGB_RDTR is non-zero,
+ * this value ensures that an interrupt is generated after the initial
+ * packet is received within the set amount of time. Proper tuning,
+ * along with IGB_RDTR, may improve traffic throughput in specific network
+ * conditions.
+ */
+#define IGB_RADV 64
+
+/*
+ * This parameter controls the duration of transmit watchdog timer.
+ */
+#define IGB_WATCHDOG (10 * hz)
+
+/*
+ * This parameter controls when the driver calls the routine to reclaim
+ * transmit descriptors. Cleaning earlier seems a win.
+ */
+#define IGB_TX_CLEANUP_THRESHOLD (adapter->num_tx_desc / 2)
+
+/*
+ * This parameter controls whether or not autonegotation is enabled.
+ * 0 - Disable autonegotiation
+ * 1 - Enable autonegotiation
+ */
+#define DO_AUTO_NEG 1
+
+/*
+ * This parameter control whether or not the driver will wait for
+ * autonegotiation to complete.
+ * 1 - Wait for autonegotiation to complete
+ * 0 - Don't wait for autonegotiation to complete
+ */
+#define WAIT_FOR_AUTO_NEG_DEFAULT 0
+
+/* Tunables -- End */
+
+#define AUTONEG_ADV_DEFAULT (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
+ ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
+ ADVERTISE_1000_FULL)
+
+#define AUTO_ALL_MODES 0
+
+/* PHY master/slave setting */
+#define IGB_MASTER_SLAVE e1000_ms_hw_default
+
+/*
+ * Micellaneous constants
+ */
+#define IGB_VENDOR_ID 0x8086
+
+#define IGB_JUMBO_PBA 0x00000028
+#define IGB_DEFAULT_PBA 0x00000030
+#define IGB_SMARTSPEED_DOWNSHIFT 3
+#define IGB_SMARTSPEED_MAX 15
+#define IGB_MAX_LOOP 10
+
+#define IGB_RX_PTHRESH (hw->mac.type <= e1000_82576 ? 16 : 8)
+#define IGB_RX_HTHRESH 8
+#define IGB_RX_WTHRESH 1
+
+#define IGB_TX_PTHRESH 8
+#define IGB_TX_HTHRESH 1
+#define IGB_TX_WTHRESH ((hw->mac.type != e1000_82575 && \
+ adapter->msix_mem) ? 1 : 16)
+
+#define MAX_NUM_MULTICAST_ADDRESSES 128
+#define PCI_ANY_ID (~0U)
+#define ETHER_ALIGN 2
+#define IGB_TX_BUFFER_SIZE ((uint32_t) 1514)
+#define IGB_FC_PAUSE_TIME 0x0680
+#define IGB_EEPROM_APME 0x400;
+#define IGB_QUEUE_IDLE 0
+#define IGB_QUEUE_WORKING 1
+#define IGB_QUEUE_HUNG 2
+
+/*
+ * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
+ * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary. This will
+ * also optimize cache line size effect. H/W supports up to cache line size 128.
+ */
+#define IGB_DBA_ALIGN 128
+
+#define SPEED_MODE_BIT (1<<21) /* On PCI-E MACs only */
+
+/* PCI Config defines */
+#define IGB_MSIX_BAR 3
+
+/* Defines for printing debug information */
+#define DEBUG_INIT 0
+#define DEBUG_IOCTL 0
+#define DEBUG_HW 0
+
+#define INIT_DEBUGOUT(S) if (DEBUG_INIT) printf(S "\n")
+#define INIT_DEBUGOUT1(S, A) if (DEBUG_INIT) printf(S "\n", A)
+#define INIT_DEBUGOUT2(S, A, B) if (DEBUG_INIT) printf(S "\n", A, B)
+#define IOCTL_DEBUGOUT(S) if (DEBUG_IOCTL) printf(S "\n")
+#define IOCTL_DEBUGOUT1(S, A) if (DEBUG_IOCTL) printf(S "\n", A)
+#define IOCTL_DEBUGOUT2(S, A, B) if (DEBUG_IOCTL) printf(S "\n", A, B)
+#define HW_DEBUGOUT(S) if (DEBUG_HW) printf(S "\n")
+#define HW_DEBUGOUT1(S, A) if (DEBUG_HW) printf(S "\n", A)
+#define HW_DEBUGOUT2(S, A, B) if (DEBUG_HW) printf(S "\n", A, B)
+
+#define IGB_MAX_SCATTER 64
+#define IGB_VFTA_SIZE 128
+#define IGB_BR_SIZE 4096 /* ring buf size */
+#define IGB_TSO_SIZE (65535 + sizeof(struct ether_vlan_header))
+#define IGB_TSO_SEG_SIZE 4096 /* Max dma segment size */
+#define IGB_HDR_BUF 128
+#define IGB_PKTTYPE_MASK 0x0000FFF0
+#define ETH_ZLEN 60
+#define ETH_ADDR_LEN 6
+
+/* Offload bits in mbuf flag */
+#if __FreeBSD_version >= 800000
+#define CSUM_OFFLOAD (CSUM_IP|CSUM_TCP|CSUM_UDP|CSUM_SCTP)
+#else
+#define CSUM_OFFLOAD (CSUM_IP|CSUM_TCP|CSUM_UDP)
+#endif
+
+/* Define the starting Interrupt rate per Queue */
+#define IGB_INTS_PER_SEC 8000
+#define IGB_DEFAULT_ITR ((1000000/IGB_INTS_PER_SEC) << 2)
+
+#define IGB_LINK_ITR 2000
+
+/* Precision Time Sync (IEEE 1588) defines */
+#define ETHERTYPE_IEEE1588 0x88F7
+#define PICOSECS_PER_TICK 20833
+#define TSYNC_PORT 319 /* UDP port for the protocol */
+
+/*
+ * Bus dma allocation structure used by
+ * e1000_dma_malloc and e1000_dma_free.
+ */
+struct igb_dma_alloc {
+ bus_addr_t dma_paddr;
+ caddr_t dma_vaddr;
+ bus_dma_tag_t dma_tag;
+ bus_dmamap_t dma_map;
+ bus_dma_segment_t dma_seg;
+ int dma_nseg;
+};
+
+
+/*
+** Driver queue struct: this is the interrupt container
+** for the associated tx and rx ring.
+*/
+struct igb_queue {
+ struct adapter *adapter;
+ u32 msix; /* This queue's MSIX vector */
+ u32 eims; /* This queue's EIMS bit */
+ u32 eitr_setting;
+ struct resource *res;
+ void *tag;
+ struct tx_ring *txr;
+ struct rx_ring *rxr;
+ struct task que_task;
+ struct taskqueue *tq;
+ u64 irqs;
+};
+
+/*
+ * Transmit ring: one per queue
+ */
+struct tx_ring {
+ struct adapter *adapter;
+ u32 me;
+ struct mtx tx_mtx;
+ char mtx_name[16];
+ struct igb_dma_alloc txdma;
+ struct e1000_tx_desc *tx_base;
+ u32 next_avail_desc;
+ u32 next_to_clean;
+ volatile u16 tx_avail;
+ struct igb_tx_buffer *tx_buffers;
+#if __FreeBSD_version >= 800000
+ struct buf_ring *br;
+#endif
+ bus_dma_tag_t txtag;
+
+ u32 bytes;
+ u32 packets;
+
+ int queue_status;
+ int watchdog_time;
+ int tdt;
+ int tdh;
+ u64 no_desc_avail;
+ u64 tx_packets;
+};
+
+/*
+ * Receive ring: one per queue
+ */
+struct rx_ring {
+ struct adapter *adapter;
+ u32 me;
+ struct igb_dma_alloc rxdma;
+ union e1000_adv_rx_desc *rx_base;
+ struct lro_ctrl lro;
+ bool lro_enabled;
+ bool hdr_split;
+ bool discard;
+ struct mtx rx_mtx;
+ char mtx_name[16];
+ u32 next_to_refresh;
+ u32 next_to_check;
+ struct igb_rx_buf *rx_buffers;
+ bus_dma_tag_t htag; /* dma tag for rx head */
+ bus_dma_tag_t ptag; /* dma tag for rx packet */
+ /*
+ * First/last mbuf pointers, for
+ * collecting multisegment RX packets.
+ */
+ struct mbuf *fmp;
+ struct mbuf *lmp;
+
+ u32 bytes;
+ u32 packets;
+ int rdt;
+ int rdh;
+
+ /* Soft stats */
+ u64 rx_split_packets;
+ u64 rx_discarded;
+ u64 rx_packets;
+ u64 rx_bytes;
+};
+
+struct adapter {
+ struct ifnet *ifp;
+ struct e1000_hw hw;
+
+ struct e1000_osdep osdep;
+ struct device *dev;
+ struct cdev *led_dev;
+
+ struct resource *pci_mem;
+ struct resource *msix_mem;
+ struct resource *res;
+ void *tag;
+ u32 que_mask;
+
+ int linkvec;
+ int link_mask;
+ struct task link_task;
+ int link_irq;
+
+ struct ifmedia media;
+ struct callout timer;
+ int msix; /* total vectors allocated */
+ int if_flags;
+ int max_frame_size;
+ int min_frame_size;
+ int pause_frames;
+ struct mtx core_mtx;
+ int igb_insert_vlan_header;
+ u16 num_queues;
+ u16 vf_ifp; /* a VF interface */
+
+ eventhandler_tag vlan_attach;
+ eventhandler_tag vlan_detach;
+ u32 num_vlans;
+
+ /* Management and WOL features */
+ int wol;
+ int has_manage;
+
+ /*
+ ** Shadow VFTA table, this is needed because
+ ** the real vlan filter table gets cleared during
+ ** a soft reset and the driver needs to be able
+ ** to repopulate it.
+ */
+ u32 shadow_vfta[IGB_VFTA_SIZE];
+
+ /* Info about the interface */
+ u8 link_active;
+ u16 link_speed;
+ u16 link_duplex;
+ u32 smartspeed;
+ u32 dma_coalesce;
+
+ /* Interface queues */
+ struct igb_queue *queues;
+
+ /*
+ * Transmit rings
+ */
+ struct tx_ring *tx_rings;
+ u16 num_tx_desc;
+
+ /* Multicast array pointer */
+ u8 *mta;
+
+ /*
+ * Receive rings
+ */
+ struct rx_ring *rx_rings;
+ bool rx_hdr_split;
+ u16 num_rx_desc;
+ int rx_process_limit;
+ u32 rx_mbuf_sz;
+ u32 rx_mask;
+
+ /* Misc stats maintained by the driver */
+ unsigned long dropped_pkts;
+ unsigned long mbuf_defrag_failed;
+ unsigned long mbuf_header_failed;
+ unsigned long mbuf_packet_failed;
+ unsigned long no_tx_map_avail;
+ unsigned long no_tx_dma_setup;
+ unsigned long watchdog_events;
+ unsigned long rx_overruns;
+ unsigned long device_control;
+ unsigned long rx_control;
+ unsigned long int_mask;
+ unsigned long eint_mask;
+ unsigned long packet_buf_alloc_rx;
+ unsigned long packet_buf_alloc_tx;
+
+ boolean_t in_detach;
+
+#ifdef IGB_IEEE1588
+ /* IEEE 1588 precision time support */
+ struct cyclecounter cycles;
+ struct nettimer clock;
+ struct nettime_compare compare;
+ struct hwtstamp_ctrl hwtstamp;
+#endif
+
+ void *stats;
+};
+
+/* ******************************************************************************
+ * vendor_info_array
+ *
+ * This array contains the list of Subvendor/Subdevice IDs on which the driver
+ * should load.
+ *
+ * ******************************************************************************/
+typedef struct _igb_vendor_info_t {
+ unsigned int vendor_id;
+ unsigned int device_id;
+ unsigned int subvendor_id;
+ unsigned int subdevice_id;
+ unsigned int index;
+} igb_vendor_info_t;
+
+
+struct igb_tx_buffer {
+ int next_eop; /* Index of the desc to watch */
+ struct mbuf *m_head;
+ bus_dmamap_t map; /* bus_dma map for packet */
+};
+
+struct igb_rx_buf {
+ struct mbuf *m_head;
+ struct mbuf *m_pack;
+ bus_dmamap_t hmap; /* bus_dma map for header */
+ bus_dmamap_t pmap; /* bus_dma map for packet */
+};
+
+/*
+** Find the number of unrefreshed RX descriptors
+*/
+static inline u16
+igb_rx_unrefreshed(struct rx_ring *rxr)
+{
+ struct adapter *adapter = rxr->adapter;
+
+ if (rxr->next_to_check > rxr->next_to_refresh)
+ return (rxr->next_to_check - rxr->next_to_refresh - 1);
+ else
+ return ((adapter->num_rx_desc + rxr->next_to_check) -
+ rxr->next_to_refresh - 1);
+}
+
+#define IGB_CORE_LOCK_INIT(_sc, _name) \
+ mtx_init(&(_sc)->core_mtx, _name, "IGB Core Lock", MTX_DEF)
+#define IGB_CORE_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->core_mtx)
+#define IGB_CORE_LOCK(_sc) mtx_lock(&(_sc)->core_mtx)
+#define IGB_CORE_UNLOCK(_sc) mtx_unlock(&(_sc)->core_mtx)
+#define IGB_CORE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->core_mtx, MA_OWNED)
+
+#define IGB_TX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->tx_mtx)
+#define IGB_TX_LOCK(_sc) mtx_lock(&(_sc)->tx_mtx)
+#define IGB_TX_UNLOCK(_sc) mtx_unlock(&(_sc)->tx_mtx)
+#define IGB_TX_TRYLOCK(_sc) mtx_trylock(&(_sc)->tx_mtx)
+#define IGB_TX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tx_mtx, MA_OWNED)
+
+#define IGB_RX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->rx_mtx)
+#define IGB_RX_LOCK(_sc) mtx_lock(&(_sc)->rx_mtx)
+#define IGB_RX_UNLOCK(_sc) mtx_unlock(&(_sc)->rx_mtx)
+#define IGB_RX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->rx_mtx, MA_OWNED)
+
+#define UPDATE_VF_REG(reg, last, cur) \
+{ \
+ u32 new = E1000_READ_REG(hw, reg); \
+ if (new < last) \
+ cur += 0x100000000LL; \
+ last = new; \
+ cur &= 0xFFFFFFFF00000000LL; \
+ cur |= new; \
+}
+
+#if __FreeBSD_version < 800504
+static __inline int
+drbr_needs_enqueue(struct ifnet *ifp, struct buf_ring *br)
+{
+#ifdef ALTQ
+ if (ALTQ_IS_ENABLED(&ifp->if_snd))
+ return (1);
+#endif
+ return (!buf_ring_empty(br));
+}
+#endif
+
+#endif /* _IGB_H_DEFINED_ */
+
+
--- /dev/null
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+
+#ifndef _E1000_ETHDEV_H_
+#define _E1000_ETHDEV_H_
+
+/* need update link, bit flag */
+#define E1000_FLAG_NEED_LINK_UPDATE (uint32_t)(1 << 0)
+
+/*
+ * Defines that were not part of e1000_hw.h as they are not used by the FreeBSD
+ * driver.
+ */
+#define E1000_ADVTXD_POPTS_TXSM 0x00000200 /* L4 Checksum offload request */
+#define E1000_ADVTXD_POPTS_IXSM 0x00000100 /* IP Checksum offload request */
+#define E1000_ADVTXD_TUCMD_L4T_RSV 0x00001800 /* L4 Packet TYPE of Reserved */
+#define E1000_RXD_STAT_TMST 0x10000 /* Timestamped Packet indication */
+#define E1000_RXD_ERR_CKSUM_BIT 29
+#define E1000_RXD_ERR_CKSUM_MSK 3
+#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Bit shift for l2_len */
+
+#define E1000_VFTA_SIZE 128
+
+/* structure for interrupt relative data */
+struct e1000_interrupt {
+ uint32_t flags;
+};
+
+/* local vfta copy */
+struct e1000_vfta {
+ uint32_t vfta[E1000_VFTA_SIZE];
+};
+
+/*
+ * Structure to store private data for each driver instance (for each port).
+ */
+struct e1000_adapter {
+ struct e1000_hw hw;
+ struct e1000_hw_stats stats;
+ struct e1000_interrupt intr;
+ struct e1000_vfta shadow_vfta;
+};
+
+#define E1000_DEV_PRIVATE_TO_HW(adapter) \
+ (&((struct e1000_adapter *)adapter)->hw)
+
+#define E1000_DEV_PRIVATE_TO_STATS(adapter) \
+ (&((struct e1000_adapter *)adapter)->stats)
+
+#define E1000_DEV_PRIVATE_TO_INTR(adapter) \
+ (&((struct e1000_adapter *)adapter)->intr)
+
+#define E1000_DEV_PRIVATE_TO_VFTA(adapter) \
+ (&((struct e1000_adapter *)adapter)->shadow_vfta)
+
+/*
+ * RX/TX function prototypes
+ */
+int igb_dev_tx_queue_alloc(struct rte_eth_dev *dev, uint16_t nb_queues);
+int igb_dev_rx_queue_alloc(struct rte_eth_dev *dev, uint16_t nb_queues);
+void igb_dev_clear_queues(struct rte_eth_dev *dev);
+
+int eth_igb_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
+ uint16_t nb_rx_desc, unsigned int socket_id,
+ const struct rte_eth_rxconf *rx_conf,
+ struct rte_mempool *mb_pool);
+
+int eth_igb_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
+ uint16_t nb_tx_desc, unsigned int socket_id,
+ const struct rte_eth_txconf *tx_conf);
+
+int eth_igb_rx_init(struct rte_eth_dev *dev);
+
+void eth_igb_tx_init(struct rte_eth_dev *dev);
+
+uint16_t eth_igb_xmit_pkts(struct igb_tx_queue *txq, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts);
+
+uint16_t eth_igb_recv_pkts(struct igb_rx_queue *rxq, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts);
+
+uint16_t eth_igb_recv_scattered_pkts(struct igb_rx_queue *rxq,
+ struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
+
+#endif /* _E1000_ETHDEV_H_ */
--- /dev/null
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+
+#ifndef _E1000_LOGS_H_
+#define _E1000_LOGS_H_
+
+#ifdef RTE_LIBRTE_IGB_DEBUG_INIT
+#define PMD_INIT_LOG(level, fmt, args...) \
+ RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
+#else
+#define PMD_INIT_LOG(level, fmt, args...) do { } while(0)
+#endif
+
+#ifdef RTE_LIBRTE_IGB_DEBUG_RX
+#define PMD_RX_LOG(level, fmt, args...) \
+ RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
+#else
+#define PMD_RX_LOG(level, fmt, args...) do { } while(0)
+#endif
+
+#ifdef RTE_LIBRTE_IGB_DEBUG_TX
+#define PMD_TX_LOG(level, fmt, args...) \
+ RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
+#else
+#define PMD_TX_LOG(level, fmt, args...) do { } while(0)
+#endif
+
+#ifdef RTE_LIBRTE_IGB_DEBUG_TX_FREE
+#define PMD_TX_FREE_LOG(level, fmt, args...) \
+ RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
+#else
+#define PMD_TX_FREE_LOG(level, fmt, args...) do { } while(0)
+#endif
+
+#ifdef RTE_LIBRTE_IGB_DEBUG_DRIVER
+#define PMD_DRV_LOG(level, fmt, args...) \
+ RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
+#else
+#define PMD_DRV_LOG(level, fmt, args...) do { } while(0)
+#endif
+
+#endif /* _E1000_LOGS_H_ */
--- /dev/null
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+
+#include <sys/queue.h>
+#include <stdio.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdarg.h>
+
+#include <rte_common.h>
+#include <rte_interrupts.h>
+#include <rte_byteorder.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_pci.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_memory.h>
+#include <rte_memzone.h>
+#include <rte_tailq.h>
+#include <rte_eal.h>
+#include <rte_atomic.h>
+#include <rte_malloc.h>
+
+#include "e1000_logs.h"
+#include "igb/e1000_api.h"
+#include "igb/e1000_hw.h"
+#include "e1000_ethdev.h"
+
+static int eth_igb_configure(struct rte_eth_dev *dev, uint16_t nb_rx_q,
+ uint16_t nb_tx_q);
+static int eth_igb_start(struct rte_eth_dev *dev);
+static void eth_igb_stop(struct rte_eth_dev *dev);
+static void eth_igb_close(struct rte_eth_dev *dev);
+static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
+static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
+static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
+static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
+static int eth_igb_link_update(struct rte_eth_dev *dev,
+ int wait_to_complete);
+static void eth_igb_stats_get(struct rte_eth_dev *dev,
+ struct rte_eth_stats *rte_stats);
+static void eth_igb_stats_reset(struct rte_eth_dev *dev);
+static void eth_igb_infos_get(struct rte_eth_dev *dev,
+ struct rte_eth_dev_info *dev_info);
+static int eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
+ struct rte_eth_fc_conf *fc_conf);
+static int eth_igb_interrupt_setup(struct rte_eth_dev *dev);
+static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
+static int eth_igb_interrupt_action(struct rte_eth_dev *dev);
+static void eth_igb_interrupt_handler(struct rte_intr_handle *handle,
+ void *param);
+static int igb_hardware_init(struct e1000_hw *hw);
+static void igb_hw_control_acquire(struct e1000_hw *hw);
+static void igb_hw_control_release(struct e1000_hw *hw);
+static void igb_init_manageability(struct e1000_hw *hw);
+static void igb_release_manageability(struct e1000_hw *hw);
+static void igb_vlan_hw_support_enable(struct rte_eth_dev *dev);
+static void igb_vlan_hw_support_disable(struct rte_eth_dev *dev);
+static void eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
+ uint16_t vlan_id,
+ int on);
+static int eth_igb_led_on(struct rte_eth_dev *dev);
+static int eth_igb_led_off(struct rte_eth_dev *dev);
+
+static void igb_intr_disable(struct e1000_hw *hw);
+static int igb_get_rx_buffer_size(struct e1000_hw *hw);
+static void eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
+ uint32_t index, uint32_t pool);
+static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
+
+#define IGB_FC_PAUSE_TIME 0x0680
+#define IGB_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
+#define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
+
+static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
+
+/*
+ * The set of PCI devices this driver supports
+ */
+static struct rte_pci_id pci_id_igb_map[] = {
+
+#undef RTE_LIBRTE_IXGBE_PMD
+#define RTE_PCI_DEV_ID_DECL(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
+#include "rte_pci_dev_ids.h"
+
+{.device_id = 0},
+};
+
+static struct eth_dev_ops eth_igb_ops = {
+ .dev_configure = eth_igb_configure,
+ .dev_start = eth_igb_start,
+ .dev_stop = eth_igb_stop,
+ .dev_close = eth_igb_close,
+ .promiscuous_enable = eth_igb_promiscuous_enable,
+ .promiscuous_disable = eth_igb_promiscuous_disable,
+ .allmulticast_enable = eth_igb_allmulticast_enable,
+ .allmulticast_disable = eth_igb_allmulticast_disable,
+ .link_update = eth_igb_link_update,
+ .stats_get = eth_igb_stats_get,
+ .stats_reset = eth_igb_stats_reset,
+ .dev_infos_get = eth_igb_infos_get,
+ .vlan_filter_set = eth_igb_vlan_filter_set,
+ .rx_queue_setup = eth_igb_rx_queue_setup,
+ .tx_queue_setup = eth_igb_tx_queue_setup,
+ .dev_led_on = eth_igb_led_on,
+ .dev_led_off = eth_igb_led_off,
+ .flow_ctrl_set = eth_igb_flow_ctrl_set,
+ .mac_addr_add = eth_igb_rar_set,
+ .mac_addr_remove = eth_igb_rar_clear,
+};
+
+/**
+ * Atomically reads the link status information from global
+ * structure rte_eth_dev.
+ *
+ * @param dev
+ * - Pointer to the structure rte_eth_dev to read from.
+ * - Pointer to the buffer to be saved with the link status.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, negative value.
+ */
+static inline int
+rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev,
+ struct rte_eth_link *link)
+{
+ struct rte_eth_link *dst = link;
+ struct rte_eth_link *src = &(dev->data->dev_link);
+
+ if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
+ *(uint64_t *)src) == 0)
+ return -1;
+
+ return 0;
+}
+
+/**
+ * Atomically writes the link status information into global
+ * structure rte_eth_dev.
+ *
+ * @param dev
+ * - Pointer to the structure rte_eth_dev to read from.
+ * - Pointer to the buffer to be saved with the link status.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, negative value.
+ */
+static inline int
+rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev,
+ struct rte_eth_link *link)
+{
+ struct rte_eth_link *dst = &(dev->data->dev_link);
+ struct rte_eth_link *src = link;
+
+ if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
+ *(uint64_t *)src) == 0)
+ return -1;
+
+ return 0;
+}
+
+static void
+igb_identify_hardware(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ hw->vendor_id = dev->pci_dev->id.vendor_id;
+ hw->device_id = dev->pci_dev->id.device_id;
+ hw->subsystem_vendor_id = dev->pci_dev->id.subsystem_vendor_id;
+ hw->subsystem_device_id = dev->pci_dev->id.subsystem_device_id;
+
+ e1000_set_mac_type(hw);
+
+ /* need to check if it is a vf device below */
+}
+
+static int
+eth_igb_dev_init(__attribute__((unused)) struct eth_driver *eth_drv,
+ struct rte_eth_dev *eth_dev)
+{
+ int error = 0;
+ struct rte_pci_device *pci_dev;
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
+ struct e1000_vfta * shadow_vfta =
+ E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
+
+ pci_dev = eth_dev->pci_dev;
+ eth_dev->dev_ops = ð_igb_ops;
+ eth_dev->rx_pkt_burst = ð_igb_recv_pkts;
+ eth_dev->tx_pkt_burst = ð_igb_xmit_pkts;
+
+ /* for secondary processes, we don't initialise any further as primary
+ * has already done this work. Only check we don't need a different
+ * RX function */
+ if (rte_eal_process_type() != RTE_PROC_PRIMARY){
+ if (eth_dev->data->scattered_rx)
+ eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts;
+ return 0;
+ }
+
+ hw->hw_addr= (void *)pci_dev->mem_resource.addr;
+
+ igb_identify_hardware(eth_dev);
+
+ if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
+ error = -EIO;
+ goto err_late;
+ }
+
+ e1000_get_bus_info(hw);
+
+ hw->mac.autoneg = 1;
+ hw->phy.autoneg_wait_to_complete = 0;
+ hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
+
+ /* Copper options */
+ if (hw->phy.media_type == e1000_media_type_copper) {
+ hw->phy.mdix = 0; /* AUTO_ALL_MODES */
+ hw->phy.disable_polarity_correction = 0;
+ hw->phy.ms_type = e1000_ms_hw_default;
+ }
+
+ /*
+ * Start from a known state, this is important in reading the nvm
+ * and mac from that.
+ */
+ e1000_reset_hw(hw);
+
+ /* Make sure we have a good EEPROM before we read from it */
+ if (e1000_validate_nvm_checksum(hw) < 0) {
+ /*
+ * Some PCI-E parts fail the first check due to
+ * the link being in sleep state, call it again,
+ * if it fails a second time its a real issue.
+ */
+ if (e1000_validate_nvm_checksum(hw) < 0) {
+ PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
+ error = -EIO;
+ goto err_late;
+ }
+ }
+
+ /* Read the permanent MAC address out of the EEPROM */
+ if (e1000_read_mac_addr(hw) != 0) {
+ PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
+ error = -EIO;
+ goto err_late;
+ }
+
+ /* Allocate memory for storing MAC addresses */
+ eth_dev->data->mac_addrs = rte_zmalloc("e1000",
+ ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
+ if (eth_dev->data->mac_addrs == NULL) {
+ PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
+ "store MAC addresses",
+ ETHER_ADDR_LEN * hw->mac.rar_entry_count);
+ error = -ENOMEM;
+ goto err_late;
+ }
+
+ /* Copy the permanent MAC address */
+ ether_addr_copy((struct ether_addr *)hw->mac.addr, ð_dev->data->mac_addrs[0]);
+
+ /* initialize the vfta */
+ memset(shadow_vfta, 0, sizeof(*shadow_vfta));
+
+ /* Now initialize the hardware */
+ if (igb_hardware_init(hw) != 0) {
+ PMD_INIT_LOG(ERR, "Hardware initialization failed");
+ rte_free(eth_dev->data->mac_addrs);
+ eth_dev->data->mac_addrs = NULL;
+ error = -ENODEV;
+ goto err_late;
+ }
+ hw->mac.get_link_status = 1;
+
+ /* Indicate SOL/IDER usage */
+ if (e1000_check_reset_block(hw) < 0) {
+ PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
+ "SOL/IDER session");
+ }
+
+ PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x\n",
+ eth_dev->data->port_id, pci_dev->id.vendor_id,
+ pci_dev->id.device_id);
+
+ rte_intr_callback_register(&(pci_dev->intr_handle),
+ eth_igb_interrupt_handler, (void *)eth_dev);
+
+ return 0;
+
+err_late:
+ igb_hw_control_release(hw);
+
+ return (error);
+}
+
+static struct eth_driver rte_igb_pmd = {
+ {
+ .name = "rte_igb_pmd",
+ .id_table = pci_id_igb_map,
+ .drv_flags = RTE_PCI_DRV_NEED_IGB_UIO,
+ },
+ .eth_dev_init = eth_igb_dev_init,
+ .dev_private_size = sizeof(struct e1000_adapter),
+};
+
+int
+rte_igb_pmd_init(void)
+{
+ rte_eth_driver_register(&rte_igb_pmd);
+ return 0;
+}
+
+static int
+eth_igb_configure(struct rte_eth_dev *dev, uint16_t nb_rx_q, uint16_t nb_tx_q)
+{
+ struct e1000_interrupt *intr =
+ E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+ int diag;
+
+ PMD_INIT_LOG(DEBUG, ">>");
+
+ intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
+
+ /* Allocate the array of pointers to RX structures */
+ diag = igb_dev_rx_queue_alloc(dev, nb_rx_q);
+ if (diag != 0) {
+ PMD_INIT_LOG(ERR, "ethdev port_id=%u allocation of array of %u"
+ " pointers to RX queues failed",
+ dev->data->port_id, nb_rx_q);
+ return diag;
+ }
+
+ /* Allocate the array of pointers to TX structures */
+ diag = igb_dev_tx_queue_alloc(dev, nb_tx_q);
+ if (diag != 0) {
+ PMD_INIT_LOG(ERR, "ethdev port_id=%u allocation of array of %u"
+ " pointers to TX queues failed",
+ dev->data->port_id, nb_tx_q);
+
+ return diag;
+ }
+
+ PMD_INIT_LOG(DEBUG, "<<");
+
+ return (0);
+}
+
+static int
+eth_igb_start(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ int ret, i;
+
+ PMD_INIT_LOG(DEBUG, ">>");
+
+ igb_intr_disable(hw);
+
+ /* Power up the phy. Needed to make the link go Up */
+ e1000_power_up_phy(hw);
+
+ /*
+ * Packet Buffer Allocation (PBA)
+ * Writing PBA sets the receive portion of the buffer
+ * the remainder is used for the transmit buffer.
+ */
+ if (hw->mac.type == e1000_82575) {
+ uint32_t pba;
+
+ pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
+ E1000_WRITE_REG(hw, E1000_PBA, pba);
+ }
+
+ /* Put the address into the Receive Address Array */
+ e1000_rar_set(hw, hw->mac.addr, 0);
+
+ /* Initialize the hardware */
+ if (igb_hardware_init(hw)) {
+ PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
+ return (-1);
+ }
+
+ E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
+
+ /* Configure for OS presence */
+ igb_init_manageability(hw);
+
+ eth_igb_tx_init(dev);
+
+ /* This can fail when allocating mbufs for descriptor rings */
+ ret = eth_igb_rx_init(dev);
+ if (ret) {
+ PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
+ return ret;
+ }
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ /*
+ * If VLAN filtering is enabled, set up VLAN tag offload and filtering
+ * and restore the VFTA.
+ */
+ if (dev->data->dev_conf.rxmode.hw_vlan_filter)
+ igb_vlan_hw_support_enable(dev);
+ else
+ igb_vlan_hw_support_disable(dev);
+
+ /*
+ * Configure the Interrupt Moderation register (EITR) with the maximum
+ * possible value (0xFFFF) to minimize "System Partial Write" issued by
+ * spurious [DMA] memory updates of RX and TX ring descriptors.
+ *
+ * With a EITR granularity of 2 microseconds in the 82576, only 7/8
+ * spurious memory updates per second should be expected.
+ * ((65535 * 2) / 1000.1000 ~= 0.131 second).
+ *
+ * Because interrupts are not used at all, the MSI-X is not activated
+ * and interrupt moderation is controlled by EITR[0].
+ *
+ * Note that having [almost] disabled memory updates of RX and TX ring
+ * descriptors through the Interrupt Moderation mechanism, memory
+ * updates of ring descriptors are now moderated by the configurable
+ * value of Write-Back Threshold registers.
+ */
+ if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
+ (hw->mac.type == e1000_i350)) {
+ uint32_t ivar;
+
+ /* Enable all RX & TX queues in the IVAR registers */
+ ivar = (uint32_t) ((E1000_IVAR_VALID << 16) | E1000_IVAR_VALID);
+ for (i = 0; i < 8; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, ivar);
+
+ /* Configure EITR with the maximum possible value (0xFFFF) */
+ E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
+ }
+
+ /* Don't reset the phy next time init gets called */
+ hw->phy.reset_disable = 1;
+
+ /* Setup link speed and duplex */
+ switch (dev->data->dev_conf.link_speed) {
+ case ETH_LINK_SPEED_AUTONEG:
+ if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+ hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
+ else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
+ hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
+ else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
+ hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
+ else
+ goto error_invalid_config;
+ break;
+ case ETH_LINK_SPEED_10:
+ if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+ hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
+ else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
+ hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
+ else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
+ hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
+ else
+ goto error_invalid_config;
+ break;
+ case ETH_LINK_SPEED_100:
+ if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+ hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
+ else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
+ hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
+ else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
+ hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
+ else
+ goto error_invalid_config;
+ break;
+ case ETH_LINK_SPEED_1000:
+ if ((dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) ||
+ (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX))
+ hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
+ else
+ goto error_invalid_config;
+ break;
+ case ETH_LINK_SPEED_10000:
+ default:
+ goto error_invalid_config;
+ }
+ e1000_setup_link(hw);
+
+ PMD_INIT_LOG(DEBUG, "<<");
+
+ /* check if lsc interrupt feature is enabled */
+ if (dev->data->dev_conf.intr_conf.lsc != 0)
+ return eth_igb_interrupt_setup(dev);
+
+ return (0);
+
+error_invalid_config:
+ PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u\n",
+ dev->data->dev_conf.link_speed,
+ dev->data->dev_conf.link_duplex, dev->data->port_id);
+ return -1;
+}
+
+/*********************************************************************
+ *
+ * This routine disables all traffic on the adapter by issuing a
+ * global reset on the MAC.
+ *
+ **********************************************************************/
+static void
+eth_igb_stop(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct rte_eth_link link;
+
+ igb_intr_disable(hw);
+ e1000_reset_hw(hw);
+ E1000_WRITE_REG(hw, E1000_WUC, 0);
+
+ /* Power down the phy. Needed to make the link go Down */
+ e1000_power_down_phy(hw);
+
+ igb_dev_clear_queues(dev);
+
+ /* clear the recorded link status */
+ memset(&link, 0, sizeof(link));
+ rte_igb_dev_atomic_write_link_status(dev, &link);
+}
+
+static void
+eth_igb_close(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct rte_eth_link link;
+
+ eth_igb_stop(dev);
+ e1000_phy_hw_reset(hw);
+ igb_release_manageability(hw);
+ igb_hw_control_release(hw);
+
+ igb_dev_clear_queues(dev);
+
+ memset(&link, 0, sizeof(link));
+ rte_igb_dev_atomic_write_link_status(dev, &link);
+}
+
+static int
+igb_get_rx_buffer_size(struct e1000_hw *hw)
+{
+ uint32_t rx_buf_size;
+ if (hw->mac.type == e1000_82576) {
+ rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
+ } else if (hw->mac.type == e1000_82580) {
+ /* PBS needs to be translated according to a lookup table */
+ rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
+ rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
+ rx_buf_size = (rx_buf_size << 10);
+ } else {
+ rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
+ }
+
+ return rx_buf_size;
+}
+
+/*********************************************************************
+ *
+ * Initialize the hardware
+ *
+ **********************************************************************/
+static int
+igb_hardware_init(struct e1000_hw *hw)
+{
+ uint32_t rx_buf_size;
+ int diag;
+
+ /* Let the firmware know the OS is in control */
+ igb_hw_control_acquire(hw);
+
+ /*
+ * These parameters control the automatic generation (Tx) and
+ * response (Rx) to Ethernet PAUSE frames.
+ * - High water mark should allow for at least two standard size (1518)
+ * frames to be received after sending an XOFF.
+ * - Low water mark works best when it is very near the high water mark.
+ * This allows the receiver to restart by sending XON when it has
+ * drained a bit. Here we use an arbitary value of 1500 which will
+ * restart after one full frame is pulled from the buffer. There
+ * could be several smaller frames in the buffer and if so they will
+ * not trigger the XON until their total number reduces the buffer
+ * by 1500.
+ * - The pause time is fairly large at 1000 x 512ns = 512 usec.
+ */
+ rx_buf_size = igb_get_rx_buffer_size(hw);
+
+ hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
+ hw->fc.low_water = hw->fc.high_water - 1500;
+ hw->fc.pause_time = IGB_FC_PAUSE_TIME;
+ hw->fc.send_xon = 1;
+
+ /* Set Flow control, use the tunable location if sane */
+ if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
+ hw->fc.requested_mode = igb_fc_setting;
+ else
+ hw->fc.requested_mode = e1000_fc_none;
+
+ /* Issue a global reset */
+ e1000_reset_hw(hw);
+ E1000_WRITE_REG(hw, E1000_WUC, 0);
+
+ diag = e1000_init_hw(hw);
+ if (diag < 0)
+ return (diag);
+
+ E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
+ e1000_get_phy_info(hw);
+ e1000_check_for_link(hw);
+
+ return (0);
+}
+
+/* This function is based on igb_update_stats_counters() in igb/if_igb.c */
+static void
+eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_hw_stats *stats =
+ E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
+ int pause_frames;
+
+ if(hw->phy.media_type == e1000_media_type_copper ||
+ (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
+ stats->symerrs +=
+ E1000_READ_REG(hw,E1000_SYMERRS);
+ stats->sec += E1000_READ_REG(hw, E1000_SEC);
+ }
+
+ stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
+ stats->mpc += E1000_READ_REG(hw, E1000_MPC);
+ stats->scc += E1000_READ_REG(hw, E1000_SCC);
+ stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
+
+ stats->mcc += E1000_READ_REG(hw, E1000_MCC);
+ stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
+ stats->colc += E1000_READ_REG(hw, E1000_COLC);
+ stats->dc += E1000_READ_REG(hw, E1000_DC);
+ stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
+ stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
+ stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
+ /*
+ ** For watchdog management we need to know if we have been
+ ** paused during the last interval, so capture that here.
+ */
+ pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
+ stats->xoffrxc += pause_frames;
+ stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
+ stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
+ stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
+ stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
+ stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
+ stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
+ stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
+ stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
+ stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
+ stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
+ stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
+ stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
+
+ /* For the 64-bit byte counters the low dword must be read first. */
+ /* Both registers clear on the read of the high dword */
+
+ stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
+ stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
+ stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
+ stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
+
+ stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
+ stats->ruc += E1000_READ_REG(hw, E1000_RUC);
+ stats->rfc += E1000_READ_REG(hw, E1000_RFC);
+ stats->roc += E1000_READ_REG(hw, E1000_ROC);
+ stats->rjc += E1000_READ_REG(hw, E1000_RJC);
+
+ stats->tor += E1000_READ_REG(hw, E1000_TORH);
+ stats->tot += E1000_READ_REG(hw, E1000_TOTH);
+
+ stats->tpr += E1000_READ_REG(hw, E1000_TPR);
+ stats->tpt += E1000_READ_REG(hw, E1000_TPT);
+ stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
+ stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
+ stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
+ stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
+ stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
+ stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
+ stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
+ stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
+
+ /* Interrupt Counts */
+
+ stats->iac += E1000_READ_REG(hw, E1000_IAC);
+ stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
+ stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
+ stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
+ stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
+ stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
+ stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
+ stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
+ stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
+
+ /* Host to Card Statistics */
+
+ stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
+ stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
+ stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
+ stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
+ stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
+ stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
+ stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
+ stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
+ stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
+ stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
+ stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
+ stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
+ stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
+ stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
+
+ stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
+ stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
+ stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
+ stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
+ stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
+ stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
+
+ if (rte_stats == NULL)
+ return;
+
+ /* Rx Errors */
+ rte_stats->ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
+ stats->ruc + stats->roc + stats->mpc + stats->cexterr;
+
+ /* Tx Errors */
+ rte_stats->oerrors = stats->ecol + stats->latecol;
+
+ rte_stats->ipackets = stats->gprc;
+ rte_stats->opackets = stats->gptc;
+ rte_stats->ibytes = stats->gorc;
+ rte_stats->obytes = stats->gotc;
+}
+
+static void
+eth_igb_stats_reset(struct rte_eth_dev *dev)
+{
+ struct e1000_hw_stats *hw_stats =
+ E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
+
+ /* HW registers are cleared on read */
+ eth_igb_stats_get(dev, NULL);
+
+ /* Reset software totals */
+ memset(hw_stats, 0, sizeof(*hw_stats));
+}
+
+static void
+eth_igb_infos_get(struct rte_eth_dev *dev,
+ struct rte_eth_dev_info *dev_info)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
+ dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */
+ dev_info->max_mac_addrs = hw->mac.rar_entry_count;
+
+ switch (hw->mac.type) {
+ case e1000_82575:
+ dev_info->max_rx_queues = 4;
+ dev_info->max_tx_queues = 4;
+ break;
+
+ case e1000_82576:
+ dev_info->max_rx_queues = 16;
+ dev_info->max_tx_queues = 16;
+ break;
+
+ case e1000_82580:
+ dev_info->max_rx_queues = 8;
+ dev_info->max_tx_queues = 8;
+ break;
+
+ case e1000_i350:
+ dev_info->max_rx_queues = 8;
+ dev_info->max_tx_queues = 8;
+ break;
+
+ default:
+ /* Should not happen */
+ dev_info->max_rx_queues = 0;
+ dev_info->max_tx_queues = 0;
+ }
+}
+
+/* return 0 means link status changed, -1 means not changed */
+static int
+eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct rte_eth_link link, old;
+ int link_check, count;
+
+ link_check = 0;
+ hw->mac.get_link_status = 1;
+
+ /* possible wait-to-complete in up to 9 seconds */
+ for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
+ /* Read the real link status */
+ switch (hw->phy.media_type) {
+ case e1000_media_type_copper:
+ /* Do the work to read phy */
+ e1000_check_for_link(hw);
+ link_check = !hw->mac.get_link_status;
+ break;
+
+ case e1000_media_type_fiber:
+ e1000_check_for_link(hw);
+ link_check = (E1000_READ_REG(hw, E1000_STATUS) &
+ E1000_STATUS_LU);
+ break;
+
+ case e1000_media_type_internal_serdes:
+ e1000_check_for_link(hw);
+ link_check = hw->mac.serdes_has_link;
+ break;
+
+ default:
+ case e1000_media_type_unknown:
+ break;
+ }
+ if (link_check || wait_to_complete == 0)
+ break;
+ rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
+ }
+ memset(&link, 0, sizeof(link));
+ rte_igb_dev_atomic_read_link_status(dev, &link);
+ old = link;
+
+ /* Now we check if a transition has happened */
+ if (link_check) {
+ hw->mac.ops.get_link_up_info(hw, &link.link_speed,
+ &link.link_duplex);
+ link.link_status = 1;
+ } else if (!link_check) {
+ link.link_speed = 0;
+ link.link_duplex = 0;
+ link.link_status = 0;
+ }
+ rte_igb_dev_atomic_write_link_status(dev, &link);
+
+ /* not changed */
+ if (old.link_status == link.link_status)
+ return -1;
+
+ /* changed */
+ return 0;
+}
+
+/*
+ * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means
+ * that the driver is loaded.
+ */
+static void
+igb_hw_control_acquire(struct e1000_hw *hw)
+{
+ uint32_t ctrl_ext;
+
+ /* Let firmware know the driver has taken over */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
+}
+
+/*
+ * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that the
+ * driver is no longer loaded.
+ */
+static void
+igb_hw_control_release(struct e1000_hw *hw)
+{
+ uint32_t ctrl_ext;
+
+ /* Let firmware taken over control of h/w */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT,
+ ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
+}
+
+/*
+ * Bit of a misnomer, what this really means is
+ * to enable OS management of the system... aka
+ * to disable special hardware management features.
+ */
+static void
+igb_init_manageability(struct e1000_hw *hw)
+{
+ if (e1000_enable_mng_pass_thru(hw)) {
+ uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
+ uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
+
+ /* disable hardware interception of ARP */
+ manc &= ~(E1000_MANC_ARP_EN);
+
+ /* enable receiving management packets to the host */
+ manc |= E1000_MANC_EN_MNG2HOST;
+ manc2h |= 1 << 5; /* Mng Port 623 */
+ manc2h |= 1 << 6; /* Mng Port 664 */
+ E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
+ E1000_WRITE_REG(hw, E1000_MANC, manc);
+ }
+}
+
+static void
+igb_release_manageability(struct e1000_hw *hw)
+{
+ if (e1000_enable_mng_pass_thru(hw)) {
+ uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
+
+ manc |= E1000_MANC_ARP_EN;
+ manc &= ~E1000_MANC_EN_MNG2HOST;
+
+ E1000_WRITE_REG(hw, E1000_MANC, manc);
+ }
+}
+
+static void
+eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t rctl;
+
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t rctl;
+
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl &= (~E1000_RCTL_UPE);
+ if (dev->data->all_multicast == 1)
+ rctl |= E1000_RCTL_MPE;
+ else
+ rctl &= (~E1000_RCTL_MPE);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t rctl;
+
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl |= E1000_RCTL_MPE;
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t rctl;
+
+ if (dev->data->promiscuous == 1)
+ return; /* must remain in all_multicast mode */
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl &= (~E1000_RCTL_MPE);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_vfta * shadow_vfta =
+ E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
+ uint32_t vfta;
+ uint32_t vid_idx;
+ uint32_t vid_bit;
+
+ vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
+ E1000_VFTA_ENTRY_MASK);
+ vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
+ vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
+ if (on)
+ vfta |= vid_bit;
+ else
+ vfta &= ~vid_bit;
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
+
+ /* update local VFTA copy */
+ shadow_vfta->vfta[vid_idx] = vfta;
+}
+
+static void
+igb_vlan_hw_support_enable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_vfta * shadow_vfta =
+ E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
+ uint32_t reg;
+ int i;
+
+ /* VLAN Mode Enable */
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg |= E1000_CTRL_VME;
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+
+ /* Filter Table Enable */
+ reg = E1000_READ_REG(hw, E1000_RCTL);
+ reg &= ~E1000_RCTL_CFIEN;
+ reg |= E1000_RCTL_VFE;
+ E1000_WRITE_REG(hw, E1000_RCTL, reg);
+
+ /* Update maximum frame size */
+ reg = E1000_READ_REG(hw, E1000_RLPML);
+ reg += VLAN_TAG_SIZE;
+ E1000_WRITE_REG(hw, E1000_RLPML, reg);
+
+ /* restore VFTA table */
+ for (i = 0; i < E1000_VFTA_SIZE; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
+}
+
+static void
+igb_vlan_hw_support_disable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ uint32_t reg;
+
+ /* VLAN Mode disable */
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg &= ~E1000_CTRL_VME;
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+}
+
+static void
+igb_intr_disable(struct e1000_hw *hw)
+{
+ E1000_WRITE_REG(hw, E1000_IMC, ~0);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * It enables the interrupt mask and then enable the interrupt.
+ *
+ * @param dev
+ * Pointer to struct rte_eth_dev.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, a negative value.
+ */
+static int
+eth_igb_interrupt_setup(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ E1000_WRITE_REG(hw, E1000_IMS, E1000_ICR_LSC);
+ E1000_WRITE_FLUSH(hw);
+ rte_intr_enable(&(dev->pci_dev->intr_handle));
+
+ return 0;
+}
+
+/*
+ * It reads ICR and gets interrupt causes, check it and set a bit flag
+ * to update link status.
+ *
+ * @param dev
+ * Pointer to struct rte_eth_dev.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, a negative value.
+ */
+static int
+eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
+{
+ uint32_t icr;
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_interrupt *intr =
+ E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+
+ /* read-on-clear nic registers here */
+ icr = E1000_READ_REG(hw, E1000_ICR);
+ if (icr & E1000_ICR_LSC) {
+ intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
+ }
+
+ return 0;
+}
+
+/*
+ * It executes link_update after knowing an interrupt is prsent.
+ *
+ * @param dev
+ * Pointer to struct rte_eth_dev.
+ *
+ * @return
+ * - On success, zero.
+ * - On failure, a negative value.
+ */
+static int
+eth_igb_interrupt_action(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw =
+ E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct e1000_interrupt *intr =
+ E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+ uint32_t tctl, rctl;
+ struct rte_eth_link link;
+ int ret;
+
+ if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
+ return -1;
+
+ intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
+ rte_intr_enable(&(dev->pci_dev->intr_handle));
+
+ /* set get_link_status to check register later */
+ hw->mac.get_link_status = 1;
+ ret = eth_igb_link_update(dev, 0);
+
+ /* check if link has changed */
+ if (ret < 0)
+ return 0;
+
+ memset(&link, 0, sizeof(link));
+ rte_igb_dev_atomic_read_link_status(dev, &link);
+ if (link.link_status) {
+ PMD_INIT_LOG(INFO,
+ " Port %d: Link Up - speed %u Mbps - %s\n",
+ dev->data->port_id, (unsigned)link.link_speed,
+ link.link_duplex == ETH_LINK_FULL_DUPLEX ?
+ "full-duplex" : "half-duplex");
+ } else {
+ PMD_INIT_LOG(INFO, " Port %d: Link Down\n",
+ dev->data->port_id);
+ }
+ PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
+ dev->pci_dev->addr.domain,
+ dev->pci_dev->addr.bus,
+ dev->pci_dev->addr.devid,
+ dev->pci_dev->addr.function);
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ if (link.link_status) {
+ /* enable Tx/Rx */
+ tctl |= E1000_TCTL_EN;
+ rctl |= E1000_RCTL_EN;
+ } else {
+ /* disable Tx/Rx */
+ tctl &= ~E1000_TCTL_EN;
+ rctl &= ~E1000_RCTL_EN;
+ }
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+ E1000_WRITE_FLUSH(hw);
+
+ return 0;
+}
+
+/**
+ * Interrupt handler which shall be registered at first.
+ *
+ * @param handle
+ * Pointer to interrupt handle.
+ * @param param
+ * The address of parameter (struct rte_eth_dev *) regsitered before.
+ *
+ * @return
+ * void
+ */
+static void
+eth_igb_interrupt_handler(struct rte_intr_handle *handle, void *param)
+{
+ struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
+
+ eth_igb_interrupt_get_status(dev);
+ eth_igb_interrupt_action(dev);
+ _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
+}
+
+static int
+eth_igb_led_on(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
+}
+
+static int
+eth_igb_led_off(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
+}
+
+static int
+eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
+{
+ struct e1000_hw *hw;
+ int err;
+ enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
+ e1000_fc_none,
+ e1000_fc_rx_pause,
+ e1000_fc_tx_pause,
+ e1000_fc_full
+ };
+ uint32_t rx_buf_size;
+ uint32_t max_high_water;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ rx_buf_size = igb_get_rx_buffer_size(hw);
+ PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x \n", rx_buf_size);
+
+ /* At least reserve one Ethernet frame for watermark */
+ max_high_water = rx_buf_size - ETHER_MAX_LEN;
+ if ((fc_conf->high_water > max_high_water) ||
+ (fc_conf->high_water < fc_conf->low_water)) {
+ PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value \n");
+ PMD_INIT_LOG(ERR, "high water must <= 0x%x \n", max_high_water);
+ return (-EINVAL);
+ }
+
+ hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
+ hw->fc.pause_time = fc_conf->pause_time;
+ hw->fc.high_water = fc_conf->high_water;
+ hw->fc.low_water = fc_conf->low_water;
+ hw->fc.send_xon = fc_conf->send_xon;
+
+ err = e1000_setup_link_generic(hw);
+ if (err == E1000_SUCCESS) {
+ return 0;
+ }
+
+ PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x \n", err);
+ return (-EIO);
+}
+
+static void
+eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
+ uint32_t index, __rte_unused uint32_t pool)
+{
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ e1000_rar_set(hw, mac_addr->addr_bytes, index);
+}
+
+static void
+eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
+{
+ uint8_t addr[ETHER_ADDR_LEN];
+ struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ memset(addr, 0, sizeof(addr));
+
+ e1000_rar_set(hw, addr, index);
+}
--- /dev/null
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+
+#include <sys/queue.h>
+
+#include <endian.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdarg.h>
+#include <inttypes.h>
+
+#include <rte_interrupts.h>
+#include <rte_byteorder.h>
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_pci.h>
+#include <rte_memory.h>
+#include <rte_memcpy.h>
+#include <rte_memzone.h>
+#include <rte_launch.h>
+#include <rte_tailq.h>
+#include <rte_eal.h>
+#include <rte_per_lcore.h>
+#include <rte_lcore.h>
+#include <rte_atomic.h>
+#include <rte_branch_prediction.h>
+#include <rte_ring.h>
+#include <rte_mempool.h>
+#include <rte_malloc.h>
+#include <rte_mbuf.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_prefetch.h>
+#include <rte_udp.h>
+#include <rte_tcp.h>
+#include <rte_sctp.h>
+#include <rte_string_fns.h>
+
+#include "e1000_logs.h"
+#include "igb/e1000_api.h"
+#include "e1000_ethdev.h"
+
+static inline struct rte_mbuf *
+rte_rxmbuf_alloc(struct rte_mempool *mp)
+{
+ struct rte_mbuf *m;
+
+ m = __rte_mbuf_raw_alloc(mp);
+ __rte_mbuf_sanity_check_raw(m, RTE_MBUF_PKT, 0);
+ return (m);
+}
+
+#define RTE_MBUF_DATA_DMA_ADDR(mb) \
+ (uint64_t) ((mb)->buf_physaddr + \
+ (uint64_t) ((char *)((mb)->pkt.data) - \
+ (char *)(mb)->buf_addr))
+
+#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
+ (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
+
+/**
+ * Structure associated with each descriptor of the RX ring of a RX queue.
+ */
+struct igb_rx_entry {
+ struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
+};
+
+/**
+ * Structure associated with each descriptor of the TX ring of a TX queue.
+ */
+struct igb_tx_entry {
+ struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
+ uint16_t next_id; /**< Index of next descriptor in ring. */
+ uint16_t last_id; /**< Index of last scattered descriptor. */
+};
+
+/**
+ * Structure associated with each RX queue.
+ */
+struct igb_rx_queue {
+ struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
+ volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
+ uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
+ volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
+ struct igb_rx_entry *sw_ring; /**< address of RX software ring. */
+ struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
+ struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
+ uint16_t nb_rx_desc; /**< number of RX descriptors. */
+ uint16_t rx_tail; /**< current value of RDT register. */
+ uint16_t nb_rx_hold; /**< number of held free RX desc. */
+ uint16_t rx_free_thresh; /**< max free RX desc to hold. */
+ uint16_t queue_id; /**< RX queue index. */
+ uint8_t port_id; /**< Device port identifier. */
+ uint8_t pthresh; /**< Prefetch threshold register. */
+ uint8_t hthresh; /**< Host threshold register. */
+ uint8_t wthresh; /**< Write-back threshold register. */
+ uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
+};
+
+/**
+ * Hardware context number
+ */
+enum igb_advctx_num {
+ IGB_CTX_0 = 0, /**< CTX0 */
+ IGB_CTX_1 = 1, /**< CTX1 */
+ IGB_CTX_NUM = 2, /**< CTX NUM */
+};
+
+/**
+ * Strucutre to check if new context need be built
+ */
+struct igb_advctx_info {
+ uint16_t flags; /**< ol_flags related to context build. */
+ uint32_t cmp_mask; /**< compare mask for vlan_macip_lens */
+ uint32_t vlan_macip_lens; /**< vlan, mac.ip length. */
+};
+
+/**
+ * Structure associated with each TX queue.
+ */
+struct igb_tx_queue {
+ volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
+ uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
+ struct igb_tx_entry *sw_ring; /**< virtual address of SW ring. */
+ volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
+ uint32_t txd_type; /**< Device-specific TXD type */
+ uint16_t nb_tx_desc; /**< number of TX descriptors. */
+ uint16_t tx_tail; /**< Current value of TDT register. */
+ uint16_t tx_head; /**< Index of first used TX descriptor. */
+ uint16_t queue_id; /**< TX queue index. */
+ uint8_t port_id; /**< Device port identifier. */
+ uint8_t pthresh; /**< Prefetch threshold register. */
+ uint8_t hthresh; /**< Host threshold register. */
+ uint8_t wthresh; /**< Write-back threshold register. */
+ uint32_t ctx_curr; /**< Current used hardware descriptor. */
+ uint32_t ctx_start;/**< Start context position for transmit queue. */
+ struct igb_advctx_info ctx_cache[IGB_CTX_NUM]; /**< Hardware context history.*/
+};
+
+#if 1
+#define RTE_PMD_USE_PREFETCH
+#endif
+
+#ifdef RTE_PMD_USE_PREFETCH
+#define rte_igb_prefetch(p) rte_prefetch0(p)
+#else
+#define rte_igb_prefetch(p) do {} while(0)
+#endif
+
+#ifdef RTE_PMD_PACKET_PREFETCH
+#define rte_packet_prefetch(p) rte_prefetch1(p)
+#else
+#define rte_packet_prefetch(p) do {} while(0)
+#endif
+
+/*********************************************************************
+ *
+ * TX function
+ *
+ **********************************************************************/
+
+/*
+ * Advanced context descriptor are almost same between igb/ixgbe
+ * This is a separate function, looking for optimization opportunity here
+ * Rework required to go with the pre-defined values.
+ */
+
+static inline void
+igbe_set_xmit_ctx(struct igb_tx_queue* txq,
+ volatile struct e1000_adv_tx_context_desc *ctx_txd,
+ uint16_t ol_flags, uint32_t vlan_macip_lens)
+{
+ uint32_t type_tucmd_mlhl;
+ uint32_t mss_l4len_idx;
+ uint32_t ctx_idx, ctx_curr;
+ uint32_t cmp_mask;
+
+ ctx_curr = txq->ctx_curr;
+ ctx_idx = ctx_curr + txq->ctx_start;
+
+ cmp_mask = 0;
+ type_tucmd_mlhl = 0;
+
+ if (ol_flags & PKT_TX_VLAN_PKT) {
+ cmp_mask |= TX_VLAN_CMP_MASK;
+ }
+
+ if (ol_flags & PKT_TX_IP_CKSUM) {
+ type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
+ cmp_mask |= TX_MAC_LEN_CMP_MASK;
+ }
+
+ /* Specify which HW CTX to upload. */
+ mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
+ switch (ol_flags & PKT_TX_L4_MASK) {
+ case PKT_TX_UDP_CKSUM:
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+ mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
+ cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+ break;
+ case PKT_TX_TCP_CKSUM:
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+ mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
+ cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+ break;
+ case PKT_TX_SCTP_CKSUM:
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+ mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
+ cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+ break;
+ default:
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+ break;
+ }
+
+ txq->ctx_cache[ctx_curr].flags = ol_flags;
+ txq->ctx_cache[ctx_curr].cmp_mask = cmp_mask;
+ txq->ctx_cache[ctx_curr].vlan_macip_lens = vlan_macip_lens & cmp_mask;
+
+ ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
+ ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
+ ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
+ ctx_txd->seqnum_seed = 0;
+}
+
+/*
+ * Check which hardware context can be used. Use the existing match
+ * or create a new context descriptor.
+ */
+static inline uint32_t
+what_advctx_update(struct igb_tx_queue *txq, uint16_t flags,
+ uint32_t vlan_macip_lens)
+{
+ /* If match with the current context */
+ if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
+ (txq->ctx_cache[txq->ctx_curr].vlan_macip_lens ==
+ (txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
+ return txq->ctx_curr;
+ }
+
+ /* If match with the second context */
+ txq->ctx_curr ^= 1;
+ if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
+ (txq->ctx_cache[txq->ctx_curr].vlan_macip_lens ==
+ (txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
+ return txq->ctx_curr;
+ }
+
+ /* Mismatch, use the previous context */
+ return (IGB_CTX_NUM);
+}
+
+static inline uint32_t
+tx_desc_cksum_flags_to_olinfo(uint16_t ol_flags)
+{
+ static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
+ static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
+ uint32_t tmp;
+
+ tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
+ tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
+ return tmp;
+}
+
+static inline uint32_t
+tx_desc_vlan_flags_to_cmdtype(uint16_t ol_flags)
+{
+ static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
+ return vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
+}
+
+uint16_t
+eth_igb_xmit_pkts(struct igb_tx_queue *txq, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ struct igb_tx_entry *sw_ring;
+ struct igb_tx_entry *txe, *txn;
+ volatile union e1000_adv_tx_desc *txr;
+ volatile union e1000_adv_tx_desc *txd;
+ struct rte_mbuf *tx_pkt;
+ struct rte_mbuf *m_seg;
+ uint64_t buf_dma_addr;
+ uint32_t olinfo_status;
+ uint32_t cmd_type_len;
+ uint32_t pkt_len;
+ uint16_t slen;
+ uint16_t ol_flags;
+ uint16_t tx_end;
+ uint16_t tx_id;
+ uint16_t tx_last;
+ uint16_t nb_tx;
+ uint16_t tx_ol_req;
+ uint32_t new_ctx;
+ uint32_t ctx;
+ uint32_t vlan_macip_lens;
+
+ sw_ring = txq->sw_ring;
+ txr = txq->tx_ring;
+ tx_id = txq->tx_tail;
+ txe = &sw_ring[tx_id];
+
+ for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
+ tx_pkt = *tx_pkts++;
+ pkt_len = tx_pkt->pkt.pkt_len;
+
+ RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
+
+ /*
+ * The number of descriptors that must be allocated for a
+ * packet is the number of segments of that packet, plus 1
+ * Context Descriptor for the VLAN Tag Identifier, if any.
+ * Determine the last TX descriptor to allocate in the TX ring
+ * for the packet, starting from the current position (tx_id)
+ * in the ring.
+ */
+ tx_last = (uint16_t) (tx_id + tx_pkt->pkt.nb_segs - 1);
+
+ ol_flags = tx_pkt->ol_flags;
+ vlan_macip_lens = (tx_pkt->pkt.vlan_tci << 16) | (tx_pkt->pkt.l2_len << E1000_ADVTXD_MACLEN_SHIFT) | tx_pkt->pkt.l3_len;
+ tx_ol_req = (ol_flags & PKT_TX_OFFLOAD_MASK);
+
+ /* If a Context Descriptor need be built . */
+ if (tx_ol_req) {
+ ctx = what_advctx_update(txq, tx_ol_req,vlan_macip_lens);
+ /* Only allocate context descriptor if required*/
+ new_ctx = (ctx == IGB_CTX_NUM);
+ ctx = txq->ctx_curr;
+ tx_last = (uint16_t) (tx_last + new_ctx);
+ }
+ if (tx_last >= txq->nb_tx_desc)
+ tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
+
+ PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
+ " tx_first=%u tx_last=%u\n",
+ (unsigned) txq->port_id,
+ (unsigned) txq->queue_id,
+ (unsigned) pkt_len,
+ (unsigned) tx_id,
+ (unsigned) tx_last);
+
+ /*
+ * Check if there are enough free descriptors in the TX ring
+ * to transmit the next packet.
+ * This operation is based on the two following rules:
+ *
+ * 1- Only check that the last needed TX descriptor can be
+ * allocated (by construction, if that descriptor is free,
+ * all intermediate ones are also free).
+ *
+ * For this purpose, the index of the last TX descriptor
+ * used for a packet (the "last descriptor" of a packet)
+ * is recorded in the TX entries (the last one included)
+ * that are associated with all TX descriptors allocated
+ * for that packet.
+ *
+ * 2- Avoid to allocate the last free TX descriptor of the
+ * ring, in order to never set the TDT register with the
+ * same value stored in parallel by the NIC in the TDH
+ * register, which makes the TX engine of the NIC enter
+ * in a deadlock situation.
+ *
+ * By extension, avoid to allocate a free descriptor that
+ * belongs to the last set of free descriptors allocated
+ * to the same packet previously transmitted.
+ */
+
+ /*
+ * The "last descriptor" of the previously sent packet, if any,
+ * which used the last descriptor to allocate.
+ */
+ tx_end = sw_ring[tx_last].last_id;
+
+ /*
+ * The next descriptor following that "last descriptor" in the
+ * ring.
+ */
+ tx_end = sw_ring[tx_end].next_id;
+
+ /*
+ * The "last descriptor" associated with that next descriptor.
+ */
+ tx_end = sw_ring[tx_end].last_id;
+
+ /*
+ * Check that this descriptor is free.
+ */
+ if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
+ if (nb_tx == 0)
+ return (0);
+ goto end_of_tx;
+ }
+
+ /*
+ * Set common flags of all TX Data Descriptors.
+ *
+ * The following bits must be set in all Data Descriptors:
+ * - E1000_ADVTXD_DTYP_DATA
+ * - E1000_ADVTXD_DCMD_DEXT
+ *
+ * The following bits must be set in the first Data Descriptor
+ * and are ignored in the other ones:
+ * - E1000_ADVTXD_DCMD_IFCS
+ * - E1000_ADVTXD_MAC_1588
+ * - E1000_ADVTXD_DCMD_VLE
+ *
+ * The following bits must only be set in the last Data
+ * Descriptor:
+ * - E1000_TXD_CMD_EOP
+ *
+ * The following bits can be set in any Data Descriptor, but
+ * are only set in the last Data Descriptor:
+ * - E1000_TXD_CMD_RS
+ */
+ cmd_type_len = txq->txd_type |
+ E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
+ olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
+#if defined(RTE_LIBRTE_IEEE1588)
+ if (ol_flags & PKT_TX_IEEE1588_TMST)
+ cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
+#endif
+ if (tx_ol_req) {
+ /* Setup TX Advanced context descriptor if required */
+ if (new_ctx) {
+ volatile struct e1000_adv_tx_context_desc *
+ ctx_txd;
+
+ ctx_txd = (volatile struct
+ e1000_adv_tx_context_desc *)
+ &txr[tx_id];
+
+ txn = &sw_ring[txe->next_id];
+ RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
+
+ if (txe->mbuf != NULL) {
+ rte_pktmbuf_free_seg(txe->mbuf);
+ txe->mbuf = NULL;
+ }
+
+ igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
+ vlan_macip_lens);
+
+ txe->last_id = tx_last;
+ tx_id = txe->next_id;
+ txe = txn;
+ }
+
+ /* Setup the TX Advanced Data Descriptor */
+ cmd_type_len |= tx_desc_vlan_flags_to_cmdtype(ol_flags);
+ olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
+ olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
+ }
+
+ m_seg = tx_pkt;
+ do {
+ txn = &sw_ring[txe->next_id];
+ txd = &txr[tx_id];
+
+ if (txe->mbuf != NULL)
+ rte_pktmbuf_free_seg(txe->mbuf);
+ txe->mbuf = m_seg;
+
+ /*
+ * Set up transmit descriptor.
+ */
+ slen = (uint16_t) m_seg->pkt.data_len;
+ buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
+ txd->read.buffer_addr =
+ rte_cpu_to_le_64(buf_dma_addr);
+ txd->read.cmd_type_len =
+ rte_cpu_to_le_32(cmd_type_len | slen);
+ txd->read.olinfo_status =
+ rte_cpu_to_le_32(olinfo_status);
+ txe->last_id = tx_last;
+ tx_id = txe->next_id;
+ txe = txn;
+ m_seg = m_seg->pkt.next;
+ } while (m_seg != NULL);
+
+ /*
+ * The last packet data descriptor needs End Of Packet (EOP)
+ * and Report Status (RS).
+ */
+ txd->read.cmd_type_len |=
+ rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
+ }
+ end_of_tx:
+ rte_wmb();
+
+ /*
+ * Set the Transmit Descriptor Tail (TDT).
+ */
+ E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
+ PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
+ (unsigned) txq->port_id, (unsigned) txq->queue_id,
+ (unsigned) tx_id, (unsigned) nb_tx);
+ txq->tx_tail = tx_id;
+
+ return (nb_tx);
+}
+
+/*********************************************************************
+ *
+ * RX functions
+ *
+ **********************************************************************/
+static inline uint16_t
+rx_desc_hlen_type_rss_to_pkt_flags(uint32_t hl_tp_rs)
+{
+ uint16_t pkt_flags;
+
+ static uint16_t ip_pkt_types_map[16] = {
+ 0, PKT_RX_IPV4_HDR, PKT_RX_IPV4_HDR_EXT, PKT_RX_IPV4_HDR_EXT,
+ PKT_RX_IPV6_HDR, 0, 0, 0,
+ PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
+ PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
+ };
+
+#if defined(RTE_LIBRTE_IEEE1588)
+ static uint32_t ip_pkt_etqf_map[8] = {
+ 0, 0, 0, PKT_RX_IEEE1588_PTP,
+ 0, 0, 0, 0,
+ };
+
+ pkt_flags = (uint16_t) (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ?
+ ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07] :
+ ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
+#else
+ pkt_flags = (uint16_t) (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ? 0 :
+ ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
+#endif
+ return pkt_flags | (uint16_t) (((hl_tp_rs & 0x0F) == 0) ? 0 :
+ PKT_RX_RSS_HASH);
+}
+
+static inline uint16_t
+rx_desc_status_to_pkt_flags(uint32_t rx_status)
+{
+ uint16_t pkt_flags;
+
+ /* Check if VLAN present */
+ pkt_flags = (uint16_t) (rx_status & E1000_RXD_STAT_VP) ? PKT_RX_VLAN_PKT : 0;
+
+#if defined(RTE_LIBRTE_IEEE1588)
+ if (rx_status & E1000_RXD_STAT_TMST)
+ pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
+#endif
+ return pkt_flags;
+}
+
+static inline uint16_t
+rx_desc_error_to_pkt_flags(uint32_t rx_status)
+{
+ /*
+ * Bit 30: IPE, IPv4 checksum error
+ * Bit 29: L4I, L4I integrity error
+ */
+
+ static uint16_t error_to_pkt_flags_map[4] = {
+ 0, PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_BAD,
+ PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
+ };
+ return error_to_pkt_flags_map[(rx_status >>
+ E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
+}
+
+uint16_t
+eth_igb_recv_pkts(struct igb_rx_queue *rxq, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ volatile union e1000_adv_rx_desc *rx_ring;
+ volatile union e1000_adv_rx_desc *rxdp;
+ struct igb_rx_entry *sw_ring;
+ struct igb_rx_entry *rxe;
+ struct rte_mbuf *rxm;
+ struct rte_mbuf *nmb;
+ union e1000_adv_rx_desc rxd;
+ uint64_t dma_addr;
+ uint32_t staterr;
+ uint32_t hlen_type_rss;
+ uint16_t pkt_len;
+ uint16_t rx_id;
+ uint16_t nb_rx;
+ uint16_t nb_hold;
+ uint16_t pkt_flags;
+
+ nb_rx = 0;
+ nb_hold = 0;
+ rx_id = rxq->rx_tail;
+ rx_ring = rxq->rx_ring;
+ sw_ring = rxq->sw_ring;
+ while (nb_rx < nb_pkts) {
+ /*
+ * The order of operations here is important as the DD status
+ * bit must not be read after any other descriptor fields.
+ * rx_ring and rxdp are pointing to volatile data so the order
+ * of accesses cannot be reordered by the compiler. If they were
+ * not volatile, they could be reordered which could lead to
+ * using invalid descriptor fields when read from rxd.
+ */
+ rxdp = &rx_ring[rx_id];
+ staterr = rxdp->wb.upper.status_error;
+ if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
+ break;
+ rxd = *rxdp;
+
+ /*
+ * End of packet.
+ *
+ * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
+ * likely to be invalid and to be dropped by the various
+ * validation checks performed by the network stack.
+ *
+ * Allocate a new mbuf to replenish the RX ring descriptor.
+ * If the allocation fails:
+ * - arrange for that RX descriptor to be the first one
+ * being parsed the next time the receive function is
+ * invoked [on the same queue].
+ *
+ * - Stop parsing the RX ring and return immediately.
+ *
+ * This policy do not drop the packet received in the RX
+ * descriptor for which the allocation of a new mbuf failed.
+ * Thus, it allows that packet to be later retrieved if
+ * mbuf have been freed in the mean time.
+ * As a side effect, holding RX descriptors instead of
+ * systematically giving them back to the NIC may lead to
+ * RX ring exhaustion situations.
+ * However, the NIC can gracefully prevent such situations
+ * to happen by sending specific "back-pressure" flow control
+ * frames to its peer(s).
+ */
+ PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u "
+ "staterr=0x%x pkt_len=%u\n",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) staterr,
+ (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
+
+ nmb = rte_rxmbuf_alloc(rxq->mb_pool);
+ if (nmb == NULL) {
+ PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+ "queue_id=%u\n", (unsigned) rxq->port_id,
+ (unsigned) rxq->queue_id);
+ rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+ break;
+ }
+
+ nb_hold++;
+ rxe = &sw_ring[rx_id];
+ rx_id++;
+ if (rx_id == rxq->nb_rx_desc)
+ rx_id = 0;
+
+ /* Prefetch next mbuf while processing current one. */
+ rte_igb_prefetch(sw_ring[rx_id].mbuf);
+
+ /*
+ * When next RX descriptor is on a cache-line boundary,
+ * prefetch the next 4 RX descriptors and the next 8 pointers
+ * to mbufs.
+ */
+ if ((rx_id & 0x3) == 0) {
+ rte_igb_prefetch(&rx_ring[rx_id]);
+ rte_igb_prefetch(&sw_ring[rx_id]);
+ }
+
+ rxm = rxe->mbuf;
+ rxe->mbuf = nmb;
+ dma_addr =
+ rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
+ rxdp->read.hdr_addr = dma_addr;
+ rxdp->read.pkt_addr = dma_addr;
+
+ /*
+ * Initialize the returned mbuf.
+ * 1) setup generic mbuf fields:
+ * - number of segments,
+ * - next segment,
+ * - packet length,
+ * - RX port identifier.
+ * 2) integrate hardware offload data, if any:
+ * - RSS flag & hash,
+ * - IP checksum flag,
+ * - VLAN TCI, if any,
+ * - error flags.
+ */
+ pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
+ rxq->crc_len);
+ rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM;
+ rte_packet_prefetch(rxm->pkt.data);
+ rxm->pkt.nb_segs = 1;
+ rxm->pkt.next = NULL;
+ rxm->pkt.pkt_len = pkt_len;
+ rxm->pkt.data_len = pkt_len;
+ rxm->pkt.in_port = rxq->port_id;
+
+ rxm->pkt.hash.rss = rxd.wb.lower.hi_dword.rss;
+ hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
+ /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
+ rxm->pkt.vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
+
+ pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
+ pkt_flags = (pkt_flags |
+ rx_desc_status_to_pkt_flags(staterr));
+ pkt_flags = (pkt_flags |
+ rx_desc_error_to_pkt_flags(staterr));
+ rxm->ol_flags = pkt_flags;
+
+ /*
+ * Store the mbuf address into the next entry of the array
+ * of returned packets.
+ */
+ rx_pkts[nb_rx++] = rxm;
+ }
+ rxq->rx_tail = rx_id;
+
+ /*
+ * If the number of free RX descriptors is greater than the RX free
+ * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+ * register.
+ * Update the RDT with the value of the last processed RX descriptor
+ * minus 1, to guarantee that the RDT register is never equal to the
+ * RDH register, which creates a "full" ring situtation from the
+ * hardware point of view...
+ */
+ nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+ if (nb_hold > rxq->rx_free_thresh) {
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+ "nb_hold=%u nb_rx=%u\n",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) nb_hold,
+ (unsigned) nb_rx);
+ rx_id = (uint16_t) ((rx_id == 0) ?
+ (rxq->nb_rx_desc - 1) : (rx_id - 1));
+ E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+ nb_hold = 0;
+ }
+ rxq->nb_rx_hold = nb_hold;
+ return (nb_rx);
+}
+
+uint16_t
+eth_igb_recv_scattered_pkts(struct igb_rx_queue *rxq, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ volatile union e1000_adv_rx_desc *rx_ring;
+ volatile union e1000_adv_rx_desc *rxdp;
+ struct igb_rx_entry *sw_ring;
+ struct igb_rx_entry *rxe;
+ struct rte_mbuf *first_seg;
+ struct rte_mbuf *last_seg;
+ struct rte_mbuf *rxm;
+ struct rte_mbuf *nmb;
+ union e1000_adv_rx_desc rxd;
+ uint64_t dma; /* Physical address of mbuf data buffer */
+ uint32_t staterr;
+ uint32_t hlen_type_rss;
+ uint16_t rx_id;
+ uint16_t nb_rx;
+ uint16_t nb_hold;
+ uint16_t data_len;
+ uint16_t pkt_flags;
+
+ nb_rx = 0;
+ nb_hold = 0;
+ rx_id = rxq->rx_tail;
+ rx_ring = rxq->rx_ring;
+ sw_ring = rxq->sw_ring;
+
+ /*
+ * Retrieve RX context of current packet, if any.
+ */
+ first_seg = rxq->pkt_first_seg;
+ last_seg = rxq->pkt_last_seg;
+
+ while (nb_rx < nb_pkts) {
+ next_desc:
+ /*
+ * The order of operations here is important as the DD status
+ * bit must not be read after any other descriptor fields.
+ * rx_ring and rxdp are pointing to volatile data so the order
+ * of accesses cannot be reordered by the compiler. If they were
+ * not volatile, they could be reordered which could lead to
+ * using invalid descriptor fields when read from rxd.
+ */
+ rxdp = &rx_ring[rx_id];
+ staterr = rxdp->wb.upper.status_error;
+ if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
+ break;
+ rxd = *rxdp;
+
+ /*
+ * Descriptor done.
+ *
+ * Allocate a new mbuf to replenish the RX ring descriptor.
+ * If the allocation fails:
+ * - arrange for that RX descriptor to be the first one
+ * being parsed the next time the receive function is
+ * invoked [on the same queue].
+ *
+ * - Stop parsing the RX ring and return immediately.
+ *
+ * This policy does not drop the packet received in the RX
+ * descriptor for which the allocation of a new mbuf failed.
+ * Thus, it allows that packet to be later retrieved if
+ * mbuf have been freed in the mean time.
+ * As a side effect, holding RX descriptors instead of
+ * systematically giving them back to the NIC may lead to
+ * RX ring exhaustion situations.
+ * However, the NIC can gracefully prevent such situations
+ * to happen by sending specific "back-pressure" flow control
+ * frames to its peer(s).
+ */
+ PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u "
+ "staterr=0x%x data_len=%u\n",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) staterr,
+ (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
+
+ nmb = rte_rxmbuf_alloc(rxq->mb_pool);
+ if (nmb == NULL) {
+ PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+ "queue_id=%u\n", (unsigned) rxq->port_id,
+ (unsigned) rxq->queue_id);
+ rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+ break;
+ }
+
+ nb_hold++;
+ rxe = &sw_ring[rx_id];
+ rx_id++;
+ if (rx_id == rxq->nb_rx_desc)
+ rx_id = 0;
+
+ /* Prefetch next mbuf while processing current one. */
+ rte_igb_prefetch(sw_ring[rx_id].mbuf);
+
+ /*
+ * When next RX descriptor is on a cache-line boundary,
+ * prefetch the next 4 RX descriptors and the next 8 pointers
+ * to mbufs.
+ */
+ if ((rx_id & 0x3) == 0) {
+ rte_igb_prefetch(&rx_ring[rx_id]);
+ rte_igb_prefetch(&sw_ring[rx_id]);
+ }
+
+ /*
+ * Update RX descriptor with the physical address of the new
+ * data buffer of the new allocated mbuf.
+ */
+ rxm = rxe->mbuf;
+ rxe->mbuf = nmb;
+ dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
+ rxdp->read.pkt_addr = dma;
+ rxdp->read.hdr_addr = dma;
+
+ /*
+ * Set data length & data buffer address of mbuf.
+ */
+ data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
+ rxm->pkt.data_len = data_len;
+ rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM;
+
+ /*
+ * If this is the first buffer of the received packet,
+ * set the pointer to the first mbuf of the packet and
+ * initialize its context.
+ * Otherwise, update the total length and the number of segments
+ * of the current scattered packet, and update the pointer to
+ * the last mbuf of the current packet.
+ */
+ if (first_seg == NULL) {
+ first_seg = rxm;
+ first_seg->pkt.pkt_len = data_len;
+ first_seg->pkt.nb_segs = 1;
+ } else {
+ first_seg->pkt.pkt_len += data_len;
+ first_seg->pkt.nb_segs++;
+ last_seg->pkt.next = rxm;
+ }
+
+ /*
+ * If this is not the last buffer of the received packet,
+ * update the pointer to the last mbuf of the current scattered
+ * packet and continue to parse the RX ring.
+ */
+ if (! (staterr & E1000_RXD_STAT_EOP)) {
+ last_seg = rxm;
+ goto next_desc;
+ }
+
+ /*
+ * This is the last buffer of the received packet.
+ * If the CRC is not stripped by the hardware:
+ * - Subtract the CRC length from the total packet length.
+ * - If the last buffer only contains the whole CRC or a part
+ * of it, free the mbuf associated to the last buffer.
+ * If part of the CRC is also contained in the previous
+ * mbuf, subtract the length of that CRC part from the
+ * data length of the previous mbuf.
+ */
+ rxm->pkt.next = NULL;
+ if (unlikely(rxq->crc_len > 0)) {
+ first_seg->pkt.pkt_len -= ETHER_CRC_LEN;
+ if (data_len <= ETHER_CRC_LEN) {
+ rte_pktmbuf_free_seg(rxm);
+ first_seg->pkt.nb_segs--;
+ last_seg->pkt.data_len = (uint16_t)
+ (last_seg->pkt.data_len -
+ (ETHER_CRC_LEN - data_len));
+ last_seg->pkt.next = NULL;
+ } else
+ rxm->pkt.data_len =
+ (uint16_t) (data_len - ETHER_CRC_LEN);
+ }
+
+ /*
+ * Initialize the first mbuf of the returned packet:
+ * - RX port identifier,
+ * - hardware offload data, if any:
+ * - RSS flag & hash,
+ * - IP checksum flag,
+ * - VLAN TCI, if any,
+ * - error flags.
+ */
+ first_seg->pkt.in_port = rxq->port_id;
+ first_seg->pkt.hash.rss = rxd.wb.lower.hi_dword.rss;
+
+ /*
+ * The vlan_tci field is only valid when PKT_RX_VLAN_PKT is
+ * set in the pkt_flags field.
+ */
+ first_seg->pkt.vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
+ hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
+ pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
+ pkt_flags = (pkt_flags | rx_desc_status_to_pkt_flags(staterr));
+ pkt_flags = (pkt_flags | rx_desc_error_to_pkt_flags(staterr));
+ first_seg->ol_flags = pkt_flags;
+
+ /* Prefetch data of first segment, if configured to do so. */
+ rte_packet_prefetch(first_seg->pkt.data);
+
+ /*
+ * Store the mbuf address into the next entry of the array
+ * of returned packets.
+ */
+ rx_pkts[nb_rx++] = first_seg;
+
+ /*
+ * Setup receipt context for a new packet.
+ */
+ first_seg = NULL;
+ }
+
+ /*
+ * Record index of the next RX descriptor to probe.
+ */
+ rxq->rx_tail = rx_id;
+
+ /*
+ * Save receive context.
+ */
+ rxq->pkt_first_seg = first_seg;
+ rxq->pkt_last_seg = last_seg;
+
+ /*
+ * If the number of free RX descriptors is greater than the RX free
+ * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+ * register.
+ * Update the RDT with the value of the last processed RX descriptor
+ * minus 1, to guarantee that the RDT register is never equal to the
+ * RDH register, which creates a "full" ring situtation from the
+ * hardware point of view...
+ */
+ nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+ if (nb_hold > rxq->rx_free_thresh) {
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+ "nb_hold=%u nb_rx=%u\n",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) nb_hold,
+ (unsigned) nb_rx);
+ rx_id = (uint16_t) ((rx_id == 0) ?
+ (rxq->nb_rx_desc - 1) : (rx_id - 1));
+ E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+ nb_hold = 0;
+ }
+ rxq->nb_rx_hold = nb_hold;
+ return (nb_rx);
+}
+
+/*
+ * Rings setup and release.
+ *
+ * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
+ * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
+ * This will also optimize cache line size effect.
+ * H/W supports up to cache line size 128.
+ */
+#define IGB_ALIGN 128
+
+/*
+ * Maximum number of Ring Descriptors.
+ *
+ * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
+ * desscriptors should meet the following condition:
+ * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
+ */
+#define IGB_MIN_RING_DESC 32
+#define IGB_MAX_RING_DESC 4096
+
+static const struct rte_memzone *
+ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
+ uint16_t queue_id, uint32_t ring_size, int socket_id)
+{
+ char z_name[RTE_MEMZONE_NAMESIZE];
+ const struct rte_memzone *mz;
+
+ rte_snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
+ dev->driver->pci_drv.name, ring_name,
+ dev->data->port_id, queue_id);
+ mz = rte_memzone_lookup(z_name);
+ if (mz)
+ return mz;
+
+ return rte_memzone_reserve_aligned(z_name, (uint64_t)ring_size,
+ socket_id, 0, IGB_ALIGN);
+}
+
+static void
+igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
+{
+ unsigned i;
+
+ if (txq->sw_ring != NULL) {
+ for (i = 0; i < txq->nb_tx_desc; i++) {
+ if (txq->sw_ring[i].mbuf != NULL) {
+ rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
+ txq->sw_ring[i].mbuf = NULL;
+ }
+ }
+ }
+}
+
+static void
+igb_tx_queue_release(struct igb_tx_queue *txq)
+{
+ igb_tx_queue_release_mbufs(txq);
+ rte_free(txq->sw_ring);
+ rte_free(txq);
+}
+
+int
+igb_dev_tx_queue_alloc(struct rte_eth_dev *dev, uint16_t nb_queues)
+{
+ uint16_t i, old_nb_queues = dev->data->nb_tx_queues;
+ struct igb_tx_queue **txq;
+
+ if (dev->data->tx_queues == NULL) {
+ dev->data->tx_queues = rte_zmalloc("ethdev->tx_queues",
+ sizeof(struct igb_tx_queue *) * nb_queues,
+ CACHE_LINE_SIZE);
+ if (dev->data->tx_queues == NULL) {
+ dev->data->nb_tx_queues = 0;
+ return -ENOMEM;
+ }
+ } else {
+ if (nb_queues < old_nb_queues)
+ for (i = nb_queues; i < old_nb_queues; i++)
+ igb_tx_queue_release(dev->data->tx_queues[i]);
+
+ if (nb_queues != old_nb_queues) {
+ txq = rte_realloc(dev->data->tx_queues,
+ sizeof(struct igb_tx_queue *) * nb_queues,
+ CACHE_LINE_SIZE);
+ if (txq == NULL)
+ return -ENOMEM;
+ else
+ dev->data->tx_queues = txq;
+ if (nb_queues > old_nb_queues)
+ memset(&(txq[old_nb_queues]), 0,
+ sizeof(struct igb_tx_queue *) *
+ (nb_queues - old_nb_queues));
+ }
+ }
+ dev->data->nb_tx_queues = nb_queues;
+
+ return 0;
+}
+
+static void
+igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
+{
+ txq->tx_head = 0;
+ txq->tx_tail = 0;
+ txq->ctx_curr = 0;
+ memset((void*)&txq->ctx_cache, 0,
+ IGB_CTX_NUM * sizeof(struct igb_advctx_info));
+}
+
+static void
+igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
+{
+ struct igb_tx_entry *txe = txq->sw_ring;
+ uint32_t size;
+ uint16_t i, prev;
+ struct e1000_hw *hw;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ size = sizeof(union e1000_adv_tx_desc) * txq->nb_tx_desc;
+ /* Zero out HW ring memory */
+ for (i = 0; i < size; i++) {
+ ((volatile char *)txq->tx_ring)[i] = 0;
+ }
+
+ /* Initialize ring entries */
+ prev = txq->nb_tx_desc - 1;
+ for (i = 0; i < txq->nb_tx_desc; i++) {
+ volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
+
+ txd->wb.status = E1000_TXD_STAT_DD;
+ txe[i].mbuf = NULL;
+ txe[i].last_id = i;
+ txe[prev].next_id = i;
+ prev = i;
+ }
+
+ txq->txd_type = E1000_ADVTXD_DTYP_DATA;
+ /* 82575 specific, each tx queue will use 2 hw contexts */
+ if (hw->mac.type == e1000_82575)
+ txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
+
+ igb_reset_tx_queue_stat(txq);
+}
+
+int
+eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
+ uint16_t queue_idx,
+ uint16_t nb_desc,
+ unsigned int socket_id,
+ const struct rte_eth_txconf *tx_conf)
+{
+ const struct rte_memzone *tz;
+ struct igb_tx_queue *txq;
+ struct e1000_hw *hw;
+ uint32_t size;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /*
+ * Validate number of transmit descriptors.
+ * It must not exceed hardware maximum, and must be multiple
+ * of IGB_ALIGN.
+ */
+ if (((nb_desc * sizeof(union e1000_adv_tx_desc)) % IGB_ALIGN) != 0 ||
+ (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
+ return -EINVAL;
+ }
+
+ /*
+ * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
+ * driver.
+ */
+ if (tx_conf->tx_free_thresh != 0)
+ RTE_LOG(WARNING, PMD,
+ "The tx_free_thresh parameter is not "
+ "used for the 1G driver.");
+ if (tx_conf->tx_rs_thresh != 0)
+ RTE_LOG(WARNING, PMD,
+ "The tx_rs_thresh parameter is not "
+ "used for the 1G driver.");
+ if (tx_conf->tx_thresh.wthresh == 0)
+ RTE_LOG(WARNING, PMD,
+ "To improve 1G driver performance, consider setting "
+ "the TX WTHRESH value to 4, 8, or 16.");
+
+ /* Free memory prior to re-allocation if needed */
+ if (dev->data->tx_queues[queue_idx] != NULL)
+ igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
+
+ /* First allocate the tx queue data structure */
+ txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
+ CACHE_LINE_SIZE);
+ if (txq == NULL)
+ return (-ENOMEM);
+
+ /*
+ * Allocate TX ring hardware descriptors. A memzone large enough to
+ * handle the maximum ring size is allocated in order to allow for
+ * resizing in later calls to the queue setup function.
+ */
+ size = sizeof(union e1000_adv_tx_desc) * IGB_MAX_RING_DESC;
+ tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx,
+ size, socket_id);
+ if (tz == NULL) {
+ igb_tx_queue_release(txq);
+ return (-ENOMEM);
+ }
+
+ txq->nb_tx_desc = nb_desc;
+ txq->pthresh = tx_conf->tx_thresh.pthresh;
+ txq->hthresh = tx_conf->tx_thresh.hthresh;
+ txq->wthresh = tx_conf->tx_thresh.wthresh;
+ txq->queue_id = queue_idx;
+ txq->port_id = dev->data->port_id;
+
+ txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx));
+ txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
+ txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
+
+ size = sizeof(union e1000_adv_tx_desc) * nb_desc;
+
+ /* Allocate software ring */
+ txq->sw_ring = rte_zmalloc("txq->sw_ring",
+ sizeof(struct igb_tx_entry) * nb_desc,
+ CACHE_LINE_SIZE);
+ if (txq->sw_ring == NULL) {
+ igb_tx_queue_release(txq);
+ return (-ENOMEM);
+ }
+ PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
+ txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
+
+ igb_reset_tx_queue(txq, dev);
+ dev->tx_pkt_burst = eth_igb_xmit_pkts;
+ dev->data->tx_queues[queue_idx] = txq;
+
+ return (0);
+}
+
+static void
+igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
+{
+ unsigned i;
+
+ if (rxq->sw_ring != NULL) {
+ for (i = 0; i < rxq->nb_rx_desc; i++) {
+ if (rxq->sw_ring[i].mbuf != NULL) {
+ rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
+ rxq->sw_ring[i].mbuf = NULL;
+ }
+ }
+ }
+}
+
+static void
+igb_rx_queue_release(struct igb_rx_queue *rxq)
+{
+ igb_rx_queue_release_mbufs(rxq);
+ rte_free(rxq->sw_ring);
+ rte_free(rxq);
+}
+
+int
+igb_dev_rx_queue_alloc(struct rte_eth_dev *dev, uint16_t nb_queues)
+{
+ uint16_t i, old_nb_queues = dev->data->nb_rx_queues;
+ struct igb_rx_queue **rxq;
+
+ if (dev->data->rx_queues == NULL) {
+ dev->data->rx_queues = rte_zmalloc("ethdev->rx_queues",
+ sizeof(struct igb_rx_queue *) * nb_queues,
+ CACHE_LINE_SIZE);
+ if (dev->data->rx_queues == NULL) {
+ dev->data->nb_rx_queues = 0;
+ return -ENOMEM;
+ }
+ } else {
+ for (i = nb_queues; i < old_nb_queues; i++) {
+ igb_rx_queue_release(dev->data->rx_queues[i]);
+ dev->data->rx_queues[i] = NULL;
+ }
+ if (nb_queues != old_nb_queues) {
+ rxq = rte_realloc(dev->data->rx_queues,
+ sizeof(struct igb_rx_queue *) * nb_queues,
+ CACHE_LINE_SIZE);
+ if (rxq == NULL)
+ return -ENOMEM;
+ else
+ dev->data->rx_queues = rxq;
+ if (nb_queues > old_nb_queues)
+ memset(&(rxq[old_nb_queues]), 0,
+ sizeof(struct igb_rx_queue *) *
+ (nb_queues - old_nb_queues));
+ }
+ }
+ dev->data->nb_rx_queues = nb_queues;
+
+ return 0;
+}
+
+static void
+igb_reset_rx_queue(struct igb_rx_queue *rxq)
+{
+ unsigned size;
+ unsigned i;
+
+ /* Zero out HW ring memory */
+ size = sizeof(union e1000_adv_rx_desc) * rxq->nb_rx_desc;
+ for (i = 0; i < size; i++) {
+ ((volatile char *)rxq->rx_ring)[i] = 0;
+ }
+
+ rxq->rx_tail = 0;
+ rxq->pkt_first_seg = NULL;
+ rxq->pkt_last_seg = NULL;
+}
+
+int
+eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
+ uint16_t queue_idx,
+ uint16_t nb_desc,
+ unsigned int socket_id,
+ const struct rte_eth_rxconf *rx_conf,
+ struct rte_mempool *mp)
+{
+ const struct rte_memzone *rz;
+ struct igb_rx_queue *rxq;
+ struct e1000_hw *hw;
+ unsigned int size;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /*
+ * Validate number of receive descriptors.
+ * It must not exceed hardware maximum, and must be multiple
+ * of IGB_ALIGN.
+ */
+ if (((nb_desc * sizeof(union e1000_adv_rx_desc)) % IGB_ALIGN) != 0 ||
+ (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
+ return (-EINVAL);
+ }
+
+ /* Free memory prior to re-allocation if needed */
+ if (dev->data->rx_queues[queue_idx] != NULL) {
+ igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
+ dev->data->rx_queues[queue_idx] = NULL;
+ }
+
+ /* First allocate the RX queue data structure. */
+ rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
+ CACHE_LINE_SIZE);
+ if (rxq == NULL)
+ return (-ENOMEM);
+ rxq->mb_pool = mp;
+ rxq->nb_rx_desc = nb_desc;
+ rxq->pthresh = rx_conf->rx_thresh.pthresh;
+ rxq->hthresh = rx_conf->rx_thresh.hthresh;
+ rxq->wthresh = rx_conf->rx_thresh.wthresh;
+ rxq->rx_free_thresh = rx_conf->rx_free_thresh;
+ rxq->queue_id = queue_idx;
+ rxq->port_id = dev->data->port_id;
+ rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 :
+ ETHER_CRC_LEN);
+
+ /*
+ * Allocate RX ring hardware descriptors. A memzone large enough to
+ * handle the maximum ring size is allocated in order to allow for
+ * resizing in later calls to the queue setup function.
+ */
+ size = sizeof(union e1000_adv_rx_desc) * IGB_MAX_RING_DESC;
+ rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, size, socket_id);
+ if (rz == NULL) {
+ igb_rx_queue_release(rxq);
+ return (-ENOMEM);
+ }
+ rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx));
+ rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
+ rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
+
+ /* Allocate software ring. */
+ rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
+ sizeof(struct igb_rx_entry) * nb_desc,
+ CACHE_LINE_SIZE);
+ if (rxq->sw_ring == NULL) {
+ igb_rx_queue_release(rxq);
+ return (-ENOMEM);
+ }
+ PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
+ rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
+
+ dev->data->rx_queues[queue_idx] = rxq;
+ igb_reset_rx_queue(rxq);
+
+ return 0;
+}
+
+void
+igb_dev_clear_queues(struct rte_eth_dev *dev)
+{
+ uint16_t i;
+ struct igb_tx_queue *txq;
+ struct igb_rx_queue *rxq;
+
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ txq = dev->data->tx_queues[i];
+ igb_tx_queue_release_mbufs(txq);
+ igb_reset_tx_queue(txq, dev);
+ }
+
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ igb_rx_queue_release_mbufs(rxq);
+ igb_reset_rx_queue(rxq);
+ }
+}
+
+/**
+ * Receive Side Scaling (RSS).
+ * See section 7.1.1.7 in the following document:
+ * "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
+ *
+ * Principles:
+ * The source and destination IP addresses of the IP header and the source and
+ * destination ports of TCP/UDP headers, if any, of received packets are hashed
+ * against a configurable random key to compute a 32-bit RSS hash result.
+ * The seven (7) LSBs of the 32-bit hash result are used as an index into a
+ * 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit
+ * RSS output index which is used as the RX queue index where to store the
+ * received packets.
+ * The following output is supplied in the RX write-back descriptor:
+ * - 32-bit result of the Microsoft RSS hash function,
+ * - 4-bit RSS type field.
+ */
+
+/*
+ * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
+ * Used as the default key.
+ */
+static uint8_t rss_intel_key[40] = {
+ 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
+ 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
+ 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
+ 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
+ 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
+};
+
+static void
+igb_rss_disable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ uint32_t mrqc;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ mrqc = E1000_READ_REG(hw, E1000_MRQC);
+ mrqc &= ~E1000_MRQC_ENABLE_MASK;
+ E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+}
+
+static void
+igb_rss_configure(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ uint8_t *hash_key;
+ uint32_t rss_key;
+ uint32_t mrqc;
+ uint32_t shift;
+ uint16_t rss_hf;
+ uint16_t i;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ rss_hf = dev->data->dev_conf.rx_adv_conf.rss_conf.rss_hf;
+ if (rss_hf == 0) /* Disable RSS. */ {
+ igb_rss_disable(dev);
+ return;
+ }
+ hash_key = dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key;
+ if (hash_key == NULL)
+ hash_key = rss_intel_key; /* Default hash key. */
+
+ /* Fill in RSS hash key. */
+ for (i = 0; i < 10; i++) {
+ rss_key = hash_key[(i * 4)];
+ rss_key |= hash_key[(i * 4) + 1] << 8;
+ rss_key |= hash_key[(i * 4) + 2] << 16;
+ rss_key |= hash_key[(i * 4) + 3] << 24;
+ E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
+ }
+
+ /* Fill in redirection table. */
+ shift = (hw->mac.type == e1000_82575) ? 6 : 0;
+ for (i = 0; i < 128; i++) {
+ union e1000_reta {
+ uint32_t dword;
+ uint8_t bytes[4];
+ } reta;
+ uint8_t q_idx;
+
+ q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
+ i % dev->data->nb_rx_queues : 0);
+ reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
+ if ((i & 3) == 3)
+ E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
+ }
+
+ /* Set configured hashing functions in MRQC register. */
+ mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
+ if (rss_hf & ETH_RSS_IPV4)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
+ if (rss_hf & ETH_RSS_IPV4_TCP)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
+ if (rss_hf & ETH_RSS_IPV6)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
+ if (rss_hf & ETH_RSS_IPV6_EX)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
+ if (rss_hf & ETH_RSS_IPV6_TCP)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
+ if (rss_hf & ETH_RSS_IPV6_TCP_EX)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
+ if (rss_hf & ETH_RSS_IPV4_UDP)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
+ if (rss_hf & ETH_RSS_IPV6_UDP)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
+ if (rss_hf & ETH_RSS_IPV6_UDP_EX)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
+ E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+}
+
+/*********************************************************************
+ *
+ * Enable receive unit.
+ *
+ **********************************************************************/
+
+static int
+igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
+{
+ struct igb_rx_entry *rxe = rxq->sw_ring;
+ uint64_t dma_addr;
+ unsigned i;
+
+ /* Initialize software ring entries. */
+ for (i = 0; i < rxq->nb_rx_desc; i++) {
+ volatile union e1000_adv_rx_desc *rxd;
+ struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
+
+ if (mbuf == NULL) {
+ PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
+ "queue_id=%hu\n", rxq->queue_id);
+ igb_rx_queue_release(rxq);
+ return (-ENOMEM);
+ }
+ dma_addr =
+ rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
+ rxd = &rxq->rx_ring[i];
+ rxd->read.hdr_addr = dma_addr;
+ rxd->read.pkt_addr = dma_addr;
+ rxe[i].mbuf = mbuf;
+ }
+
+ return 0;
+}
+
+int
+eth_igb_rx_init(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ struct igb_rx_queue *rxq;
+ struct rte_pktmbuf_pool_private *mbp_priv;
+ uint32_t rctl;
+ uint32_t rxcsum;
+ uint32_t srrctl;
+ uint16_t buf_size;
+ uint16_t rctl_bsize;
+ uint16_t i;
+ int ret;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ srrctl = 0;
+
+ /*
+ * Make sure receives are disabled while setting
+ * up the descriptor ring.
+ */
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
+
+ /*
+ * Configure support of jumbo frames, if any.
+ */
+ if (dev->data->dev_conf.rxmode.jumbo_frame == 1) {
+ rctl |= E1000_RCTL_LPE;
+
+ /* Set maximum packet length. */
+ E1000_WRITE_REG(hw, E1000_RLPML,
+ dev->data->dev_conf.rxmode.max_rx_pkt_len);
+ } else
+ rctl &= ~E1000_RCTL_LPE;
+
+ /* Configure and enable each RX queue. */
+ rctl_bsize = 0;
+ dev->rx_pkt_burst = eth_igb_recv_pkts;
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ uint64_t bus_addr;
+ uint32_t rxdctl;
+
+ rxq = dev->data->rx_queues[i];
+
+ /* Allocate buffers for descriptor rings and set up queue */
+ ret = igb_alloc_rx_queue_mbufs(rxq);
+ if (ret) {
+ igb_dev_clear_queues(dev);
+ return ret;
+ }
+
+ /*
+ * Reset crc_len in case it was changed after queue setup by a
+ * call to configure
+ */
+ rxq->crc_len =
+ (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
+ 0 : ETHER_CRC_LEN);
+
+ bus_addr = rxq->rx_ring_phys_addr;
+ E1000_WRITE_REG(hw, E1000_RDLEN(i),
+ rxq->nb_rx_desc *
+ sizeof(union e1000_adv_rx_desc));
+ E1000_WRITE_REG(hw, E1000_RDBAH(i),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
+
+ srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
+
+ /*
+ * Configure RX buffer size.
+ */
+ mbp_priv = (struct rte_pktmbuf_pool_private *)
+ ((char *)rxq->mb_pool + sizeof(struct rte_mempool));
+ buf_size = (uint16_t) (mbp_priv->mbuf_data_room_size -
+ RTE_PKTMBUF_HEADROOM);
+ if (buf_size >= 1024) {
+ /*
+ * Configure the BSIZEPACKET field of the SRRCTL
+ * register of the queue.
+ * Value is in 1 KB resolution, from 1 KB to 127 KB.
+ * If this field is equal to 0b, then RCTL.BSIZE
+ * determines the RX packet buffer size.
+ */
+ srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
+ E1000_SRRCTL_BSIZEPKT_MASK);
+ buf_size = (uint16_t) ((srrctl &
+ E1000_SRRCTL_BSIZEPKT_MASK) <<
+ E1000_SRRCTL_BSIZEPKT_SHIFT);
+
+ if (dev->data->dev_conf.rxmode.max_rx_pkt_len > buf_size){
+ dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+ } else {
+ /*
+ * Use BSIZE field of the device RCTL register.
+ */
+ if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
+ rctl_bsize = buf_size;
+ dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+
+ E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
+
+ /* Enable this RX queue. */
+ rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
+ rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
+ rxdctl &= 0xFFF00000;
+ rxdctl |= (rxq->pthresh & 0x1F);
+ rxdctl |= ((rxq->hthresh & 0x1F) << 8);
+ rxdctl |= ((rxq->wthresh & 0x1F) << 16);
+ E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
+ }
+
+ /*
+ * Setup BSIZE field of RCTL register, if needed.
+ * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
+ * register, since the code above configures the SRRCTL register of
+ * the RX queue in such a case.
+ * All configurable sizes are:
+ * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
+ * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
+ * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
+ * 2048: rctl |= E1000_RCTL_SZ_2048;
+ * 1024: rctl |= E1000_RCTL_SZ_1024;
+ * 512: rctl |= E1000_RCTL_SZ_512;
+ * 256: rctl |= E1000_RCTL_SZ_256;
+ */
+ if (rctl_bsize > 0) {
+ if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
+ rctl |= E1000_RCTL_SZ_512;
+ else /* 256 <= buf_size < 512 - use 256 */
+ rctl |= E1000_RCTL_SZ_256;
+ }
+
+ /*
+ * Configure RSS if device configured with multiple RX queues.
+ */
+ if (dev->data->nb_rx_queues > 1)
+ igb_rss_configure(dev);
+ else
+ igb_rss_disable(dev);
+
+ /*
+ * Setup the Checksum Register.
+ * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
+ */
+ rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
+ rxcsum |= E1000_RXCSUM_PCSD;
+
+ /* Enable both L3/L4 rx checksum offload */
+ if (dev->data->dev_conf.rxmode.hw_ip_checksum)
+ rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
+ else
+ rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
+ E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
+
+ /* Setup the Receive Control Register. */
+ if (dev->data->dev_conf.rxmode.hw_strip_crc) {
+ rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
+
+ /* set STRCRC bit in all queues for Powerville */
+ if (hw->mac.type == e1000_i350) {
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ uint32_t dvmolr = E1000_READ_REG(hw, E1000_DVMOLR(i));
+ dvmolr |= E1000_DVMOLR_STRCRC;
+ E1000_WRITE_REG(hw, E1000_DVMOLR(i), dvmolr);
+ }
+ }
+
+ } else {
+ rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
+
+ /* clear STRCRC bit in all queues for Powerville */
+ if (hw->mac.type == e1000_i350) {
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ uint32_t dvmolr = E1000_READ_REG(hw, E1000_DVMOLR(i));
+ dvmolr &= ~E1000_DVMOLR_STRCRC;
+ E1000_WRITE_REG(hw, E1000_DVMOLR(i), dvmolr);
+ }
+ }
+ }
+
+ rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+ rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
+ E1000_RCTL_RDMTS_HALF |
+ (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+ /* Make sure VLAN Filters are off. */
+ rctl &= ~E1000_RCTL_VFE;
+ /* Don't store bad packets. */
+ rctl &= ~E1000_RCTL_SBP;
+
+ /* Enable Receives. */
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+ /*
+ * Setup the HW Rx Head and Tail Descriptor Pointers.
+ * This needs to be done after enable.
+ */
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ E1000_WRITE_REG(hw, E1000_RDH(i), 0);
+ E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
+ }
+
+ return 0;
+}
+
+/*********************************************************************
+ *
+ * Enable transmit unit.
+ *
+ **********************************************************************/
+void
+eth_igb_tx_init(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ struct igb_tx_queue *txq;
+ uint32_t tctl;
+ uint32_t txdctl;
+ uint16_t i;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /* Setup the Base and Length of the Tx Descriptor Rings. */
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ uint64_t bus_addr;
+ txq = dev->data->tx_queues[i];
+ bus_addr = txq->tx_ring_phys_addr;
+
+ E1000_WRITE_REG(hw, E1000_TDLEN(i),
+ txq->nb_tx_desc *
+ sizeof(union e1000_adv_tx_desc));
+ E1000_WRITE_REG(hw, E1000_TDBAH(i),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
+
+ /* Setup the HW Tx Head and Tail descriptor pointers. */
+ E1000_WRITE_REG(hw, E1000_TDT(i), 0);
+ E1000_WRITE_REG(hw, E1000_TDH(i), 0);
+
+ /* Setup Transmit threshold registers. */
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
+ txdctl |= txq->pthresh & 0x1F;
+ txdctl |= ((txq->hthresh & 0x1F) << 8);
+ txdctl |= ((txq->wthresh & 0x1F) << 16);
+ txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
+ }
+
+ /* Program the Transmit Control Register. */
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+ tctl &= ~E1000_TCTL_CT;
+ tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
+ (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
+
+ e1000_config_collision_dist(hw);
+
+ /* This write will effectively turn on the transmit unit. */
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+}
+
+++ /dev/null
-# BSD LICENSE
-#
-# Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
-# All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without
-# modification, are permitted provided that the following conditions
-# are met:
-#
-# * Redistributions of source code must retain the above copyright
-# notice, this list of conditions and the following disclaimer.
-# * Redistributions in binary form must reproduce the above copyright
-# notice, this list of conditions and the following disclaimer in
-# the documentation and/or other materials provided with the
-# distribution.
-# * Neither the name of Intel Corporation nor the names of its
-# contributors may be used to endorse or promote products derived
-# from this software without specific prior written permission.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-#
-
-include $(RTE_SDK)/mk/rte.vars.mk
-
-#
-# library name
-#
-LIB = librte_pmd_igb.a
-
-CFLAGS += -O3
-CFLAGS += $(WERROR_FLAGS)
-
-#
-# all source are stored in SRCS-y
-#
-SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb/e1000_nvm.c
-SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb/e1000_manage.c
-SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb/e1000_mac.c
-SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb/e1000_phy.c
-SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb/e1000_82575.c
-SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb/e1000_api.c
-SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb/e1000_osdep.c
-SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb/e1000_vf.c
-SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb/e1000_mbx.c
-SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += e1000_rxtx.c
-SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += e1000_ethdev.c
-
-# this lib depends upon:
-DEPDIRS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += lib/librte_eal lib/librte_ether
-DEPDIRS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += lib/librte_mempool lib/librte_mbuf
-DEPDIRS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += lib/librte_net lib/librte_malloc
-
-include $(RTE_SDK)/mk/rte.lib.mk
+++ /dev/null
-/*-
- * BSD LICENSE
- *
- * Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- */
-
-#include <sys/queue.h>
-#include <stdio.h>
-#include <errno.h>
-#include <stdint.h>
-#include <stdarg.h>
-
-#include <rte_common.h>
-#include <rte_interrupts.h>
-#include <rte_byteorder.h>
-#include <rte_log.h>
-#include <rte_debug.h>
-#include <rte_pci.h>
-#include <rte_ether.h>
-#include <rte_ethdev.h>
-#include <rte_memory.h>
-#include <rte_memzone.h>
-#include <rte_tailq.h>
-#include <rte_eal.h>
-#include <rte_atomic.h>
-#include <rte_malloc.h>
-
-#include "e1000_logs.h"
-#include "igb/e1000_api.h"
-#include "igb/e1000_hw.h"
-#include "e1000_ethdev.h"
-
-static int eth_igb_configure(struct rte_eth_dev *dev, uint16_t nb_rx_q,
- uint16_t nb_tx_q);
-static int eth_igb_start(struct rte_eth_dev *dev);
-static void eth_igb_stop(struct rte_eth_dev *dev);
-static void eth_igb_close(struct rte_eth_dev *dev);
-static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
-static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
-static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
-static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
-static int eth_igb_link_update(struct rte_eth_dev *dev,
- int wait_to_complete);
-static void eth_igb_stats_get(struct rte_eth_dev *dev,
- struct rte_eth_stats *rte_stats);
-static void eth_igb_stats_reset(struct rte_eth_dev *dev);
-static void eth_igb_infos_get(struct rte_eth_dev *dev,
- struct rte_eth_dev_info *dev_info);
-static int eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
- struct rte_eth_fc_conf *fc_conf);
-static int eth_igb_interrupt_setup(struct rte_eth_dev *dev);
-static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
-static int eth_igb_interrupt_action(struct rte_eth_dev *dev);
-static void eth_igb_interrupt_handler(struct rte_intr_handle *handle,
- void *param);
-static int igb_hardware_init(struct e1000_hw *hw);
-static void igb_hw_control_acquire(struct e1000_hw *hw);
-static void igb_hw_control_release(struct e1000_hw *hw);
-static void igb_init_manageability(struct e1000_hw *hw);
-static void igb_release_manageability(struct e1000_hw *hw);
-static void igb_vlan_hw_support_enable(struct rte_eth_dev *dev);
-static void igb_vlan_hw_support_disable(struct rte_eth_dev *dev);
-static void eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
- uint16_t vlan_id,
- int on);
-static int eth_igb_led_on(struct rte_eth_dev *dev);
-static int eth_igb_led_off(struct rte_eth_dev *dev);
-
-static void igb_intr_disable(struct e1000_hw *hw);
-static int igb_get_rx_buffer_size(struct e1000_hw *hw);
-static void eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
- uint32_t index, uint32_t pool);
-static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
-
-#define IGB_FC_PAUSE_TIME 0x0680
-#define IGB_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
-#define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
-
-static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
-
-/*
- * The set of PCI devices this driver supports
- */
-static struct rte_pci_id pci_id_igb_map[] = {
-
-#undef RTE_LIBRTE_IXGBE_PMD
-#define RTE_PCI_DEV_ID_DECL(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
-#include "rte_pci_dev_ids.h"
-
-{.device_id = 0},
-};
-
-static struct eth_dev_ops eth_igb_ops = {
- .dev_configure = eth_igb_configure,
- .dev_start = eth_igb_start,
- .dev_stop = eth_igb_stop,
- .dev_close = eth_igb_close,
- .promiscuous_enable = eth_igb_promiscuous_enable,
- .promiscuous_disable = eth_igb_promiscuous_disable,
- .allmulticast_enable = eth_igb_allmulticast_enable,
- .allmulticast_disable = eth_igb_allmulticast_disable,
- .link_update = eth_igb_link_update,
- .stats_get = eth_igb_stats_get,
- .stats_reset = eth_igb_stats_reset,
- .dev_infos_get = eth_igb_infos_get,
- .vlan_filter_set = eth_igb_vlan_filter_set,
- .rx_queue_setup = eth_igb_rx_queue_setup,
- .tx_queue_setup = eth_igb_tx_queue_setup,
- .dev_led_on = eth_igb_led_on,
- .dev_led_off = eth_igb_led_off,
- .flow_ctrl_set = eth_igb_flow_ctrl_set,
- .mac_addr_add = eth_igb_rar_set,
- .mac_addr_remove = eth_igb_rar_clear,
-};
-
-/**
- * Atomically reads the link status information from global
- * structure rte_eth_dev.
- *
- * @param dev
- * - Pointer to the structure rte_eth_dev to read from.
- * - Pointer to the buffer to be saved with the link status.
- *
- * @return
- * - On success, zero.
- * - On failure, negative value.
- */
-static inline int
-rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev,
- struct rte_eth_link *link)
-{
- struct rte_eth_link *dst = link;
- struct rte_eth_link *src = &(dev->data->dev_link);
-
- if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
- *(uint64_t *)src) == 0)
- return -1;
-
- return 0;
-}
-
-/**
- * Atomically writes the link status information into global
- * structure rte_eth_dev.
- *
- * @param dev
- * - Pointer to the structure rte_eth_dev to read from.
- * - Pointer to the buffer to be saved with the link status.
- *
- * @return
- * - On success, zero.
- * - On failure, negative value.
- */
-static inline int
-rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev,
- struct rte_eth_link *link)
-{
- struct rte_eth_link *dst = &(dev->data->dev_link);
- struct rte_eth_link *src = link;
-
- if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
- *(uint64_t *)src) == 0)
- return -1;
-
- return 0;
-}
-
-static void
-igb_identify_hardware(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- hw->vendor_id = dev->pci_dev->id.vendor_id;
- hw->device_id = dev->pci_dev->id.device_id;
- hw->subsystem_vendor_id = dev->pci_dev->id.subsystem_vendor_id;
- hw->subsystem_device_id = dev->pci_dev->id.subsystem_device_id;
-
- e1000_set_mac_type(hw);
-
- /* need to check if it is a vf device below */
-}
-
-static int
-eth_igb_dev_init(__attribute__((unused)) struct eth_driver *eth_drv,
- struct rte_eth_dev *eth_dev)
-{
- int error = 0;
- struct rte_pci_device *pci_dev;
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
- struct e1000_vfta * shadow_vfta =
- E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
-
- pci_dev = eth_dev->pci_dev;
- eth_dev->dev_ops = ð_igb_ops;
- eth_dev->rx_pkt_burst = ð_igb_recv_pkts;
- eth_dev->tx_pkt_burst = ð_igb_xmit_pkts;
-
- /* for secondary processes, we don't initialise any further as primary
- * has already done this work. Only check we don't need a different
- * RX function */
- if (rte_eal_process_type() != RTE_PROC_PRIMARY){
- if (eth_dev->data->scattered_rx)
- eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts;
- return 0;
- }
-
- hw->hw_addr= (void *)pci_dev->mem_resource.addr;
-
- igb_identify_hardware(eth_dev);
-
- if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
- error = -EIO;
- goto err_late;
- }
-
- e1000_get_bus_info(hw);
-
- hw->mac.autoneg = 1;
- hw->phy.autoneg_wait_to_complete = 0;
- hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
-
- /* Copper options */
- if (hw->phy.media_type == e1000_media_type_copper) {
- hw->phy.mdix = 0; /* AUTO_ALL_MODES */
- hw->phy.disable_polarity_correction = 0;
- hw->phy.ms_type = e1000_ms_hw_default;
- }
-
- /*
- * Start from a known state, this is important in reading the nvm
- * and mac from that.
- */
- e1000_reset_hw(hw);
-
- /* Make sure we have a good EEPROM before we read from it */
- if (e1000_validate_nvm_checksum(hw) < 0) {
- /*
- * Some PCI-E parts fail the first check due to
- * the link being in sleep state, call it again,
- * if it fails a second time its a real issue.
- */
- if (e1000_validate_nvm_checksum(hw) < 0) {
- PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
- error = -EIO;
- goto err_late;
- }
- }
-
- /* Read the permanent MAC address out of the EEPROM */
- if (e1000_read_mac_addr(hw) != 0) {
- PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
- error = -EIO;
- goto err_late;
- }
-
- /* Allocate memory for storing MAC addresses */
- eth_dev->data->mac_addrs = rte_zmalloc("e1000",
- ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
- if (eth_dev->data->mac_addrs == NULL) {
- PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
- "store MAC addresses",
- ETHER_ADDR_LEN * hw->mac.rar_entry_count);
- error = -ENOMEM;
- goto err_late;
- }
-
- /* Copy the permanent MAC address */
- ether_addr_copy((struct ether_addr *)hw->mac.addr, ð_dev->data->mac_addrs[0]);
-
- /* initialize the vfta */
- memset(shadow_vfta, 0, sizeof(*shadow_vfta));
-
- /* Now initialize the hardware */
- if (igb_hardware_init(hw) != 0) {
- PMD_INIT_LOG(ERR, "Hardware initialization failed");
- rte_free(eth_dev->data->mac_addrs);
- eth_dev->data->mac_addrs = NULL;
- error = -ENODEV;
- goto err_late;
- }
- hw->mac.get_link_status = 1;
-
- /* Indicate SOL/IDER usage */
- if (e1000_check_reset_block(hw) < 0) {
- PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
- "SOL/IDER session");
- }
-
- PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x\n",
- eth_dev->data->port_id, pci_dev->id.vendor_id,
- pci_dev->id.device_id);
-
- rte_intr_callback_register(&(pci_dev->intr_handle),
- eth_igb_interrupt_handler, (void *)eth_dev);
-
- return 0;
-
-err_late:
- igb_hw_control_release(hw);
-
- return (error);
-}
-
-static struct eth_driver rte_igb_pmd = {
- {
- .name = "rte_igb_pmd",
- .id_table = pci_id_igb_map,
- .drv_flags = RTE_PCI_DRV_NEED_IGB_UIO,
- },
- .eth_dev_init = eth_igb_dev_init,
- .dev_private_size = sizeof(struct e1000_adapter),
-};
-
-int
-rte_igb_pmd_init(void)
-{
- rte_eth_driver_register(&rte_igb_pmd);
- return 0;
-}
-
-static int
-eth_igb_configure(struct rte_eth_dev *dev, uint16_t nb_rx_q, uint16_t nb_tx_q)
-{
- struct e1000_interrupt *intr =
- E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
- int diag;
-
- PMD_INIT_LOG(DEBUG, ">>");
-
- intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
-
- /* Allocate the array of pointers to RX structures */
- diag = igb_dev_rx_queue_alloc(dev, nb_rx_q);
- if (diag != 0) {
- PMD_INIT_LOG(ERR, "ethdev port_id=%u allocation of array of %u"
- " pointers to RX queues failed",
- dev->data->port_id, nb_rx_q);
- return diag;
- }
-
- /* Allocate the array of pointers to TX structures */
- diag = igb_dev_tx_queue_alloc(dev, nb_tx_q);
- if (diag != 0) {
- PMD_INIT_LOG(ERR, "ethdev port_id=%u allocation of array of %u"
- " pointers to TX queues failed",
- dev->data->port_id, nb_tx_q);
-
- return diag;
- }
-
- PMD_INIT_LOG(DEBUG, "<<");
-
- return (0);
-}
-
-static int
-eth_igb_start(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- int ret, i;
-
- PMD_INIT_LOG(DEBUG, ">>");
-
- igb_intr_disable(hw);
-
- /* Power up the phy. Needed to make the link go Up */
- e1000_power_up_phy(hw);
-
- /*
- * Packet Buffer Allocation (PBA)
- * Writing PBA sets the receive portion of the buffer
- * the remainder is used for the transmit buffer.
- */
- if (hw->mac.type == e1000_82575) {
- uint32_t pba;
-
- pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
- E1000_WRITE_REG(hw, E1000_PBA, pba);
- }
-
- /* Put the address into the Receive Address Array */
- e1000_rar_set(hw, hw->mac.addr, 0);
-
- /* Initialize the hardware */
- if (igb_hardware_init(hw)) {
- PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
- return (-1);
- }
-
- E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
-
- /* Configure for OS presence */
- igb_init_manageability(hw);
-
- eth_igb_tx_init(dev);
-
- /* This can fail when allocating mbufs for descriptor rings */
- ret = eth_igb_rx_init(dev);
- if (ret) {
- PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
- return ret;
- }
-
- e1000_clear_hw_cntrs_base_generic(hw);
-
- /*
- * If VLAN filtering is enabled, set up VLAN tag offload and filtering
- * and restore the VFTA.
- */
- if (dev->data->dev_conf.rxmode.hw_vlan_filter)
- igb_vlan_hw_support_enable(dev);
- else
- igb_vlan_hw_support_disable(dev);
-
- /*
- * Configure the Interrupt Moderation register (EITR) with the maximum
- * possible value (0xFFFF) to minimize "System Partial Write" issued by
- * spurious [DMA] memory updates of RX and TX ring descriptors.
- *
- * With a EITR granularity of 2 microseconds in the 82576, only 7/8
- * spurious memory updates per second should be expected.
- * ((65535 * 2) / 1000.1000 ~= 0.131 second).
- *
- * Because interrupts are not used at all, the MSI-X is not activated
- * and interrupt moderation is controlled by EITR[0].
- *
- * Note that having [almost] disabled memory updates of RX and TX ring
- * descriptors through the Interrupt Moderation mechanism, memory
- * updates of ring descriptors are now moderated by the configurable
- * value of Write-Back Threshold registers.
- */
- if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
- (hw->mac.type == e1000_i350)) {
- uint32_t ivar;
-
- /* Enable all RX & TX queues in the IVAR registers */
- ivar = (uint32_t) ((E1000_IVAR_VALID << 16) | E1000_IVAR_VALID);
- for (i = 0; i < 8; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, ivar);
-
- /* Configure EITR with the maximum possible value (0xFFFF) */
- E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
- }
-
- /* Don't reset the phy next time init gets called */
- hw->phy.reset_disable = 1;
-
- /* Setup link speed and duplex */
- switch (dev->data->dev_conf.link_speed) {
- case ETH_LINK_SPEED_AUTONEG:
- if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
- hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
- else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
- hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
- else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
- hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
- else
- goto error_invalid_config;
- break;
- case ETH_LINK_SPEED_10:
- if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
- hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
- else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
- hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
- else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
- hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
- else
- goto error_invalid_config;
- break;
- case ETH_LINK_SPEED_100:
- if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
- hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
- else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
- hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
- else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
- hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
- else
- goto error_invalid_config;
- break;
- case ETH_LINK_SPEED_1000:
- if ((dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) ||
- (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX))
- hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
- else
- goto error_invalid_config;
- break;
- case ETH_LINK_SPEED_10000:
- default:
- goto error_invalid_config;
- }
- e1000_setup_link(hw);
-
- PMD_INIT_LOG(DEBUG, "<<");
-
- /* check if lsc interrupt feature is enabled */
- if (dev->data->dev_conf.intr_conf.lsc != 0)
- return eth_igb_interrupt_setup(dev);
-
- return (0);
-
-error_invalid_config:
- PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u\n",
- dev->data->dev_conf.link_speed,
- dev->data->dev_conf.link_duplex, dev->data->port_id);
- return -1;
-}
-
-/*********************************************************************
- *
- * This routine disables all traffic on the adapter by issuing a
- * global reset on the MAC.
- *
- **********************************************************************/
-static void
-eth_igb_stop(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct rte_eth_link link;
-
- igb_intr_disable(hw);
- e1000_reset_hw(hw);
- E1000_WRITE_REG(hw, E1000_WUC, 0);
-
- /* Power down the phy. Needed to make the link go Down */
- e1000_power_down_phy(hw);
-
- igb_dev_clear_queues(dev);
-
- /* clear the recorded link status */
- memset(&link, 0, sizeof(link));
- rte_igb_dev_atomic_write_link_status(dev, &link);
-}
-
-static void
-eth_igb_close(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct rte_eth_link link;
-
- eth_igb_stop(dev);
- e1000_phy_hw_reset(hw);
- igb_release_manageability(hw);
- igb_hw_control_release(hw);
-
- igb_dev_clear_queues(dev);
-
- memset(&link, 0, sizeof(link));
- rte_igb_dev_atomic_write_link_status(dev, &link);
-}
-
-static int
-igb_get_rx_buffer_size(struct e1000_hw *hw)
-{
- uint32_t rx_buf_size;
- if (hw->mac.type == e1000_82576) {
- rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
- } else if (hw->mac.type == e1000_82580) {
- /* PBS needs to be translated according to a lookup table */
- rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
- rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
- rx_buf_size = (rx_buf_size << 10);
- } else {
- rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
- }
-
- return rx_buf_size;
-}
-
-/*********************************************************************
- *
- * Initialize the hardware
- *
- **********************************************************************/
-static int
-igb_hardware_init(struct e1000_hw *hw)
-{
- uint32_t rx_buf_size;
- int diag;
-
- /* Let the firmware know the OS is in control */
- igb_hw_control_acquire(hw);
-
- /*
- * These parameters control the automatic generation (Tx) and
- * response (Rx) to Ethernet PAUSE frames.
- * - High water mark should allow for at least two standard size (1518)
- * frames to be received after sending an XOFF.
- * - Low water mark works best when it is very near the high water mark.
- * This allows the receiver to restart by sending XON when it has
- * drained a bit. Here we use an arbitary value of 1500 which will
- * restart after one full frame is pulled from the buffer. There
- * could be several smaller frames in the buffer and if so they will
- * not trigger the XON until their total number reduces the buffer
- * by 1500.
- * - The pause time is fairly large at 1000 x 512ns = 512 usec.
- */
- rx_buf_size = igb_get_rx_buffer_size(hw);
-
- hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
- hw->fc.low_water = hw->fc.high_water - 1500;
- hw->fc.pause_time = IGB_FC_PAUSE_TIME;
- hw->fc.send_xon = 1;
-
- /* Set Flow control, use the tunable location if sane */
- if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
- hw->fc.requested_mode = igb_fc_setting;
- else
- hw->fc.requested_mode = e1000_fc_none;
-
- /* Issue a global reset */
- e1000_reset_hw(hw);
- E1000_WRITE_REG(hw, E1000_WUC, 0);
-
- diag = e1000_init_hw(hw);
- if (diag < 0)
- return (diag);
-
- E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
- e1000_get_phy_info(hw);
- e1000_check_for_link(hw);
-
- return (0);
-}
-
-/* This function is based on igb_update_stats_counters() in igb/if_igb.c */
-static void
-eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_hw_stats *stats =
- E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
- int pause_frames;
-
- if(hw->phy.media_type == e1000_media_type_copper ||
- (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
- stats->symerrs +=
- E1000_READ_REG(hw,E1000_SYMERRS);
- stats->sec += E1000_READ_REG(hw, E1000_SEC);
- }
-
- stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
- stats->mpc += E1000_READ_REG(hw, E1000_MPC);
- stats->scc += E1000_READ_REG(hw, E1000_SCC);
- stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
-
- stats->mcc += E1000_READ_REG(hw, E1000_MCC);
- stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
- stats->colc += E1000_READ_REG(hw, E1000_COLC);
- stats->dc += E1000_READ_REG(hw, E1000_DC);
- stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
- stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
- stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
- /*
- ** For watchdog management we need to know if we have been
- ** paused during the last interval, so capture that here.
- */
- pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
- stats->xoffrxc += pause_frames;
- stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
- stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
- stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
- stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
- stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
- stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
- stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
- stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
- stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
- stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
- stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
- stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
-
- /* For the 64-bit byte counters the low dword must be read first. */
- /* Both registers clear on the read of the high dword */
-
- stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
- stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
- stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
- stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
-
- stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
- stats->ruc += E1000_READ_REG(hw, E1000_RUC);
- stats->rfc += E1000_READ_REG(hw, E1000_RFC);
- stats->roc += E1000_READ_REG(hw, E1000_ROC);
- stats->rjc += E1000_READ_REG(hw, E1000_RJC);
-
- stats->tor += E1000_READ_REG(hw, E1000_TORH);
- stats->tot += E1000_READ_REG(hw, E1000_TOTH);
-
- stats->tpr += E1000_READ_REG(hw, E1000_TPR);
- stats->tpt += E1000_READ_REG(hw, E1000_TPT);
- stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
- stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
- stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
- stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
- stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
- stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
- stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
- stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
-
- /* Interrupt Counts */
-
- stats->iac += E1000_READ_REG(hw, E1000_IAC);
- stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
- stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
- stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
- stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
- stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
- stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
- stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
- stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
-
- /* Host to Card Statistics */
-
- stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
- stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
- stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
- stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
- stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
- stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
- stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
- stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
- stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
- stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
- stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
- stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
- stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
- stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
-
- stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
- stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
- stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
- stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
- stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
- stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
-
- if (rte_stats == NULL)
- return;
-
- /* Rx Errors */
- rte_stats->ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
- stats->ruc + stats->roc + stats->mpc + stats->cexterr;
-
- /* Tx Errors */
- rte_stats->oerrors = stats->ecol + stats->latecol;
-
- rte_stats->ipackets = stats->gprc;
- rte_stats->opackets = stats->gptc;
- rte_stats->ibytes = stats->gorc;
- rte_stats->obytes = stats->gotc;
-}
-
-static void
-eth_igb_stats_reset(struct rte_eth_dev *dev)
-{
- struct e1000_hw_stats *hw_stats =
- E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
-
- /* HW registers are cleared on read */
- eth_igb_stats_get(dev, NULL);
-
- /* Reset software totals */
- memset(hw_stats, 0, sizeof(*hw_stats));
-}
-
-static void
-eth_igb_infos_get(struct rte_eth_dev *dev,
- struct rte_eth_dev_info *dev_info)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
- dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */
- dev_info->max_mac_addrs = hw->mac.rar_entry_count;
-
- switch (hw->mac.type) {
- case e1000_82575:
- dev_info->max_rx_queues = 4;
- dev_info->max_tx_queues = 4;
- break;
-
- case e1000_82576:
- dev_info->max_rx_queues = 16;
- dev_info->max_tx_queues = 16;
- break;
-
- case e1000_82580:
- dev_info->max_rx_queues = 8;
- dev_info->max_tx_queues = 8;
- break;
-
- case e1000_i350:
- dev_info->max_rx_queues = 8;
- dev_info->max_tx_queues = 8;
- break;
-
- default:
- /* Should not happen */
- dev_info->max_rx_queues = 0;
- dev_info->max_tx_queues = 0;
- }
-}
-
-/* return 0 means link status changed, -1 means not changed */
-static int
-eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct rte_eth_link link, old;
- int link_check, count;
-
- link_check = 0;
- hw->mac.get_link_status = 1;
-
- /* possible wait-to-complete in up to 9 seconds */
- for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
- /* Read the real link status */
- switch (hw->phy.media_type) {
- case e1000_media_type_copper:
- /* Do the work to read phy */
- e1000_check_for_link(hw);
- link_check = !hw->mac.get_link_status;
- break;
-
- case e1000_media_type_fiber:
- e1000_check_for_link(hw);
- link_check = (E1000_READ_REG(hw, E1000_STATUS) &
- E1000_STATUS_LU);
- break;
-
- case e1000_media_type_internal_serdes:
- e1000_check_for_link(hw);
- link_check = hw->mac.serdes_has_link;
- break;
-
- default:
- case e1000_media_type_unknown:
- break;
- }
- if (link_check || wait_to_complete == 0)
- break;
- rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
- }
- memset(&link, 0, sizeof(link));
- rte_igb_dev_atomic_read_link_status(dev, &link);
- old = link;
-
- /* Now we check if a transition has happened */
- if (link_check) {
- hw->mac.ops.get_link_up_info(hw, &link.link_speed,
- &link.link_duplex);
- link.link_status = 1;
- } else if (!link_check) {
- link.link_speed = 0;
- link.link_duplex = 0;
- link.link_status = 0;
- }
- rte_igb_dev_atomic_write_link_status(dev, &link);
-
- /* not changed */
- if (old.link_status == link.link_status)
- return -1;
-
- /* changed */
- return 0;
-}
-
-/*
- * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means
- * that the driver is loaded.
- */
-static void
-igb_hw_control_acquire(struct e1000_hw *hw)
-{
- uint32_t ctrl_ext;
-
- /* Let firmware know the driver has taken over */
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
-}
-
-/*
- * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means that the
- * driver is no longer loaded.
- */
-static void
-igb_hw_control_release(struct e1000_hw *hw)
-{
- uint32_t ctrl_ext;
-
- /* Let firmware taken over control of h/w */
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- E1000_WRITE_REG(hw, E1000_CTRL_EXT,
- ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
-}
-
-/*
- * Bit of a misnomer, what this really means is
- * to enable OS management of the system... aka
- * to disable special hardware management features.
- */
-static void
-igb_init_manageability(struct e1000_hw *hw)
-{
- if (e1000_enable_mng_pass_thru(hw)) {
- uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
- uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
-
- /* disable hardware interception of ARP */
- manc &= ~(E1000_MANC_ARP_EN);
-
- /* enable receiving management packets to the host */
- manc |= E1000_MANC_EN_MNG2HOST;
- manc2h |= 1 << 5; /* Mng Port 623 */
- manc2h |= 1 << 6; /* Mng Port 664 */
- E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
- E1000_WRITE_REG(hw, E1000_MANC, manc);
- }
-}
-
-static void
-igb_release_manageability(struct e1000_hw *hw)
-{
- if (e1000_enable_mng_pass_thru(hw)) {
- uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
-
- manc |= E1000_MANC_ARP_EN;
- manc &= ~E1000_MANC_EN_MNG2HOST;
-
- E1000_WRITE_REG(hw, E1000_MANC, manc);
- }
-}
-
-static void
-eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t rctl;
-
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static void
-eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t rctl;
-
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- rctl &= (~E1000_RCTL_UPE);
- if (dev->data->all_multicast == 1)
- rctl |= E1000_RCTL_MPE;
- else
- rctl &= (~E1000_RCTL_MPE);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static void
-eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t rctl;
-
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- rctl |= E1000_RCTL_MPE;
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static void
-eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t rctl;
-
- if (dev->data->promiscuous == 1)
- return; /* must remain in all_multicast mode */
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- rctl &= (~E1000_RCTL_MPE);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static void
-eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_vfta * shadow_vfta =
- E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
- uint32_t vfta;
- uint32_t vid_idx;
- uint32_t vid_bit;
-
- vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
- E1000_VFTA_ENTRY_MASK);
- vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
- vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
- if (on)
- vfta |= vid_bit;
- else
- vfta &= ~vid_bit;
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
-
- /* update local VFTA copy */
- shadow_vfta->vfta[vid_idx] = vfta;
-}
-
-static void
-igb_vlan_hw_support_enable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_vfta * shadow_vfta =
- E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
- uint32_t reg;
- int i;
-
- /* VLAN Mode Enable */
- reg = E1000_READ_REG(hw, E1000_CTRL);
- reg |= E1000_CTRL_VME;
- E1000_WRITE_REG(hw, E1000_CTRL, reg);
-
- /* Filter Table Enable */
- reg = E1000_READ_REG(hw, E1000_RCTL);
- reg &= ~E1000_RCTL_CFIEN;
- reg |= E1000_RCTL_VFE;
- E1000_WRITE_REG(hw, E1000_RCTL, reg);
-
- /* Update maximum frame size */
- reg = E1000_READ_REG(hw, E1000_RLPML);
- reg += VLAN_TAG_SIZE;
- E1000_WRITE_REG(hw, E1000_RLPML, reg);
-
- /* restore VFTA table */
- for (i = 0; i < E1000_VFTA_SIZE; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
-}
-
-static void
-igb_vlan_hw_support_disable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- uint32_t reg;
-
- /* VLAN Mode disable */
- reg = E1000_READ_REG(hw, E1000_CTRL);
- reg &= ~E1000_CTRL_VME;
- E1000_WRITE_REG(hw, E1000_CTRL, reg);
-}
-
-static void
-igb_intr_disable(struct e1000_hw *hw)
-{
- E1000_WRITE_REG(hw, E1000_IMC, ~0);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * It enables the interrupt mask and then enable the interrupt.
- *
- * @param dev
- * Pointer to struct rte_eth_dev.
- *
- * @return
- * - On success, zero.
- * - On failure, a negative value.
- */
-static int
-eth_igb_interrupt_setup(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- E1000_WRITE_REG(hw, E1000_IMS, E1000_ICR_LSC);
- E1000_WRITE_FLUSH(hw);
- rte_intr_enable(&(dev->pci_dev->intr_handle));
-
- return 0;
-}
-
-/*
- * It reads ICR and gets interrupt causes, check it and set a bit flag
- * to update link status.
- *
- * @param dev
- * Pointer to struct rte_eth_dev.
- *
- * @return
- * - On success, zero.
- * - On failure, a negative value.
- */
-static int
-eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
-{
- uint32_t icr;
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_interrupt *intr =
- E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
-
- /* read-on-clear nic registers here */
- icr = E1000_READ_REG(hw, E1000_ICR);
- if (icr & E1000_ICR_LSC) {
- intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
- }
-
- return 0;
-}
-
-/*
- * It executes link_update after knowing an interrupt is prsent.
- *
- * @param dev
- * Pointer to struct rte_eth_dev.
- *
- * @return
- * - On success, zero.
- * - On failure, a negative value.
- */
-static int
-eth_igb_interrupt_action(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw =
- E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct e1000_interrupt *intr =
- E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
- uint32_t tctl, rctl;
- struct rte_eth_link link;
- int ret;
-
- if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
- return -1;
-
- intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
- rte_intr_enable(&(dev->pci_dev->intr_handle));
-
- /* set get_link_status to check register later */
- hw->mac.get_link_status = 1;
- ret = eth_igb_link_update(dev, 0);
-
- /* check if link has changed */
- if (ret < 0)
- return 0;
-
- memset(&link, 0, sizeof(link));
- rte_igb_dev_atomic_read_link_status(dev, &link);
- if (link.link_status) {
- PMD_INIT_LOG(INFO,
- " Port %d: Link Up - speed %u Mbps - %s\n",
- dev->data->port_id, (unsigned)link.link_speed,
- link.link_duplex == ETH_LINK_FULL_DUPLEX ?
- "full-duplex" : "half-duplex");
- } else {
- PMD_INIT_LOG(INFO, " Port %d: Link Down\n",
- dev->data->port_id);
- }
- PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
- dev->pci_dev->addr.domain,
- dev->pci_dev->addr.bus,
- dev->pci_dev->addr.devid,
- dev->pci_dev->addr.function);
- tctl = E1000_READ_REG(hw, E1000_TCTL);
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- if (link.link_status) {
- /* enable Tx/Rx */
- tctl |= E1000_TCTL_EN;
- rctl |= E1000_RCTL_EN;
- } else {
- /* disable Tx/Rx */
- tctl &= ~E1000_TCTL_EN;
- rctl &= ~E1000_RCTL_EN;
- }
- E1000_WRITE_REG(hw, E1000_TCTL, tctl);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
- E1000_WRITE_FLUSH(hw);
-
- return 0;
-}
-
-/**
- * Interrupt handler which shall be registered at first.
- *
- * @param handle
- * Pointer to interrupt handle.
- * @param param
- * The address of parameter (struct rte_eth_dev *) regsitered before.
- *
- * @return
- * void
- */
-static void
-eth_igb_interrupt_handler(struct rte_intr_handle *handle, void *param)
-{
- struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
-
- eth_igb_interrupt_get_status(dev);
- eth_igb_interrupt_action(dev);
- _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
-}
-
-static int
-eth_igb_led_on(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
-}
-
-static int
-eth_igb_led_off(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
-}
-
-static int
-eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
-{
- struct e1000_hw *hw;
- int err;
- enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
- e1000_fc_none,
- e1000_fc_rx_pause,
- e1000_fc_tx_pause,
- e1000_fc_full
- };
- uint32_t rx_buf_size;
- uint32_t max_high_water;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- rx_buf_size = igb_get_rx_buffer_size(hw);
- PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x \n", rx_buf_size);
-
- /* At least reserve one Ethernet frame for watermark */
- max_high_water = rx_buf_size - ETHER_MAX_LEN;
- if ((fc_conf->high_water > max_high_water) ||
- (fc_conf->high_water < fc_conf->low_water)) {
- PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value \n");
- PMD_INIT_LOG(ERR, "high water must <= 0x%x \n", max_high_water);
- return (-EINVAL);
- }
-
- hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
- hw->fc.pause_time = fc_conf->pause_time;
- hw->fc.high_water = fc_conf->high_water;
- hw->fc.low_water = fc_conf->low_water;
- hw->fc.send_xon = fc_conf->send_xon;
-
- err = e1000_setup_link_generic(hw);
- if (err == E1000_SUCCESS) {
- return 0;
- }
-
- PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x \n", err);
- return (-EIO);
-}
-
-static void
-eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
- uint32_t index, __rte_unused uint32_t pool)
-{
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- e1000_rar_set(hw, mac_addr->addr_bytes, index);
-}
-
-static void
-eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
-{
- uint8_t addr[ETHER_ADDR_LEN];
- struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- memset(addr, 0, sizeof(addr));
-
- e1000_rar_set(hw, addr, index);
-}
+++ /dev/null
-/*-
- * BSD LICENSE
- *
- * Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- */
-
-#ifndef _E1000_ETHDEV_H_
-#define _E1000_ETHDEV_H_
-
-/* need update link, bit flag */
-#define E1000_FLAG_NEED_LINK_UPDATE (uint32_t)(1 << 0)
-
-/*
- * Defines that were not part of e1000_hw.h as they are not used by the FreeBSD
- * driver.
- */
-#define E1000_ADVTXD_POPTS_TXSM 0x00000200 /* L4 Checksum offload request */
-#define E1000_ADVTXD_POPTS_IXSM 0x00000100 /* IP Checksum offload request */
-#define E1000_ADVTXD_TUCMD_L4T_RSV 0x00001800 /* L4 Packet TYPE of Reserved */
-#define E1000_RXD_STAT_TMST 0x10000 /* Timestamped Packet indication */
-#define E1000_RXD_ERR_CKSUM_BIT 29
-#define E1000_RXD_ERR_CKSUM_MSK 3
-#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Bit shift for l2_len */
-
-#define E1000_VFTA_SIZE 128
-
-/* structure for interrupt relative data */
-struct e1000_interrupt {
- uint32_t flags;
-};
-
-/* local vfta copy */
-struct e1000_vfta {
- uint32_t vfta[E1000_VFTA_SIZE];
-};
-
-/*
- * Structure to store private data for each driver instance (for each port).
- */
-struct e1000_adapter {
- struct e1000_hw hw;
- struct e1000_hw_stats stats;
- struct e1000_interrupt intr;
- struct e1000_vfta shadow_vfta;
-};
-
-#define E1000_DEV_PRIVATE_TO_HW(adapter) \
- (&((struct e1000_adapter *)adapter)->hw)
-
-#define E1000_DEV_PRIVATE_TO_STATS(adapter) \
- (&((struct e1000_adapter *)adapter)->stats)
-
-#define E1000_DEV_PRIVATE_TO_INTR(adapter) \
- (&((struct e1000_adapter *)adapter)->intr)
-
-#define E1000_DEV_PRIVATE_TO_VFTA(adapter) \
- (&((struct e1000_adapter *)adapter)->shadow_vfta)
-
-/*
- * RX/TX function prototypes
- */
-int igb_dev_tx_queue_alloc(struct rte_eth_dev *dev, uint16_t nb_queues);
-int igb_dev_rx_queue_alloc(struct rte_eth_dev *dev, uint16_t nb_queues);
-void igb_dev_clear_queues(struct rte_eth_dev *dev);
-
-int eth_igb_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
- uint16_t nb_rx_desc, unsigned int socket_id,
- const struct rte_eth_rxconf *rx_conf,
- struct rte_mempool *mb_pool);
-
-int eth_igb_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
- uint16_t nb_tx_desc, unsigned int socket_id,
- const struct rte_eth_txconf *tx_conf);
-
-int eth_igb_rx_init(struct rte_eth_dev *dev);
-
-void eth_igb_tx_init(struct rte_eth_dev *dev);
-
-uint16_t eth_igb_xmit_pkts(struct igb_tx_queue *txq, struct rte_mbuf **tx_pkts,
- uint16_t nb_pkts);
-
-uint16_t eth_igb_recv_pkts(struct igb_rx_queue *rxq, struct rte_mbuf **rx_pkts,
- uint16_t nb_pkts);
-
-uint16_t eth_igb_recv_scattered_pkts(struct igb_rx_queue *rxq,
- struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
-
-#endif /* _E1000_ETHDEV_H_ */
+++ /dev/null
-/*-
- * BSD LICENSE
- *
- * Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- */
-
-#ifndef _E1000_LOGS_H_
-#define _E1000_LOGS_H_
-
-#ifdef RTE_LIBRTE_IGB_DEBUG_INIT
-#define PMD_INIT_LOG(level, fmt, args...) \
- RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
-#else
-#define PMD_INIT_LOG(level, fmt, args...) do { } while(0)
-#endif
-
-#ifdef RTE_LIBRTE_IGB_DEBUG_RX
-#define PMD_RX_LOG(level, fmt, args...) \
- RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
-#else
-#define PMD_RX_LOG(level, fmt, args...) do { } while(0)
-#endif
-
-#ifdef RTE_LIBRTE_IGB_DEBUG_TX
-#define PMD_TX_LOG(level, fmt, args...) \
- RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
-#else
-#define PMD_TX_LOG(level, fmt, args...) do { } while(0)
-#endif
-
-#ifdef RTE_LIBRTE_IGB_DEBUG_TX_FREE
-#define PMD_TX_FREE_LOG(level, fmt, args...) \
- RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
-#else
-#define PMD_TX_FREE_LOG(level, fmt, args...) do { } while(0)
-#endif
-
-#ifdef RTE_LIBRTE_IGB_DEBUG_DRIVER
-#define PMD_DRV_LOG(level, fmt, args...) \
- RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
-#else
-#define PMD_DRV_LOG(level, fmt, args...) do { } while(0)
-#endif
-
-#endif /* _E1000_LOGS_H_ */
+++ /dev/null
-/*-
- * BSD LICENSE
- *
- * Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- */
-
-#include <sys/queue.h>
-
-#include <endian.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <errno.h>
-#include <stdint.h>
-#include <stdarg.h>
-#include <inttypes.h>
-
-#include <rte_interrupts.h>
-#include <rte_byteorder.h>
-#include <rte_common.h>
-#include <rte_log.h>
-#include <rte_debug.h>
-#include <rte_pci.h>
-#include <rte_memory.h>
-#include <rte_memcpy.h>
-#include <rte_memzone.h>
-#include <rte_launch.h>
-#include <rte_tailq.h>
-#include <rte_eal.h>
-#include <rte_per_lcore.h>
-#include <rte_lcore.h>
-#include <rte_atomic.h>
-#include <rte_branch_prediction.h>
-#include <rte_ring.h>
-#include <rte_mempool.h>
-#include <rte_malloc.h>
-#include <rte_mbuf.h>
-#include <rte_ether.h>
-#include <rte_ethdev.h>
-#include <rte_prefetch.h>
-#include <rte_udp.h>
-#include <rte_tcp.h>
-#include <rte_sctp.h>
-#include <rte_string_fns.h>
-
-#include "e1000_logs.h"
-#include "igb/e1000_api.h"
-#include "e1000_ethdev.h"
-
-static inline struct rte_mbuf *
-rte_rxmbuf_alloc(struct rte_mempool *mp)
-{
- struct rte_mbuf *m;
-
- m = __rte_mbuf_raw_alloc(mp);
- __rte_mbuf_sanity_check_raw(m, RTE_MBUF_PKT, 0);
- return (m);
-}
-
-#define RTE_MBUF_DATA_DMA_ADDR(mb) \
- (uint64_t) ((mb)->buf_physaddr + \
- (uint64_t) ((char *)((mb)->pkt.data) - \
- (char *)(mb)->buf_addr))
-
-#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
- (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
-
-/**
- * Structure associated with each descriptor of the RX ring of a RX queue.
- */
-struct igb_rx_entry {
- struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
-};
-
-/**
- * Structure associated with each descriptor of the TX ring of a TX queue.
- */
-struct igb_tx_entry {
- struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
- uint16_t next_id; /**< Index of next descriptor in ring. */
- uint16_t last_id; /**< Index of last scattered descriptor. */
-};
-
-/**
- * Structure associated with each RX queue.
- */
-struct igb_rx_queue {
- struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
- volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
- uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
- volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
- struct igb_rx_entry *sw_ring; /**< address of RX software ring. */
- struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
- struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
- uint16_t nb_rx_desc; /**< number of RX descriptors. */
- uint16_t rx_tail; /**< current value of RDT register. */
- uint16_t nb_rx_hold; /**< number of held free RX desc. */
- uint16_t rx_free_thresh; /**< max free RX desc to hold. */
- uint16_t queue_id; /**< RX queue index. */
- uint8_t port_id; /**< Device port identifier. */
- uint8_t pthresh; /**< Prefetch threshold register. */
- uint8_t hthresh; /**< Host threshold register. */
- uint8_t wthresh; /**< Write-back threshold register. */
- uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
-};
-
-/**
- * Hardware context number
- */
-enum igb_advctx_num {
- IGB_CTX_0 = 0, /**< CTX0 */
- IGB_CTX_1 = 1, /**< CTX1 */
- IGB_CTX_NUM = 2, /**< CTX NUM */
-};
-
-/**
- * Strucutre to check if new context need be built
- */
-struct igb_advctx_info {
- uint16_t flags; /**< ol_flags related to context build. */
- uint32_t cmp_mask; /**< compare mask for vlan_macip_lens */
- uint32_t vlan_macip_lens; /**< vlan, mac.ip length. */
-};
-
-/**
- * Structure associated with each TX queue.
- */
-struct igb_tx_queue {
- volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
- uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
- struct igb_tx_entry *sw_ring; /**< virtual address of SW ring. */
- volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
- uint32_t txd_type; /**< Device-specific TXD type */
- uint16_t nb_tx_desc; /**< number of TX descriptors. */
- uint16_t tx_tail; /**< Current value of TDT register. */
- uint16_t tx_head; /**< Index of first used TX descriptor. */
- uint16_t queue_id; /**< TX queue index. */
- uint8_t port_id; /**< Device port identifier. */
- uint8_t pthresh; /**< Prefetch threshold register. */
- uint8_t hthresh; /**< Host threshold register. */
- uint8_t wthresh; /**< Write-back threshold register. */
- uint32_t ctx_curr; /**< Current used hardware descriptor. */
- uint32_t ctx_start;/**< Start context position for transmit queue. */
- struct igb_advctx_info ctx_cache[IGB_CTX_NUM]; /**< Hardware context history.*/
-};
-
-#if 1
-#define RTE_PMD_USE_PREFETCH
-#endif
-
-#ifdef RTE_PMD_USE_PREFETCH
-#define rte_igb_prefetch(p) rte_prefetch0(p)
-#else
-#define rte_igb_prefetch(p) do {} while(0)
-#endif
-
-#ifdef RTE_PMD_PACKET_PREFETCH
-#define rte_packet_prefetch(p) rte_prefetch1(p)
-#else
-#define rte_packet_prefetch(p) do {} while(0)
-#endif
-
-/*********************************************************************
- *
- * TX function
- *
- **********************************************************************/
-
-/*
- * Advanced context descriptor are almost same between igb/ixgbe
- * This is a separate function, looking for optimization opportunity here
- * Rework required to go with the pre-defined values.
- */
-
-static inline void
-igbe_set_xmit_ctx(struct igb_tx_queue* txq,
- volatile struct e1000_adv_tx_context_desc *ctx_txd,
- uint16_t ol_flags, uint32_t vlan_macip_lens)
-{
- uint32_t type_tucmd_mlhl;
- uint32_t mss_l4len_idx;
- uint32_t ctx_idx, ctx_curr;
- uint32_t cmp_mask;
-
- ctx_curr = txq->ctx_curr;
- ctx_idx = ctx_curr + txq->ctx_start;
-
- cmp_mask = 0;
- type_tucmd_mlhl = 0;
-
- if (ol_flags & PKT_TX_VLAN_PKT) {
- cmp_mask |= TX_VLAN_CMP_MASK;
- }
-
- if (ol_flags & PKT_TX_IP_CKSUM) {
- type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
- cmp_mask |= TX_MAC_LEN_CMP_MASK;
- }
-
- /* Specify which HW CTX to upload. */
- mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
- switch (ol_flags & PKT_TX_L4_MASK) {
- case PKT_TX_UDP_CKSUM:
- type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
- E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
- mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
- cmp_mask |= TX_MACIP_LEN_CMP_MASK;
- break;
- case PKT_TX_TCP_CKSUM:
- type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
- E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
- mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
- cmp_mask |= TX_MACIP_LEN_CMP_MASK;
- break;
- case PKT_TX_SCTP_CKSUM:
- type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
- E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
- mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
- cmp_mask |= TX_MACIP_LEN_CMP_MASK;
- break;
- default:
- type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
- E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
- break;
- }
-
- txq->ctx_cache[ctx_curr].flags = ol_flags;
- txq->ctx_cache[ctx_curr].cmp_mask = cmp_mask;
- txq->ctx_cache[ctx_curr].vlan_macip_lens = vlan_macip_lens & cmp_mask;
-
- ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
- ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
- ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
- ctx_txd->seqnum_seed = 0;
-}
-
-/*
- * Check which hardware context can be used. Use the existing match
- * or create a new context descriptor.
- */
-static inline uint32_t
-what_advctx_update(struct igb_tx_queue *txq, uint16_t flags,
- uint32_t vlan_macip_lens)
-{
- /* If match with the current context */
- if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
- (txq->ctx_cache[txq->ctx_curr].vlan_macip_lens ==
- (txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
- return txq->ctx_curr;
- }
-
- /* If match with the second context */
- txq->ctx_curr ^= 1;
- if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
- (txq->ctx_cache[txq->ctx_curr].vlan_macip_lens ==
- (txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
- return txq->ctx_curr;
- }
-
- /* Mismatch, use the previous context */
- return (IGB_CTX_NUM);
-}
-
-static inline uint32_t
-tx_desc_cksum_flags_to_olinfo(uint16_t ol_flags)
-{
- static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
- static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
- uint32_t tmp;
-
- tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
- tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
- return tmp;
-}
-
-static inline uint32_t
-tx_desc_vlan_flags_to_cmdtype(uint16_t ol_flags)
-{
- static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
- return vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
-}
-
-uint16_t
-eth_igb_xmit_pkts(struct igb_tx_queue *txq, struct rte_mbuf **tx_pkts,
- uint16_t nb_pkts)
-{
- struct igb_tx_entry *sw_ring;
- struct igb_tx_entry *txe, *txn;
- volatile union e1000_adv_tx_desc *txr;
- volatile union e1000_adv_tx_desc *txd;
- struct rte_mbuf *tx_pkt;
- struct rte_mbuf *m_seg;
- uint64_t buf_dma_addr;
- uint32_t olinfo_status;
- uint32_t cmd_type_len;
- uint32_t pkt_len;
- uint16_t slen;
- uint16_t ol_flags;
- uint16_t tx_end;
- uint16_t tx_id;
- uint16_t tx_last;
- uint16_t nb_tx;
- uint16_t tx_ol_req;
- uint32_t new_ctx;
- uint32_t ctx;
- uint32_t vlan_macip_lens;
-
- sw_ring = txq->sw_ring;
- txr = txq->tx_ring;
- tx_id = txq->tx_tail;
- txe = &sw_ring[tx_id];
-
- for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
- tx_pkt = *tx_pkts++;
- pkt_len = tx_pkt->pkt.pkt_len;
-
- RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
-
- /*
- * The number of descriptors that must be allocated for a
- * packet is the number of segments of that packet, plus 1
- * Context Descriptor for the VLAN Tag Identifier, if any.
- * Determine the last TX descriptor to allocate in the TX ring
- * for the packet, starting from the current position (tx_id)
- * in the ring.
- */
- tx_last = (uint16_t) (tx_id + tx_pkt->pkt.nb_segs - 1);
-
- ol_flags = tx_pkt->ol_flags;
- vlan_macip_lens = (tx_pkt->pkt.vlan_tci << 16) | (tx_pkt->pkt.l2_len << E1000_ADVTXD_MACLEN_SHIFT) | tx_pkt->pkt.l3_len;
- tx_ol_req = (ol_flags & PKT_TX_OFFLOAD_MASK);
-
- /* If a Context Descriptor need be built . */
- if (tx_ol_req) {
- ctx = what_advctx_update(txq, tx_ol_req,vlan_macip_lens);
- /* Only allocate context descriptor if required*/
- new_ctx = (ctx == IGB_CTX_NUM);
- ctx = txq->ctx_curr;
- tx_last = (uint16_t) (tx_last + new_ctx);
- }
- if (tx_last >= txq->nb_tx_desc)
- tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
-
- PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
- " tx_first=%u tx_last=%u\n",
- (unsigned) txq->port_id,
- (unsigned) txq->queue_id,
- (unsigned) pkt_len,
- (unsigned) tx_id,
- (unsigned) tx_last);
-
- /*
- * Check if there are enough free descriptors in the TX ring
- * to transmit the next packet.
- * This operation is based on the two following rules:
- *
- * 1- Only check that the last needed TX descriptor can be
- * allocated (by construction, if that descriptor is free,
- * all intermediate ones are also free).
- *
- * For this purpose, the index of the last TX descriptor
- * used for a packet (the "last descriptor" of a packet)
- * is recorded in the TX entries (the last one included)
- * that are associated with all TX descriptors allocated
- * for that packet.
- *
- * 2- Avoid to allocate the last free TX descriptor of the
- * ring, in order to never set the TDT register with the
- * same value stored in parallel by the NIC in the TDH
- * register, which makes the TX engine of the NIC enter
- * in a deadlock situation.
- *
- * By extension, avoid to allocate a free descriptor that
- * belongs to the last set of free descriptors allocated
- * to the same packet previously transmitted.
- */
-
- /*
- * The "last descriptor" of the previously sent packet, if any,
- * which used the last descriptor to allocate.
- */
- tx_end = sw_ring[tx_last].last_id;
-
- /*
- * The next descriptor following that "last descriptor" in the
- * ring.
- */
- tx_end = sw_ring[tx_end].next_id;
-
- /*
- * The "last descriptor" associated with that next descriptor.
- */
- tx_end = sw_ring[tx_end].last_id;
-
- /*
- * Check that this descriptor is free.
- */
- if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
- if (nb_tx == 0)
- return (0);
- goto end_of_tx;
- }
-
- /*
- * Set common flags of all TX Data Descriptors.
- *
- * The following bits must be set in all Data Descriptors:
- * - E1000_ADVTXD_DTYP_DATA
- * - E1000_ADVTXD_DCMD_DEXT
- *
- * The following bits must be set in the first Data Descriptor
- * and are ignored in the other ones:
- * - E1000_ADVTXD_DCMD_IFCS
- * - E1000_ADVTXD_MAC_1588
- * - E1000_ADVTXD_DCMD_VLE
- *
- * The following bits must only be set in the last Data
- * Descriptor:
- * - E1000_TXD_CMD_EOP
- *
- * The following bits can be set in any Data Descriptor, but
- * are only set in the last Data Descriptor:
- * - E1000_TXD_CMD_RS
- */
- cmd_type_len = txq->txd_type |
- E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
- olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
-#if defined(RTE_LIBRTE_IEEE1588)
- if (ol_flags & PKT_TX_IEEE1588_TMST)
- cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
-#endif
- if (tx_ol_req) {
- /* Setup TX Advanced context descriptor if required */
- if (new_ctx) {
- volatile struct e1000_adv_tx_context_desc *
- ctx_txd;
-
- ctx_txd = (volatile struct
- e1000_adv_tx_context_desc *)
- &txr[tx_id];
-
- txn = &sw_ring[txe->next_id];
- RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
-
- if (txe->mbuf != NULL) {
- rte_pktmbuf_free_seg(txe->mbuf);
- txe->mbuf = NULL;
- }
-
- igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
- vlan_macip_lens);
-
- txe->last_id = tx_last;
- tx_id = txe->next_id;
- txe = txn;
- }
-
- /* Setup the TX Advanced Data Descriptor */
- cmd_type_len |= tx_desc_vlan_flags_to_cmdtype(ol_flags);
- olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
- olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
- }
-
- m_seg = tx_pkt;
- do {
- txn = &sw_ring[txe->next_id];
- txd = &txr[tx_id];
-
- if (txe->mbuf != NULL)
- rte_pktmbuf_free_seg(txe->mbuf);
- txe->mbuf = m_seg;
-
- /*
- * Set up transmit descriptor.
- */
- slen = (uint16_t) m_seg->pkt.data_len;
- buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
- txd->read.buffer_addr =
- rte_cpu_to_le_64(buf_dma_addr);
- txd->read.cmd_type_len =
- rte_cpu_to_le_32(cmd_type_len | slen);
- txd->read.olinfo_status =
- rte_cpu_to_le_32(olinfo_status);
- txe->last_id = tx_last;
- tx_id = txe->next_id;
- txe = txn;
- m_seg = m_seg->pkt.next;
- } while (m_seg != NULL);
-
- /*
- * The last packet data descriptor needs End Of Packet (EOP)
- * and Report Status (RS).
- */
- txd->read.cmd_type_len |=
- rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
- }
- end_of_tx:
- rte_wmb();
-
- /*
- * Set the Transmit Descriptor Tail (TDT).
- */
- E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
- PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
- (unsigned) txq->port_id, (unsigned) txq->queue_id,
- (unsigned) tx_id, (unsigned) nb_tx);
- txq->tx_tail = tx_id;
-
- return (nb_tx);
-}
-
-/*********************************************************************
- *
- * RX functions
- *
- **********************************************************************/
-static inline uint16_t
-rx_desc_hlen_type_rss_to_pkt_flags(uint32_t hl_tp_rs)
-{
- uint16_t pkt_flags;
-
- static uint16_t ip_pkt_types_map[16] = {
- 0, PKT_RX_IPV4_HDR, PKT_RX_IPV4_HDR_EXT, PKT_RX_IPV4_HDR_EXT,
- PKT_RX_IPV6_HDR, 0, 0, 0,
- PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
- PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
- };
-
-#if defined(RTE_LIBRTE_IEEE1588)
- static uint32_t ip_pkt_etqf_map[8] = {
- 0, 0, 0, PKT_RX_IEEE1588_PTP,
- 0, 0, 0, 0,
- };
-
- pkt_flags = (uint16_t) (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ?
- ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07] :
- ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
-#else
- pkt_flags = (uint16_t) (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ? 0 :
- ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
-#endif
- return pkt_flags | (uint16_t) (((hl_tp_rs & 0x0F) == 0) ? 0 :
- PKT_RX_RSS_HASH);
-}
-
-static inline uint16_t
-rx_desc_status_to_pkt_flags(uint32_t rx_status)
-{
- uint16_t pkt_flags;
-
- /* Check if VLAN present */
- pkt_flags = (uint16_t) (rx_status & E1000_RXD_STAT_VP) ? PKT_RX_VLAN_PKT : 0;
-
-#if defined(RTE_LIBRTE_IEEE1588)
- if (rx_status & E1000_RXD_STAT_TMST)
- pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
-#endif
- return pkt_flags;
-}
-
-static inline uint16_t
-rx_desc_error_to_pkt_flags(uint32_t rx_status)
-{
- /*
- * Bit 30: IPE, IPv4 checksum error
- * Bit 29: L4I, L4I integrity error
- */
-
- static uint16_t error_to_pkt_flags_map[4] = {
- 0, PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_BAD,
- PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
- };
- return error_to_pkt_flags_map[(rx_status >>
- E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
-}
-
-uint16_t
-eth_igb_recv_pkts(struct igb_rx_queue *rxq, struct rte_mbuf **rx_pkts,
- uint16_t nb_pkts)
-{
- volatile union e1000_adv_rx_desc *rx_ring;
- volatile union e1000_adv_rx_desc *rxdp;
- struct igb_rx_entry *sw_ring;
- struct igb_rx_entry *rxe;
- struct rte_mbuf *rxm;
- struct rte_mbuf *nmb;
- union e1000_adv_rx_desc rxd;
- uint64_t dma_addr;
- uint32_t staterr;
- uint32_t hlen_type_rss;
- uint16_t pkt_len;
- uint16_t rx_id;
- uint16_t nb_rx;
- uint16_t nb_hold;
- uint16_t pkt_flags;
-
- nb_rx = 0;
- nb_hold = 0;
- rx_id = rxq->rx_tail;
- rx_ring = rxq->rx_ring;
- sw_ring = rxq->sw_ring;
- while (nb_rx < nb_pkts) {
- /*
- * The order of operations here is important as the DD status
- * bit must not be read after any other descriptor fields.
- * rx_ring and rxdp are pointing to volatile data so the order
- * of accesses cannot be reordered by the compiler. If they were
- * not volatile, they could be reordered which could lead to
- * using invalid descriptor fields when read from rxd.
- */
- rxdp = &rx_ring[rx_id];
- staterr = rxdp->wb.upper.status_error;
- if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
- break;
- rxd = *rxdp;
-
- /*
- * End of packet.
- *
- * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
- * likely to be invalid and to be dropped by the various
- * validation checks performed by the network stack.
- *
- * Allocate a new mbuf to replenish the RX ring descriptor.
- * If the allocation fails:
- * - arrange for that RX descriptor to be the first one
- * being parsed the next time the receive function is
- * invoked [on the same queue].
- *
- * - Stop parsing the RX ring and return immediately.
- *
- * This policy do not drop the packet received in the RX
- * descriptor for which the allocation of a new mbuf failed.
- * Thus, it allows that packet to be later retrieved if
- * mbuf have been freed in the mean time.
- * As a side effect, holding RX descriptors instead of
- * systematically giving them back to the NIC may lead to
- * RX ring exhaustion situations.
- * However, the NIC can gracefully prevent such situations
- * to happen by sending specific "back-pressure" flow control
- * frames to its peer(s).
- */
- PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u "
- "staterr=0x%x pkt_len=%u\n",
- (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
- (unsigned) rx_id, (unsigned) staterr,
- (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
-
- nmb = rte_rxmbuf_alloc(rxq->mb_pool);
- if (nmb == NULL) {
- PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
- "queue_id=%u\n", (unsigned) rxq->port_id,
- (unsigned) rxq->queue_id);
- rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
- break;
- }
-
- nb_hold++;
- rxe = &sw_ring[rx_id];
- rx_id++;
- if (rx_id == rxq->nb_rx_desc)
- rx_id = 0;
-
- /* Prefetch next mbuf while processing current one. */
- rte_igb_prefetch(sw_ring[rx_id].mbuf);
-
- /*
- * When next RX descriptor is on a cache-line boundary,
- * prefetch the next 4 RX descriptors and the next 8 pointers
- * to mbufs.
- */
- if ((rx_id & 0x3) == 0) {
- rte_igb_prefetch(&rx_ring[rx_id]);
- rte_igb_prefetch(&sw_ring[rx_id]);
- }
-
- rxm = rxe->mbuf;
- rxe->mbuf = nmb;
- dma_addr =
- rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
- rxdp->read.hdr_addr = dma_addr;
- rxdp->read.pkt_addr = dma_addr;
-
- /*
- * Initialize the returned mbuf.
- * 1) setup generic mbuf fields:
- * - number of segments,
- * - next segment,
- * - packet length,
- * - RX port identifier.
- * 2) integrate hardware offload data, if any:
- * - RSS flag & hash,
- * - IP checksum flag,
- * - VLAN TCI, if any,
- * - error flags.
- */
- pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
- rxq->crc_len);
- rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM;
- rte_packet_prefetch(rxm->pkt.data);
- rxm->pkt.nb_segs = 1;
- rxm->pkt.next = NULL;
- rxm->pkt.pkt_len = pkt_len;
- rxm->pkt.data_len = pkt_len;
- rxm->pkt.in_port = rxq->port_id;
-
- rxm->pkt.hash.rss = rxd.wb.lower.hi_dword.rss;
- hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
- /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
- rxm->pkt.vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
-
- pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
- pkt_flags = (pkt_flags |
- rx_desc_status_to_pkt_flags(staterr));
- pkt_flags = (pkt_flags |
- rx_desc_error_to_pkt_flags(staterr));
- rxm->ol_flags = pkt_flags;
-
- /*
- * Store the mbuf address into the next entry of the array
- * of returned packets.
- */
- rx_pkts[nb_rx++] = rxm;
- }
- rxq->rx_tail = rx_id;
-
- /*
- * If the number of free RX descriptors is greater than the RX free
- * threshold of the queue, advance the Receive Descriptor Tail (RDT)
- * register.
- * Update the RDT with the value of the last processed RX descriptor
- * minus 1, to guarantee that the RDT register is never equal to the
- * RDH register, which creates a "full" ring situtation from the
- * hardware point of view...
- */
- nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
- if (nb_hold > rxq->rx_free_thresh) {
- PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
- "nb_hold=%u nb_rx=%u\n",
- (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
- (unsigned) rx_id, (unsigned) nb_hold,
- (unsigned) nb_rx);
- rx_id = (uint16_t) ((rx_id == 0) ?
- (rxq->nb_rx_desc - 1) : (rx_id - 1));
- E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
- nb_hold = 0;
- }
- rxq->nb_rx_hold = nb_hold;
- return (nb_rx);
-}
-
-uint16_t
-eth_igb_recv_scattered_pkts(struct igb_rx_queue *rxq, struct rte_mbuf **rx_pkts,
- uint16_t nb_pkts)
-{
- volatile union e1000_adv_rx_desc *rx_ring;
- volatile union e1000_adv_rx_desc *rxdp;
- struct igb_rx_entry *sw_ring;
- struct igb_rx_entry *rxe;
- struct rte_mbuf *first_seg;
- struct rte_mbuf *last_seg;
- struct rte_mbuf *rxm;
- struct rte_mbuf *nmb;
- union e1000_adv_rx_desc rxd;
- uint64_t dma; /* Physical address of mbuf data buffer */
- uint32_t staterr;
- uint32_t hlen_type_rss;
- uint16_t rx_id;
- uint16_t nb_rx;
- uint16_t nb_hold;
- uint16_t data_len;
- uint16_t pkt_flags;
-
- nb_rx = 0;
- nb_hold = 0;
- rx_id = rxq->rx_tail;
- rx_ring = rxq->rx_ring;
- sw_ring = rxq->sw_ring;
-
- /*
- * Retrieve RX context of current packet, if any.
- */
- first_seg = rxq->pkt_first_seg;
- last_seg = rxq->pkt_last_seg;
-
- while (nb_rx < nb_pkts) {
- next_desc:
- /*
- * The order of operations here is important as the DD status
- * bit must not be read after any other descriptor fields.
- * rx_ring and rxdp are pointing to volatile data so the order
- * of accesses cannot be reordered by the compiler. If they were
- * not volatile, they could be reordered which could lead to
- * using invalid descriptor fields when read from rxd.
- */
- rxdp = &rx_ring[rx_id];
- staterr = rxdp->wb.upper.status_error;
- if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
- break;
- rxd = *rxdp;
-
- /*
- * Descriptor done.
- *
- * Allocate a new mbuf to replenish the RX ring descriptor.
- * If the allocation fails:
- * - arrange for that RX descriptor to be the first one
- * being parsed the next time the receive function is
- * invoked [on the same queue].
- *
- * - Stop parsing the RX ring and return immediately.
- *
- * This policy does not drop the packet received in the RX
- * descriptor for which the allocation of a new mbuf failed.
- * Thus, it allows that packet to be later retrieved if
- * mbuf have been freed in the mean time.
- * As a side effect, holding RX descriptors instead of
- * systematically giving them back to the NIC may lead to
- * RX ring exhaustion situations.
- * However, the NIC can gracefully prevent such situations
- * to happen by sending specific "back-pressure" flow control
- * frames to its peer(s).
- */
- PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u "
- "staterr=0x%x data_len=%u\n",
- (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
- (unsigned) rx_id, (unsigned) staterr,
- (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
-
- nmb = rte_rxmbuf_alloc(rxq->mb_pool);
- if (nmb == NULL) {
- PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
- "queue_id=%u\n", (unsigned) rxq->port_id,
- (unsigned) rxq->queue_id);
- rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
- break;
- }
-
- nb_hold++;
- rxe = &sw_ring[rx_id];
- rx_id++;
- if (rx_id == rxq->nb_rx_desc)
- rx_id = 0;
-
- /* Prefetch next mbuf while processing current one. */
- rte_igb_prefetch(sw_ring[rx_id].mbuf);
-
- /*
- * When next RX descriptor is on a cache-line boundary,
- * prefetch the next 4 RX descriptors and the next 8 pointers
- * to mbufs.
- */
- if ((rx_id & 0x3) == 0) {
- rte_igb_prefetch(&rx_ring[rx_id]);
- rte_igb_prefetch(&sw_ring[rx_id]);
- }
-
- /*
- * Update RX descriptor with the physical address of the new
- * data buffer of the new allocated mbuf.
- */
- rxm = rxe->mbuf;
- rxe->mbuf = nmb;
- dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
- rxdp->read.pkt_addr = dma;
- rxdp->read.hdr_addr = dma;
-
- /*
- * Set data length & data buffer address of mbuf.
- */
- data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
- rxm->pkt.data_len = data_len;
- rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM;
-
- /*
- * If this is the first buffer of the received packet,
- * set the pointer to the first mbuf of the packet and
- * initialize its context.
- * Otherwise, update the total length and the number of segments
- * of the current scattered packet, and update the pointer to
- * the last mbuf of the current packet.
- */
- if (first_seg == NULL) {
- first_seg = rxm;
- first_seg->pkt.pkt_len = data_len;
- first_seg->pkt.nb_segs = 1;
- } else {
- first_seg->pkt.pkt_len += data_len;
- first_seg->pkt.nb_segs++;
- last_seg->pkt.next = rxm;
- }
-
- /*
- * If this is not the last buffer of the received packet,
- * update the pointer to the last mbuf of the current scattered
- * packet and continue to parse the RX ring.
- */
- if (! (staterr & E1000_RXD_STAT_EOP)) {
- last_seg = rxm;
- goto next_desc;
- }
-
- /*
- * This is the last buffer of the received packet.
- * If the CRC is not stripped by the hardware:
- * - Subtract the CRC length from the total packet length.
- * - If the last buffer only contains the whole CRC or a part
- * of it, free the mbuf associated to the last buffer.
- * If part of the CRC is also contained in the previous
- * mbuf, subtract the length of that CRC part from the
- * data length of the previous mbuf.
- */
- rxm->pkt.next = NULL;
- if (unlikely(rxq->crc_len > 0)) {
- first_seg->pkt.pkt_len -= ETHER_CRC_LEN;
- if (data_len <= ETHER_CRC_LEN) {
- rte_pktmbuf_free_seg(rxm);
- first_seg->pkt.nb_segs--;
- last_seg->pkt.data_len = (uint16_t)
- (last_seg->pkt.data_len -
- (ETHER_CRC_LEN - data_len));
- last_seg->pkt.next = NULL;
- } else
- rxm->pkt.data_len =
- (uint16_t) (data_len - ETHER_CRC_LEN);
- }
-
- /*
- * Initialize the first mbuf of the returned packet:
- * - RX port identifier,
- * - hardware offload data, if any:
- * - RSS flag & hash,
- * - IP checksum flag,
- * - VLAN TCI, if any,
- * - error flags.
- */
- first_seg->pkt.in_port = rxq->port_id;
- first_seg->pkt.hash.rss = rxd.wb.lower.hi_dword.rss;
-
- /*
- * The vlan_tci field is only valid when PKT_RX_VLAN_PKT is
- * set in the pkt_flags field.
- */
- first_seg->pkt.vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
- hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
- pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
- pkt_flags = (pkt_flags | rx_desc_status_to_pkt_flags(staterr));
- pkt_flags = (pkt_flags | rx_desc_error_to_pkt_flags(staterr));
- first_seg->ol_flags = pkt_flags;
-
- /* Prefetch data of first segment, if configured to do so. */
- rte_packet_prefetch(first_seg->pkt.data);
-
- /*
- * Store the mbuf address into the next entry of the array
- * of returned packets.
- */
- rx_pkts[nb_rx++] = first_seg;
-
- /*
- * Setup receipt context for a new packet.
- */
- first_seg = NULL;
- }
-
- /*
- * Record index of the next RX descriptor to probe.
- */
- rxq->rx_tail = rx_id;
-
- /*
- * Save receive context.
- */
- rxq->pkt_first_seg = first_seg;
- rxq->pkt_last_seg = last_seg;
-
- /*
- * If the number of free RX descriptors is greater than the RX free
- * threshold of the queue, advance the Receive Descriptor Tail (RDT)
- * register.
- * Update the RDT with the value of the last processed RX descriptor
- * minus 1, to guarantee that the RDT register is never equal to the
- * RDH register, which creates a "full" ring situtation from the
- * hardware point of view...
- */
- nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
- if (nb_hold > rxq->rx_free_thresh) {
- PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
- "nb_hold=%u nb_rx=%u\n",
- (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
- (unsigned) rx_id, (unsigned) nb_hold,
- (unsigned) nb_rx);
- rx_id = (uint16_t) ((rx_id == 0) ?
- (rxq->nb_rx_desc - 1) : (rx_id - 1));
- E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
- nb_hold = 0;
- }
- rxq->nb_rx_hold = nb_hold;
- return (nb_rx);
-}
-
-/*
- * Rings setup and release.
- *
- * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
- * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
- * This will also optimize cache line size effect.
- * H/W supports up to cache line size 128.
- */
-#define IGB_ALIGN 128
-
-/*
- * Maximum number of Ring Descriptors.
- *
- * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
- * desscriptors should meet the following condition:
- * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
- */
-#define IGB_MIN_RING_DESC 32
-#define IGB_MAX_RING_DESC 4096
-
-static const struct rte_memzone *
-ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
- uint16_t queue_id, uint32_t ring_size, int socket_id)
-{
- char z_name[RTE_MEMZONE_NAMESIZE];
- const struct rte_memzone *mz;
-
- rte_snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
- dev->driver->pci_drv.name, ring_name,
- dev->data->port_id, queue_id);
- mz = rte_memzone_lookup(z_name);
- if (mz)
- return mz;
-
- return rte_memzone_reserve_aligned(z_name, (uint64_t)ring_size,
- socket_id, 0, IGB_ALIGN);
-}
-
-static void
-igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
-{
- unsigned i;
-
- if (txq->sw_ring != NULL) {
- for (i = 0; i < txq->nb_tx_desc; i++) {
- if (txq->sw_ring[i].mbuf != NULL) {
- rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
- txq->sw_ring[i].mbuf = NULL;
- }
- }
- }
-}
-
-static void
-igb_tx_queue_release(struct igb_tx_queue *txq)
-{
- igb_tx_queue_release_mbufs(txq);
- rte_free(txq->sw_ring);
- rte_free(txq);
-}
-
-int
-igb_dev_tx_queue_alloc(struct rte_eth_dev *dev, uint16_t nb_queues)
-{
- uint16_t i, old_nb_queues = dev->data->nb_tx_queues;
- struct igb_tx_queue **txq;
-
- if (dev->data->tx_queues == NULL) {
- dev->data->tx_queues = rte_zmalloc("ethdev->tx_queues",
- sizeof(struct igb_tx_queue *) * nb_queues,
- CACHE_LINE_SIZE);
- if (dev->data->tx_queues == NULL) {
- dev->data->nb_tx_queues = 0;
- return -ENOMEM;
- }
- } else {
- if (nb_queues < old_nb_queues)
- for (i = nb_queues; i < old_nb_queues; i++)
- igb_tx_queue_release(dev->data->tx_queues[i]);
-
- if (nb_queues != old_nb_queues) {
- txq = rte_realloc(dev->data->tx_queues,
- sizeof(struct igb_tx_queue *) * nb_queues,
- CACHE_LINE_SIZE);
- if (txq == NULL)
- return -ENOMEM;
- else
- dev->data->tx_queues = txq;
- if (nb_queues > old_nb_queues)
- memset(&(txq[old_nb_queues]), 0,
- sizeof(struct igb_tx_queue *) *
- (nb_queues - old_nb_queues));
- }
- }
- dev->data->nb_tx_queues = nb_queues;
-
- return 0;
-}
-
-static void
-igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
-{
- txq->tx_head = 0;
- txq->tx_tail = 0;
- txq->ctx_curr = 0;
- memset((void*)&txq->ctx_cache, 0,
- IGB_CTX_NUM * sizeof(struct igb_advctx_info));
-}
-
-static void
-igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
-{
- struct igb_tx_entry *txe = txq->sw_ring;
- uint32_t size;
- uint16_t i, prev;
- struct e1000_hw *hw;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- size = sizeof(union e1000_adv_tx_desc) * txq->nb_tx_desc;
- /* Zero out HW ring memory */
- for (i = 0; i < size; i++) {
- ((volatile char *)txq->tx_ring)[i] = 0;
- }
-
- /* Initialize ring entries */
- prev = txq->nb_tx_desc - 1;
- for (i = 0; i < txq->nb_tx_desc; i++) {
- volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
-
- txd->wb.status = E1000_TXD_STAT_DD;
- txe[i].mbuf = NULL;
- txe[i].last_id = i;
- txe[prev].next_id = i;
- prev = i;
- }
-
- txq->txd_type = E1000_ADVTXD_DTYP_DATA;
- /* 82575 specific, each tx queue will use 2 hw contexts */
- if (hw->mac.type == e1000_82575)
- txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
-
- igb_reset_tx_queue_stat(txq);
-}
-
-int
-eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
- uint16_t queue_idx,
- uint16_t nb_desc,
- unsigned int socket_id,
- const struct rte_eth_txconf *tx_conf)
-{
- const struct rte_memzone *tz;
- struct igb_tx_queue *txq;
- struct e1000_hw *hw;
- uint32_t size;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- /*
- * Validate number of transmit descriptors.
- * It must not exceed hardware maximum, and must be multiple
- * of IGB_ALIGN.
- */
- if (((nb_desc * sizeof(union e1000_adv_tx_desc)) % IGB_ALIGN) != 0 ||
- (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
- return -EINVAL;
- }
-
- /*
- * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
- * driver.
- */
- if (tx_conf->tx_free_thresh != 0)
- RTE_LOG(WARNING, PMD,
- "The tx_free_thresh parameter is not "
- "used for the 1G driver.");
- if (tx_conf->tx_rs_thresh != 0)
- RTE_LOG(WARNING, PMD,
- "The tx_rs_thresh parameter is not "
- "used for the 1G driver.");
- if (tx_conf->tx_thresh.wthresh == 0)
- RTE_LOG(WARNING, PMD,
- "To improve 1G driver performance, consider setting "
- "the TX WTHRESH value to 4, 8, or 16.");
-
- /* Free memory prior to re-allocation if needed */
- if (dev->data->tx_queues[queue_idx] != NULL)
- igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
-
- /* First allocate the tx queue data structure */
- txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
- CACHE_LINE_SIZE);
- if (txq == NULL)
- return (-ENOMEM);
-
- /*
- * Allocate TX ring hardware descriptors. A memzone large enough to
- * handle the maximum ring size is allocated in order to allow for
- * resizing in later calls to the queue setup function.
- */
- size = sizeof(union e1000_adv_tx_desc) * IGB_MAX_RING_DESC;
- tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx,
- size, socket_id);
- if (tz == NULL) {
- igb_tx_queue_release(txq);
- return (-ENOMEM);
- }
-
- txq->nb_tx_desc = nb_desc;
- txq->pthresh = tx_conf->tx_thresh.pthresh;
- txq->hthresh = tx_conf->tx_thresh.hthresh;
- txq->wthresh = tx_conf->tx_thresh.wthresh;
- txq->queue_id = queue_idx;
- txq->port_id = dev->data->port_id;
-
- txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx));
- txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
- txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
-
- size = sizeof(union e1000_adv_tx_desc) * nb_desc;
-
- /* Allocate software ring */
- txq->sw_ring = rte_zmalloc("txq->sw_ring",
- sizeof(struct igb_tx_entry) * nb_desc,
- CACHE_LINE_SIZE);
- if (txq->sw_ring == NULL) {
- igb_tx_queue_release(txq);
- return (-ENOMEM);
- }
- PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
- txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
-
- igb_reset_tx_queue(txq, dev);
- dev->tx_pkt_burst = eth_igb_xmit_pkts;
- dev->data->tx_queues[queue_idx] = txq;
-
- return (0);
-}
-
-static void
-igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
-{
- unsigned i;
-
- if (rxq->sw_ring != NULL) {
- for (i = 0; i < rxq->nb_rx_desc; i++) {
- if (rxq->sw_ring[i].mbuf != NULL) {
- rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
- rxq->sw_ring[i].mbuf = NULL;
- }
- }
- }
-}
-
-static void
-igb_rx_queue_release(struct igb_rx_queue *rxq)
-{
- igb_rx_queue_release_mbufs(rxq);
- rte_free(rxq->sw_ring);
- rte_free(rxq);
-}
-
-int
-igb_dev_rx_queue_alloc(struct rte_eth_dev *dev, uint16_t nb_queues)
-{
- uint16_t i, old_nb_queues = dev->data->nb_rx_queues;
- struct igb_rx_queue **rxq;
-
- if (dev->data->rx_queues == NULL) {
- dev->data->rx_queues = rte_zmalloc("ethdev->rx_queues",
- sizeof(struct igb_rx_queue *) * nb_queues,
- CACHE_LINE_SIZE);
- if (dev->data->rx_queues == NULL) {
- dev->data->nb_rx_queues = 0;
- return -ENOMEM;
- }
- } else {
- for (i = nb_queues; i < old_nb_queues; i++) {
- igb_rx_queue_release(dev->data->rx_queues[i]);
- dev->data->rx_queues[i] = NULL;
- }
- if (nb_queues != old_nb_queues) {
- rxq = rte_realloc(dev->data->rx_queues,
- sizeof(struct igb_rx_queue *) * nb_queues,
- CACHE_LINE_SIZE);
- if (rxq == NULL)
- return -ENOMEM;
- else
- dev->data->rx_queues = rxq;
- if (nb_queues > old_nb_queues)
- memset(&(rxq[old_nb_queues]), 0,
- sizeof(struct igb_rx_queue *) *
- (nb_queues - old_nb_queues));
- }
- }
- dev->data->nb_rx_queues = nb_queues;
-
- return 0;
-}
-
-static void
-igb_reset_rx_queue(struct igb_rx_queue *rxq)
-{
- unsigned size;
- unsigned i;
-
- /* Zero out HW ring memory */
- size = sizeof(union e1000_adv_rx_desc) * rxq->nb_rx_desc;
- for (i = 0; i < size; i++) {
- ((volatile char *)rxq->rx_ring)[i] = 0;
- }
-
- rxq->rx_tail = 0;
- rxq->pkt_first_seg = NULL;
- rxq->pkt_last_seg = NULL;
-}
-
-int
-eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
- uint16_t queue_idx,
- uint16_t nb_desc,
- unsigned int socket_id,
- const struct rte_eth_rxconf *rx_conf,
- struct rte_mempool *mp)
-{
- const struct rte_memzone *rz;
- struct igb_rx_queue *rxq;
- struct e1000_hw *hw;
- unsigned int size;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- /*
- * Validate number of receive descriptors.
- * It must not exceed hardware maximum, and must be multiple
- * of IGB_ALIGN.
- */
- if (((nb_desc * sizeof(union e1000_adv_rx_desc)) % IGB_ALIGN) != 0 ||
- (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
- return (-EINVAL);
- }
-
- /* Free memory prior to re-allocation if needed */
- if (dev->data->rx_queues[queue_idx] != NULL) {
- igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
- dev->data->rx_queues[queue_idx] = NULL;
- }
-
- /* First allocate the RX queue data structure. */
- rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
- CACHE_LINE_SIZE);
- if (rxq == NULL)
- return (-ENOMEM);
- rxq->mb_pool = mp;
- rxq->nb_rx_desc = nb_desc;
- rxq->pthresh = rx_conf->rx_thresh.pthresh;
- rxq->hthresh = rx_conf->rx_thresh.hthresh;
- rxq->wthresh = rx_conf->rx_thresh.wthresh;
- rxq->rx_free_thresh = rx_conf->rx_free_thresh;
- rxq->queue_id = queue_idx;
- rxq->port_id = dev->data->port_id;
- rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 :
- ETHER_CRC_LEN);
-
- /*
- * Allocate RX ring hardware descriptors. A memzone large enough to
- * handle the maximum ring size is allocated in order to allow for
- * resizing in later calls to the queue setup function.
- */
- size = sizeof(union e1000_adv_rx_desc) * IGB_MAX_RING_DESC;
- rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, size, socket_id);
- if (rz == NULL) {
- igb_rx_queue_release(rxq);
- return (-ENOMEM);
- }
- rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx));
- rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
- rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
-
- /* Allocate software ring. */
- rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
- sizeof(struct igb_rx_entry) * nb_desc,
- CACHE_LINE_SIZE);
- if (rxq->sw_ring == NULL) {
- igb_rx_queue_release(rxq);
- return (-ENOMEM);
- }
- PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
- rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
-
- dev->data->rx_queues[queue_idx] = rxq;
- igb_reset_rx_queue(rxq);
-
- return 0;
-}
-
-void
-igb_dev_clear_queues(struct rte_eth_dev *dev)
-{
- uint16_t i;
- struct igb_tx_queue *txq;
- struct igb_rx_queue *rxq;
-
- for (i = 0; i < dev->data->nb_tx_queues; i++) {
- txq = dev->data->tx_queues[i];
- igb_tx_queue_release_mbufs(txq);
- igb_reset_tx_queue(txq, dev);
- }
-
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- rxq = dev->data->rx_queues[i];
- igb_rx_queue_release_mbufs(rxq);
- igb_reset_rx_queue(rxq);
- }
-}
-
-/**
- * Receive Side Scaling (RSS).
- * See section 7.1.1.7 in the following document:
- * "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
- *
- * Principles:
- * The source and destination IP addresses of the IP header and the source and
- * destination ports of TCP/UDP headers, if any, of received packets are hashed
- * against a configurable random key to compute a 32-bit RSS hash result.
- * The seven (7) LSBs of the 32-bit hash result are used as an index into a
- * 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit
- * RSS output index which is used as the RX queue index where to store the
- * received packets.
- * The following output is supplied in the RX write-back descriptor:
- * - 32-bit result of the Microsoft RSS hash function,
- * - 4-bit RSS type field.
- */
-
-/*
- * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
- * Used as the default key.
- */
-static uint8_t rss_intel_key[40] = {
- 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
- 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
- 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
- 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
- 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
-};
-
-static void
-igb_rss_disable(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw;
- uint32_t mrqc;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- mrqc = E1000_READ_REG(hw, E1000_MRQC);
- mrqc &= ~E1000_MRQC_ENABLE_MASK;
- E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
-}
-
-static void
-igb_rss_configure(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw;
- uint8_t *hash_key;
- uint32_t rss_key;
- uint32_t mrqc;
- uint32_t shift;
- uint16_t rss_hf;
- uint16_t i;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- rss_hf = dev->data->dev_conf.rx_adv_conf.rss_conf.rss_hf;
- if (rss_hf == 0) /* Disable RSS. */ {
- igb_rss_disable(dev);
- return;
- }
- hash_key = dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key;
- if (hash_key == NULL)
- hash_key = rss_intel_key; /* Default hash key. */
-
- /* Fill in RSS hash key. */
- for (i = 0; i < 10; i++) {
- rss_key = hash_key[(i * 4)];
- rss_key |= hash_key[(i * 4) + 1] << 8;
- rss_key |= hash_key[(i * 4) + 2] << 16;
- rss_key |= hash_key[(i * 4) + 3] << 24;
- E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
- }
-
- /* Fill in redirection table. */
- shift = (hw->mac.type == e1000_82575) ? 6 : 0;
- for (i = 0; i < 128; i++) {
- union e1000_reta {
- uint32_t dword;
- uint8_t bytes[4];
- } reta;
- uint8_t q_idx;
-
- q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
- i % dev->data->nb_rx_queues : 0);
- reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
- if ((i & 3) == 3)
- E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
- }
-
- /* Set configured hashing functions in MRQC register. */
- mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
- if (rss_hf & ETH_RSS_IPV4)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
- if (rss_hf & ETH_RSS_IPV4_TCP)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
- if (rss_hf & ETH_RSS_IPV6)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
- if (rss_hf & ETH_RSS_IPV6_EX)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
- if (rss_hf & ETH_RSS_IPV6_TCP)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
- if (rss_hf & ETH_RSS_IPV6_TCP_EX)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
- if (rss_hf & ETH_RSS_IPV4_UDP)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
- if (rss_hf & ETH_RSS_IPV6_UDP)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
- if (rss_hf & ETH_RSS_IPV6_UDP_EX)
- mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
- E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
-}
-
-/*********************************************************************
- *
- * Enable receive unit.
- *
- **********************************************************************/
-
-static int
-igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
-{
- struct igb_rx_entry *rxe = rxq->sw_ring;
- uint64_t dma_addr;
- unsigned i;
-
- /* Initialize software ring entries. */
- for (i = 0; i < rxq->nb_rx_desc; i++) {
- volatile union e1000_adv_rx_desc *rxd;
- struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
-
- if (mbuf == NULL) {
- PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
- "queue_id=%hu\n", rxq->queue_id);
- igb_rx_queue_release(rxq);
- return (-ENOMEM);
- }
- dma_addr =
- rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
- rxd = &rxq->rx_ring[i];
- rxd->read.hdr_addr = dma_addr;
- rxd->read.pkt_addr = dma_addr;
- rxe[i].mbuf = mbuf;
- }
-
- return 0;
-}
-
-int
-eth_igb_rx_init(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw;
- struct igb_rx_queue *rxq;
- struct rte_pktmbuf_pool_private *mbp_priv;
- uint32_t rctl;
- uint32_t rxcsum;
- uint32_t srrctl;
- uint16_t buf_size;
- uint16_t rctl_bsize;
- uint16_t i;
- int ret;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- srrctl = 0;
-
- /*
- * Make sure receives are disabled while setting
- * up the descriptor ring.
- */
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
-
- /*
- * Configure support of jumbo frames, if any.
- */
- if (dev->data->dev_conf.rxmode.jumbo_frame == 1) {
- rctl |= E1000_RCTL_LPE;
-
- /* Set maximum packet length. */
- E1000_WRITE_REG(hw, E1000_RLPML,
- dev->data->dev_conf.rxmode.max_rx_pkt_len);
- } else
- rctl &= ~E1000_RCTL_LPE;
-
- /* Configure and enable each RX queue. */
- rctl_bsize = 0;
- dev->rx_pkt_burst = eth_igb_recv_pkts;
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- uint64_t bus_addr;
- uint32_t rxdctl;
-
- rxq = dev->data->rx_queues[i];
-
- /* Allocate buffers for descriptor rings and set up queue */
- ret = igb_alloc_rx_queue_mbufs(rxq);
- if (ret) {
- igb_dev_clear_queues(dev);
- return ret;
- }
-
- /*
- * Reset crc_len in case it was changed after queue setup by a
- * call to configure
- */
- rxq->crc_len =
- (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
- 0 : ETHER_CRC_LEN);
-
- bus_addr = rxq->rx_ring_phys_addr;
- E1000_WRITE_REG(hw, E1000_RDLEN(i),
- rxq->nb_rx_desc *
- sizeof(union e1000_adv_rx_desc));
- E1000_WRITE_REG(hw, E1000_RDBAH(i),
- (uint32_t)(bus_addr >> 32));
- E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
-
- srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
-
- /*
- * Configure RX buffer size.
- */
- mbp_priv = (struct rte_pktmbuf_pool_private *)
- ((char *)rxq->mb_pool + sizeof(struct rte_mempool));
- buf_size = (uint16_t) (mbp_priv->mbuf_data_room_size -
- RTE_PKTMBUF_HEADROOM);
- if (buf_size >= 1024) {
- /*
- * Configure the BSIZEPACKET field of the SRRCTL
- * register of the queue.
- * Value is in 1 KB resolution, from 1 KB to 127 KB.
- * If this field is equal to 0b, then RCTL.BSIZE
- * determines the RX packet buffer size.
- */
- srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
- E1000_SRRCTL_BSIZEPKT_MASK);
- buf_size = (uint16_t) ((srrctl &
- E1000_SRRCTL_BSIZEPKT_MASK) <<
- E1000_SRRCTL_BSIZEPKT_SHIFT);
-
- if (dev->data->dev_conf.rxmode.max_rx_pkt_len > buf_size){
- dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
- dev->data->scattered_rx = 1;
- }
- } else {
- /*
- * Use BSIZE field of the device RCTL register.
- */
- if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
- rctl_bsize = buf_size;
- dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
- dev->data->scattered_rx = 1;
- }
-
- E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
-
- /* Enable this RX queue. */
- rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
- rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
- rxdctl &= 0xFFF00000;
- rxdctl |= (rxq->pthresh & 0x1F);
- rxdctl |= ((rxq->hthresh & 0x1F) << 8);
- rxdctl |= ((rxq->wthresh & 0x1F) << 16);
- E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
- }
-
- /*
- * Setup BSIZE field of RCTL register, if needed.
- * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
- * register, since the code above configures the SRRCTL register of
- * the RX queue in such a case.
- * All configurable sizes are:
- * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
- * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
- * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
- * 2048: rctl |= E1000_RCTL_SZ_2048;
- * 1024: rctl |= E1000_RCTL_SZ_1024;
- * 512: rctl |= E1000_RCTL_SZ_512;
- * 256: rctl |= E1000_RCTL_SZ_256;
- */
- if (rctl_bsize > 0) {
- if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
- rctl |= E1000_RCTL_SZ_512;
- else /* 256 <= buf_size < 512 - use 256 */
- rctl |= E1000_RCTL_SZ_256;
- }
-
- /*
- * Configure RSS if device configured with multiple RX queues.
- */
- if (dev->data->nb_rx_queues > 1)
- igb_rss_configure(dev);
- else
- igb_rss_disable(dev);
-
- /*
- * Setup the Checksum Register.
- * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
- */
- rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
- rxcsum |= E1000_RXCSUM_PCSD;
-
- /* Enable both L3/L4 rx checksum offload */
- if (dev->data->dev_conf.rxmode.hw_ip_checksum)
- rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
- else
- rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
- E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
-
- /* Setup the Receive Control Register. */
- if (dev->data->dev_conf.rxmode.hw_strip_crc) {
- rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
-
- /* set STRCRC bit in all queues for Powerville */
- if (hw->mac.type == e1000_i350) {
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- uint32_t dvmolr = E1000_READ_REG(hw, E1000_DVMOLR(i));
- dvmolr |= E1000_DVMOLR_STRCRC;
- E1000_WRITE_REG(hw, E1000_DVMOLR(i), dvmolr);
- }
- }
-
- } else {
- rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
-
- /* clear STRCRC bit in all queues for Powerville */
- if (hw->mac.type == e1000_i350) {
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- uint32_t dvmolr = E1000_READ_REG(hw, E1000_DVMOLR(i));
- dvmolr &= ~E1000_DVMOLR_STRCRC;
- E1000_WRITE_REG(hw, E1000_DVMOLR(i), dvmolr);
- }
- }
- }
-
- rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
- rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
- E1000_RCTL_RDMTS_HALF |
- (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
-
- /* Make sure VLAN Filters are off. */
- rctl &= ~E1000_RCTL_VFE;
- /* Don't store bad packets. */
- rctl &= ~E1000_RCTL_SBP;
-
- /* Enable Receives. */
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-
- /*
- * Setup the HW Rx Head and Tail Descriptor Pointers.
- * This needs to be done after enable.
- */
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- rxq = dev->data->rx_queues[i];
- E1000_WRITE_REG(hw, E1000_RDH(i), 0);
- E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
- }
-
- return 0;
-}
-
-/*********************************************************************
- *
- * Enable transmit unit.
- *
- **********************************************************************/
-void
-eth_igb_tx_init(struct rte_eth_dev *dev)
-{
- struct e1000_hw *hw;
- struct igb_tx_queue *txq;
- uint32_t tctl;
- uint32_t txdctl;
- uint16_t i;
-
- hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- /* Setup the Base and Length of the Tx Descriptor Rings. */
- for (i = 0; i < dev->data->nb_tx_queues; i++) {
- uint64_t bus_addr;
- txq = dev->data->tx_queues[i];
- bus_addr = txq->tx_ring_phys_addr;
-
- E1000_WRITE_REG(hw, E1000_TDLEN(i),
- txq->nb_tx_desc *
- sizeof(union e1000_adv_tx_desc));
- E1000_WRITE_REG(hw, E1000_TDBAH(i),
- (uint32_t)(bus_addr >> 32));
- E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
-
- /* Setup the HW Tx Head and Tail descriptor pointers. */
- E1000_WRITE_REG(hw, E1000_TDT(i), 0);
- E1000_WRITE_REG(hw, E1000_TDH(i), 0);
-
- /* Setup Transmit threshold registers. */
- txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
- txdctl |= txq->pthresh & 0x1F;
- txdctl |= ((txq->hthresh & 0x1F) << 8);
- txdctl |= ((txq->wthresh & 0x1F) << 16);
- txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
- E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
- }
-
- /* Program the Transmit Control Register. */
- tctl = E1000_READ_REG(hw, E1000_TCTL);
- tctl &= ~E1000_TCTL_CT;
- tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
- (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
-
- e1000_config_collision_dist(hw);
-
- /* This write will effectively turn on the transmit unit. */
- E1000_WRITE_REG(hw, E1000_TCTL, tctl);
-}
-
+++ /dev/null
-..
- BSD LICENSE
-
- Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
-
- * Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in
- the documentation and/or other materials provided with the
- distribution.
- * Neither the name of Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived
- from this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-
-Intel® IGB driver
-=================
-
-This directory contains code from the Intel® Network Adapter Driver for 82575/6
-and 82580-based Gigabit Network Connections under FreeBSD, version 2.2.3,
-dated 04/25/2011. This code is available from
-`http://downloadmirror.intel.com/15815/eng/igb-2.2.3.tar.gz`
-
-This driver is valid for the product(s) listed below
-
-* Intel® 82575EB Gigabit Ethernet Controller
-* Intel® 82576 Gigabit Ethernet Controller
-* Intel® 82580EB Gigabit Ethernet Controller
-* Intel® Ethernet Controller I350
-* Intel® Ethernet Server Adapter I340-F4
-* Intel® Ethernet Server Adapter I340-T4
-* Intel® Ethernet Server Adapter I350-F2
-* Intel® Ethernet Server Adapter I350-F4
-* Intel® Ethernet Server Adapter I350-T2
-* Intel® Ethernet Server Adapter I350-T4
-* Intel® Gigabit EF Dual Port Server Adapter
-* Intel® Gigabit ET Dual Port Server Adapter
-* Intel® Gigabit ET Quad Port Server Adapter
-* Intel® Gigabit ET2 Quad Port Server Adapter
-* Intel® Gigabit VT Quad Port Server Adapter
-
-
-Updating driver
-===============
-
-The following modifications have been made to this code to integrate it with the
-Intel® DPDK:
-
-
-e1000_osdep.h and e1000_osdep.c
--------------------------------
-
-The OS dependency layer has been extensively modified to support the drivers in
-the Intel® DPDK environment. It is expected that these files will not need to be
-changed on updating the driver.
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-/*
- * 82575EB Gigabit Network Connection
- * 82575EB Gigabit Backplane Connection
- * 82575GB Gigabit Network Connection
- * 82576 Gigabit Network Connection
- * 82576 Quad Port Gigabit Mezzanine Adapter
- */
-
-#include "e1000_api.h"
-
-static s32 e1000_init_phy_params_82575(struct e1000_hw *hw);
-static s32 e1000_init_mac_params_82575(struct e1000_hw *hw);
-static s32 e1000_acquire_phy_82575(struct e1000_hw *hw);
-static void e1000_release_phy_82575(struct e1000_hw *hw);
-static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw);
-static void e1000_release_nvm_82575(struct e1000_hw *hw);
-static s32 e1000_check_for_link_82575(struct e1000_hw *hw);
-static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw);
-static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
- u16 *duplex);
-static s32 e1000_init_hw_82575(struct e1000_hw *hw);
-static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
-static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
- u16 *data);
-static s32 e1000_reset_hw_82575(struct e1000_hw *hw);
-static s32 e1000_reset_hw_82580(struct e1000_hw *hw);
-static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw,
- u32 offset, u16 *data);
-static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw,
- u32 offset, u16 data);
-static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw,
- bool active);
-static s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw,
- bool active);
-static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
- bool active);
-static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw);
-static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw);
-static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
-static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
- u32 offset, u16 data);
-static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
-static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
-static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
- u16 *speed, u16 *duplex);
-static s32 e1000_get_phy_id_82575(struct e1000_hw *hw);
-static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
-static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
-static s32 e1000_reset_init_script_82575(struct e1000_hw *hw);
-static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw);
-static void e1000_config_collision_dist_82575(struct e1000_hw *hw);
-static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
-static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
-static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw);
-static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
-static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw);
-static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw);
-static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw);
-static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw,
- u16 offset);
-static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
- u16 offset);
-static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw);
-static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw);
-
-static const u16 e1000_82580_rxpbs_table[] =
- { 36, 72, 144, 1, 2, 4, 8, 16,
- 35, 70, 140 };
-#define E1000_82580_RXPBS_TABLE_SIZE \
- (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
-
-
-/**
- * e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
- * @hw: pointer to the HW structure
- *
- * Called to determine if the I2C pins are being used for I2C or as an
- * external MDIO interface since the two options are mutually exclusive.
- **/
-static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw)
-{
- u32 reg = 0;
- bool ext_mdio = FALSE;
-
- DEBUGFUNC("e1000_sgmii_uses_mdio_82575");
-
- switch (hw->mac.type) {
- case e1000_82575:
- case e1000_82576:
- reg = E1000_READ_REG(hw, E1000_MDIC);
- ext_mdio = !!(reg & E1000_MDIC_DEST);
- break;
- case e1000_82580:
- case e1000_i350:
- reg = E1000_READ_REG(hw, E1000_MDICNFG);
- ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
- break;
- default:
- break;
- }
- return ext_mdio;
-}
-
-/**
- * e1000_init_phy_params_82575 - Init PHY func ptrs.
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u32 ctrl_ext;
-
- DEBUGFUNC("e1000_init_phy_params_82575");
-
- if (hw->phy.media_type != e1000_media_type_copper) {
- phy->type = e1000_phy_none;
- goto out;
- }
-
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper_82575;
-
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->reset_delay_us = 100;
-
- phy->ops.acquire = e1000_acquire_phy_82575;
- phy->ops.check_reset_block = e1000_check_reset_block_generic;
- phy->ops.commit = e1000_phy_sw_reset_generic;
- phy->ops.get_cfg_done = e1000_get_cfg_done_82575;
- phy->ops.release = e1000_release_phy_82575;
-
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-
- if (e1000_sgmii_active_82575(hw)) {
- phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
- ctrl_ext |= E1000_CTRL_I2C_ENA;
- } else {
- phy->ops.reset = e1000_phy_hw_reset_generic;
- ctrl_ext &= ~E1000_CTRL_I2C_ENA;
- }
-
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- e1000_reset_mdicnfg_82580(hw);
-
- if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) {
- phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
- phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
- } else if (hw->mac.type >= e1000_82580) {
- phy->ops.read_reg = e1000_read_phy_reg_82580;
- phy->ops.write_reg = e1000_write_phy_reg_82580;
- } else {
- phy->ops.read_reg = e1000_read_phy_reg_igp;
- phy->ops.write_reg = e1000_write_phy_reg_igp;
- }
-
- /* Set phy->phy_addr and phy->id. */
- ret_val = e1000_get_phy_id_82575(hw);
-
- /* Verify phy id and set remaining function pointers */
- switch (phy->id) {
- case I347AT4_E_PHY_ID:
- case M88E1112_E_PHY_ID:
- case M88E1340M_E_PHY_ID:
- case M88E1111_I_PHY_ID:
- phy->type = e1000_phy_m88;
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.get_info = e1000_get_phy_info_m88;
- if (phy->id == I347AT4_E_PHY_ID ||
- phy->id == M88E1112_E_PHY_ID ||
- phy->id == M88E1340M_E_PHY_ID)
- phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2;
- else
- phy->ops.get_cable_length = e1000_get_cable_length_m88;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
- break;
- case IGP03E1000_E_PHY_ID:
- case IGP04E1000_E_PHY_ID:
- phy->type = e1000_phy_igp_3;
- phy->ops.check_polarity = e1000_check_polarity_igp;
- phy->ops.get_info = e1000_get_phy_info_igp;
- phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
- phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
- break;
- case I82580_I_PHY_ID:
- case I350_I_PHY_ID:
- phy->type = e1000_phy_82580;
- phy->ops.check_polarity = e1000_check_polarity_82577;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82577;
- phy->ops.get_cable_length = e1000_get_cable_length_82577;
- phy->ops.get_info = e1000_get_phy_info_82577;
- phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
- break;
- default:
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_nvm_params_82575 - Init NVM func ptrs.
- * @hw: pointer to the HW structure
- **/
-s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- u16 size;
-
- DEBUGFUNC("e1000_init_nvm_params_82575");
-
- size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
- /*
- * Added to a constant, "size" becomes the left-shift value
- * for setting word_size.
- */
- size += NVM_WORD_SIZE_BASE_SHIFT;
-
- nvm->word_size = 1 << size;
- nvm->opcode_bits = 8;
- nvm->delay_usec = 1;
- switch (nvm->override) {
- case e1000_nvm_override_spi_large:
- nvm->page_size = 32;
- nvm->address_bits = 16;
- break;
- case e1000_nvm_override_spi_small:
- nvm->page_size = 8;
- nvm->address_bits = 8;
- break;
- default:
- nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
- nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
- break;
- }
-
- nvm->type = e1000_nvm_eeprom_spi;
-
- if (nvm->word_size == (1 << 15))
- nvm->page_size = 128;
-
- /* Function Pointers */
- nvm->ops.acquire = e1000_acquire_nvm_82575;
- nvm->ops.release = e1000_release_nvm_82575;
- if (nvm->word_size < (1 << 15))
- nvm->ops.read = e1000_read_nvm_eerd;
- else
- nvm->ops.read = e1000_read_nvm_spi;
-
- nvm->ops.write = e1000_write_nvm_spi;
- nvm->ops.validate = e1000_validate_nvm_checksum_generic;
- nvm->ops.update = e1000_update_nvm_checksum_generic;
- nvm->ops.valid_led_default = e1000_valid_led_default_82575;
-
- /* override genric family function pointers for specific descendants */
- switch (hw->mac.type) {
- case e1000_82580:
- nvm->ops.validate = e1000_validate_nvm_checksum_82580;
- nvm->ops.update = e1000_update_nvm_checksum_82580;
- break;
- case e1000_i350:
- nvm->ops.validate = e1000_validate_nvm_checksum_i350;
- nvm->ops.update = e1000_update_nvm_checksum_i350;
- break;
- default:
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_mac_params_82575 - Init MAC func ptrs.
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
- u32 ctrl_ext = 0;
-
- DEBUGFUNC("e1000_init_mac_params_82575");
-
- /* Set media type */
- /*
- * The 82575 uses bits 22:23 for link mode. The mode can be changed
- * based on the EEPROM. We cannot rely upon device ID. There
- * is no distinguishable difference between fiber and internal
- * SerDes mode on the 82575. There can be an external PHY attached
- * on the SGMII interface. For this, we'll set sgmii_active to TRUE.
- */
- hw->phy.media_type = e1000_media_type_copper;
- dev_spec->sgmii_active = FALSE;
-
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
- case E1000_CTRL_EXT_LINK_MODE_SGMII:
- dev_spec->sgmii_active = TRUE;
- break;
- case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
- case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
- hw->phy.media_type = e1000_media_type_internal_serdes;
- break;
- default:
- break;
- }
-
- /* Set mta register count */
- mac->mta_reg_count = 128;
- /* Set uta register count */
- mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
- /* Set rar entry count */
- mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
- if (mac->type == e1000_82576)
- mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
- if (mac->type == e1000_82580)
- mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
- if (mac->type == e1000_i350) {
- mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
- /* Enable EEE default settings for i350 */
- dev_spec->eee_disable = FALSE;
- }
-
- /* Set if part includes ASF firmware */
- mac->asf_firmware_present = TRUE;
- /* FWSM register */
- mac->has_fwsm = TRUE;
- /* ARC supported; valid only if manageability features are enabled. */
- mac->arc_subsystem_valid =
- (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
- ? TRUE : FALSE;
-
- /* Function pointers */
-
- /* bus type/speed/width */
- mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
- /* reset */
- if (mac->type >= e1000_82580)
- mac->ops.reset_hw = e1000_reset_hw_82580;
- else
- mac->ops.reset_hw = e1000_reset_hw_82575;
- /* hw initialization */
- mac->ops.init_hw = e1000_init_hw_82575;
- /* link setup */
- mac->ops.setup_link = e1000_setup_link_generic;
- /* physical interface link setup */
- mac->ops.setup_physical_interface =
- (hw->phy.media_type == e1000_media_type_copper)
- ? e1000_setup_copper_link_82575
- : e1000_setup_serdes_link_82575;
- /* physical interface shutdown */
- mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
- /* physical interface power up */
- mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575;
- /* check for link */
- mac->ops.check_for_link = e1000_check_for_link_82575;
- /* receive address register setting */
- mac->ops.rar_set = e1000_rar_set_generic;
- /* read mac address */
- mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
- /* configure collision distance */
- mac->ops.config_collision_dist = e1000_config_collision_dist_82575;
- /* multicast address update */
- mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
- /* writing VFTA */
- mac->ops.write_vfta = e1000_write_vfta_generic;
- /* clearing VFTA */
- mac->ops.clear_vfta = e1000_clear_vfta_generic;
- /* ID LED init */
- mac->ops.id_led_init = e1000_id_led_init_generic;
- /* blink LED */
- mac->ops.blink_led = e1000_blink_led_generic;
- /* setup LED */
- mac->ops.setup_led = e1000_setup_led_generic;
- /* cleanup LED */
- mac->ops.cleanup_led = e1000_cleanup_led_generic;
- /* turn on/off LED */
- mac->ops.led_on = e1000_led_on_generic;
- mac->ops.led_off = e1000_led_off_generic;
- /* clear hardware counters */
- mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
- /* link info */
- mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
-
- /* set lan id for port to determine which phy lock to use */
- hw->mac.ops.set_lan_id(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_function_pointers_82575 - Init func ptrs.
- * @hw: pointer to the HW structure
- *
- * Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_82575(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_function_pointers_82575");
-
- hw->mac.ops.init_params = e1000_init_mac_params_82575;
- hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
- hw->phy.ops.init_params = e1000_init_phy_params_82575;
- hw->mbx.ops.init_params = e1000_init_mbx_params_pf;
-}
-
-/**
- * e1000_acquire_phy_82575 - Acquire rights to access PHY
- * @hw: pointer to the HW structure
- *
- * Acquire access rights to the correct PHY.
- **/
-static s32 e1000_acquire_phy_82575(struct e1000_hw *hw)
-{
- u16 mask = E1000_SWFW_PHY0_SM;
-
- DEBUGFUNC("e1000_acquire_phy_82575");
-
- if (hw->bus.func == E1000_FUNC_1)
- mask = E1000_SWFW_PHY1_SM;
- else if (hw->bus.func == E1000_FUNC_2)
- mask = E1000_SWFW_PHY2_SM;
- else if (hw->bus.func == E1000_FUNC_3)
- mask = E1000_SWFW_PHY3_SM;
-
- return e1000_acquire_swfw_sync_82575(hw, mask);
-}
-
-/**
- * e1000_release_phy_82575 - Release rights to access PHY
- * @hw: pointer to the HW structure
- *
- * A wrapper to release access rights to the correct PHY.
- **/
-static void e1000_release_phy_82575(struct e1000_hw *hw)
-{
- u16 mask = E1000_SWFW_PHY0_SM;
-
- DEBUGFUNC("e1000_release_phy_82575");
-
- if (hw->bus.func == E1000_FUNC_1)
- mask = E1000_SWFW_PHY1_SM;
- else if (hw->bus.func == E1000_FUNC_2)
- mask = E1000_SWFW_PHY2_SM;
- else if (hw->bus.func == E1000_FUNC_3)
- mask = E1000_SWFW_PHY3_SM;
-
- e1000_release_swfw_sync_82575(hw, mask);
-}
-
-/**
- * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the PHY register at offset using the serial gigabit media independent
- * interface and stores the retrieved information in data.
- **/
-static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
- u16 *data)
-{
- s32 ret_val = -E1000_ERR_PARAM;
-
- DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
-
- if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
- DEBUGOUT1("PHY Address %u is out of range\n", offset);
- goto out;
- }
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_read_phy_reg_i2c(hw, offset, data);
-
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes the data to PHY register at the offset using the serial gigabit
- * media independent interface.
- **/
-static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
- u16 data)
-{
- s32 ret_val = -E1000_ERR_PARAM;
-
- DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
-
- if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
- DEBUGOUT1("PHY Address %d is out of range\n", offset);
- goto out;
- }
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_write_phy_reg_i2c(hw, offset, data);
-
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_phy_id_82575 - Retrieve PHY addr and id
- * @hw: pointer to the HW structure
- *
- * Retrieves the PHY address and ID for both PHY's which do and do not use
- * sgmi interface.
- **/
-static s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u16 phy_id;
- u32 ctrl_ext;
- u32 mdic;
-
- DEBUGFUNC("e1000_get_phy_id_82575");
-
- /*
- * For SGMII PHYs, we try the list of possible addresses until
- * we find one that works. For non-SGMII PHYs
- * (e.g. integrated copper PHYs), an address of 1 should
- * work. The result of this function should mean phy->phy_addr
- * and phy->id are set correctly.
- */
- if (!e1000_sgmii_active_82575(hw)) {
- phy->addr = 1;
- ret_val = e1000_get_phy_id(hw);
- goto out;
- }
-
- if (e1000_sgmii_uses_mdio_82575(hw)) {
- switch (hw->mac.type) {
- case e1000_82575:
- case e1000_82576:
- mdic = E1000_READ_REG(hw, E1000_MDIC);
- mdic &= E1000_MDIC_PHY_MASK;
- phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
- break;
- case e1000_82580:
- case e1000_i350:
- mdic = E1000_READ_REG(hw, E1000_MDICNFG);
- mdic &= E1000_MDICNFG_PHY_MASK;
- phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
- break;
- default:
- ret_val = -E1000_ERR_PHY;
- goto out;
- break;
- }
- ret_val = e1000_get_phy_id(hw);
- goto out;
- }
-
- /* Power on sgmii phy if it is disabled */
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- E1000_WRITE_REG(hw, E1000_CTRL_EXT,
- ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
- E1000_WRITE_FLUSH(hw);
- msec_delay(300);
-
- /*
- * The address field in the I2CCMD register is 3 bits and 0 is invalid.
- * Therefore, we need to test 1-7
- */
- for (phy->addr = 1; phy->addr < 8; phy->addr++) {
- ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
- if (ret_val == E1000_SUCCESS) {
- DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
- phy_id,
- phy->addr);
- /*
- * At the time of this writing, The M88 part is
- * the only supported SGMII PHY product.
- */
- if (phy_id == M88_VENDOR)
- break;
- } else {
- DEBUGOUT1("PHY address %u was unreadable\n",
- phy->addr);
- }
- }
-
- /* A valid PHY type couldn't be found. */
- if (phy->addr == 8) {
- phy->addr = 0;
- ret_val = -E1000_ERR_PHY;
- } else {
- ret_val = e1000_get_phy_id(hw);
- }
-
- /* restore previous sfp cage power state */
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
- * @hw: pointer to the HW structure
- *
- * Resets the PHY using the serial gigabit media independent interface.
- **/
-static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
-
- /*
- * This isn't a TRUE "hard" reset, but is the only reset
- * available to us at this time.
- */
-
- DEBUGOUT("Soft resetting SGMII attached PHY...\n");
-
- if (!(hw->phy.ops.write_reg))
- goto out;
-
- /*
- * SFP documentation requires the following to configure the SPF module
- * to work on SGMII. No further documentation is given.
- */
- ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
- if (ret_val)
- goto out;
-
- ret_val = hw->phy.ops.commit(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
- * @hw: pointer to the HW structure
- * @active: TRUE to enable LPLU, FALSE to disable
- *
- * Sets the LPLU D0 state according to the active flag. When
- * activating LPLU this function also disables smart speed
- * and vice versa. LPLU will not be activated unless the
- * device autonegotiation advertisement meets standards of
- * either 10 or 10/100 or 10/100/1000 at all duplexes.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u16 data;
-
- DEBUGFUNC("e1000_set_d0_lplu_state_82575");
-
- if (!(hw->phy.ops.read_reg))
- goto out;
-
- ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
- if (ret_val)
- goto out;
-
- if (active) {
- data |= IGP02E1000_PM_D0_LPLU;
- ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
- if (ret_val)
- goto out;
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- goto out;
- } else {
- data &= ~IGP02E1000_PM_D0_LPLU;
- ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- goto out;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- goto out;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- goto out;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- goto out;
- }
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
- * @hw: pointer to the HW structure
- * @active: TRUE to enable LPLU, FALSE to disable
- *
- * Sets the LPLU D0 state according to the active flag. When
- * activating LPLU this function also disables smart speed
- * and vice versa. LPLU will not be activated unless the
- * device autonegotiation advertisement meets standards of
- * either 10 or 10/100 or 10/100/1000 at all duplexes.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u16 data;
-
- DEBUGFUNC("e1000_set_d0_lplu_state_82580");
-
- data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
-
- if (active) {
- data |= E1000_82580_PM_D0_LPLU;
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- data &= ~E1000_82580_PM_SPD;
- } else {
- data &= ~E1000_82580_PM_D0_LPLU;
-
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on) {
- data |= E1000_82580_PM_SPD;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- data &= ~E1000_82580_PM_SPD;
- }
- }
-
- E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
- return ret_val;
-}
-
-/**
- * e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * Success returns 0, Failure returns 1
- *
- * The low power link up (lplu) state is set to the power management level D3
- * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
- * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained.
- **/
-s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u16 data;
-
- DEBUGFUNC("e1000_set_d3_lplu_state_82580");
-
- data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
-
- if (!active) {
- data &= ~E1000_82580_PM_D3_LPLU;
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on) {
- data |= E1000_82580_PM_SPD;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- data &= ~E1000_82580_PM_SPD;
- }
- } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
- (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
- (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
- data |= E1000_82580_PM_D3_LPLU;
- /* When LPLU is enabled, we should disable SmartSpeed */
- data &= ~E1000_82580_PM_SPD;
- }
-
- E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
- return ret_val;
-}
-
-/**
- * e1000_acquire_nvm_82575 - Request for access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Acquire the necessary semaphores for exclusive access to the EEPROM.
- * Set the EEPROM access request bit and wait for EEPROM access grant bit.
- * Return successful if access grant bit set, else clear the request for
- * EEPROM access and return -E1000_ERR_NVM (-1).
- **/
-static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_acquire_nvm_82575");
-
- ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
- if (ret_val)
- goto out;
-
- /*
- * Check if there is some access
- * error this access may hook on
- */
- if (hw->mac.type == e1000_i350) {
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT |
- E1000_EECD_TIMEOUT)) {
- /* Clear all access error flags */
- E1000_WRITE_REG(hw, E1000_EECD, eecd |
- E1000_EECD_ERROR_CLR);
- DEBUGOUT("Nvm bit banging access error"
- " detected and cleared.\n");
- }
- }
- if (hw->mac.type == e1000_82580) {
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- if (eecd & E1000_EECD_BLOCKED) {
- /* Clear access error flag */
- E1000_WRITE_REG(hw, E1000_EECD, eecd |
- E1000_EECD_BLOCKED);
- DEBUGOUT("Nvm bit banging access"
- " error detected and cleared.\n");
- }
- }
-
- ret_val = e1000_acquire_nvm_generic(hw);
- if (ret_val)
- e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_release_nvm_82575 - Release exclusive access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Stop any current commands to the EEPROM and clear the EEPROM request bit,
- * then release the semaphores acquired.
- **/
-static void e1000_release_nvm_82575(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_release_nvm_82575");
-
- e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
-}
-
-/**
- * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
- * will also specify which port we're acquiring the lock for.
- **/
-static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
-{
- u32 swfw_sync;
- u32 swmask = mask;
- u32 fwmask = mask << 16;
- s32 ret_val = E1000_SUCCESS;
- s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
-
- DEBUGFUNC("e1000_acquire_swfw_sync_82575");
-
- while (i < timeout) {
- if (e1000_get_hw_semaphore_generic(hw)) {
- ret_val = -E1000_ERR_SWFW_SYNC;
- goto out;
- }
-
- swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
- if (!(swfw_sync & (fwmask | swmask)))
- break;
-
- /*
- * Firmware currently using resource (fwmask)
- * or other software thread using resource (swmask)
- */
- e1000_put_hw_semaphore_generic(hw);
- msec_delay_irq(5);
- i++;
- }
-
- if (i == timeout) {
- DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
- ret_val = -E1000_ERR_SWFW_SYNC;
- goto out;
- }
-
- swfw_sync |= swmask;
- E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
-
- e1000_put_hw_semaphore_generic(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_release_swfw_sync_82575 - Release SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Release the SW/FW semaphore used to access the PHY or NVM. The mask
- * will also specify which port we're releasing the lock for.
- **/
-static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
-{
- u32 swfw_sync;
-
- DEBUGFUNC("e1000_release_swfw_sync_82575");
-
- while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS);
- /* Empty */
-
- swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
- swfw_sync &= ~mask;
- E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
-
- e1000_put_hw_semaphore_generic(hw);
-}
-
-/**
- * e1000_get_cfg_done_82575 - Read config done bit
- * @hw: pointer to the HW structure
- *
- * Read the management control register for the config done bit for
- * completion status. NOTE: silicon which is EEPROM-less will fail trying
- * to read the config done bit, so an error is *ONLY* logged and returns
- * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
- * would not be able to be reset or change link.
- **/
-static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
-{
- s32 timeout = PHY_CFG_TIMEOUT;
- s32 ret_val = E1000_SUCCESS;
- u32 mask = E1000_NVM_CFG_DONE_PORT_0;
-
- DEBUGFUNC("e1000_get_cfg_done_82575");
-
- if (hw->bus.func == E1000_FUNC_1)
- mask = E1000_NVM_CFG_DONE_PORT_1;
- else if (hw->bus.func == E1000_FUNC_2)
- mask = E1000_NVM_CFG_DONE_PORT_2;
- else if (hw->bus.func == E1000_FUNC_3)
- mask = E1000_NVM_CFG_DONE_PORT_3;
- while (timeout) {
- if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
- break;
- msec_delay(1);
- timeout--;
- }
- if (!timeout)
- DEBUGOUT("MNG configuration cycle has not completed.\n");
-
- /* If EEPROM is not marked present, init the PHY manually */
- if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) &&
- (hw->phy.type == e1000_phy_igp_3))
- e1000_phy_init_script_igp3(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_get_link_up_info_82575 - Get link speed/duplex info
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * This is a wrapper function, if using the serial gigabit media independent
- * interface, use PCS to retrieve the link speed and duplex information.
- * Otherwise, use the generic function to get the link speed and duplex info.
- **/
-static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_get_link_up_info_82575");
-
- if (hw->phy.media_type != e1000_media_type_copper)
- ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
- duplex);
- else
- ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
- duplex);
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_link_82575 - Check for link
- * @hw: pointer to the HW structure
- *
- * If sgmii is enabled, then use the pcs register to determine link, otherwise
- * use the generic interface for determining link.
- **/
-static s32 e1000_check_for_link_82575(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 speed, duplex;
-
- DEBUGFUNC("e1000_check_for_link_82575");
-
- if (hw->phy.media_type != e1000_media_type_copper) {
- ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
- &duplex);
- /*
- * Use this flag to determine if link needs to be checked or
- * not. If we have link clear the flag so that we do not
- * continue to check for link.
- */
- hw->mac.get_link_status = !hw->mac.serdes_has_link;
- } else {
- ret_val = e1000_check_for_copper_link_generic(hw);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown
- * @hw: pointer to the HW structure
- **/
-static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw)
-{
- u32 reg;
-
- DEBUGFUNC("e1000_power_up_serdes_link_82575");
-
- if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
- !e1000_sgmii_active_82575(hw))
- return;
-
- /* Enable PCS to turn on link */
- reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
- reg |= E1000_PCS_CFG_PCS_EN;
- E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
-
- /* Power up the laser */
- reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- reg &= ~E1000_CTRL_EXT_SDP3_DATA;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-
- /* flush the write to verify completion */
- E1000_WRITE_FLUSH(hw);
- msec_delay(1);
-}
-
-/**
- * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * Using the physical coding sub-layer (PCS), retrieve the current speed and
- * duplex, then store the values in the pointers provided.
- **/
-static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
- u16 *speed, u16 *duplex)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 pcs;
-
- DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
-
- /* Set up defaults for the return values of this function */
- mac->serdes_has_link = FALSE;
- *speed = 0;
- *duplex = 0;
-
- /*
- * Read the PCS Status register for link state. For non-copper mode,
- * the status register is not accurate. The PCS status register is
- * used instead.
- */
- pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
-
- /*
- * The link up bit determines when link is up on autoneg. The sync ok
- * gets set once both sides sync up and agree upon link. Stable link
- * can be determined by checking for both link up and link sync ok
- */
- if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
- mac->serdes_has_link = TRUE;
-
- /* Detect and store PCS speed */
- if (pcs & E1000_PCS_LSTS_SPEED_1000) {
- *speed = SPEED_1000;
- } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
- *speed = SPEED_100;
- } else {
- *speed = SPEED_10;
- }
-
- /* Detect and store PCS duplex */
- if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
- *duplex = FULL_DUPLEX;
- } else {
- *duplex = HALF_DUPLEX;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_shutdown_serdes_link_82575 - Remove link during power down
- * @hw: pointer to the HW structure
- *
- * In the case of serdes shut down sfp and PCS on driver unload
- * when management pass thru is not enabled.
- **/
-void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
-{
- u32 reg;
-
- DEBUGFUNC("e1000_shutdown_serdes_link_82575");
-
- if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
- !e1000_sgmii_active_82575(hw))
- return;
-
- if (!e1000_enable_mng_pass_thru(hw)) {
- /* Disable PCS to turn off link */
- reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
- reg &= ~E1000_PCS_CFG_PCS_EN;
- E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
-
- /* shutdown the laser */
- reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- reg |= E1000_CTRL_EXT_SDP3_DATA;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-
- /* flush the write to verify completion */
- E1000_WRITE_FLUSH(hw);
- msec_delay(1);
- }
-
- return;
-}
-
-/**
- * e1000_reset_hw_82575 - Reset hardware
- * @hw: pointer to the HW structure
- *
- * This resets the hardware into a known state.
- **/
-static s32 e1000_reset_hw_82575(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
-
- DEBUGFUNC("e1000_reset_hw_82575");
-
- /*
- * Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- ret_val = e1000_disable_pcie_master_generic(hw);
- if (ret_val) {
- DEBUGOUT("PCI-E Master disable polling has failed.\n");
- }
-
- /* set the completion timeout for interface */
- ret_val = e1000_set_pcie_completion_timeout(hw);
- if (ret_val) {
- DEBUGOUT("PCI-E Set completion timeout has failed.\n");
- }
-
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-
- E1000_WRITE_REG(hw, E1000_RCTL, 0);
- E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
-
- msec_delay(10);
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- DEBUGOUT("Issuing a global reset to MAC\n");
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
-
- ret_val = e1000_get_auto_rd_done_generic(hw);
- if (ret_val) {
- /*
- * When auto config read does not complete, do not
- * return with an error. This can happen in situations
- * where there is no eeprom and prevents getting link.
- */
- DEBUGOUT("Auto Read Done did not complete\n");
- }
-
- /* If EEPROM is not present, run manual init scripts */
- if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
- e1000_reset_init_script_82575(hw);
-
- /* Clear any pending interrupt events. */
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- E1000_READ_REG(hw, E1000_ICR);
-
- /* Install any alternate MAC address into RAR0 */
- ret_val = e1000_check_alt_mac_addr_generic(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_init_hw_82575 - Initialize hardware
- * @hw: pointer to the HW structure
- *
- * This inits the hardware readying it for operation.
- **/
-static s32 e1000_init_hw_82575(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- u16 i, rar_count = mac->rar_entry_count;
-
- DEBUGFUNC("e1000_init_hw_82575");
-
- /* Initialize identification LED */
- ret_val = mac->ops.id_led_init(hw);
- if (ret_val) {
- DEBUGOUT("Error initializing identification LED\n");
- /* This is not fatal and we should not stop init due to this */
- }
-
- /* Disabling VLAN filtering */
- DEBUGOUT("Initializing the IEEE VLAN\n");
- mac->ops.clear_vfta(hw);
-
- /* Setup the receive address */
- e1000_init_rx_addrs_generic(hw, rar_count);
-
- /* Zero out the Multicast HASH table */
- DEBUGOUT("Zeroing the MTA\n");
- for (i = 0; i < mac->mta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
- /* Zero out the Unicast HASH table */
- DEBUGOUT("Zeroing the UTA\n");
- for (i = 0; i < mac->uta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0);
-
- /* Setup link and flow control */
- ret_val = mac->ops.setup_link(hw);
-
- /*
- * Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs_82575(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_setup_copper_link_82575 - Configure copper link settings
- * @hw: pointer to the HW structure
- *
- * Configures the link for auto-neg or forced speed and duplex. Then we check
- * for link, once link is established calls to configure collision distance
- * and flow control are called.
- **/
-static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
-
- DEBUGFUNC("e1000_setup_copper_link_82575");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- ret_val = e1000_setup_serdes_link_82575(hw);
- if (ret_val)
- goto out;
-
- if (e1000_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
- /* allow time for SFP cage time to power up phy */
- msec_delay(300);
-
- ret_val = hw->phy.ops.reset(hw);
- if (ret_val) {
- DEBUGOUT("Error resetting the PHY.\n");
- goto out;
- }
- }
- switch (hw->phy.type) {
- case e1000_phy_m88:
- if (hw->phy.id == I347AT4_E_PHY_ID ||
- hw->phy.id == M88E1112_E_PHY_ID ||
- hw->phy.id == M88E1340M_E_PHY_ID)
- ret_val = e1000_copper_link_setup_m88_gen2(hw);
- else
- ret_val = e1000_copper_link_setup_m88(hw);
- break;
- case e1000_phy_igp_3:
- ret_val = e1000_copper_link_setup_igp(hw);
- break;
- case e1000_phy_82580:
- ret_val = e1000_copper_link_setup_82577(hw);
- break;
- default:
- ret_val = -E1000_ERR_PHY;
- break;
- }
-
- if (ret_val)
- goto out;
-
- ret_val = e1000_setup_copper_link_generic(hw);
-out:
- return ret_val;
-}
-
-/**
- * e1000_setup_serdes_link_82575 - Setup link for serdes
- * @hw: pointer to the HW structure
- *
- * Configure the physical coding sub-layer (PCS) link. The PCS link is
- * used on copper connections where the serialized gigabit media independent
- * interface (sgmii), or serdes fiber is being used. Configures the link
- * for auto-negotiation or forces speed/duplex.
- **/
-static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
-{
- u32 ctrl_ext, ctrl_reg, reg;
- bool pcs_autoneg;
-
- DEBUGFUNC("e1000_setup_serdes_link_82575");
-
- if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
- !e1000_sgmii_active_82575(hw))
- return E1000_SUCCESS;
-
- /*
- * On the 82575, SerDes loopback mode persists until it is
- * explicitly turned off or a power cycle is performed. A read to
- * the register does not indicate its status. Therefore, we ensure
- * loopback mode is disabled during initialization.
- */
- E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
-
- /* power on the sfp cage if present */
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-
- ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
- ctrl_reg |= E1000_CTRL_SLU;
-
- /* set both sw defined pins on 82575/82576*/
- if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576)
- ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
-
- reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
-
- /* default pcs_autoneg to the same setting as mac autoneg */
- pcs_autoneg = hw->mac.autoneg;
-
- switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
- case E1000_CTRL_EXT_LINK_MODE_SGMII:
- /* sgmii mode lets the phy handle forcing speed/duplex */
- pcs_autoneg = TRUE;
- /* autoneg time out should be disabled for SGMII mode */
- reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
- break;
- case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
- /* disable PCS autoneg and support parallel detect only */
- pcs_autoneg = FALSE;
- /* fall through to default case */
- default:
- /*
- * non-SGMII modes only supports a speed of 1000/Full for the
- * link so it is best to just force the MAC and let the pcs
- * link either autoneg or be forced to 1000/Full
- */
- ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
- E1000_CTRL_FD | E1000_CTRL_FRCDPX;
-
- /* set speed of 1000/Full if speed/duplex is forced */
- reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
- break;
- }
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
-
- /*
- * New SerDes mode allows for forcing speed or autonegotiating speed
- * at 1gb. Autoneg should be default set by most drivers. This is the
- * mode that will be compatible with older link partners and switches.
- * However, both are supported by the hardware and some drivers/tools.
- */
- reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
- E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
-
- /*
- * We force flow control to prevent the CTRL register values from being
- * overwritten by the autonegotiated flow control values
- */
- reg |= E1000_PCS_LCTL_FORCE_FCTRL;
-
- if (pcs_autoneg) {
- /* Set PCS register for autoneg */
- reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
- E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
- DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
- } else {
- /* Set PCS register for forced link */
- reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
- DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
- }
-
- E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
-
- if (!e1000_sgmii_active_82575(hw))
- e1000_force_mac_fc_generic(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_valid_led_default_82575 - Verify a valid default LED config
- * @hw: pointer to the HW structure
- * @data: pointer to the NVM (EEPROM)
- *
- * Read the EEPROM for the current default LED configuration. If the
- * LED configuration is not valid, set to a valid LED configuration.
- **/
-static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_valid_led_default_82575");
-
- ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
- switch(hw->phy.media_type) {
- case e1000_media_type_internal_serdes:
- *data = ID_LED_DEFAULT_82575_SERDES;
- break;
- case e1000_media_type_copper:
- default:
- *data = ID_LED_DEFAULT;
- break;
- }
- }
-out:
- return ret_val;
-}
-
-/**
- * e1000_sgmii_active_82575 - Return sgmii state
- * @hw: pointer to the HW structure
- *
- * 82575 silicon has a serialized gigabit media independent interface (sgmii)
- * which can be enabled for use in the embedded applications. Simply
- * return the current state of the sgmii interface.
- **/
-static bool e1000_sgmii_active_82575(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
- return dev_spec->sgmii_active;
-}
-
-/**
- * e1000_reset_init_script_82575 - Inits HW defaults after reset
- * @hw: pointer to the HW structure
- *
- * Inits recommended HW defaults after a reset when there is no EEPROM
- * detected. This is only for the 82575.
- **/
-static s32 e1000_reset_init_script_82575(struct e1000_hw* hw)
-{
- DEBUGFUNC("e1000_reset_init_script_82575");
-
- if (hw->mac.type == e1000_82575) {
- DEBUGOUT("Running reset init script for 82575\n");
- /* SerDes configuration via SERDESCTRL */
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15);
-
- /* CCM configuration via CCMCTL register */
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00);
-
- /* PCIe lanes configuration */
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81);
-
- /* PCIe PLL Configuration */
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00);
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_mac_addr_82575 - Read device MAC address
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_read_mac_addr_82575");
-
- /*
- * If there's an alternate MAC address place it in RAR0
- * so that it will override the Si installed default perm
- * address.
- */
- ret_val = e1000_check_alt_mac_addr_generic(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_read_mac_addr_generic(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_config_collision_dist_82575 - Configure collision distance
- * @hw: pointer to the HW structure
- *
- * Configures the collision distance to the default value and is used
- * during link setup.
- **/
-static void e1000_config_collision_dist_82575(struct e1000_hw *hw)
-{
- u32 tctl_ext;
-
- DEBUGFUNC("e1000_config_collision_dist_82575");
-
- tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT);
-
- tctl_ext &= ~E1000_TCTL_EXT_COLD;
- tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT;
-
- E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, remove the link.
- **/
-static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
-
- if (!(phy->ops.check_reset_block))
- return;
-
- /* If the management interface is not enabled, then power down */
- if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw)))
- e1000_power_down_phy_copper(hw);
-
- return;
-}
-
-/**
- * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the hardware counters by reading the counter registers.
- **/
-static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_clear_hw_cntrs_82575");
-
- e1000_clear_hw_cntrs_base_generic(hw);
-
- E1000_READ_REG(hw, E1000_PRC64);
- E1000_READ_REG(hw, E1000_PRC127);
- E1000_READ_REG(hw, E1000_PRC255);
- E1000_READ_REG(hw, E1000_PRC511);
- E1000_READ_REG(hw, E1000_PRC1023);
- E1000_READ_REG(hw, E1000_PRC1522);
- E1000_READ_REG(hw, E1000_PTC64);
- E1000_READ_REG(hw, E1000_PTC127);
- E1000_READ_REG(hw, E1000_PTC255);
- E1000_READ_REG(hw, E1000_PTC511);
- E1000_READ_REG(hw, E1000_PTC1023);
- E1000_READ_REG(hw, E1000_PTC1522);
-
- E1000_READ_REG(hw, E1000_ALGNERRC);
- E1000_READ_REG(hw, E1000_RXERRC);
- E1000_READ_REG(hw, E1000_TNCRS);
- E1000_READ_REG(hw, E1000_CEXTERR);
- E1000_READ_REG(hw, E1000_TSCTC);
- E1000_READ_REG(hw, E1000_TSCTFC);
-
- E1000_READ_REG(hw, E1000_MGTPRC);
- E1000_READ_REG(hw, E1000_MGTPDC);
- E1000_READ_REG(hw, E1000_MGTPTC);
-
- E1000_READ_REG(hw, E1000_IAC);
- E1000_READ_REG(hw, E1000_ICRXOC);
-
- E1000_READ_REG(hw, E1000_ICRXPTC);
- E1000_READ_REG(hw, E1000_ICRXATC);
- E1000_READ_REG(hw, E1000_ICTXPTC);
- E1000_READ_REG(hw, E1000_ICTXATC);
- E1000_READ_REG(hw, E1000_ICTXQEC);
- E1000_READ_REG(hw, E1000_ICTXQMTC);
- E1000_READ_REG(hw, E1000_ICRXDMTC);
-
- E1000_READ_REG(hw, E1000_CBTMPC);
- E1000_READ_REG(hw, E1000_HTDPMC);
- E1000_READ_REG(hw, E1000_CBRMPC);
- E1000_READ_REG(hw, E1000_RPTHC);
- E1000_READ_REG(hw, E1000_HGPTC);
- E1000_READ_REG(hw, E1000_HTCBDPC);
- E1000_READ_REG(hw, E1000_HGORCL);
- E1000_READ_REG(hw, E1000_HGORCH);
- E1000_READ_REG(hw, E1000_HGOTCL);
- E1000_READ_REG(hw, E1000_HGOTCH);
- E1000_READ_REG(hw, E1000_LENERRS);
-
- /* This register should not be read in copper configurations */
- if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
- e1000_sgmii_active_82575(hw))
- E1000_READ_REG(hw, E1000_SCVPC);
-}
-
-/**
- * e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable
- * @hw: pointer to the HW structure
- *
- * After rx enable if managability is enabled then there is likely some
- * bad data at the start of the fifo and possibly in the DMA fifo. This
- * function clears the fifos and flushes any packets that came in as rx was
- * being enabled.
- **/
-void e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
-{
- u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
- int i, ms_wait;
-
- DEBUGFUNC("e1000_rx_fifo_workaround_82575");
- if (hw->mac.type != e1000_82575 ||
- !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
- return;
-
- /* Disable all Rx queues */
- for (i = 0; i < 4; i++) {
- rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
- E1000_WRITE_REG(hw, E1000_RXDCTL(i),
- rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
- }
- /* Poll all queues to verify they have shut down */
- for (ms_wait = 0; ms_wait < 10; ms_wait++) {
- msec_delay(1);
- rx_enabled = 0;
- for (i = 0; i < 4; i++)
- rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i));
- if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
- break;
- }
-
- if (ms_wait == 10)
- DEBUGOUT("Queue disable timed out after 10ms\n");
-
- /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
- * incoming packets are rejected. Set enable and wait 2ms so that
- * any packet that was coming in as RCTL.EN was set is flushed
- */
- rfctl = E1000_READ_REG(hw, E1000_RFCTL);
- E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
-
- rlpml = E1000_READ_REG(hw, E1000_RLPML);
- E1000_WRITE_REG(hw, E1000_RLPML, 0);
-
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
- temp_rctl |= E1000_RCTL_LPE;
-
- E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl);
- E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN);
- E1000_WRITE_FLUSH(hw);
- msec_delay(2);
-
- /* Enable Rx queues that were previously enabled and restore our
- * previous state
- */
- for (i = 0; i < 4; i++)
- E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
- E1000_WRITE_FLUSH(hw);
-
- E1000_WRITE_REG(hw, E1000_RLPML, rlpml);
- E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
-
- /* Flush receive errors generated by workaround */
- E1000_READ_REG(hw, E1000_ROC);
- E1000_READ_REG(hw, E1000_RNBC);
- E1000_READ_REG(hw, E1000_MPC);
-}
-
-/**
- * e1000_set_pcie_completion_timeout - set pci-e completion timeout
- * @hw: pointer to the HW structure
- *
- * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
- * however the hardware default for these parts is 500us to 1ms which is less
- * than the 10ms recommended by the pci-e spec. To address this we need to
- * increase the value to either 10ms to 200ms for capability version 1 config,
- * or 16ms to 55ms for version 2.
- **/
-static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
-{
- u32 gcr = E1000_READ_REG(hw, E1000_GCR);
- s32 ret_val = E1000_SUCCESS;
- u16 pcie_devctl2;
-
- /* only take action if timeout value is defaulted to 0 */
- if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
- goto out;
-
- /*
- * if capababilities version is type 1 we can write the
- * timeout of 10ms to 200ms through the GCR register
- */
- if (!(gcr & E1000_GCR_CAP_VER2)) {
- gcr |= E1000_GCR_CMPL_TMOUT_10ms;
- goto out;
- }
-
- /*
- * for version 2 capabilities we need to write the config space
- * directly in order to set the completion timeout value for
- * 16ms to 55ms
- */
- ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
- &pcie_devctl2);
- if (ret_val)
- goto out;
-
- pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
-
- ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
- &pcie_devctl2);
-out:
- /* disable completion timeout resend */
- gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
-
- E1000_WRITE_REG(hw, E1000_GCR, gcr);
- return ret_val;
-}
-
-/**
- * e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
- * @hw: pointer to the hardware struct
- * @enable: state to enter, either enabled or disabled
- * @pf: Physical Function pool - do not set anti-spoofing for the PF
- *
- * enables/disables L2 switch anti-spoofing functionality.
- **/
-void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
-{
- u32 dtxswc;
-
- switch (hw->mac.type) {
- case e1000_82576:
- dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
- if (enable) {
- dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
- E1000_DTXSWC_VLAN_SPOOF_MASK);
- /* The PF can spoof - it has to in order to
- * support emulation mode NICs */
- dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
- } else {
- dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
- E1000_DTXSWC_VLAN_SPOOF_MASK);
- }
- E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
- break;
- case e1000_i350:
- dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
- if (enable) {
- dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
- E1000_DTXSWC_VLAN_SPOOF_MASK);
- /* The PF can spoof - it has to in order to
- * support emulation mode NICs
- */
- dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
- } else {
- dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
- E1000_DTXSWC_VLAN_SPOOF_MASK);
- }
- E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
- default:
- break;
- }
-}
-
-/**
- * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
- * @hw: pointer to the hardware struct
- * @enable: state to enter, either enabled or disabled
- *
- * enables/disables L2 switch loopback functionality.
- **/
-void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
-{
- u32 dtxswc;
-
- switch (hw->mac.type) {
- case e1000_82576:
- dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
- if (enable)
- dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
- else
- dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
- E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
- break;
- case e1000_i350:
- dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
- if (enable)
- dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
- else
- dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
- E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
- break;
- default:
- /* Currently no other hardware supports loopback */
- break;
- }
-
-
-}
-
-/**
- * e1000_vmdq_set_replication_pf - enable or disable vmdq replication
- * @hw: pointer to the hardware struct
- * @enable: state to enter, either enabled or disabled
- *
- * enables/disables replication of packets across multiple pools.
- **/
-void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
-{
- u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
-
- if (enable)
- vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
- else
- vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
-
- E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
-}
-
-/**
- * e1000_read_phy_reg_82580 - Read 82580 MDI control register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the MDI control register in the PHY at offset and stores the
- * information read to data.
- **/
-static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_read_phy_reg_82580");
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
-
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_82580 - Write 82580 MDI control register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write to register at offset
- *
- * Writes data to MDI control register in the PHY at offset.
- **/
-static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_write_phy_reg_82580");
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
-
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
- * @hw: pointer to the HW structure
- *
- * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
- * the values found in the EEPROM. This addresses an issue in which these
- * bits are not restored from EEPROM after reset.
- **/
-static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u32 mdicnfg;
- u16 nvm_data = 0;
-
- DEBUGFUNC("e1000_reset_mdicnfg_82580");
-
- if (hw->mac.type != e1000_82580)
- goto out;
- if (!e1000_sgmii_active_82575(hw))
- goto out;
-
- ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
- NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
- &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
- if (nvm_data & NVM_WORD24_EXT_MDIO)
- mdicnfg |= E1000_MDICNFG_EXT_MDIO;
- if (nvm_data & NVM_WORD24_COM_MDIO)
- mdicnfg |= E1000_MDICNFG_COM_MDIO;
- E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
-out:
- return ret_val;
-}
-
-/**
- * e1000_reset_hw_82580 - Reset hardware
- * @hw: pointer to the HW structure
- *
- * This resets function or entire device (all ports, etc.)
- * to a known state.
- **/
-static s32 e1000_reset_hw_82580(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- /* BH SW mailbox bit in SW_FW_SYNC */
- u16 swmbsw_mask = E1000_SW_SYNCH_MB;
- u32 ctrl;
- bool global_device_reset = hw->dev_spec._82575.global_device_reset;
-
- DEBUGFUNC("e1000_reset_hw_82580");
-
- hw->dev_spec._82575.global_device_reset = FALSE;
-
- /* Get current control state. */
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- /*
- * Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- ret_val = e1000_disable_pcie_master_generic(hw);
- if (ret_val)
- DEBUGOUT("PCI-E Master disable polling has failed.\n");
-
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- E1000_WRITE_REG(hw, E1000_RCTL, 0);
- E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
-
- msec_delay(10);
-
- /* Determine whether or not a global dev reset is requested */
- if (global_device_reset &&
- e1000_acquire_swfw_sync_82575(hw, swmbsw_mask))
- global_device_reset = FALSE;
-
- if (global_device_reset &&
- !(E1000_READ_REG(hw, E1000_STATUS) & E1000_STAT_DEV_RST_SET))
- ctrl |= E1000_CTRL_DEV_RST;
- else
- ctrl |= E1000_CTRL_RST;
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- /* Add delay to insure DEV_RST has time to complete */
- if (global_device_reset)
- msec_delay(5);
-
- ret_val = e1000_get_auto_rd_done_generic(hw);
- if (ret_val) {
- /*
- * When auto config read does not complete, do not
- * return with an error. This can happen in situations
- * where there is no eeprom and prevents getting link.
- */
- DEBUGOUT("Auto Read Done did not complete\n");
- }
-
- /* If EEPROM is not present, run manual init scripts */
- if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
- e1000_reset_init_script_82575(hw);
-
- /* clear global device reset status bit */
- E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);
-
- /* Clear any pending interrupt events. */
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- E1000_READ_REG(hw, E1000_ICR);
-
- ret_val = e1000_reset_mdicnfg_82580(hw);
- if (ret_val)
- DEBUGOUT("Could not reset MDICNFG based on EEPROM\n");
-
- /* Install any alternate MAC address into RAR0 */
- ret_val = e1000_check_alt_mac_addr_generic(hw);
-
- /* Release semaphore */
- if (global_device_reset)
- e1000_release_swfw_sync_82575(hw, swmbsw_mask);
-
- return ret_val;
-}
-
-/**
- * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size
- * @data: data received by reading RXPBS register
- *
- * The 82580 uses a table based approach for packet buffer allocation sizes.
- * This function converts the retrieved value into the correct table value
- * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
- * 0x0 36 72 144 1 2 4 8 16
- * 0x8 35 70 140 rsv rsv rsv rsv rsv
- */
-u16 e1000_rxpbs_adjust_82580(u32 data)
-{
- u16 ret_val = 0;
-
- if (data < E1000_82580_RXPBS_TABLE_SIZE)
- ret_val = e1000_82580_rxpbs_table[data];
-
- return ret_val;
-}
-
-/**
- * e1000_validate_nvm_checksum_with_offset - Validate EEPROM
- * checksum
- * @hw: pointer to the HW structure
- * @offset: offset in words of the checksum protected region
- *
- * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- * and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
-s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 checksum = 0;
- u16 i, nvm_data;
-
- DEBUGFUNC("e1000_validate_nvm_checksum_with_offset");
-
- for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
- ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
- checksum += nvm_data;
- }
-
- if (checksum != (u16) NVM_SUM) {
- DEBUGOUT("NVM Checksum Invalid\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_update_nvm_checksum_with_offset - Update EEPROM
- * checksum
- * @hw: pointer to the HW structure
- * @offset: offset in words of the checksum protected region
- *
- * Updates the EEPROM checksum by reading/adding each word of the EEPROM
- * up to the checksum. Then calculates the EEPROM checksum and writes the
- * value to the EEPROM.
- **/
-s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
-{
- s32 ret_val;
- u16 checksum = 0;
- u16 i, nvm_data;
-
- DEBUGFUNC("e1000_update_nvm_checksum_with_offset");
-
- for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
- ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error while updating checksum.\n");
- goto out;
- }
- checksum += nvm_data;
- }
- checksum = (u16) NVM_SUM - checksum;
- ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
- &checksum);
- if (ret_val)
- DEBUGOUT("NVM Write Error while updating checksum.\n");
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Calculates the EEPROM section checksum by reading/adding each word of
- * the EEPROM and then verifies that the sum of the EEPROM is
- * equal to 0xBABA.
- **/
-static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 eeprom_regions_count = 1;
- u16 j, nvm_data;
- u16 nvm_offset;
-
- DEBUGFUNC("e1000_validate_nvm_checksum_82580");
-
- ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
- /* if chekcsums compatibility bit is set validate checksums
- * for all 4 ports. */
- eeprom_regions_count = 4;
- }
-
- for (j = 0; j < eeprom_regions_count; j++) {
- nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
- ret_val = e1000_validate_nvm_checksum_with_offset(hw,
- nvm_offset);
- if (ret_val != E1000_SUCCESS)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_update_nvm_checksum_82580 - Update EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Updates the EEPROM section checksums for all 4 ports by reading/adding
- * each word of the EEPROM up to the checksum. Then calculates the EEPROM
- * checksum and writes the value to the EEPROM.
- **/
-static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 j, nvm_data;
- u16 nvm_offset;
-
- DEBUGFUNC("e1000_update_nvm_checksum_82580");
-
- ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error while updating checksum"
- " compatibility bit.\n");
- goto out;
- }
-
- if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
- /* set compatibility bit to validate checksums appropriately */
- nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
- ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
- &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Write Error while updating checksum"
- " compatibility bit.\n");
- goto out;
- }
- }
-
- for (j = 0; j < 4; j++) {
- nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
- ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
- if (ret_val) {
- goto out;
- }
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Calculates the EEPROM section checksum by reading/adding each word of
- * the EEPROM and then verifies that the sum of the EEPROM is
- * equal to 0xBABA.
- **/
-static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 j;
- u16 nvm_offset;
-
- DEBUGFUNC("e1000_validate_nvm_checksum_i350");
-
- for (j = 0; j < 4; j++) {
- nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
- ret_val = e1000_validate_nvm_checksum_with_offset(hw,
- nvm_offset);
- if (ret_val != E1000_SUCCESS)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_update_nvm_checksum_i350 - Update EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Updates the EEPROM section checksums for all 4 ports by reading/adding
- * each word of the EEPROM up to the checksum. Then calculates the EEPROM
- * checksum and writes the value to the EEPROM.
- **/
-static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 j;
- u16 nvm_offset;
-
- DEBUGFUNC("e1000_update_nvm_checksum_i350");
-
- for (j = 0; j < 4; j++) {
- nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
- ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
- if (ret_val != E1000_SUCCESS)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_set_eee_i350 - Enable/disable EEE support
- * @hw: pointer to the HW structure
- *
- * Enable/disable EEE based on setting in dev_spec structure.
- *
- **/
-s32 e1000_set_eee_i350(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u32 ipcnfg, eeer, ctrl_ext;
-
- DEBUGFUNC("e1000_set_eee_i350");
-
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- if ((hw->mac.type != e1000_i350) ||
- (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
- goto out;
- ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG);
- eeer = E1000_READ_REG(hw, E1000_EEER);
-
- /* enable or disable per user setting */
- if (!(hw->dev_spec._82575.eee_disable)) {
- ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
- E1000_IPCNFG_EEE_100M_AN);
- eeer |= (E1000_EEER_TX_LPI_EN |
- E1000_EEER_RX_LPI_EN |
- E1000_EEER_LPI_FC);
-
- } else {
- ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
- E1000_IPCNFG_EEE_100M_AN);
- eeer &= ~(E1000_EEER_TX_LPI_EN |
- E1000_EEER_RX_LPI_EN |
- E1000_EEER_LPI_FC);
- }
- E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg);
- E1000_WRITE_REG(hw, E1000_EEER, eeer);
- E1000_READ_REG(hw, E1000_IPCNFG);
- E1000_READ_REG(hw, E1000_EEER);
-out:
-
- return ret_val;
-}
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#ifndef _E1000_82575_H_
-#define _E1000_82575_H_
-
-#define ID_LED_DEFAULT_82575_SERDES ((ID_LED_DEF1_DEF2 << 12) | \
- (ID_LED_DEF1_DEF2 << 8) | \
- (ID_LED_DEF1_DEF2 << 4) | \
- (ID_LED_OFF1_ON2))
-/*
- * Receive Address Register Count
- * Number of high/low register pairs in the RAR. The RAR (Receive Address
- * Registers) holds the directed and multicast addresses that we monitor.
- * These entries are also used for MAC-based filtering.
- */
-/*
- * For 82576, there are an additional set of RARs that begin at an offset
- * separate from the first set of RARs.
- */
-#define E1000_RAR_ENTRIES_82575 16
-#define E1000_RAR_ENTRIES_82576 24
-#define E1000_RAR_ENTRIES_82580 24
-#define E1000_RAR_ENTRIES_I350 32
-#define E1000_SW_SYNCH_MB 0x00000100
-#define E1000_STAT_DEV_RST_SET 0x00100000
-#define E1000_CTRL_DEV_RST 0x20000000
-
-#ifdef E1000_BIT_FIELDS
-struct e1000_adv_data_desc {
- __le64 buffer_addr; /* Address of the descriptor's data buffer */
- union {
- u32 data;
- struct {
- u32 datalen :16; /* Data buffer length */
- u32 rsvd :4;
- u32 dtyp :4; /* Descriptor type */
- u32 dcmd :8; /* Descriptor command */
- } config;
- } lower;
- union {
- u32 data;
- struct {
- u32 status :4; /* Descriptor status */
- u32 idx :4;
- u32 popts :6; /* Packet Options */
- u32 paylen :18; /* Payload length */
- } options;
- } upper;
-};
-
-#define E1000_TXD_DTYP_ADV_C 0x2 /* Advanced Context Descriptor */
-#define E1000_TXD_DTYP_ADV_D 0x3 /* Advanced Data Descriptor */
-#define E1000_ADV_TXD_CMD_DEXT 0x20 /* Descriptor extension (0 = legacy) */
-#define E1000_ADV_TUCMD_IPV4 0x2 /* IP Packet Type: 1=IPv4 */
-#define E1000_ADV_TUCMD_IPV6 0x0 /* IP Packet Type: 0=IPv6 */
-#define E1000_ADV_TUCMD_L4T_UDP 0x0 /* L4 Packet TYPE of UDP */
-#define E1000_ADV_TUCMD_L4T_TCP 0x4 /* L4 Packet TYPE of TCP */
-#define E1000_ADV_TUCMD_MKRREQ 0x10 /* Indicates markers are required */
-#define E1000_ADV_DCMD_EOP 0x1 /* End of Packet */
-#define E1000_ADV_DCMD_IFCS 0x2 /* Insert FCS (Ethernet CRC) */
-#define E1000_ADV_DCMD_RS 0x8 /* Report Status */
-#define E1000_ADV_DCMD_VLE 0x40 /* Add VLAN tag */
-#define E1000_ADV_DCMD_TSE 0x80 /* TCP Seg enable */
-/* Extended Device Control */
-#define E1000_CTRL_EXT_NSICR 0x00000001 /* Disable Intr Clear all on read */
-
-struct e1000_adv_context_desc {
- union {
- u32 ip_config;
- struct {
- u32 iplen :9;
- u32 maclen :7;
- u32 vlan_tag :16;
- } fields;
- } ip_setup;
- u32 seq_num;
- union {
- u64 l4_config;
- struct {
- u32 mkrloc :9;
- u32 tucmd :11;
- u32 dtyp :4;
- u32 adv :8;
- u32 rsvd :4;
- u32 idx :4;
- u32 l4len :8;
- u32 mss :16;
- } fields;
- } l4_setup;
-};
-#endif
-
-/* SRRCTL bit definitions */
-#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */
-#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00
-#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */
-#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000
-#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000
-#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000
-#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000
-#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000
-#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
-#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000
-#define E1000_SRRCTL_TIMESTAMP 0x40000000
-#define E1000_SRRCTL_DROP_EN 0x80000000
-
-#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F
-#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00
-
-#define E1000_TX_HEAD_WB_ENABLE 0x1
-#define E1000_TX_SEQNUM_WB_ENABLE 0x2
-
-#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002
-#define E1000_MRQC_ENABLE_VMDQ 0x00000003
-#define E1000_MRQC_ENABLE_VMDQ_RSS_2Q 0x00000005
-#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000
-#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000
-#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000
-#define E1000_MRQC_ENABLE_RSS_8Q 0x00000002
-
-#define E1000_VMRCTL_MIRROR_PORT_SHIFT 8
-#define E1000_VMRCTL_MIRROR_DSTPORT_MASK (7 << E1000_VMRCTL_MIRROR_PORT_SHIFT)
-#define E1000_VMRCTL_POOL_MIRROR_ENABLE (1 << 0)
-#define E1000_VMRCTL_UPLINK_MIRROR_ENABLE (1 << 1)
-#define E1000_VMRCTL_DOWNLINK_MIRROR_ENABLE (1 << 2)
-
-#define E1000_EICR_TX_QUEUE ( \
- E1000_EICR_TX_QUEUE0 | \
- E1000_EICR_TX_QUEUE1 | \
- E1000_EICR_TX_QUEUE2 | \
- E1000_EICR_TX_QUEUE3)
-
-#define E1000_EICR_RX_QUEUE ( \
- E1000_EICR_RX_QUEUE0 | \
- E1000_EICR_RX_QUEUE1 | \
- E1000_EICR_RX_QUEUE2 | \
- E1000_EICR_RX_QUEUE3)
-
-#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE
-#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE
-
-#define EIMS_ENABLE_MASK ( \
- E1000_EIMS_RX_QUEUE | \
- E1000_EIMS_TX_QUEUE | \
- E1000_EIMS_TCP_TIMER | \
- E1000_EIMS_OTHER)
-
-/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */
-#define E1000_IMIR_PORT_IM_EN 0x00010000 /* TCP port enable */
-#define E1000_IMIR_PORT_BP 0x00020000 /* TCP port check bypass */
-#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */
-#define E1000_IMIREXT_CTRL_URG 0x00002000 /* Check URG bit in header */
-#define E1000_IMIREXT_CTRL_ACK 0x00004000 /* Check ACK bit in header */
-#define E1000_IMIREXT_CTRL_PSH 0x00008000 /* Check PSH bit in header */
-#define E1000_IMIREXT_CTRL_RST 0x00010000 /* Check RST bit in header */
-#define E1000_IMIREXT_CTRL_SYN 0x00020000 /* Check SYN bit in header */
-#define E1000_IMIREXT_CTRL_FIN 0x00040000 /* Check FIN bit in header */
-#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */
-
-/* Receive Descriptor - Advanced */
-union e1000_adv_rx_desc {
- struct {
- __le64 pkt_addr; /* Packet buffer address */
- __le64 hdr_addr; /* Header buffer address */
- } read;
- struct {
- struct {
- union {
- __le32 data;
- struct {
- __le16 pkt_info; /*RSS type, Pkt type*/
- /* Split Header, header buffer len */
- __le16 hdr_info;
- } hs_rss;
- } lo_dword;
- union {
- __le32 rss; /* RSS Hash */
- struct {
- __le16 ip_id; /* IP id */
- __le16 csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- __le32 status_error; /* ext status/error */
- __le16 length; /* Packet length */
- __le16 vlan; /* VLAN tag */
- } upper;
- } wb; /* writeback */
-};
-
-#define E1000_RXDADV_RSSTYPE_MASK 0x0000000F
-#define E1000_RXDADV_RSSTYPE_SHIFT 12
-#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
-#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
-#define E1000_RXDADV_SPLITHEADER_EN 0x00001000
-#define E1000_RXDADV_SPH 0x8000
-#define E1000_RXDADV_STAT_TS 0x10000 /* Pkt was time stamped */
-#define E1000_RXDADV_STAT_TSIP 0x08000 /* timestamp in packet */
-#define E1000_RXDADV_ERR_HBO 0x00800000
-
-/* RSS Hash results */
-#define E1000_RXDADV_RSSTYPE_NONE 0x00000000
-#define E1000_RXDADV_RSSTYPE_IPV4_TCP 0x00000001
-#define E1000_RXDADV_RSSTYPE_IPV4 0x00000002
-#define E1000_RXDADV_RSSTYPE_IPV6_TCP 0x00000003
-#define E1000_RXDADV_RSSTYPE_IPV6_EX 0x00000004
-#define E1000_RXDADV_RSSTYPE_IPV6 0x00000005
-#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006
-#define E1000_RXDADV_RSSTYPE_IPV4_UDP 0x00000007
-#define E1000_RXDADV_RSSTYPE_IPV6_UDP 0x00000008
-#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009
-
-/* RSS Packet Types as indicated in the receive descriptor */
-#define E1000_RXDADV_PKTTYPE_NONE 0x00000000
-#define E1000_RXDADV_PKTTYPE_IPV4 0x00000010 /* IPV4 hdr present */
-#define E1000_RXDADV_PKTTYPE_IPV4_EX 0x00000020 /* IPV4 hdr + extensions */
-#define E1000_RXDADV_PKTTYPE_IPV6 0x00000040 /* IPV6 hdr present */
-#define E1000_RXDADV_PKTTYPE_IPV6_EX 0x00000080 /* IPV6 hdr + extensions */
-#define E1000_RXDADV_PKTTYPE_TCP 0x00000100 /* TCP hdr present */
-#define E1000_RXDADV_PKTTYPE_UDP 0x00000200 /* UDP hdr present */
-#define E1000_RXDADV_PKTTYPE_SCTP 0x00000400 /* SCTP hdr present */
-#define E1000_RXDADV_PKTTYPE_NFS 0x00000800 /* NFS hdr present */
-
-#define E1000_RXDADV_PKTTYPE_IPSEC_ESP 0x00001000 /* IPSec ESP */
-#define E1000_RXDADV_PKTTYPE_IPSEC_AH 0x00002000 /* IPSec AH */
-#define E1000_RXDADV_PKTTYPE_LINKSEC 0x00004000 /* LinkSec Encap */
-#define E1000_RXDADV_PKTTYPE_ETQF 0x00008000 /* PKTTYPE is ETQF index */
-#define E1000_RXDADV_PKTTYPE_ETQF_MASK 0x00000070 /* ETQF has 8 indices */
-#define E1000_RXDADV_PKTTYPE_ETQF_SHIFT 4 /* Right-shift 4 bits */
-
-/* LinkSec results */
-/* Security Processing bit Indication */
-#define E1000_RXDADV_LNKSEC_STATUS_SECP 0x00020000
-#define E1000_RXDADV_LNKSEC_ERROR_BIT_MASK 0x18000000
-#define E1000_RXDADV_LNKSEC_ERROR_NO_SA_MATCH 0x08000000
-#define E1000_RXDADV_LNKSEC_ERROR_REPLAY_ERROR 0x10000000
-#define E1000_RXDADV_LNKSEC_ERROR_BAD_SIG 0x18000000
-
-#define E1000_RXDADV_IPSEC_STATUS_SECP 0x00020000
-#define E1000_RXDADV_IPSEC_ERROR_BIT_MASK 0x18000000
-#define E1000_RXDADV_IPSEC_ERROR_INVALID_PROTOCOL 0x08000000
-#define E1000_RXDADV_IPSEC_ERROR_INVALID_LENGTH 0x10000000
-#define E1000_RXDADV_IPSEC_ERROR_AUTHENTICATION_FAILED 0x18000000
-
-/* Transmit Descriptor - Advanced */
-union e1000_adv_tx_desc {
- struct {
- __le64 buffer_addr; /* Address of descriptor's data buf */
- __le32 cmd_type_len;
- __le32 olinfo_status;
- } read;
- struct {
- __le64 rsvd; /* Reserved */
- __le32 nxtseq_seed;
- __le32 status;
- } wb;
-};
-
-/* Adv Transmit Descriptor Config Masks */
-#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */
-#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */
-#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */
-#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */
-#define E1000_ADVTXD_DCMD_DDTYP_ISCSI 0x10000000 /* DDP hdr type or iSCSI */
-#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */
-#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */
-#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */
-#define E1000_ADVTXD_MAC_LINKSEC 0x00040000 /* Apply LinkSec on packet */
-#define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp packet */
-#define E1000_ADVTXD_STAT_SN_CRC 0x00000002 /* NXTSEQ/SEED present in WB */
-#define E1000_ADVTXD_IDX_SHIFT 4 /* Adv desc Index shift */
-#define E1000_ADVTXD_POPTS_ISCO_1ST 0x00000000 /* 1st TSO of iSCSI PDU */
-#define E1000_ADVTXD_POPTS_ISCO_MDL 0x00000800 /* Middle TSO of iSCSI PDU */
-#define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */
-#define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800 /* 1st&Last TSO-full iSCSI PDU*/
-#define E1000_ADVTXD_POPTS_IPSEC 0x00000400 /* IPSec offload request */
-#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */
-
-/* Context descriptors */
-struct e1000_adv_tx_context_desc {
- __le32 vlan_macip_lens;
- __le32 seqnum_seed;
- __le32 type_tucmd_mlhl;
- __le32 mss_l4len_idx;
-};
-
-#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */
-#define E1000_ADVTXD_VLAN_SHIFT 16 /* Adv ctxt vlan tag shift */
-#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */
-#define E1000_ADVTXD_TUCMD_IPV6 0x00000000 /* IP Packet Type: 0=IPv6 */
-#define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000 /* L4 Packet TYPE of UDP */
-#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */
-#define E1000_ADVTXD_TUCMD_L4T_SCTP 0x00001000 /* L4 Packet TYPE of SCTP */
-#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP 0x00002000 /* IPSec Type ESP */
-/* IPSec Encrypt Enable for ESP */
-#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN 0x00004000
-#define E1000_ADVTXD_TUCMD_MKRREQ 0x00002000 /* Req requires Markers and CRC */
-#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */
-#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */
-/* Adv ctxt IPSec SA IDX mask */
-#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK 0x000000FF
-/* Adv ctxt IPSec ESP len mask */
-#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK 0x000000FF
-
-/* Additional Transmit Descriptor Control definitions */
-#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Tx Queue */
-#define E1000_TXDCTL_SWFLSH 0x04000000 /* Tx Desc. write-back flushing */
-/* Tx Queue Arbitration Priority 0=low, 1=high */
-#define E1000_TXDCTL_PRIORITY 0x08000000
-
-/* Additional Receive Descriptor Control definitions */
-#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Rx Queue */
-#define E1000_RXDCTL_SWFLSH 0x04000000 /* Rx Desc. write-back flushing */
-
-/* Direct Cache Access (DCA) definitions */
-#define E1000_DCA_CTRL_DCA_ENABLE 0x00000000 /* DCA Enable */
-#define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */
-
-#define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */
-#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */
-
-#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */
-#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */
-#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header enable */
-#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload enable */
-
-#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */
-#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */
-#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */
-
-#define E1000_DCA_TXCTRL_CPUID_MASK_82576 0xFF000000 /* Tx CPUID Mask */
-#define E1000_DCA_RXCTRL_CPUID_MASK_82576 0xFF000000 /* Rx CPUID Mask */
-#define E1000_DCA_TXCTRL_CPUID_SHIFT_82576 24 /* Tx CPUID */
-#define E1000_DCA_RXCTRL_CPUID_SHIFT_82576 24 /* Rx CPUID */
-
-/* Additional interrupt register bit definitions */
-#define E1000_ICR_LSECPNS 0x00000020 /* PN threshold - server */
-#define E1000_IMS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */
-#define E1000_ICS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */
-
-/* ETQF register bit definitions */
-#define E1000_ETQF_FILTER_ENABLE (1 << 26)
-#define E1000_ETQF_IMM_INT (1 << 29)
-#define E1000_ETQF_1588 (1 << 30)
-#define E1000_ETQF_QUEUE_ENABLE (1 << 31)
-/*
- * ETQF filter list: one static filter per filter consumer. This is
- * to avoid filter collisions later. Add new filters
- * here!!
- *
- * Current filters:
- * EAPOL 802.1x (0x888e): Filter 0
- */
-#define E1000_ETQF_FILTER_EAPOL 0
-
-#define E1000_FTQF_VF_BP 0x00008000
-#define E1000_FTQF_1588_TIME_STAMP 0x08000000
-#define E1000_FTQF_MASK 0xF0000000
-#define E1000_FTQF_MASK_PROTO_BP 0x10000000
-#define E1000_FTQF_MASK_SOURCE_ADDR_BP 0x20000000
-#define E1000_FTQF_MASK_DEST_ADDR_BP 0x40000000
-#define E1000_FTQF_MASK_SOURCE_PORT_BP 0x80000000
-
-#define E1000_NVM_APME_82575 0x0400
-#define MAX_NUM_VFS 8
-
-#define E1000_DTXSWC_MAC_SPOOF_MASK 0x000000FF /* Per VF MAC spoof control */
-#define E1000_DTXSWC_VLAN_SPOOF_MASK 0x0000FF00 /* Per VF VLAN spoof control */
-#define E1000_DTXSWC_LLE_MASK 0x00FF0000 /* Per VF Local LB enables */
-#define E1000_DTXSWC_VLAN_SPOOF_SHIFT 8
-#define E1000_DTXSWC_LLE_SHIFT 16
-#define E1000_DTXSWC_VMDQ_LOOPBACK_EN (1 << 31) /* global VF LB enable */
-
-/* Easy defines for setting default pool, would normally be left a zero */
-#define E1000_VT_CTL_DEFAULT_POOL_SHIFT 7
-#define E1000_VT_CTL_DEFAULT_POOL_MASK (0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT)
-
-/* Other useful VMD_CTL register defines */
-#define E1000_VT_CTL_IGNORE_MAC (1 << 28)
-#define E1000_VT_CTL_DISABLE_DEF_POOL (1 << 29)
-#define E1000_VT_CTL_VM_REPL_EN (1 << 30)
-
-/* Per VM Offload register setup */
-#define E1000_VMOLR_RLPML_MASK 0x00003FFF /* Long Packet Maximum Length mask */
-#define E1000_VMOLR_LPE 0x00010000 /* Accept Long packet */
-#define E1000_VMOLR_RSSE 0x00020000 /* Enable RSS */
-#define E1000_VMOLR_AUPE 0x01000000 /* Accept untagged packets */
-#define E1000_VMOLR_ROMPE 0x02000000 /* Accept overflow multicast */
-#define E1000_VMOLR_ROPE 0x04000000 /* Accept overflow unicast */
-#define E1000_VMOLR_BAM 0x08000000 /* Accept Broadcast packets */
-#define E1000_VMOLR_MPME 0x10000000 /* Multicast promiscuous mode */
-#define E1000_VMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */
-#define E1000_VMOLR_STRCRC 0x80000000 /* CRC stripping enable */
-
-#define E1000_VMOLR_VPE 0x00800000 /* VLAN promiscuous enable */
-#define E1000_VMOLR_UPE 0x20000000 /* Unicast promisuous enable */
-#define E1000_DVMOLR_HIDVLAN 0x20000000 /* Vlan hiding enable */
-#define E1000_DVMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */
-#define E1000_DVMOLR_STRCRC 0x80000000 /* CRC stripping enable */
-
-#define E1000_PBRWAC_WALPB 0x00000007 /* Wrap around event on LAN Rx PB */
-#define E1000_PBRWAC_PBE 0x00000008 /* Rx packet buffer empty */
-
-#define E1000_VLVF_ARRAY_SIZE 32
-#define E1000_VLVF_VLANID_MASK 0x00000FFF
-#define E1000_VLVF_POOLSEL_SHIFT 12
-#define E1000_VLVF_POOLSEL_MASK (0xFF << E1000_VLVF_POOLSEL_SHIFT)
-#define E1000_VLVF_LVLAN 0x00100000
-#define E1000_VLVF_VLANID_ENABLE 0x80000000
-
-#define E1000_VMVIR_VLANA_DEFAULT 0x40000000 /* Always use default VLAN */
-#define E1000_VMVIR_VLANA_NEVER 0x80000000 /* Never insert VLAN tag */
-
-#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */
-
-#define E1000_IOVCTL 0x05BBC
-#define E1000_IOVCTL_REUSE_VFQ 0x00000001
-
-#define E1000_RPLOLR_STRVLAN 0x40000000
-#define E1000_RPLOLR_STRCRC 0x80000000
-
-#define E1000_TCTL_EXT_COLD 0x000FFC00
-#define E1000_TCTL_EXT_COLD_SHIFT 10
-
-#define E1000_DTXCTL_8023LL 0x0004
-#define E1000_DTXCTL_VLAN_ADDED 0x0008
-#define E1000_DTXCTL_OOS_ENABLE 0x0010
-#define E1000_DTXCTL_MDP_EN 0x0020
-#define E1000_DTXCTL_SPOOF_INT 0x0040
-
-#define ALL_QUEUES 0xFFFF
-
-/* Rx packet buffer size defines */
-#define E1000_RXPBS_SIZE_MASK_82576 0x0000007F
-void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable);
-void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf);
-void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable);
-s32 e1000_init_nvm_params_82575(struct e1000_hw *hw);
-
-enum e1000_promisc_type {
- e1000_promisc_disabled = 0, /* all promisc modes disabled */
- e1000_promisc_unicast = 1, /* unicast promiscuous enabled */
- e1000_promisc_multicast = 2, /* multicast promiscuous enabled */
- e1000_promisc_enabled = 3, /* both uni and multicast promisc */
- e1000_num_promisc_types
-};
-
-void e1000_vfta_set_vf(struct e1000_hw *, u16, bool);
-void e1000_rlpml_set_vf(struct e1000_hw *, u16);
-s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type type);
-u16 e1000_rxpbs_adjust_82580(u32 data);
-s32 e1000_set_eee_i350(struct e1000_hw *);
-#endif /* _E1000_82575_H_ */
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#include "e1000_api.h"
-
-/**
- * e1000_init_mac_params - Initialize MAC function pointers
- * @hw: pointer to the HW structure
- *
- * This function initializes the function pointers for the MAC
- * set of functions. Called by drivers or by e1000_setup_init_funcs.
- **/
-s32 e1000_init_mac_params(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- if (hw->mac.ops.init_params) {
- ret_val = hw->mac.ops.init_params(hw);
- if (ret_val) {
- DEBUGOUT("MAC Initialization Error\n");
- goto out;
- }
- } else {
- DEBUGOUT("mac.init_mac_params was NULL\n");
- ret_val = -E1000_ERR_CONFIG;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_nvm_params - Initialize NVM function pointers
- * @hw: pointer to the HW structure
- *
- * This function initializes the function pointers for the NVM
- * set of functions. Called by drivers or by e1000_setup_init_funcs.
- **/
-s32 e1000_init_nvm_params(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- if (hw->nvm.ops.init_params) {
- ret_val = hw->nvm.ops.init_params(hw);
- if (ret_val) {
- DEBUGOUT("NVM Initialization Error\n");
- goto out;
- }
- } else {
- DEBUGOUT("nvm.init_nvm_params was NULL\n");
- ret_val = -E1000_ERR_CONFIG;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_phy_params - Initialize PHY function pointers
- * @hw: pointer to the HW structure
- *
- * This function initializes the function pointers for the PHY
- * set of functions. Called by drivers or by e1000_setup_init_funcs.
- **/
-s32 e1000_init_phy_params(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- if (hw->phy.ops.init_params) {
- ret_val = hw->phy.ops.init_params(hw);
- if (ret_val) {
- DEBUGOUT("PHY Initialization Error\n");
- goto out;
- }
- } else {
- DEBUGOUT("phy.init_phy_params was NULL\n");
- ret_val = -E1000_ERR_CONFIG;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_mbx_params - Initialize mailbox function pointers
- * @hw: pointer to the HW structure
- *
- * This function initializes the function pointers for the PHY
- * set of functions. Called by drivers or by e1000_setup_init_funcs.
- **/
-s32 e1000_init_mbx_params(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- if (hw->mbx.ops.init_params) {
- ret_val = hw->mbx.ops.init_params(hw);
- if (ret_val) {
- DEBUGOUT("Mailbox Initialization Error\n");
- goto out;
- }
- } else {
- DEBUGOUT("mbx.init_mbx_params was NULL\n");
- ret_val = -E1000_ERR_CONFIG;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_set_mac_type - Sets MAC type
- * @hw: pointer to the HW structure
- *
- * This function sets the mac type of the adapter based on the
- * device ID stored in the hw structure.
- * MUST BE FIRST FUNCTION CALLED (explicitly or through
- * e1000_setup_init_funcs()).
- **/
-s32 e1000_set_mac_type(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_set_mac_type");
-
- switch (hw->device_id) {
- case E1000_DEV_ID_82575EB_COPPER:
- case E1000_DEV_ID_82575EB_FIBER_SERDES:
- case E1000_DEV_ID_82575GB_QUAD_COPPER:
- mac->type = e1000_82575;
- break;
- case E1000_DEV_ID_82576:
- case E1000_DEV_ID_82576_FIBER:
- case E1000_DEV_ID_82576_SERDES:
- case E1000_DEV_ID_82576_QUAD_COPPER:
- case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
- case E1000_DEV_ID_82576_NS:
- case E1000_DEV_ID_82576_NS_SERDES:
- case E1000_DEV_ID_82576_SERDES_QUAD:
- mac->type = e1000_82576;
- break;
- case E1000_DEV_ID_82580_COPPER:
- case E1000_DEV_ID_82580_FIBER:
- case E1000_DEV_ID_82580_SERDES:
- case E1000_DEV_ID_82580_SGMII:
- case E1000_DEV_ID_82580_COPPER_DUAL:
- case E1000_DEV_ID_82580_QUAD_FIBER:
- case E1000_DEV_ID_DH89XXCC_SGMII:
- case E1000_DEV_ID_DH89XXCC_SERDES:
- case E1000_DEV_ID_DH89XXCC_BACKPLANE:
- case E1000_DEV_ID_DH89XXCC_SFP:
- mac->type = e1000_82580;
- break;
- case E1000_DEV_ID_I350_COPPER:
- case E1000_DEV_ID_I350_FIBER:
- case E1000_DEV_ID_I350_SERDES:
- case E1000_DEV_ID_I350_SGMII:
- case E1000_DEV_ID_I350_DA4:
- mac->type = e1000_i350;
- break;
- case E1000_DEV_ID_82576_VF:
- mac->type = e1000_vfadapt;
- break;
- case E1000_DEV_ID_I350_VF:
- mac->type = e1000_vfadapt_i350;
- break;
- default:
- /* Should never have loaded on this device */
- ret_val = -E1000_ERR_MAC_INIT;
- break;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_setup_init_funcs - Initializes function pointers
- * @hw: pointer to the HW structure
- * @init_device: TRUE will initialize the rest of the function pointers
- * getting the device ready for use. FALSE will only set
- * MAC type and the function pointers for the other init
- * functions. Passing FALSE will not generate any hardware
- * reads or writes.
- *
- * This function must be called by a driver in order to use the rest
- * of the 'shared' code files. Called by drivers only.
- **/
-s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
-{
- s32 ret_val;
-
- /* Can't do much good without knowing the MAC type. */
- ret_val = e1000_set_mac_type(hw);
- if (ret_val) {
- DEBUGOUT("ERROR: MAC type could not be set properly.\n");
- goto out;
- }
-
- if (!hw->hw_addr) {
- DEBUGOUT("ERROR: Registers not mapped\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- /*
- * Init function pointers to generic implementations. We do this first
- * allowing a driver module to override it afterward.
- */
- e1000_init_mac_ops_generic(hw);
- e1000_init_phy_ops_generic(hw);
- e1000_init_nvm_ops_generic(hw);
- e1000_init_mbx_ops_generic(hw);
-
- /*
- * Set up the init function pointers. These are functions within the
- * adapter family file that sets up function pointers for the rest of
- * the functions in that family.
- */
- switch (hw->mac.type) {
- case e1000_82575:
- case e1000_82576:
- case e1000_82580:
- case e1000_i350:
- e1000_init_function_pointers_82575(hw);
- break;
- case e1000_vfadapt:
- e1000_init_function_pointers_vf(hw);
- break;
- case e1000_vfadapt_i350:
- e1000_init_function_pointers_vf(hw);
- break;
- default:
- DEBUGOUT("Hardware not supported\n");
- ret_val = -E1000_ERR_CONFIG;
- break;
- }
-
- /*
- * Initialize the rest of the function pointers. These require some
- * register reads/writes in some cases.
- */
- if (!(ret_val) && init_device) {
- ret_val = e1000_init_mac_params(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_init_nvm_params(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_init_phy_params(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_init_mbx_params(hw);
- if (ret_val)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_bus_info - Obtain bus information for adapter
- * @hw: pointer to the HW structure
- *
- * This will obtain information about the HW bus for which the
- * adapter is attached and stores it in the hw structure. This is a
- * function pointer entry point called by drivers.
- **/
-s32 e1000_get_bus_info(struct e1000_hw *hw)
-{
- if (hw->mac.ops.get_bus_info)
- return hw->mac.ops.get_bus_info(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_clear_vfta - Clear VLAN filter table
- * @hw: pointer to the HW structure
- *
- * This clears the VLAN filter table on the adapter. This is a function
- * pointer entry point called by drivers.
- **/
-void e1000_clear_vfta(struct e1000_hw *hw)
-{
- if (hw->mac.ops.clear_vfta)
- hw->mac.ops.clear_vfta(hw);
-}
-
-/**
- * e1000_write_vfta - Write value to VLAN filter table
- * @hw: pointer to the HW structure
- * @offset: the 32-bit offset in which to write the value to.
- * @value: the 32-bit value to write at location offset.
- *
- * This writes a 32-bit value to a 32-bit offset in the VLAN filter
- * table. This is a function pointer entry point called by drivers.
- **/
-void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
-{
- if (hw->mac.ops.write_vfta)
- hw->mac.ops.write_vfta(hw, offset, value);
-}
-
-/**
- * e1000_update_mc_addr_list - Update Multicast addresses
- * @hw: pointer to the HW structure
- * @mc_addr_list: array of multicast addresses to program
- * @mc_addr_count: number of multicast addresses to program
- *
- * Updates the Multicast Table Array.
- * The caller must have a packed mc_addr_list of multicast addresses.
- **/
-void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
- u32 mc_addr_count)
-{
- if (hw->mac.ops.update_mc_addr_list)
- hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
- mc_addr_count);
-}
-
-/**
- * e1000_force_mac_fc - Force MAC flow control
- * @hw: pointer to the HW structure
- *
- * Force the MAC's flow control settings. Currently no func pointer exists
- * and all implementations are handled in the generic version of this
- * function.
- **/
-s32 e1000_force_mac_fc(struct e1000_hw *hw)
-{
- return e1000_force_mac_fc_generic(hw);
-}
-
-/**
- * e1000_check_for_link - Check/Store link connection
- * @hw: pointer to the HW structure
- *
- * This checks the link condition of the adapter and stores the
- * results in the hw->mac structure. This is a function pointer entry
- * point called by drivers.
- **/
-s32 e1000_check_for_link(struct e1000_hw *hw)
-{
- if (hw->mac.ops.check_for_link)
- return hw->mac.ops.check_for_link(hw);
-
- return -E1000_ERR_CONFIG;
-}
-
-/**
- * e1000_check_mng_mode - Check management mode
- * @hw: pointer to the HW structure
- *
- * This checks if the adapter has manageability enabled.
- * This is a function pointer entry point called by drivers.
- **/
-bool e1000_check_mng_mode(struct e1000_hw *hw)
-{
- if (hw->mac.ops.check_mng_mode)
- return hw->mac.ops.check_mng_mode(hw);
-
- return FALSE;
-}
-
-/**
- * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
- * @hw: pointer to the HW structure
- * @buffer: pointer to the host interface
- * @length: size of the buffer
- *
- * Writes the DHCP information to the host interface.
- **/
-s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
-{
- return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
-}
-
-/**
- * e1000_reset_hw - Reset hardware
- * @hw: pointer to the HW structure
- *
- * This resets the hardware into a known state. This is a function pointer
- * entry point called by drivers.
- **/
-s32 e1000_reset_hw(struct e1000_hw *hw)
-{
- if (hw->mac.ops.reset_hw)
- return hw->mac.ops.reset_hw(hw);
-
- return -E1000_ERR_CONFIG;
-}
-
-/**
- * e1000_init_hw - Initialize hardware
- * @hw: pointer to the HW structure
- *
- * This inits the hardware readying it for operation. This is a function
- * pointer entry point called by drivers.
- **/
-s32 e1000_init_hw(struct e1000_hw *hw)
-{
- if (hw->mac.ops.init_hw)
- return hw->mac.ops.init_hw(hw);
-
- return -E1000_ERR_CONFIG;
-}
-
-/**
- * e1000_setup_link - Configures link and flow control
- * @hw: pointer to the HW structure
- *
- * This configures link and flow control settings for the adapter. This
- * is a function pointer entry point called by drivers. While modules can
- * also call this, they probably call their own version of this function.
- **/
-s32 e1000_setup_link(struct e1000_hw *hw)
-{
- if (hw->mac.ops.setup_link)
- return hw->mac.ops.setup_link(hw);
-
- return -E1000_ERR_CONFIG;
-}
-
-/**
- * e1000_get_speed_and_duplex - Returns current speed and duplex
- * @hw: pointer to the HW structure
- * @speed: pointer to a 16-bit value to store the speed
- * @duplex: pointer to a 16-bit value to store the duplex.
- *
- * This returns the speed and duplex of the adapter in the two 'out'
- * variables passed in. This is a function pointer entry point called
- * by drivers.
- **/
-s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
-{
- if (hw->mac.ops.get_link_up_info)
- return hw->mac.ops.get_link_up_info(hw, speed, duplex);
-
- return -E1000_ERR_CONFIG;
-}
-
-/**
- * e1000_setup_led - Configures SW controllable LED
- * @hw: pointer to the HW structure
- *
- * This prepares the SW controllable LED for use and saves the current state
- * of the LED so it can be later restored. This is a function pointer entry
- * point called by drivers.
- **/
-s32 e1000_setup_led(struct e1000_hw *hw)
-{
- if (hw->mac.ops.setup_led)
- return hw->mac.ops.setup_led(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_cleanup_led - Restores SW controllable LED
- * @hw: pointer to the HW structure
- *
- * This restores the SW controllable LED to the value saved off by
- * e1000_setup_led. This is a function pointer entry point called by drivers.
- **/
-s32 e1000_cleanup_led(struct e1000_hw *hw)
-{
- if (hw->mac.ops.cleanup_led)
- return hw->mac.ops.cleanup_led(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_blink_led - Blink SW controllable LED
- * @hw: pointer to the HW structure
- *
- * This starts the adapter LED blinking. Request the LED to be setup first
- * and cleaned up after. This is a function pointer entry point called by
- * drivers.
- **/
-s32 e1000_blink_led(struct e1000_hw *hw)
-{
- if (hw->mac.ops.blink_led)
- return hw->mac.ops.blink_led(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_id_led_init - store LED configurations in SW
- * @hw: pointer to the HW structure
- *
- * Initializes the LED config in SW. This is a function pointer entry point
- * called by drivers.
- **/
-s32 e1000_id_led_init(struct e1000_hw *hw)
-{
- if (hw->mac.ops.id_led_init)
- return hw->mac.ops.id_led_init(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_led_on - Turn on SW controllable LED
- * @hw: pointer to the HW structure
- *
- * Turns the SW defined LED on. This is a function pointer entry point
- * called by drivers.
- **/
-s32 e1000_led_on(struct e1000_hw *hw)
-{
- if (hw->mac.ops.led_on)
- return hw->mac.ops.led_on(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_led_off - Turn off SW controllable LED
- * @hw: pointer to the HW structure
- *
- * Turns the SW defined LED off. This is a function pointer entry point
- * called by drivers.
- **/
-s32 e1000_led_off(struct e1000_hw *hw)
-{
- if (hw->mac.ops.led_off)
- return hw->mac.ops.led_off(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_reset_adaptive - Reset adaptive IFS
- * @hw: pointer to the HW structure
- *
- * Resets the adaptive IFS. Currently no func pointer exists and all
- * implementations are handled in the generic version of this function.
- **/
-void e1000_reset_adaptive(struct e1000_hw *hw)
-{
- e1000_reset_adaptive_generic(hw);
-}
-
-/**
- * e1000_update_adaptive - Update adaptive IFS
- * @hw: pointer to the HW structure
- *
- * Updates adapter IFS. Currently no func pointer exists and all
- * implementations are handled in the generic version of this function.
- **/
-void e1000_update_adaptive(struct e1000_hw *hw)
-{
- e1000_update_adaptive_generic(hw);
-}
-
-/**
- * e1000_disable_pcie_master - Disable PCI-Express master access
- * @hw: pointer to the HW structure
- *
- * Disables PCI-Express master access and verifies there are no pending
- * requests. Currently no func pointer exists and all implementations are
- * handled in the generic version of this function.
- **/
-s32 e1000_disable_pcie_master(struct e1000_hw *hw)
-{
- return e1000_disable_pcie_master_generic(hw);
-}
-
-/**
- * e1000_config_collision_dist - Configure collision distance
- * @hw: pointer to the HW structure
- *
- * Configures the collision distance to the default value and is used
- * during link setup.
- **/
-void e1000_config_collision_dist(struct e1000_hw *hw)
-{
- if (hw->mac.ops.config_collision_dist)
- hw->mac.ops.config_collision_dist(hw);
-}
-
-/**
- * e1000_rar_set - Sets a receive address register
- * @hw: pointer to the HW structure
- * @addr: address to set the RAR to
- * @index: the RAR to set
- *
- * Sets a Receive Address Register (RAR) to the specified address.
- **/
-void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
-{
- if (hw->mac.ops.rar_set)
- hw->mac.ops.rar_set(hw, addr, index);
-}
-
-/**
- * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
- * @hw: pointer to the HW structure
- *
- * Ensures that the MDI/MDIX SW state is valid.
- **/
-s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
-{
- if (hw->mac.ops.validate_mdi_setting)
- return hw->mac.ops.validate_mdi_setting(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_hash_mc_addr - Determines address location in multicast table
- * @hw: pointer to the HW structure
- * @mc_addr: Multicast address to hash.
- *
- * This hashes an address to determine its location in the multicast
- * table. Currently no func pointer exists and all implementations
- * are handled in the generic version of this function.
- **/
-u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
-{
- return e1000_hash_mc_addr_generic(hw, mc_addr);
-}
-
-/**
- * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
- * @hw: pointer to the HW structure
- *
- * Enables packet filtering on transmit packets if manageability is enabled
- * and host interface is enabled.
- * Currently no func pointer exists and all implementations are handled in the
- * generic version of this function.
- **/
-bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
-{
- return e1000_enable_tx_pkt_filtering_generic(hw);
-}
-
-/**
- * e1000_mng_host_if_write - Writes to the manageability host interface
- * @hw: pointer to the HW structure
- * @buffer: pointer to the host interface buffer
- * @length: size of the buffer
- * @offset: location in the buffer to write to
- * @sum: sum of the data (not checksum)
- *
- * This function writes the buffer content at the offset given on the host if.
- * It also does alignment considerations to do the writes in most efficient
- * way. Also fills up the sum of the buffer in *buffer parameter.
- **/
-s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length,
- u16 offset, u8 *sum)
-{
- if (hw->mac.ops.mng_host_if_write)
- return hw->mac.ops.mng_host_if_write(hw, buffer, length,
- offset, sum);
-
- return E1000_NOT_IMPLEMENTED;
-}
-
-/**
- * e1000_mng_write_cmd_header - Writes manageability command header
- * @hw: pointer to the HW structure
- * @hdr: pointer to the host interface command header
- *
- * Writes the command header after does the checksum calculation.
- **/
-s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
- struct e1000_host_mng_command_header *hdr)
-{
- if (hw->mac.ops.mng_write_cmd_header)
- return hw->mac.ops.mng_write_cmd_header(hw, hdr);
-
- return E1000_NOT_IMPLEMENTED;
-}
-
-/**
- * e1000_mng_enable_host_if - Checks host interface is enabled
- * @hw: pointer to the HW structure
- *
- * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
- *
- * This function checks whether the HOST IF is enabled for command operation
- * and also checks whether the previous command is completed. It busy waits
- * in case of previous command is not completed.
- **/
-s32 e1000_mng_enable_host_if(struct e1000_hw * hw)
-{
- if (hw->mac.ops.mng_enable_host_if)
- return hw->mac.ops.mng_enable_host_if(hw);
-
- return E1000_NOT_IMPLEMENTED;
-}
-
-/**
- * e1000_wait_autoneg - Waits for autonegotiation completion
- * @hw: pointer to the HW structure
- *
- * Waits for autoneg to complete. Currently no func pointer exists and all
- * implementations are handled in the generic version of this function.
- **/
-s32 e1000_wait_autoneg(struct e1000_hw *hw)
-{
- if (hw->mac.ops.wait_autoneg)
- return hw->mac.ops.wait_autoneg(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_check_reset_block - Verifies PHY can be reset
- * @hw: pointer to the HW structure
- *
- * Checks if the PHY is in a state that can be reset or if manageability
- * has it tied up. This is a function pointer entry point called by drivers.
- **/
-s32 e1000_check_reset_block(struct e1000_hw *hw)
-{
- if (hw->phy.ops.check_reset_block)
- return hw->phy.ops.check_reset_block(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_phy_reg - Reads PHY register
- * @hw: pointer to the HW structure
- * @offset: the register to read
- * @data: the buffer to store the 16-bit read.
- *
- * Reads the PHY register and returns the value in data.
- * This is a function pointer entry point called by drivers.
- **/
-s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- if (hw->phy.ops.read_reg)
- return hw->phy.ops.read_reg(hw, offset, data);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_phy_reg - Writes PHY register
- * @hw: pointer to the HW structure
- * @offset: the register to write
- * @data: the value to write.
- *
- * Writes the PHY register at offset with the value in data.
- * This is a function pointer entry point called by drivers.
- **/
-s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
-{
- if (hw->phy.ops.write_reg)
- return hw->phy.ops.write_reg(hw, offset, data);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_release_phy - Generic release PHY
- * @hw: pointer to the HW structure
- *
- * Return if silicon family does not require a semaphore when accessing the
- * PHY.
- **/
-void e1000_release_phy(struct e1000_hw *hw)
-{
- if (hw->phy.ops.release)
- hw->phy.ops.release(hw);
-}
-
-/**
- * e1000_acquire_phy - Generic acquire PHY
- * @hw: pointer to the HW structure
- *
- * Return success if silicon family does not require a semaphore when
- * accessing the PHY.
- **/
-s32 e1000_acquire_phy(struct e1000_hw *hw)
-{
- if (hw->phy.ops.acquire)
- return hw->phy.ops.acquire(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_kmrn_reg - Reads register using Kumeran interface
- * @hw: pointer to the HW structure
- * @offset: the register to read
- * @data: the location to store the 16-bit value read.
- *
- * Reads a register out of the Kumeran interface. Currently no func pointer
- * exists and all implementations are handled in the generic version of
- * this function.
- **/
-s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return e1000_read_kmrn_reg_generic(hw, offset, data);
-}
-
-/**
- * e1000_write_kmrn_reg - Writes register using Kumeran interface
- * @hw: pointer to the HW structure
- * @offset: the register to write
- * @data: the value to write.
- *
- * Writes a register to the Kumeran interface. Currently no func pointer
- * exists and all implementations are handled in the generic version of
- * this function.
- **/
-s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return e1000_write_kmrn_reg_generic(hw, offset, data);
-}
-
-/**
- * e1000_get_cable_length - Retrieves cable length estimation
- * @hw: pointer to the HW structure
- *
- * This function estimates the cable length and stores them in
- * hw->phy.min_length and hw->phy.max_length. This is a function pointer
- * entry point called by drivers.
- **/
-s32 e1000_get_cable_length(struct e1000_hw *hw)
-{
- if (hw->phy.ops.get_cable_length)
- return hw->phy.ops.get_cable_length(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_phy_info - Retrieves PHY information from registers
- * @hw: pointer to the HW structure
- *
- * This function gets some information from various PHY registers and
- * populates hw->phy values with it. This is a function pointer entry
- * point called by drivers.
- **/
-s32 e1000_get_phy_info(struct e1000_hw *hw)
-{
- if (hw->phy.ops.get_info)
- return hw->phy.ops.get_info(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_phy_hw_reset - Hard PHY reset
- * @hw: pointer to the HW structure
- *
- * Performs a hard PHY reset. This is a function pointer entry point called
- * by drivers.
- **/
-s32 e1000_phy_hw_reset(struct e1000_hw *hw)
-{
- if (hw->phy.ops.reset)
- return hw->phy.ops.reset(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_phy_commit - Soft PHY reset
- * @hw: pointer to the HW structure
- *
- * Performs a soft PHY reset on those that apply. This is a function pointer
- * entry point called by drivers.
- **/
-s32 e1000_phy_commit(struct e1000_hw *hw)
-{
- if (hw->phy.ops.commit)
- return hw->phy.ops.commit(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_d0_lplu_state - Sets low power link up state for D0
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * Success returns 0, Failure returns 1
- *
- * The low power link up (lplu) state is set to the power management level D0
- * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
- * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained. This is a function pointer entry point called by drivers.
- **/
-s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
-{
- if (hw->phy.ops.set_d0_lplu_state)
- return hw->phy.ops.set_d0_lplu_state(hw, active);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_d3_lplu_state - Sets low power link up state for D3
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * Success returns 0, Failure returns 1
- *
- * The low power link up (lplu) state is set to the power management level D3
- * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
- * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained. This is a function pointer entry point called by drivers.
- **/
-s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
-{
- if (hw->phy.ops.set_d3_lplu_state)
- return hw->phy.ops.set_d3_lplu_state(hw, active);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_mac_addr - Reads MAC address
- * @hw: pointer to the HW structure
- *
- * Reads the MAC address out of the adapter and stores it in the HW structure.
- * Currently no func pointer exists and all implementations are handled in the
- * generic version of this function.
- **/
-s32 e1000_read_mac_addr(struct e1000_hw *hw)
-{
- if (hw->mac.ops.read_mac_addr)
- return hw->mac.ops.read_mac_addr(hw);
-
- return e1000_read_mac_addr_generic(hw);
-}
-
-/**
- * e1000_read_pba_string - Read device part number string
- * @hw: pointer to the HW structure
- * @pba_num: pointer to device part number
- * @pba_num_size: size of part number buffer
- *
- * Reads the product board assembly (PBA) number from the EEPROM and stores
- * the value in pba_num.
- * Currently no func pointer exists and all implementations are handled in the
- * generic version of this function.
- **/
-s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
-{
- return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
-}
-
-/**
- * e1000_read_pba_length - Read device part number string length
- * @hw: pointer to the HW structure
- * @pba_num_size: size of part number buffer
- *
- * Reads the product board assembly (PBA) number length from the EEPROM and
- * stores the value in pba_num.
- * Currently no func pointer exists and all implementations are handled in the
- * generic version of this function.
- **/
-s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
-{
- return e1000_read_pba_length_generic(hw, pba_num_size);
-}
-
-/**
- * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
- * @hw: pointer to the HW structure
- *
- * Validates the NVM checksum is correct. This is a function pointer entry
- * point called by drivers.
- **/
-s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
-{
- if (hw->nvm.ops.validate)
- return hw->nvm.ops.validate(hw);
-
- return -E1000_ERR_CONFIG;
-}
-
-/**
- * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
- * @hw: pointer to the HW structure
- *
- * Updates the NVM checksum. Currently no func pointer exists and all
- * implementations are handled in the generic version of this function.
- **/
-s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
-{
- if (hw->nvm.ops.update)
- return hw->nvm.ops.update(hw);
-
- return -E1000_ERR_CONFIG;
-}
-
-/**
- * e1000_reload_nvm - Reloads EEPROM
- * @hw: pointer to the HW structure
- *
- * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
- * extended control register.
- **/
-void e1000_reload_nvm(struct e1000_hw *hw)
-{
- if (hw->nvm.ops.reload)
- hw->nvm.ops.reload(hw);
-}
-
-/**
- * e1000_read_nvm - Reads NVM (EEPROM)
- * @hw: pointer to the HW structure
- * @offset: the word offset to read
- * @words: number of 16-bit words to read
- * @data: pointer to the properly sized buffer for the data.
- *
- * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
- * pointer entry point called by drivers.
- **/
-s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- if (hw->nvm.ops.read)
- return hw->nvm.ops.read(hw, offset, words, data);
-
- return -E1000_ERR_CONFIG;
-}
-
-/**
- * e1000_write_nvm - Writes to NVM (EEPROM)
- * @hw: pointer to the HW structure
- * @offset: the word offset to read
- * @words: number of 16-bit words to write
- * @data: pointer to the properly sized buffer for the data.
- *
- * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
- * pointer entry point called by drivers.
- **/
-s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- if (hw->nvm.ops.write)
- return hw->nvm.ops.write(hw, offset, words, data);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
- * @hw: pointer to the HW structure
- * @reg: 32bit register offset
- * @offset: the register to write
- * @data: the value to write.
- *
- * Writes the PHY register at offset with the value in data.
- * This is a function pointer entry point called by drivers.
- **/
-s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
- u8 data)
-{
- return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
-}
-
-/**
- * e1000_power_up_phy - Restores link in case of PHY power down
- * @hw: pointer to the HW structure
- *
- * The phy may be powered down to save power, to turn off link when the
- * driver is unloaded, or wake on lan is not enabled (among others).
- **/
-void e1000_power_up_phy(struct e1000_hw *hw)
-{
- if (hw->phy.ops.power_up)
- hw->phy.ops.power_up(hw);
-
- e1000_setup_link(hw);
-}
-
-/**
- * e1000_power_down_phy - Power down PHY
- * @hw: pointer to the HW structure
- *
- * The phy may be powered down to save power, to turn off link when the
- * driver is unloaded, or wake on lan is not enabled (among others).
- **/
-void e1000_power_down_phy(struct e1000_hw *hw)
-{
- if (hw->phy.ops.power_down)
- hw->phy.ops.power_down(hw);
-}
-
-/**
- * e1000_power_up_fiber_serdes_link - Power up serdes link
- * @hw: pointer to the HW structure
- *
- * Power on the optics and PCS.
- **/
-void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
-{
- if (hw->mac.ops.power_up_serdes)
- hw->mac.ops.power_up_serdes(hw);
-}
-
-/**
- * e1000_shutdown_fiber_serdes_link - Remove link during power down
- * @hw: pointer to the HW structure
- *
- * Shutdown the optics and PCS on driver unload.
- **/
-void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
-{
- if (hw->mac.ops.shutdown_serdes)
- hw->mac.ops.shutdown_serdes(hw);
-}
-
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#ifndef _E1000_API_H_
-#define _E1000_API_H_
-
-#include "e1000_hw.h"
-
-extern void e1000_init_function_pointers_82575(struct e1000_hw *hw);
-extern void e1000_rx_fifo_flush_82575(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_vf(struct e1000_hw *hw);
-extern void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw);
-extern void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw);
-
-s32 e1000_set_mac_type(struct e1000_hw *hw);
-s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device);
-s32 e1000_init_mac_params(struct e1000_hw *hw);
-s32 e1000_init_nvm_params(struct e1000_hw *hw);
-s32 e1000_init_phy_params(struct e1000_hw *hw);
-s32 e1000_init_mbx_params(struct e1000_hw *hw);
-s32 e1000_get_bus_info(struct e1000_hw *hw);
-void e1000_clear_vfta(struct e1000_hw *hw);
-void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
-s32 e1000_force_mac_fc(struct e1000_hw *hw);
-s32 e1000_check_for_link(struct e1000_hw *hw);
-s32 e1000_reset_hw(struct e1000_hw *hw);
-s32 e1000_init_hw(struct e1000_hw *hw);
-s32 e1000_setup_link(struct e1000_hw *hw);
-s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed,
- u16 *duplex);
-s32 e1000_disable_pcie_master(struct e1000_hw *hw);
-void e1000_config_collision_dist(struct e1000_hw *hw);
-void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
-u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr);
-void e1000_update_mc_addr_list(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count);
-s32 e1000_setup_led(struct e1000_hw *hw);
-s32 e1000_cleanup_led(struct e1000_hw *hw);
-s32 e1000_check_reset_block(struct e1000_hw *hw);
-s32 e1000_blink_led(struct e1000_hw *hw);
-s32 e1000_led_on(struct e1000_hw *hw);
-s32 e1000_led_off(struct e1000_hw *hw);
-s32 e1000_id_led_init(struct e1000_hw *hw);
-void e1000_reset_adaptive(struct e1000_hw *hw);
-void e1000_update_adaptive(struct e1000_hw *hw);
-s32 e1000_get_cable_length(struct e1000_hw *hw);
-s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
-s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
- u32 offset, u8 data);
-s32 e1000_get_phy_info(struct e1000_hw *hw);
-void e1000_release_phy(struct e1000_hw *hw);
-s32 e1000_acquire_phy(struct e1000_hw *hw);
-s32 e1000_phy_hw_reset(struct e1000_hw *hw);
-s32 e1000_phy_commit(struct e1000_hw *hw);
-void e1000_power_up_phy(struct e1000_hw *hw);
-void e1000_power_down_phy(struct e1000_hw *hw);
-s32 e1000_read_mac_addr(struct e1000_hw *hw);
-s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num,
- u32 pba_num_size);
-s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size);
-void e1000_reload_nvm(struct e1000_hw *hw);
-s32 e1000_update_nvm_checksum(struct e1000_hw *hw);
-s32 e1000_validate_nvm_checksum(struct e1000_hw *hw);
-s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
-s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data);
-s32 e1000_wait_autoneg(struct e1000_hw *hw);
-s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
-s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
-bool e1000_check_mng_mode(struct e1000_hw *hw);
-bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
-s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
-s32 e1000_mng_host_if_write(struct e1000_hw *hw,
- u8 *buffer, u16 length, u16 offset, u8 *sum);
-s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
- struct e1000_host_mng_command_header *hdr);
-s32 e1000_mng_write_dhcp_info(struct e1000_hw * hw,
- u8 *buffer, u16 length);
-
-/*
- * TBI_ACCEPT macro definition:
- *
- * This macro requires:
- * adapter = a pointer to struct e1000_hw
- * status = the 8 bit status field of the Rx descriptor with EOP set
- * error = the 8 bit error field of the Rx descriptor with EOP set
- * length = the sum of all the length fields of the Rx descriptors that
- * make up the current frame
- * last_byte = the last byte of the frame DMAed by the hardware
- * max_frame_length = the maximum frame length we want to accept.
- * min_frame_length = the minimum frame length we want to accept.
- *
- * This macro is a conditional that should be used in the interrupt
- * handler's Rx processing routine when RxErrors have been detected.
- *
- * Typical use:
- * ...
- * if (TBI_ACCEPT) {
- * accept_frame = TRUE;
- * e1000_tbi_adjust_stats(adapter, MacAddress);
- * frame_length--;
- * } else {
- * accept_frame = FALSE;
- * }
- * ...
- */
-
-/* The carrier extension symbol, as received by the NIC. */
-#define CARRIER_EXTENSION 0x0F
-
-#define TBI_ACCEPT(a, status, errors, length, last_byte, min_frame_size, max_frame_size) \
- (e1000_tbi_sbp_enabled_82543(a) && \
- (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
- ((last_byte) == CARRIER_EXTENSION) && \
- (((status) & E1000_RXD_STAT_VP) ? \
- (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \
- ((length) <= (max_frame_size + 1))) : \
- (((length) > min_frame_size) && \
- ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1)))))
-
-#endif
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#ifndef _E1000_DEFINES_H_
-#define _E1000_DEFINES_H_
-
-/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
-#define REQ_TX_DESCRIPTOR_MULTIPLE 8
-#define REQ_RX_DESCRIPTOR_MULTIPLE 8
-
-/* Definitions for power management and wakeup registers */
-/* Wake Up Control */
-#define E1000_WUC_APME 0x00000001 /* APM Enable */
-#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
-#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
-#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
-#define E1000_WUC_LSCWE 0x00000010 /* Link Status wake up enable */
-#define E1000_WUC_PPROXYE 0x00000010 /* Protocol Proxy Enable */
-#define E1000_WUC_LSCWO 0x00000020 /* Link Status wake up override */
-#define E1000_WUC_SPM 0x80000000 /* Enable SPM */
-#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */
-
-/* Wake Up Filter Control */
-#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
-#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
-#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
-#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
-#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
-#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
-#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
-#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
-#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */
-#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
-#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
-#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
-#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
-#define E1000_WUFC_FW_RST 0x80000000 /* Wake on FW Reset Enable */
-#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
-#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */
-#define E1000_WUFC_FLX_FILTERS 0x000F0000 /*Mask for the 4 flexible filters */
-/*
- * For 82576 to utilize Extended filter masks in addition to
- * existing (filter) masks
- */
-#define E1000_WUFC_EXT_FLX_FILTERS 0x00300000 /* Ext. FLX filter mask */
-
-/* Wake Up Status */
-#define E1000_WUS_LNKC E1000_WUFC_LNKC
-#define E1000_WUS_MAG E1000_WUFC_MAG
-#define E1000_WUS_EX E1000_WUFC_EX
-#define E1000_WUS_MC E1000_WUFC_MC
-#define E1000_WUS_BC E1000_WUFC_BC
-#define E1000_WUS_ARP E1000_WUFC_ARP
-#define E1000_WUS_IPV4 E1000_WUFC_IPV4
-#define E1000_WUS_IPV6 E1000_WUFC_IPV6
-#define E1000_WUS_FLX0 E1000_WUFC_FLX0
-#define E1000_WUS_FLX1 E1000_WUFC_FLX1
-#define E1000_WUS_FLX2 E1000_WUFC_FLX2
-#define E1000_WUS_FLX3 E1000_WUFC_FLX3
-#define E1000_WUS_FLX_FILTERS E1000_WUFC_FLX_FILTERS
-
-/* Wake Up Packet Length */
-#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */
-
-/* Four Flexible Filters are supported */
-#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
-/* Two Extended Flexible Filters are supported (82576) */
-#define E1000_EXT_FLEXIBLE_FILTER_COUNT_MAX 2
-#define E1000_FHFT_LENGTH_OFFSET 0xFC /* Length byte in FHFT */
-#define E1000_FHFT_LENGTH_MASK 0x0FF /* Length in lower byte */
-
-/* Each Flexible Filter is at most 128 (0x80) bytes in length */
-#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128
-
-#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
-#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
-#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
-
-/* Extended Device Control */
-#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */
-#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */
-#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
-#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */
-#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */
-/* Reserved (bits 4,5) in >= 82575 */
-#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Definable Pin 4 */
-#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Definable Pin 5 */
-#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA
-#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Definable Pin 6 */
-#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* Value of SW Definable Pin 3 */
-/* SDP 4/5 (bits 8,9) are reserved in >= 82575 */
-#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
-#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */
-#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
-#define E1000_CTRL_EXT_SDP3_DIR 0x00000800 /* Direction of SDP3 0=in 1=out */
-#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */
-#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
-#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */
-/* Physical Func Reset Done Indication */
-#define E1000_CTRL_EXT_PFRSTD 0x00004000
-#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
-#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
-#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clock Gating */
-#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_82580_MASK 0x01C00000 /*82580 bit 24:22*/
-#define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX 0x00400000
-#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
-#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000
-#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_PCIX_SERDES 0x00800000
-#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000
-#define E1000_CTRL_EXT_EIAME 0x01000000
-#define E1000_CTRL_EXT_IRCA 0x00000001
-#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000
-#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000
-#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
-#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
-#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
-#define E1000_CTRL_EXT_CANC 0x04000000 /* Int delay cancellation */
-#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
-/* IAME enable bit (27) was removed in >= 82575 */
-#define E1000_CTRL_EXT_IAME 0x08000000 /* Int acknowledge Auto-mask */
-#define E1000_CRTL_EXT_PB_PAREN 0x01000000 /* packet buffer parity error
- * detection enabled */
-#define E1000_CTRL_EXT_DF_PAREN 0x02000000 /* descriptor FIFO parity
- * error detection enable */
-#define E1000_CTRL_EXT_GHOST_PAREN 0x40000000
-#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */
-#define E1000_I2CCMD_REG_ADDR_SHIFT 16
-#define E1000_I2CCMD_REG_ADDR 0x00FF0000
-#define E1000_I2CCMD_PHY_ADDR_SHIFT 24
-#define E1000_I2CCMD_PHY_ADDR 0x07000000
-#define E1000_I2CCMD_OPCODE_READ 0x08000000
-#define E1000_I2CCMD_OPCODE_WRITE 0x00000000
-#define E1000_I2CCMD_RESET 0x10000000
-#define E1000_I2CCMD_READY 0x20000000
-#define E1000_I2CCMD_INTERRUPT_ENA 0x40000000
-#define E1000_I2CCMD_ERROR 0x80000000
-#define E1000_MAX_SGMII_PHY_REG_ADDR 255
-#define E1000_I2CCMD_PHY_TIMEOUT 200
-#define E1000_IVAR_VALID 0x80
-#define E1000_GPIE_NSICR 0x00000001
-#define E1000_GPIE_MSIX_MODE 0x00000010
-#define E1000_GPIE_EIAME 0x40000000
-#define E1000_GPIE_PBA 0x80000000
-
-/* Receive Descriptor bit definitions */
-#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
-#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
-#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
-#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
-#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */
-#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
-#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
-#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
-#define E1000_RXD_STAT_CRCV 0x100 /* Speculative CRC Valid */
-#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */
-#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */
-#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */
-#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */
-#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
-#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
-#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
-#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
-#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
-#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
-#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
-#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
-#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */
-#define E1000_RXD_SPC_PRI_SHIFT 13
-#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */
-#define E1000_RXD_SPC_CFI_SHIFT 12
-
-#define E1000_RXDEXT_STATERR_LB 0x00040000
-#define E1000_RXDEXT_STATERR_CE 0x01000000
-#define E1000_RXDEXT_STATERR_SE 0x02000000
-#define E1000_RXDEXT_STATERR_SEQ 0x04000000
-#define E1000_RXDEXT_STATERR_CXE 0x10000000
-#define E1000_RXDEXT_STATERR_TCPE 0x20000000
-#define E1000_RXDEXT_STATERR_IPE 0x40000000
-#define E1000_RXDEXT_STATERR_RXE 0x80000000
-
-/* mask to determine if packets should be dropped due to frame errors */
-#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
- E1000_RXD_ERR_CE | \
- E1000_RXD_ERR_SE | \
- E1000_RXD_ERR_SEQ | \
- E1000_RXD_ERR_CXE | \
- E1000_RXD_ERR_RXE)
-
-/* Same mask, but for extended and packet split descriptors */
-#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
- E1000_RXDEXT_STATERR_CE | \
- E1000_RXDEXT_STATERR_SE | \
- E1000_RXDEXT_STATERR_SEQ | \
- E1000_RXDEXT_STATERR_CXE | \
- E1000_RXDEXT_STATERR_RXE)
-
-#define E1000_MRQC_ENABLE_MASK 0x00000007
-#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001
-#define E1000_MRQC_ENABLE_RSS_INT 0x00000004
-#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000
-#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000
-#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000
-#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000
-#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000
-
-#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
-#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF
-
-/* Management Control */
-#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
-#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
-#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */
-#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */
-#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */
-#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */
-#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */
-#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */
-#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
-/* Enable Neighbor Discovery Filtering */
-#define E1000_MANC_NEIGHBOR_EN 0x00004000
-#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */
-#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */
-#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
-#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
-#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */
-#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
-/* Enable MAC address filtering */
-#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000
-/* Enable MNG packets to host memory */
-#define E1000_MANC_EN_MNG2HOST 0x00200000
-/* Enable IP address filtering */
-#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000
-#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */
-#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */
-#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
-#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
-#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
-#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */
-#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */
-#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */
-#define E1000_MANC_MPROXYE 0x40000000 /* Mngment Proxy Enable */
-#define E1000_MANC_EN_BMC2OS 0x10000000 /* OS2BMC is enabled or not */
-
-#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */
-#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */
-
-#define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */
-#define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */
-#define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */
-#define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */
-
-/* Receive Control */
-#define E1000_RCTL_RST 0x00000001 /* Software reset */
-#define E1000_RCTL_EN 0x00000002 /* enable */
-#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
-#define E1000_RCTL_UPE 0x00000008 /* unicast promisc enable */
-#define E1000_RCTL_MPE 0x00000010 /* multicast promisc enable */
-#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
-#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
-#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
-#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */
-#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
-#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */
-#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
-#define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min thresh size */
-#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* Rx desc min thresh size */
-#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* Rx desc min thresh size */
-#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
-#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */
-#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */
-#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */
-#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
-#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */
-#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
-#define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */
-#define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */
-#define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */
-#define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
-#define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */
-#define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */
-#define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */
-#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
-#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
-#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
-#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
-#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
-#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
-#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
-#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */
-#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */
-
-/*
- * Use byte values for the following shift parameters
- * Usage:
- * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
- * E1000_PSRCTL_BSIZE0_MASK) |
- * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
- * E1000_PSRCTL_BSIZE1_MASK) |
- * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
- * E1000_PSRCTL_BSIZE2_MASK) |
- * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
- * E1000_PSRCTL_BSIZE3_MASK))
- * where value0 = [128..16256], default=256
- * value1 = [1024..64512], default=4096
- * value2 = [0..64512], default=4096
- * value3 = [0..64512], default=0
- */
-
-#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
-#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
-#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
-#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
-
-#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
-#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
-#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
-#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
-
-/* SWFW_SYNC Definitions */
-#define E1000_SWFW_EEP_SM 0x01
-#define E1000_SWFW_PHY0_SM 0x02
-#define E1000_SWFW_PHY1_SM 0x04
-#define E1000_SWFW_CSR_SM 0x08
-#define E1000_SWFW_PHY2_SM 0x20
-#define E1000_SWFW_PHY3_SM 0x40
-#define E1000_SWFW_SW_MNG_SM 0x400
-
-/* FACTPS Definitions */
-#define E1000_FACTPS_LFS 0x40000000 /* LAN Function Select */
-/* Device Control */
-#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
-#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */
-#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
-#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master reqs */
-#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
-#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */
-#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */
-#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
-#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
-#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
-#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
-#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
-#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
-#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
-#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */
-#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
-#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
-#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */
-#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock
- * indication in SDP[0] */
-#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through
- * PHYRST_N pin */
-#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external
- * LINK_0 and LINK_1 pins */
-#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
-#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
-#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
-#define E1000_CTRL_ADVD3WUC 0x00100000 /* D3 WUC */
-#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
-#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
-#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */
-#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
-#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
-#define E1000_CTRL_RST 0x04000000 /* Global reset */
-#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
-#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
-#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
-#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
-#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
-#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to ME */
-#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */
-
-/*
- * Bit definitions for the Management Data IO (MDIO) and Management Data
- * Clock (MDC) pins in the Device Control Register.
- */
-#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0
-#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0
-#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2
-#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2
-#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3
-#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3
-#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
-#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA
-
-#define E1000_CONNSW_ENRGSRC 0x4
-#define E1000_PCS_CFG_PCS_EN 8
-#define E1000_PCS_LCTL_FLV_LINK_UP 1
-#define E1000_PCS_LCTL_FSV_10 0
-#define E1000_PCS_LCTL_FSV_100 2
-#define E1000_PCS_LCTL_FSV_1000 4
-#define E1000_PCS_LCTL_FDV_FULL 8
-#define E1000_PCS_LCTL_FSD 0x10
-#define E1000_PCS_LCTL_FORCE_LINK 0x20
-#define E1000_PCS_LCTL_LOW_LINK_LATCH 0x40
-#define E1000_PCS_LCTL_FORCE_FCTRL 0x80
-#define E1000_PCS_LCTL_AN_ENABLE 0x10000
-#define E1000_PCS_LCTL_AN_RESTART 0x20000
-#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000
-#define E1000_PCS_LCTL_AN_SGMII_BYPASS 0x80000
-#define E1000_PCS_LCTL_AN_SGMII_TRIGGER 0x100000
-#define E1000_PCS_LCTL_FAST_LINK_TIMER 0x1000000
-#define E1000_PCS_LCTL_LINK_OK_FIX 0x2000000
-#define E1000_PCS_LCTL_CRS_ON_NI 0x4000000
-#define E1000_ENABLE_SERDES_LOOPBACK 0x0410
-
-#define E1000_PCS_LSTS_LINK_OK 1
-#define E1000_PCS_LSTS_SPEED_10 0
-#define E1000_PCS_LSTS_SPEED_100 2
-#define E1000_PCS_LSTS_SPEED_1000 4
-#define E1000_PCS_LSTS_DUPLEX_FULL 8
-#define E1000_PCS_LSTS_SYNK_OK 0x10
-#define E1000_PCS_LSTS_AN_COMPLETE 0x10000
-#define E1000_PCS_LSTS_AN_PAGE_RX 0x20000
-#define E1000_PCS_LSTS_AN_TIMED_OUT 0x40000
-#define E1000_PCS_LSTS_AN_REMOTE_FAULT 0x80000
-#define E1000_PCS_LSTS_AN_ERROR_RWS 0x100000
-
-/* Device Status */
-#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
-#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
-#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
-#define E1000_STATUS_FUNC_SHIFT 2
-#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */
-#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
-#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
-#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */
-#define E1000_STATUS_SPEED_MASK 0x000000C0
-#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
-#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
-#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
-#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */
-#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
-#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */
-#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state.
- * Clear on write '0'. */
-#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Master request status */
-#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */
-#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
-#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
-#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
-#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
-#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */
-#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */
-#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */
-#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */
-#define E1000_STATUS_BMC_LITE 0x01000000 /* BMC external code execution
- * disabled */
-#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */
-#define E1000_STATUS_FUSE_8 0x04000000
-#define E1000_STATUS_FUSE_9 0x08000000
-#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */
-#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */
-
-/* Constants used to interpret the masked PCI-X bus speed. */
-#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */
-#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */
-#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /*PCI-X bus speed 100-133 MHz*/
-
-#define SPEED_10 10
-#define SPEED_100 100
-#define SPEED_1000 1000
-#define HALF_DUPLEX 1
-#define FULL_DUPLEX 2
-
-#define PHY_FORCE_TIME 20
-
-#define ADVERTISE_10_HALF 0x0001
-#define ADVERTISE_10_FULL 0x0002
-#define ADVERTISE_100_HALF 0x0004
-#define ADVERTISE_100_FULL 0x0008
-#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */
-#define ADVERTISE_1000_FULL 0x0020
-
-/* 1000/H is not supported, nor spec-compliant. */
-#define E1000_ALL_SPEED_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
- ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
- ADVERTISE_1000_FULL)
-#define E1000_ALL_NOT_GIG (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
- ADVERTISE_100_HALF | ADVERTISE_100_FULL)
-#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL)
-#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL)
-#define E1000_ALL_FULL_DUPLEX (ADVERTISE_10_FULL | ADVERTISE_100_FULL | \
- ADVERTISE_1000_FULL)
-#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF)
-
-#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX
-
-/* LED Control */
-#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
-#define E1000_LEDCTL_LED0_MODE_SHIFT 0
-#define E1000_LEDCTL_LED0_BLINK_RATE 0x00000020
-#define E1000_LEDCTL_LED0_IVRT 0x00000040
-#define E1000_LEDCTL_LED0_BLINK 0x00000080
-#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00
-#define E1000_LEDCTL_LED1_MODE_SHIFT 8
-#define E1000_LEDCTL_LED1_BLINK_RATE 0x00002000
-#define E1000_LEDCTL_LED1_IVRT 0x00004000
-#define E1000_LEDCTL_LED1_BLINK 0x00008000
-#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000
-#define E1000_LEDCTL_LED2_MODE_SHIFT 16
-#define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000
-#define E1000_LEDCTL_LED2_IVRT 0x00400000
-#define E1000_LEDCTL_LED2_BLINK 0x00800000
-#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000
-#define E1000_LEDCTL_LED3_MODE_SHIFT 24
-#define E1000_LEDCTL_LED3_BLINK_RATE 0x20000000
-#define E1000_LEDCTL_LED3_IVRT 0x40000000
-#define E1000_LEDCTL_LED3_BLINK 0x80000000
-
-#define E1000_LEDCTL_MODE_LINK_10_1000 0x0
-#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
-#define E1000_LEDCTL_MODE_LINK_UP 0x2
-#define E1000_LEDCTL_MODE_ACTIVITY 0x3
-#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
-#define E1000_LEDCTL_MODE_LINK_10 0x5
-#define E1000_LEDCTL_MODE_LINK_100 0x6
-#define E1000_LEDCTL_MODE_LINK_1000 0x7
-#define E1000_LEDCTL_MODE_PCIX_MODE 0x8
-#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9
-#define E1000_LEDCTL_MODE_COLLISION 0xA
-#define E1000_LEDCTL_MODE_BUS_SPEED 0xB
-#define E1000_LEDCTL_MODE_BUS_SIZE 0xC
-#define E1000_LEDCTL_MODE_PAUSED 0xD
-#define E1000_LEDCTL_MODE_LED_ON 0xE
-#define E1000_LEDCTL_MODE_LED_OFF 0xF
-
-/* Transmit Descriptor bit definitions */
-#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
-#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
-#define E1000_TXD_POPTS_SHIFT 8 /* POPTS shift */
-#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
-#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
-#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
-#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
-#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
-#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
-#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
-#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
-#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
-#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
-#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
-#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
-#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
-#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
-#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
-#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
-#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
-/* Extended desc bits for Linksec and timesync */
-
-/* Transmit Control */
-#define E1000_TCTL_RST 0x00000001 /* software reset */
-#define E1000_TCTL_EN 0x00000002 /* enable Tx */
-#define E1000_TCTL_BCE 0x00000004 /* busy check enable */
-#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
-#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
-#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
-#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */
-#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */
-#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
-#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */
-#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
-
-/* Transmit Arbitration Count */
-#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */
-
-/* SerDes Control */
-#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
-
-/* Receive Checksum Control */
-#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */
-#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
-#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
-#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */
-#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */
-#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
-#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */
-
-/* Header split receive */
-#define E1000_RFCTL_ISCSI_DIS 0x00000001
-#define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E
-#define E1000_RFCTL_ISCSI_DWC_SHIFT 1
-#define E1000_RFCTL_NFSW_DIS 0x00000040
-#define E1000_RFCTL_NFSR_DIS 0x00000080
-#define E1000_RFCTL_NFS_VER_MASK 0x00000300
-#define E1000_RFCTL_NFS_VER_SHIFT 8
-#define E1000_RFCTL_IPV6_DIS 0x00000400
-#define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800
-#define E1000_RFCTL_ACK_DIS 0x00001000
-#define E1000_RFCTL_ACKD_DIS 0x00002000
-#define E1000_RFCTL_IPFRSP_DIS 0x00004000
-#define E1000_RFCTL_EXTEN 0x00008000
-#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
-#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
-#define E1000_RFCTL_LEF 0x00040000
-
-/* Collision related configuration parameters */
-#define E1000_COLLISION_THRESHOLD 15
-#define E1000_CT_SHIFT 4
-#define E1000_COLLISION_DISTANCE 63
-#define E1000_COLD_SHIFT 12
-
-/* Default values for the transmit IPG register */
-#define DEFAULT_82543_TIPG_IPGT_FIBER 9
-#define DEFAULT_82543_TIPG_IPGT_COPPER 8
-
-#define E1000_TIPG_IPGT_MASK 0x000003FF
-#define E1000_TIPG_IPGR1_MASK 0x000FFC00
-#define E1000_TIPG_IPGR2_MASK 0x3FF00000
-
-#define DEFAULT_82543_TIPG_IPGR1 8
-#define E1000_TIPG_IPGR1_SHIFT 10
-
-#define DEFAULT_82543_TIPG_IPGR2 6
-#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
-#define E1000_TIPG_IPGR2_SHIFT 20
-
-/* Ethertype field values */
-#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
-
-#define ETHERNET_FCS_SIZE 4
-#define MAX_JUMBO_FRAME_SIZE 0x3F00
-
-/* Extended Configuration Control and Size */
-#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
-#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
-#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008
-#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
-#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080
-#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000
-#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16
-
-#define E1000_PHY_CTRL_SPD_EN 0x00000001
-#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
-#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
-#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
-#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
-
-#define E1000_KABGTXD_BGSQLBIAS 0x00050000
-
-/* PBA constants */
-#define E1000_PBA_6K 0x0006 /* 6KB */
-#define E1000_PBA_8K 0x0008 /* 8KB */
-#define E1000_PBA_10K 0x000A /* 10KB */
-#define E1000_PBA_12K 0x000C /* 12KB */
-#define E1000_PBA_14K 0x000E /* 14KB */
-#define E1000_PBA_16K 0x0010 /* 16KB */
-#define E1000_PBA_18K 0x0012
-#define E1000_PBA_20K 0x0014
-#define E1000_PBA_22K 0x0016
-#define E1000_PBA_24K 0x0018
-#define E1000_PBA_26K 0x001A
-#define E1000_PBA_30K 0x001E
-#define E1000_PBA_32K 0x0020
-#define E1000_PBA_34K 0x0022
-#define E1000_PBA_35K 0x0023
-#define E1000_PBA_38K 0x0026
-#define E1000_PBA_40K 0x0028
-#define E1000_PBA_48K 0x0030 /* 48KB */
-#define E1000_PBA_64K 0x0040 /* 64KB */
-
-#define E1000_PBS_16K E1000_PBA_16K
-#define E1000_PBS_24K E1000_PBA_24K
-
-#define IFS_MAX 80
-#define IFS_MIN 40
-#define IFS_RATIO 4
-#define IFS_STEP 10
-#define MIN_NUM_XMITS 1000
-
-/* SW Semaphore Register */
-#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
-#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
-#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */
-#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
-
-#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */
-
-/* Interrupt Cause Read */
-#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
-#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
-#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
-#define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */
-#define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */
-#define E1000_ICR_RXO 0x00000040 /* Rx overrun */
-#define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */
-#define E1000_ICR_VMMB 0x00000100 /* VM MB event */
-#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
-#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */
-#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
-#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
-#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
-#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
-#define E1000_ICR_TXD_LOW 0x00008000
-#define E1000_ICR_SRPD 0x00010000
-#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */
-#define E1000_ICR_MNG 0x00040000 /* Manageability event */
-#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */
-#define E1000_ICR_DRSTA 0x40000000 /* Device Reset Asserted */
-#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver
- * should claim the interrupt */
-#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* Q0 Rx desc FIFO parity error */
-#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* Q0 Tx desc FIFO parity error */
-#define E1000_ICR_HOST_ARB_PAR 0x00400000 /* host arb read buffer parity err */
-#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */
-#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* Q1 Rx desc FIFO parity error */
-#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* Q1 Tx desc FIFO parity error */
-#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */
-#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW
- * bit in the FWSM */
-#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates
- * an interrupt */
-#define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */
-#define E1000_ICR_EPRST 0x00100000 /* ME hardware reset occurs */
-#define E1000_ICR_FER 0x00400000 /* Fatal Error */
-
-#define E1000_ICR_THS 0x00800000 /* ICR.THS: Thermal Sensor Event*/
-#define E1000_ICR_MDDET 0x10000000 /* Malicious Driver Detect */
-
-/* Extended Interrupt Cause Read */
-#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */
-#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */
-#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */
-#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */
-#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */
-#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */
-#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */
-#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */
-#define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */
-#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */
-/* TCP Timer */
-#define E1000_TCPTIMER_KS 0x00000100 /* KickStart */
-#define E1000_TCPTIMER_COUNT_ENABLE 0x00000200 /* Count Enable */
-#define E1000_TCPTIMER_COUNT_FINISH 0x00000400 /* Count finish */
-#define E1000_TCPTIMER_LOOP 0x00000800 /* Loop */
-
-/*
- * This defines the bits that are set in the Interrupt Mask
- * Set/Read Register. Each bit is documented below:
- * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
- * o RXSEQ = Receive Sequence Error
- */
-#define POLL_IMS_ENABLE_MASK ( \
- E1000_IMS_RXDMT0 | \
- E1000_IMS_RXSEQ)
-
-/*
- * This defines the bits that are set in the Interrupt Mask
- * Set/Read Register. Each bit is documented below:
- * o RXT0 = Receiver Timer Interrupt (ring 0)
- * o TXDW = Transmit Descriptor Written Back
- * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
- * o RXSEQ = Receive Sequence Error
- * o LSC = Link Status Change
- */
-#define IMS_ENABLE_MASK ( \
- E1000_IMS_RXT0 | \
- E1000_IMS_TXDW | \
- E1000_IMS_RXDMT0 | \
- E1000_IMS_RXSEQ | \
- E1000_IMS_LSC)
-
-/* Interrupt Mask Set */
-#define E1000_IMS_TXDW E1000_ICR_TXDW /* Tx desc written back */
-#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */
-#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
-#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
-#define E1000_IMS_RXO E1000_ICR_RXO /* Rx overrun */
-#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */
-#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */
-#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
-#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
-#define E1000_IMS_SRPD E1000_ICR_SRPD
-#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */
-#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */
-#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */
-#define E1000_IMS_DRSTA E1000_ICR_DRSTA /* Device Reset Asserted */
-#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* Q0 Rx desc FIFO
- * parity error */
-#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* Q0 Tx desc FIFO
- * parity error */
-#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer
- * parity error */
-#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity
- * error */
-#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* Q1 Rx desc FIFO
- * parity error */
-#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* Q1 Tx desc FIFO
- * parity error */
-#define E1000_IMS_DSW E1000_ICR_DSW
-#define E1000_IMS_PHYINT E1000_ICR_PHYINT
-#define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */
-#define E1000_IMS_EPRST E1000_ICR_EPRST
-#define E1000_IMS_FER E1000_ICR_FER /* Fatal Error */
-
-#define E1000_IMS_THS E1000_ICR_THS /* ICR.TS: Thermal Sensor Event*/
-#define E1000_IMS_MDDET E1000_ICR_MDDET /* Malicious Driver Detect */
-/* Extended Interrupt Mask Set */
-#define E1000_EIMS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
-#define E1000_EIMS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
-#define E1000_EIMS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
-#define E1000_EIMS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
-#define E1000_EIMS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
-#define E1000_EIMS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
-#define E1000_EIMS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
-#define E1000_EIMS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
-#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
-#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
-
-/* Interrupt Cause Set */
-#define E1000_ICS_TXDW E1000_ICR_TXDW /* Tx desc written back */
-#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
-#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
-#define E1000_ICS_RXO E1000_ICR_RXO /* Rx overrun */
-#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */
-#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */
-#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
-#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW
-#define E1000_ICS_SRPD E1000_ICR_SRPD
-#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */
-#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */
-#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */
-#define E1000_ICS_DRSTA E1000_ICR_DRSTA /* Device Reset Aserted */
-#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* Q0 Rx desc FIFO
- * parity error */
-#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* Q0 Tx desc FIFO
- * parity error */
-#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer
- * parity error */
-#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity
- * error */
-#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* Q1 Rx desc FIFO
- * parity error */
-#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* Q1 Tx desc FIFO
- * parity error */
-#define E1000_ICS_DSW E1000_ICR_DSW
-#define E1000_ICS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */
-#define E1000_ICS_PHYINT E1000_ICR_PHYINT
-#define E1000_ICS_EPRST E1000_ICR_EPRST
-
-/* Extended Interrupt Cause Set */
-#define E1000_EICS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
-#define E1000_EICS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
-#define E1000_EICS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
-#define E1000_EICS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
-#define E1000_EICS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
-#define E1000_EICS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
-#define E1000_EICS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
-#define E1000_EICS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
-#define E1000_EICS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
-#define E1000_EICS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
-
-#define E1000_EITR_ITR_INT_MASK 0x0000FFFF
-/* E1000_EITR_CNT_IGNR is only for 82576 and newer */
-#define E1000_EITR_CNT_IGNR 0x80000000 /* Don't reset counters on write */
-
-/* Transmit Descriptor Control */
-#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
-#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
-#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
-#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
-#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
-#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
-#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
-/* Enable the counting of descriptors still to be processed. */
-#define E1000_TXDCTL_COUNT_DESC 0x00400000
-
-/* Flow Control Constants */
-#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
-#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
-#define FLOW_CONTROL_TYPE 0x8808
-
-/* 802.1q VLAN Packet Size */
-#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */
-#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
-
-/* Receive Address */
-/*
- * Number of high/low register pairs in the RAR. The RAR (Receive Address
- * Registers) holds the directed and multicast addresses that we monitor.
- * Technically, we have 16 spots. However, we reserve one of these spots
- * (RAR[15]) for our directed address used by controllers with
- * manageability enabled, allowing us room for 15 multicast addresses.
- */
-#define E1000_RAR_ENTRIES 15
-#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
-#define E1000_RAL_MAC_ADDR_LEN 4
-#define E1000_RAH_MAC_ADDR_LEN 2
-#define E1000_RAH_QUEUE_MASK_82575 0x000C0000
-#define E1000_RAH_POOL_MASK 0x03FC0000
-#define E1000_RAH_POOL_SHIFT 18
-#define E1000_RAH_POOL_1 0x00040000
-
-/* Error Codes */
-#define E1000_SUCCESS 0
-#define E1000_ERR_NVM 1
-#define E1000_ERR_PHY 2
-#define E1000_ERR_CONFIG 3
-#define E1000_ERR_PARAM 4
-#define E1000_ERR_MAC_INIT 5
-#define E1000_ERR_PHY_TYPE 6
-#define E1000_ERR_RESET 9
-#define E1000_ERR_MASTER_REQUESTS_PENDING 10
-#define E1000_ERR_HOST_INTERFACE_COMMAND 11
-#define E1000_BLK_PHY_RESET 12
-#define E1000_ERR_SWFW_SYNC 13
-#define E1000_NOT_IMPLEMENTED 14
-#define E1000_ERR_MBX 15
-#define E1000_ERR_INVALID_ARGUMENT 16
-#define E1000_ERR_NO_SPACE 17
-#define E1000_ERR_NVM_PBA_SECTION 18
-
-/* Loop limit on how long we wait for auto-negotiation to complete */
-#define FIBER_LINK_UP_LIMIT 50
-#define COPPER_LINK_UP_LIMIT 10
-#define PHY_AUTO_NEG_LIMIT 45
-#define PHY_FORCE_LIMIT 20
-/* Number of 100 microseconds we wait for PCI Express master disable */
-#define MASTER_DISABLE_TIMEOUT 800
-/* Number of milliseconds we wait for PHY configuration done after MAC reset */
-#define PHY_CFG_TIMEOUT 100
-/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
-#define MDIO_OWNERSHIP_TIMEOUT 10
-/* Number of milliseconds for NVM auto read done after MAC reset. */
-#define AUTO_READ_DONE_TIMEOUT 10
-
-/* Flow Control */
-#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
-#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */
-#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
-#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
-
-/* Transmit Configuration Word */
-#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
-#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */
-#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
-#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
-#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
-#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */
-#define E1000_TXCW_NP 0x00008000 /* TXCW next page */
-#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */
-#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */
-#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
-
-/* Receive Configuration Word */
-#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
-#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */
-#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
-#define E1000_RXCW_CC 0x10000000 /* Receive config change */
-#define E1000_RXCW_C 0x20000000 /* Receive config */
-#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
-#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */
-
-#define E1000_TSYNCTXCTL_VALID 0x00000001 /* Tx timestamp valid */
-#define E1000_TSYNCTXCTL_ENABLED 0x00000010 /* enable Tx timestamping */
-
-#define E1000_TSYNCRXCTL_VALID 0x00000001 /* Rx timestamp valid */
-#define E1000_TSYNCRXCTL_TYPE_MASK 0x0000000E /* Rx type mask */
-#define E1000_TSYNCRXCTL_TYPE_L2_V2 0x00
-#define E1000_TSYNCRXCTL_TYPE_L4_V1 0x02
-#define E1000_TSYNCRXCTL_TYPE_L2_L4_V2 0x04
-#define E1000_TSYNCRXCTL_TYPE_ALL 0x08
-#define E1000_TSYNCRXCTL_TYPE_EVENT_V2 0x0A
-#define E1000_TSYNCRXCTL_ENABLED 0x00000010 /* enable Rx timestamping */
-
-#define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK 0x000000FF
-#define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE 0x00
-#define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE 0x01
-#define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE 0x02
-#define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE 0x03
-#define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE 0x04
-
-#define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK 0x00000F00
-#define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE 0x0000
-#define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE 0x0100
-#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE 0x0200
-#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE 0x0300
-#define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE 0x0800
-#define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE 0x0900
-#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00
-#define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE 0x0B00
-#define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE 0x0C00
-#define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE 0x0D00
-
-#define E1000_TIMINCA_16NS_SHIFT 24
-/* TUPLE Filtering Configuration */
-#define E1000_TTQF_DISABLE_MASK 0xF0008000 /* TTQF Disable Mask */
-#define E1000_TTQF_QUEUE_ENABLE 0x100 /* TTQF Queue Enable Bit */
-#define E1000_TTQF_PROTOCOL_MASK 0xFF /* TTQF Protocol Mask */
-/* TTQF TCP Bit, shift with E1000_TTQF_PROTOCOL SHIFT */
-#define E1000_TTQF_PROTOCOL_TCP 0x0
-/* TTQF UDP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */
-#define E1000_TTQF_PROTOCOL_UDP 0x1
-/* TTQF SCTP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */
-#define E1000_TTQF_PROTOCOL_SCTP 0x2
-#define E1000_TTQF_PROTOCOL_SHIFT 5 /* TTQF Protocol Shift */
-#define E1000_TTQF_QUEUE_SHIFT 16 /* TTQF Queue Shfit */
-#define E1000_TTQF_RX_QUEUE_MASK 0x70000 /* TTQF Queue Mask */
-#define E1000_TTQF_MASK_ENABLE 0x10000000 /* TTQF Mask Enable Bit */
-#define E1000_IMIR_CLEAR_MASK 0xF001FFFF /* IMIR Reg Clear Mask */
-#define E1000_IMIR_PORT_BYPASS 0x20000 /* IMIR Port Bypass Bit */
-#define E1000_IMIR_PRIORITY_SHIFT 29 /* IMIR Priority Shift */
-#define E1000_IMIREXT_CLEAR_MASK 0x7FFFF /* IMIREXT Reg Clear Mask */
-
-#define E1000_MDICNFG_EXT_MDIO 0x80000000 /* MDI ext/int destination */
-#define E1000_MDICNFG_COM_MDIO 0x40000000 /* MDI shared w/ lan 0 */
-#define E1000_MDICNFG_PHY_MASK 0x03E00000
-#define E1000_MDICNFG_PHY_SHIFT 21
-
-#define E1000_THSTAT_LOW_EVENT 0x20000000 /* Low thermal threshold */
-#define E1000_THSTAT_MID_EVENT 0x00200000 /* Mid thermal threshold */
-#define E1000_THSTAT_HIGH_EVENT 0x00002000 /* High thermal threshold */
-#define E1000_THSTAT_PWR_DOWN 0x00000001 /* Power Down Event */
-#define E1000_THSTAT_LINK_THROTTLE 0x00000002 /* Link Speed Throttle Event */
-
-/* Powerville EEE defines */
-#define E1000_IPCNFG_EEE_1G_AN 0x00000008 /* IPCNFG EEE Enable 1G AN */
-#define E1000_IPCNFG_EEE_100M_AN 0x00000004 /* IPCNFG EEE Enable 100M AN */
-#define E1000_EEER_TX_LPI_EN 0x00010000 /* EEER Tx LPI Enable */
-#define E1000_EEER_RX_LPI_EN 0x00020000 /* EEER Rx LPI Enable */
-#define E1000_EEER_LPI_FC 0x00040000 /* EEER Enable on Flow Control*/
-/* EEE status */
-#define E1000_EEER_EEE_NEG 0x20000000 /* EEE capability negotiated */
-#define E1000_EEER_RX_LPI_STATUS 0x40000000 /* Rx in LPI state */
-#define E1000_EEER_TX_LPI_STATUS 0x80000000 /* Tx in LPI state */
-
-/* PCI Express Control */
-#define E1000_GCR_RXD_NO_SNOOP 0x00000001
-#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002
-#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004
-#define E1000_GCR_TXD_NO_SNOOP 0x00000008
-#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010
-#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020
-#define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000
-#define E1000_GCR_CMPL_TMOUT_10ms 0x00001000
-#define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000
-#define E1000_GCR_CAP_VER2 0x00040000
-
-#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \
- E1000_GCR_RXDSCW_NO_SNOOP | \
- E1000_GCR_RXDSCR_NO_SNOOP | \
- E1000_GCR_TXD_NO_SNOOP | \
- E1000_GCR_TXDSCW_NO_SNOOP | \
- E1000_GCR_TXDSCR_NO_SNOOP)
-
-/* PHY Control Register */
-#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
-#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
-#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
-#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
-#define MII_CR_POWER_DOWN 0x0800 /* Power down */
-#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
-#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
-#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
-#define MII_CR_SPEED_1000 0x0040
-#define MII_CR_SPEED_100 0x2000
-#define MII_CR_SPEED_10 0x0000
-
-/* PHY Status Register */
-#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
-#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
-#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
-#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
-#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
-#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
-#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
-#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
-#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
-#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
-#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
-#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
-#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
-#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
-#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
-
-/* Autoneg Advertisement Register */
-#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
-#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
-#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
-#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
-#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
-#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
-#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
-#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
-#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
-#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
-
-/* Link Partner Ability Register (Base Page) */
-#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
-#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */
-#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */
-#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */
-#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */
-#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
-#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
-#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
-#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */
-#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */
-#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
-
-/* Autoneg Expansion Register */
-#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
-#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */
-#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */
-#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
-#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */
-
-/* 1000BASE-T Control Register */
-#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
-#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
-#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
-#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */
- /* 0=DTE device */
-#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
- /* 0=Configure PHY as Slave */
-#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
- /* 0=Automatic Master/Slave config */
-#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
-#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
-#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
-#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
-#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
-
-/* 1000BASE-T Status Register */
-#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */
-#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */
-#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
-#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
-#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
-#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
-#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx is Master, 0=Slave */
-#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
-
-#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5
-
-/* PHY 1000 MII Register/Bit Definitions */
-/* PHY Registers defined by IEEE */
-#define PHY_CONTROL 0x00 /* Control Register */
-#define PHY_STATUS 0x01 /* Status Register */
-#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
-#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
-#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
-#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
-#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
-#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */
-#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
-#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
-#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
-#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
-
-#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */
-
-/* NVM Control */
-#define E1000_EECD_SK 0x00000001 /* NVM Clock */
-#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */
-#define E1000_EECD_DI 0x00000004 /* NVM Data In */
-#define E1000_EECD_DO 0x00000008 /* NVM Data Out */
-#define E1000_EECD_FWE_MASK 0x00000030
-#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */
-#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */
-#define E1000_EECD_FWE_SHIFT 4
-#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */
-#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */
-#define E1000_EECD_PRES 0x00000100 /* NVM Present */
-#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */
-#define E1000_EECD_BLOCKED 0x00008000 /* Bit banging access blocked flag */
-#define E1000_EECD_ABORT 0x00010000 /* NVM operation aborted flag */
-#define E1000_EECD_TIMEOUT 0x00020000 /* NVM read operation timeout flag */
-#define E1000_EECD_ERROR_CLR 0x00040000 /* NVM error status clear bit */
-/* NVM Addressing bits based on type 0=small, 1=large */
-#define E1000_EECD_ADDR_BITS 0x00000400
-#define E1000_EECD_TYPE 0x00002000 /* NVM Type (1-SPI, 0-Microwire) */
-#ifndef E1000_NVM_GRANT_ATTEMPTS
-#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
-#endif
-#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
-#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
-#define E1000_EECD_SIZE_EX_SHIFT 11
-#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */
-#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */
-#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */
-#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
-#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
-#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */
-#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
-#define E1000_EECD_SECVAL_SHIFT 22
-#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES)
-
-#define E1000_NVM_SWDPIN0 0x0001 /* SWDPIN 0 NVM Value */
-#define E1000_NVM_LED_LOGIC 0x0020 /* Led Logic Word */
-#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write regs */
-#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
-#define E1000_NVM_RW_REG_START 1 /* Start operation */
-#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
-#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */
-#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */
-#define E1000_FLASH_UPDATES 2000
-
-/* NVM Word Offsets */
-#define NVM_COMPAT 0x0003
-#define NVM_ID_LED_SETTINGS 0x0004
-#define NVM_VERSION 0x0005
-#define NVM_SERDES_AMPLITUDE 0x0006 /* SERDES output amplitude */
-#define NVM_PHY_CLASS_WORD 0x0007
-#define NVM_INIT_CONTROL1_REG 0x000A
-#define NVM_INIT_CONTROL2_REG 0x000F
-#define NVM_SWDEF_PINS_CTRL_PORT_1 0x0010
-#define NVM_INIT_CONTROL3_PORT_B 0x0014
-#define NVM_INIT_3GIO_3 0x001A
-#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020
-#define NVM_INIT_CONTROL3_PORT_A 0x0024
-#define NVM_CFG 0x0012
-#define NVM_FLASH_VERSION 0x0032
-#define NVM_ALT_MAC_ADDR_PTR 0x0037
-#define NVM_CHECKSUM_REG 0x003F
-#define NVM_COMPATIBILITY_REG_3 0x0003
-#define NVM_COMPATIBILITY_BIT_MASK 0x8000
-
-#define E1000_NVM_CFG_DONE_PORT_0 0x040000 /* MNG config cycle done */
-#define E1000_NVM_CFG_DONE_PORT_1 0x080000 /* ...for second port */
-#define E1000_NVM_CFG_DONE_PORT_2 0x100000 /* ...for third port */
-#define E1000_NVM_CFG_DONE_PORT_3 0x200000 /* ...for fourth port */
-
-#define NVM_82580_LAN_FUNC_OFFSET(a) (a ? (0x40 + (0x40 * a)) : 0)
-
-/* Mask bits for fields in Word 0x24 of the NVM */
-#define NVM_WORD24_COM_MDIO 0x0008 /* MDIO interface shared */
-#define NVM_WORD24_EXT_MDIO 0x0004 /* MDIO accesses routed external */
-
-/* Mask bits for fields in Word 0x0f of the NVM */
-#define NVM_WORD0F_PAUSE_MASK 0x3000
-#define NVM_WORD0F_PAUSE 0x1000
-#define NVM_WORD0F_ASM_DIR 0x2000
-#define NVM_WORD0F_ANE 0x0800
-#define NVM_WORD0F_SWPDIO_EXT_MASK 0x00F0
-#define NVM_WORD0F_LPLU 0x0001
-
-/* Mask bits for fields in Word 0x1a of the NVM */
-#define NVM_WORD1A_ASPM_MASK 0x000C
-
-/* Mask bits for fields in Word 0x03 of the EEPROM */
-#define NVM_COMPAT_LOM 0x0800
-
-/* length of string needed to store PBA number */
-#define E1000_PBANUM_LENGTH 11
-
-/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
-#define NVM_SUM 0xBABA
-
-#define NVM_MAC_ADDR_OFFSET 0
-#define NVM_PBA_OFFSET_0 8
-#define NVM_PBA_OFFSET_1 9
-#define NVM_PBA_PTR_GUARD 0xFAFA
-#define NVM_RESERVED_WORD 0xFFFF
-#define NVM_PHY_CLASS_A 0x8000
-#define NVM_SERDES_AMPLITUDE_MASK 0x000F
-#define NVM_SIZE_MASK 0x1C00
-#define NVM_SIZE_SHIFT 10
-#define NVM_WORD_SIZE_BASE_SHIFT 6
-#define NVM_SWDPIO_EXT_SHIFT 4
-
-/* NVM Commands - Microwire */
-#define NVM_READ_OPCODE_MICROWIRE 0x6 /* NVM read opcode */
-#define NVM_WRITE_OPCODE_MICROWIRE 0x5 /* NVM write opcode */
-#define NVM_ERASE_OPCODE_MICROWIRE 0x7 /* NVM erase opcode */
-#define NVM_EWEN_OPCODE_MICROWIRE 0x13 /* NVM erase/write enable */
-#define NVM_EWDS_OPCODE_MICROWIRE 0x10 /* NVM erase/write disable */
-
-/* NVM Commands - SPI */
-#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
-#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */
-#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */
-#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
-#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */
-#define NVM_WRDI_OPCODE_SPI 0x04 /* NVM reset Write Enable latch */
-#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */
-#define NVM_WRSR_OPCODE_SPI 0x01 /* NVM write Status register */
-
-/* SPI NVM Status Register */
-#define NVM_STATUS_RDY_SPI 0x01
-#define NVM_STATUS_WEN_SPI 0x02
-#define NVM_STATUS_BP0_SPI 0x04
-#define NVM_STATUS_BP1_SPI 0x08
-#define NVM_STATUS_WPEN_SPI 0x80
-
-/* Word definitions for ID LED Settings */
-#define ID_LED_RESERVED_0000 0x0000
-#define ID_LED_RESERVED_FFFF 0xFFFF
-#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
- (ID_LED_OFF1_OFF2 << 8) | \
- (ID_LED_DEF1_DEF2 << 4) | \
- (ID_LED_DEF1_DEF2))
-#define ID_LED_DEF1_DEF2 0x1
-#define ID_LED_DEF1_ON2 0x2
-#define ID_LED_DEF1_OFF2 0x3
-#define ID_LED_ON1_DEF2 0x4
-#define ID_LED_ON1_ON2 0x5
-#define ID_LED_ON1_OFF2 0x6
-#define ID_LED_OFF1_DEF2 0x7
-#define ID_LED_OFF1_ON2 0x8
-#define ID_LED_OFF1_OFF2 0x9
-
-#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
-#define IGP_ACTIVITY_LED_ENABLE 0x0300
-#define IGP_LED3_MODE 0x07000000
-
-/* PCI/PCI-X/PCI-EX Config space */
-#define PCIX_COMMAND_REGISTER 0xE6
-#define PCIX_STATUS_REGISTER_LO 0xE8
-#define PCIX_STATUS_REGISTER_HI 0xEA
-#define PCI_HEADER_TYPE_REGISTER 0x0E
-#define PCIE_LINK_STATUS 0x12
-#define PCIE_DEVICE_CONTROL2 0x28
-
-#define PCIX_COMMAND_MMRBC_MASK 0x000C
-#define PCIX_COMMAND_MMRBC_SHIFT 0x2
-#define PCIX_STATUS_HI_MMRBC_MASK 0x0060
-#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5
-#define PCIX_STATUS_HI_MMRBC_4K 0x3
-#define PCIX_STATUS_HI_MMRBC_2K 0x2
-#define PCIX_STATUS_LO_FUNC_MASK 0x7
-#define PCI_HEADER_TYPE_MULTIFUNC 0x80
-#define PCIE_LINK_WIDTH_MASK 0x3F0
-#define PCIE_LINK_WIDTH_SHIFT 4
-#define PCIE_LINK_SPEED_MASK 0x0F
-#define PCIE_LINK_SPEED_2500 0x01
-#define PCIE_LINK_SPEED_5000 0x02
-#define PCIE_DEVICE_CONTROL2_16ms 0x0005
-
-#ifndef ETH_ADDR_LEN
-#define ETH_ADDR_LEN 6
-#endif
-
-#define PHY_REVISION_MASK 0xFFFFFFF0
-#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
-#define MAX_PHY_MULTI_PAGE_REG 0xF
-
-/* Bit definitions for valid PHY IDs. */
-/*
- * I = Integrated
- * E = External
- */
-#define M88E1000_E_PHY_ID 0x01410C50
-#define M88E1000_I_PHY_ID 0x01410C30
-#define M88E1011_I_PHY_ID 0x01410C20
-#define IGP01E1000_I_PHY_ID 0x02A80380
-#define M88E1011_I_REV_4 0x04
-#define M88E1111_I_PHY_ID 0x01410CC0
-#define M88E1112_E_PHY_ID 0x01410C90
-#define I347AT4_E_PHY_ID 0x01410DC0
-#define M88E1340M_E_PHY_ID 0x01410DF0
-#define GG82563_E_PHY_ID 0x01410CA0
-#define IGP03E1000_E_PHY_ID 0x02A80390
-#define IFE_E_PHY_ID 0x02A80330
-#define IFE_PLUS_E_PHY_ID 0x02A80320
-#define IFE_C_E_PHY_ID 0x02A80310
-#define I82580_I_PHY_ID 0x015403A0
-#define I350_I_PHY_ID 0x015403B0
-#define IGP04E1000_E_PHY_ID 0x02A80391
-#define M88_VENDOR 0x0141
-
-/* M88E1000 Specific Registers */
-#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
-#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
-#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */
-#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */
-#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
-#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
-
-#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */
-#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
-#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
-#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */
-#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */
-
-/* M88E1000 PHY Specific Control Register */
-#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */
-#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reverse enabled */
-#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */
-/* 1=CLK125 low, 0=CLK125 toggling */
-#define M88E1000_PSCR_CLK125_DISABLE 0x0010
-#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
- /* Manual MDI configuration */
-#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
-/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
-#define M88E1000_PSCR_AUTO_X_1000T 0x0040
-/* Auto crossover enabled all speeds */
-#define M88E1000_PSCR_AUTO_X_MODE 0x0060
-/*
- * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold
- * 0=Normal 10BASE-T Rx Threshold
- */
-#define M88E1000_PSCR_EN_10BT_EXT_DIST 0x0080
-/* 1=5-bit interface in 100BASE-TX, 0=MII interface in 100BASE-TX */
-#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100
-#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */
-#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */
-#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Tx */
-
-/* M88E1000 PHY Specific Status Register */
-#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */
-#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
-#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
-#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
-/*
- * 0 = <50M
- * 1 = 50-80M
- * 2 = 80-110M
- * 3 = 110-140M
- * 4 = >140M
- */
-#define M88E1000_PSSR_CABLE_LENGTH 0x0380
-#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
-#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
-#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */
-#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
-#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
-#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */
-#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
-#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
-
-#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
-
-/* M88E1000 Extended PHY Specific Control Register */
-#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
-/*
- * 1 = Lost lock detect enabled.
- * Will assert lost lock and bring
- * link down if idle not seen
- * within 1ms in 1000BASE-T
- */
-#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000
-/*
- * Number of times we will attempt to autonegotiate before downshifting if we
- * are the master
- */
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00
-/*
- * Number of times we will attempt to autonegotiate before downshifting if we
- * are the slave
- */
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300
-#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
-
-/* M88E1111 Specific Registers */
-#define M88E1111_PHY_PAGE_SELECT1 0x16 /* for registers 0-28 */
-#define M88E1111_PHY_PAGE_SELECT2 0x1D /* for registers 30-31 */
-
-/* M88E1111 page select register mask */
-#define M88E1111_PHY_PAGE_SELECT_MASK1 0xFF
-#define M88E1111_PHY_PAGE_SELECT_MASK2 0x3F
-
-/* Intel I347AT4 Registers */
-
-#define I347AT4_PCDL 0x10 /* PHY Cable Diagnostics Length */
-#define I347AT4_PCDC 0x15 /* PHY Cable Diagnostics Control */
-#define I347AT4_PAGE_SELECT 0x16
-
-/* I347AT4 Extended PHY Specific Control Register */
-
-/*
- * Number of times we will attempt to autonegotiate before downshifting if we
- * are the master
- */
-#define I347AT4_PSCR_DOWNSHIFT_ENABLE 0x0800
-#define I347AT4_PSCR_DOWNSHIFT_MASK 0x7000
-#define I347AT4_PSCR_DOWNSHIFT_1X 0x0000
-#define I347AT4_PSCR_DOWNSHIFT_2X 0x1000
-#define I347AT4_PSCR_DOWNSHIFT_3X 0x2000
-#define I347AT4_PSCR_DOWNSHIFT_4X 0x3000
-#define I347AT4_PSCR_DOWNSHIFT_5X 0x4000
-#define I347AT4_PSCR_DOWNSHIFT_6X 0x5000
-#define I347AT4_PSCR_DOWNSHIFT_7X 0x6000
-#define I347AT4_PSCR_DOWNSHIFT_8X 0x7000
-
-/* I347AT4 PHY Cable Diagnostics Control */
-#define I347AT4_PCDC_CABLE_LENGTH_UNIT 0x0400 /* 0=cm 1=meters */
-
-/* M88E1112 only registers */
-#define M88E1112_VCT_DSP_DISTANCE 0x001A
-
-/* M88EC018 Rev 2 specific DownShift settings */
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00
-
-/*
- * Bits...
- * 15-5: page
- * 4-0: register offset
- */
-#define GG82563_PAGE_SHIFT 5
-#define GG82563_REG(page, reg) \
- (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
-#define GG82563_MIN_ALT_REG 30
-
-/* GG82563 Specific Registers */
-#define GG82563_PHY_SPEC_CTRL \
- GG82563_REG(0, 16) /* PHY Specific Control */
-#define GG82563_PHY_SPEC_STATUS \
- GG82563_REG(0, 17) /* PHY Specific Status */
-#define GG82563_PHY_INT_ENABLE \
- GG82563_REG(0, 18) /* Interrupt Enable */
-#define GG82563_PHY_SPEC_STATUS_2 \
- GG82563_REG(0, 19) /* PHY Specific Status 2 */
-#define GG82563_PHY_RX_ERR_CNTR \
- GG82563_REG(0, 21) /* Receive Error Counter */
-#define GG82563_PHY_PAGE_SELECT \
- GG82563_REG(0, 22) /* Page Select */
-#define GG82563_PHY_SPEC_CTRL_2 \
- GG82563_REG(0, 26) /* PHY Specific Control 2 */
-#define GG82563_PHY_PAGE_SELECT_ALT \
- GG82563_REG(0, 29) /* Alternate Page Select */
-#define GG82563_PHY_TEST_CLK_CTRL \
- GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */
-
-#define GG82563_PHY_MAC_SPEC_CTRL \
- GG82563_REG(2, 21) /* MAC Specific Control Register */
-#define GG82563_PHY_MAC_SPEC_CTRL_2 \
- GG82563_REG(2, 26) /* MAC Specific Control 2 */
-
-#define GG82563_PHY_DSP_DISTANCE \
- GG82563_REG(5, 26) /* DSP Distance */
-
-/* Page 193 - Port Control Registers */
-#define GG82563_PHY_KMRN_MODE_CTRL \
- GG82563_REG(193, 16) /* Kumeran Mode Control */
-#define GG82563_PHY_PORT_RESET \
- GG82563_REG(193, 17) /* Port Reset */
-#define GG82563_PHY_REVISION_ID \
- GG82563_REG(193, 18) /* Revision ID */
-#define GG82563_PHY_DEVICE_ID \
- GG82563_REG(193, 19) /* Device ID */
-#define GG82563_PHY_PWR_MGMT_CTRL \
- GG82563_REG(193, 20) /* Power Management Control */
-#define GG82563_PHY_RATE_ADAPT_CTRL \
- GG82563_REG(193, 25) /* Rate Adaptation Control */
-
-/* Page 194 - KMRN Registers */
-#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \
- GG82563_REG(194, 16) /* FIFO's Control/Status */
-#define GG82563_PHY_KMRN_CTRL \
- GG82563_REG(194, 17) /* Control */
-#define GG82563_PHY_INBAND_CTRL \
- GG82563_REG(194, 18) /* Inband Control */
-#define GG82563_PHY_KMRN_DIAGNOSTIC \
- GG82563_REG(194, 19) /* Diagnostic */
-#define GG82563_PHY_ACK_TIMEOUTS \
- GG82563_REG(194, 20) /* Acknowledge Timeouts */
-#define GG82563_PHY_ADV_ABILITY \
- GG82563_REG(194, 21) /* Advertised Ability */
-#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \
- GG82563_REG(194, 23) /* Link Partner Advertised Ability */
-#define GG82563_PHY_ADV_NEXT_PAGE \
- GG82563_REG(194, 24) /* Advertised Next Page */
-#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \
- GG82563_REG(194, 25) /* Link Partner Advertised Next page */
-#define GG82563_PHY_KMRN_MISC \
- GG82563_REG(194, 26) /* Misc. */
-
-/* MDI Control */
-#define E1000_MDIC_DATA_MASK 0x0000FFFF
-#define E1000_MDIC_REG_MASK 0x001F0000
-#define E1000_MDIC_REG_SHIFT 16
-#define E1000_MDIC_PHY_MASK 0x03E00000
-#define E1000_MDIC_PHY_SHIFT 21
-#define E1000_MDIC_OP_WRITE 0x04000000
-#define E1000_MDIC_OP_READ 0x08000000
-#define E1000_MDIC_READY 0x10000000
-#define E1000_MDIC_INT_EN 0x20000000
-#define E1000_MDIC_ERROR 0x40000000
-#define E1000_MDIC_DEST 0x80000000
-
-/* SerDes Control */
-#define E1000_GEN_CTL_READY 0x80000000
-#define E1000_GEN_CTL_ADDRESS_SHIFT 8
-#define E1000_GEN_POLL_TIMEOUT 640
-
-/* LinkSec register fields */
-#define E1000_LSECTXCAP_SUM_MASK 0x00FF0000
-#define E1000_LSECTXCAP_SUM_SHIFT 16
-#define E1000_LSECRXCAP_SUM_MASK 0x00FF0000
-#define E1000_LSECRXCAP_SUM_SHIFT 16
-
-#define E1000_LSECTXCTRL_EN_MASK 0x00000003
-#define E1000_LSECTXCTRL_DISABLE 0x0
-#define E1000_LSECTXCTRL_AUTH 0x1
-#define E1000_LSECTXCTRL_AUTH_ENCRYPT 0x2
-#define E1000_LSECTXCTRL_AISCI 0x00000020
-#define E1000_LSECTXCTRL_PNTHRSH_MASK 0xFFFFFF00
-#define E1000_LSECTXCTRL_RSV_MASK 0x000000D8
-
-#define E1000_LSECRXCTRL_EN_MASK 0x0000000C
-#define E1000_LSECRXCTRL_EN_SHIFT 2
-#define E1000_LSECRXCTRL_DISABLE 0x0
-#define E1000_LSECRXCTRL_CHECK 0x1
-#define E1000_LSECRXCTRL_STRICT 0x2
-#define E1000_LSECRXCTRL_DROP 0x3
-#define E1000_LSECRXCTRL_PLSH 0x00000040
-#define E1000_LSECRXCTRL_RP 0x00000080
-#define E1000_LSECRXCTRL_RSV_MASK 0xFFFFFF33
-
-/* Tx Rate-Scheduler Config fields */
-#define E1000_RTTBCNRC_RS_ENA 0x80000000
-#define E1000_RTTBCNRC_RF_DEC_MASK 0x00003FFF
-#define E1000_RTTBCNRC_RF_INT_SHIFT 14
-#define E1000_RTTBCNRC_RF_INT_MASK \
- (E1000_RTTBCNRC_RF_DEC_MASK << E1000_RTTBCNRC_RF_INT_SHIFT)
-
-/* DMA Coalescing register fields */
-#define E1000_DMACR_DMACWT_MASK 0x00003FFF /* DMA Coalescing
- * Watchdog Timer */
-#define E1000_DMACR_DMACTHR_MASK 0x00FF0000 /* DMA Coalescing Rx
- * Threshold */
-#define E1000_DMACR_DMACTHR_SHIFT 16
-#define E1000_DMACR_DMAC_LX_MASK 0x30000000 /* Lx when no PCIe
- * transactions */
-#define E1000_DMACR_DMAC_LX_SHIFT 28
-#define E1000_DMACR_DMAC_EN 0x80000000 /* Enable DMA Coalescing */
-
-#define E1000_DMCTXTH_DMCTTHR_MASK 0x00000FFF /* DMA Coalescing Transmit
- * Threshold */
-
-#define E1000_DMCTLX_TTLX_MASK 0x00000FFF /* Time to LX request */
-
-#define E1000_DMCRTRH_UTRESH_MASK 0x0007FFFF /* Rx Traffic Rate
- * Threshold */
-#define E1000_DMCRTRH_LRPRCW 0x80000000 /* Rx packet rate in
- * current window */
-
-#define E1000_DMCCNT_CCOUNT_MASK 0x01FFFFFF /* DMA Coal Rx Traffic
- * Current Cnt */
-
-#define E1000_FCRTC_RTH_COAL_MASK 0x0003FFF0 /* Flow ctrl Rx Threshold
- * High val */
-#define E1000_FCRTC_RTH_COAL_SHIFT 4
-#define E1000_PCIEMISC_LX_DECISION 0x00000080 /* Lx power decision based
- on DMA coal */
-
-/* Proxy Filer Control */
-#define E1000_PROXYFC_D0 0x00000001 /* Enable offload in D0 */
-#define E1000_PROXYFC_EX 0x00000004 /* Directed exact proxy */
-#define E1000_PROXYFC_MC 0x00000008 /* Directed Multicast
- * Proxy */
-#define E1000_PROXYFC_BC 0x00000010 /* Broadcast Proxy Enable */
-#define E1000_PROXYFC_ARP_DIRECTED 0x00000020 /* Directed ARP Proxy
- * Enable */
-#define E1000_PROXYFC_IPV4 0x00000040 /* Directed IPv4 Enable */
-#define E1000_PROXYFC_IPV6 0x00000080 /* Directed IPv6 Enable */
-#define E1000_PROXYFC_NS 0x00000200 /* IPv4 Neighborhood
- * Solicitation */
-#define E1000_PROXYFC_ARP 0x00000800 /* ARP Request Proxy
- * Enable */
-/* Proxy Status */
-#define E1000_PROXYS_CLEAR 0xFFFFFFFF /* Clear */
-
-/* Firmware Status */
-#define E1000_FWSTS_FWRI 0x80000000 /* Firmware Reset
- * Indication */
-
-
-#endif /* _E1000_DEFINES_H_ */
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#ifndef _E1000_HW_H_
-#define _E1000_HW_H_
-
-#include "e1000_osdep.h"
-#include "e1000_regs.h"
-#include "e1000_defines.h"
-
-struct e1000_hw;
-
-#define E1000_DEV_ID_82576 0x10C9
-#define E1000_DEV_ID_82576_FIBER 0x10E6
-#define E1000_DEV_ID_82576_SERDES 0x10E7
-#define E1000_DEV_ID_82576_QUAD_COPPER 0x10E8
-#define E1000_DEV_ID_82576_QUAD_COPPER_ET2 0x1526
-#define E1000_DEV_ID_82576_NS 0x150A
-#define E1000_DEV_ID_82576_NS_SERDES 0x1518
-#define E1000_DEV_ID_82576_SERDES_QUAD 0x150D
-#define E1000_DEV_ID_82576_VF 0x10CA
-#define E1000_DEV_ID_I350_VF 0x1520
-#define E1000_DEV_ID_82575EB_COPPER 0x10A7
-#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9
-#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6
-#define E1000_DEV_ID_82580_COPPER 0x150E
-#define E1000_DEV_ID_82580_FIBER 0x150F
-#define E1000_DEV_ID_82580_SERDES 0x1510
-#define E1000_DEV_ID_82580_SGMII 0x1511
-#define E1000_DEV_ID_82580_COPPER_DUAL 0x1516
-#define E1000_DEV_ID_82580_QUAD_FIBER 0x1527
-#define E1000_DEV_ID_I350_COPPER 0x1521
-#define E1000_DEV_ID_I350_FIBER 0x1522
-#define E1000_DEV_ID_I350_SERDES 0x1523
-#define E1000_DEV_ID_I350_SGMII 0x1524
-#define E1000_DEV_ID_I350_DA4 0x1546
-#define E1000_DEV_ID_DH89XXCC_SGMII 0x0438
-#define E1000_DEV_ID_DH89XXCC_SERDES 0x043A
-#define E1000_DEV_ID_DH89XXCC_BACKPLANE 0x043C
-#define E1000_DEV_ID_DH89XXCC_SFP 0x0440
-#define E1000_REVISION_0 0
-#define E1000_REVISION_1 1
-#define E1000_REVISION_2 2
-#define E1000_REVISION_3 3
-#define E1000_REVISION_4 4
-
-#define E1000_FUNC_0 0
-#define E1000_FUNC_1 1
-#define E1000_FUNC_2 2
-#define E1000_FUNC_3 3
-
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2 6
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3 9
-
-enum e1000_mac_type {
- e1000_undefined = 0,
- e1000_82575,
- e1000_82576,
- e1000_82580,
- e1000_i350,
- e1000_vfadapt,
- e1000_vfadapt_i350,
- e1000_num_macs /* List is 1-based, so subtract 1 for TRUE count. */
-};
-
-enum e1000_media_type {
- e1000_media_type_unknown = 0,
- e1000_media_type_copper = 1,
- e1000_media_type_fiber = 2,
- e1000_media_type_internal_serdes = 3,
- e1000_num_media_types
-};
-
-enum e1000_nvm_type {
- e1000_nvm_unknown = 0,
- e1000_nvm_none,
- e1000_nvm_eeprom_spi,
- e1000_nvm_eeprom_microwire,
- e1000_nvm_flash_hw,
- e1000_nvm_flash_sw
-};
-
-enum e1000_nvm_override {
- e1000_nvm_override_none = 0,
- e1000_nvm_override_spi_small,
- e1000_nvm_override_spi_large,
- e1000_nvm_override_microwire_small,
- e1000_nvm_override_microwire_large
-};
-
-enum e1000_phy_type {
- e1000_phy_unknown = 0,
- e1000_phy_none,
- e1000_phy_m88,
- e1000_phy_igp,
- e1000_phy_igp_2,
- e1000_phy_gg82563,
- e1000_phy_igp_3,
- e1000_phy_ife,
- e1000_phy_82580,
- e1000_phy_vf,
-};
-
-enum e1000_bus_type {
- e1000_bus_type_unknown = 0,
- e1000_bus_type_pci,
- e1000_bus_type_pcix,
- e1000_bus_type_pci_express,
- e1000_bus_type_reserved
-};
-
-enum e1000_bus_speed {
- e1000_bus_speed_unknown = 0,
- e1000_bus_speed_33,
- e1000_bus_speed_66,
- e1000_bus_speed_100,
- e1000_bus_speed_120,
- e1000_bus_speed_133,
- e1000_bus_speed_2500,
- e1000_bus_speed_5000,
- e1000_bus_speed_reserved
-};
-
-enum e1000_bus_width {
- e1000_bus_width_unknown = 0,
- e1000_bus_width_pcie_x1,
- e1000_bus_width_pcie_x2,
- e1000_bus_width_pcie_x4 = 4,
- e1000_bus_width_pcie_x8 = 8,
- e1000_bus_width_32,
- e1000_bus_width_64,
- e1000_bus_width_reserved
-};
-
-enum e1000_1000t_rx_status {
- e1000_1000t_rx_status_not_ok = 0,
- e1000_1000t_rx_status_ok,
- e1000_1000t_rx_status_undefined = 0xFF
-};
-
-enum e1000_rev_polarity {
- e1000_rev_polarity_normal = 0,
- e1000_rev_polarity_reversed,
- e1000_rev_polarity_undefined = 0xFF
-};
-
-enum e1000_fc_mode {
- e1000_fc_none = 0,
- e1000_fc_rx_pause,
- e1000_fc_tx_pause,
- e1000_fc_full,
- e1000_fc_default = 0xFF
-};
-
-enum e1000_ms_type {
- e1000_ms_hw_default = 0,
- e1000_ms_force_master,
- e1000_ms_force_slave,
- e1000_ms_auto
-};
-
-enum e1000_smart_speed {
- e1000_smart_speed_default = 0,
- e1000_smart_speed_on,
- e1000_smart_speed_off
-};
-
-enum e1000_serdes_link_state {
- e1000_serdes_link_down = 0,
- e1000_serdes_link_autoneg_progress,
- e1000_serdes_link_autoneg_complete,
- e1000_serdes_link_forced_up
-};
-
-#define __le16 u16
-#define __le32 u32
-#define __le64 u64
-/* Receive Descriptor */
-struct e1000_rx_desc {
- __le64 buffer_addr; /* Address of the descriptor's data buffer */
- __le16 length; /* Length of data DMAed into data buffer */
- __le16 csum; /* Packet checksum */
- u8 status; /* Descriptor status */
- u8 errors; /* Descriptor Errors */
- __le16 special;
-};
-
-/* Receive Descriptor - Extended */
-union e1000_rx_desc_extended {
- struct {
- __le64 buffer_addr;
- __le64 reserved;
- } read;
- struct {
- struct {
- __le32 mrq; /* Multiple Rx Queues */
- union {
- __le32 rss; /* RSS Hash */
- struct {
- __le16 ip_id; /* IP id */
- __le16 csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- __le32 status_error; /* ext status/error */
- __le16 length;
- __le16 vlan; /* VLAN tag */
- } upper;
- } wb; /* writeback */
-};
-
-#define MAX_PS_BUFFERS 4
-/* Receive Descriptor - Packet Split */
-union e1000_rx_desc_packet_split {
- struct {
- /* one buffer for protocol header(s), three data buffers */
- __le64 buffer_addr[MAX_PS_BUFFERS];
- } read;
- struct {
- struct {
- __le32 mrq; /* Multiple Rx Queues */
- union {
- __le32 rss; /* RSS Hash */
- struct {
- __le16 ip_id; /* IP id */
- __le16 csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- __le32 status_error; /* ext status/error */
- __le16 length0; /* length of buffer 0 */
- __le16 vlan; /* VLAN tag */
- } middle;
- struct {
- __le16 header_status;
- __le16 length[3]; /* length of buffers 1-3 */
- } upper;
- __le64 reserved;
- } wb; /* writeback */
-};
-
-/* Transmit Descriptor */
-struct e1000_tx_desc {
- __le64 buffer_addr; /* Address of the descriptor's data buffer */
- union {
- __le32 data;
- struct {
- __le16 length; /* Data buffer length */
- u8 cso; /* Checksum offset */
- u8 cmd; /* Descriptor control */
- } flags;
- } lower;
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 css; /* Checksum start */
- __le16 special;
- } fields;
- } upper;
-};
-
-/* Offload Context Descriptor */
-struct e1000_context_desc {
- union {
- __le32 ip_config;
- struct {
- u8 ipcss; /* IP checksum start */
- u8 ipcso; /* IP checksum offset */
- __le16 ipcse; /* IP checksum end */
- } ip_fields;
- } lower_setup;
- union {
- __le32 tcp_config;
- struct {
- u8 tucss; /* TCP checksum start */
- u8 tucso; /* TCP checksum offset */
- __le16 tucse; /* TCP checksum end */
- } tcp_fields;
- } upper_setup;
- __le32 cmd_and_length;
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 hdr_len; /* Header length */
- __le16 mss; /* Maximum segment size */
- } fields;
- } tcp_seg_setup;
-};
-
-/* Offload data descriptor */
-struct e1000_data_desc {
- __le64 buffer_addr; /* Address of the descriptor's buffer address */
- union {
- __le32 data;
- struct {
- __le16 length; /* Data buffer length */
- u8 typ_len_ext;
- u8 cmd;
- } flags;
- } lower;
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 popts; /* Packet Options */
- __le16 special;
- } fields;
- } upper;
-};
-
-/* Statistics counters collected by the MAC */
-struct e1000_hw_stats {
- u64 crcerrs;
- u64 algnerrc;
- u64 symerrs;
- u64 rxerrc;
- u64 mpc;
- u64 scc;
- u64 ecol;
- u64 mcc;
- u64 latecol;
- u64 colc;
- u64 dc;
- u64 tncrs;
- u64 sec;
- u64 cexterr;
- u64 rlec;
- u64 xonrxc;
- u64 xontxc;
- u64 xoffrxc;
- u64 xofftxc;
- u64 fcruc;
- u64 prc64;
- u64 prc127;
- u64 prc255;
- u64 prc511;
- u64 prc1023;
- u64 prc1522;
- u64 gprc;
- u64 bprc;
- u64 mprc;
- u64 gptc;
- u64 gorc;
- u64 gotc;
- u64 rnbc;
- u64 ruc;
- u64 rfc;
- u64 roc;
- u64 rjc;
- u64 mgprc;
- u64 mgpdc;
- u64 mgptc;
- u64 tor;
- u64 tot;
- u64 tpr;
- u64 tpt;
- u64 ptc64;
- u64 ptc127;
- u64 ptc255;
- u64 ptc511;
- u64 ptc1023;
- u64 ptc1522;
- u64 mptc;
- u64 bptc;
- u64 tsctc;
- u64 tsctfc;
- u64 iac;
- u64 icrxptc;
- u64 icrxatc;
- u64 ictxptc;
- u64 ictxatc;
- u64 ictxqec;
- u64 ictxqmtc;
- u64 icrxdmtc;
- u64 icrxoc;
- u64 cbtmpc;
- u64 htdpmc;
- u64 cbrdpc;
- u64 cbrmpc;
- u64 rpthc;
- u64 hgptc;
- u64 htcbdpc;
- u64 hgorc;
- u64 hgotc;
- u64 lenerrs;
- u64 scvpc;
- u64 hrmpc;
- u64 doosync;
-};
-
-struct e1000_vf_stats {
- u64 base_gprc;
- u64 base_gptc;
- u64 base_gorc;
- u64 base_gotc;
- u64 base_mprc;
- u64 base_gotlbc;
- u64 base_gptlbc;
- u64 base_gorlbc;
- u64 base_gprlbc;
-
- u32 last_gprc;
- u32 last_gptc;
- u32 last_gorc;
- u32 last_gotc;
- u32 last_mprc;
- u32 last_gotlbc;
- u32 last_gptlbc;
- u32 last_gorlbc;
- u32 last_gprlbc;
-
- u64 gprc;
- u64 gptc;
- u64 gorc;
- u64 gotc;
- u64 mprc;
- u64 gotlbc;
- u64 gptlbc;
- u64 gorlbc;
- u64 gprlbc;
-};
-
-struct e1000_phy_stats {
- u32 idle_errors;
- u32 receive_errors;
-};
-
-struct e1000_host_mng_dhcp_cookie {
- u32 signature;
- u8 status;
- u8 reserved0;
- u16 vlan_id;
- u32 reserved1;
- u16 reserved2;
- u8 reserved3;
- u8 checksum;
-};
-
-/* Host Interface "Rev 1" */
-struct e1000_host_command_header {
- u8 command_id;
- u8 command_length;
- u8 command_options;
- u8 checksum;
-};
-
-#define E1000_HI_MAX_DATA_LENGTH 252
-struct e1000_host_command_info {
- struct e1000_host_command_header command_header;
- u8 command_data[E1000_HI_MAX_DATA_LENGTH];
-};
-
-/* Host Interface "Rev 2" */
-struct e1000_host_mng_command_header {
- u8 command_id;
- u8 checksum;
- u16 reserved1;
- u16 reserved2;
- u16 command_length;
-};
-
-#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
-struct e1000_host_mng_command_info {
- struct e1000_host_mng_command_header command_header;
- u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
-};
-
-#include "e1000_mac.h"
-#include "e1000_phy.h"
-#include "e1000_nvm.h"
-#include "e1000_manage.h"
-#include "e1000_mbx.h"
-
-struct e1000_mac_operations {
- /* Function pointers for the MAC. */
- s32 (*init_params)(struct e1000_hw *);
- s32 (*id_led_init)(struct e1000_hw *);
- s32 (*blink_led)(struct e1000_hw *);
- s32 (*check_for_link)(struct e1000_hw *);
- bool (*check_mng_mode)(struct e1000_hw *hw);
- s32 (*cleanup_led)(struct e1000_hw *);
- void (*clear_hw_cntrs)(struct e1000_hw *);
- void (*clear_vfta)(struct e1000_hw *);
- s32 (*get_bus_info)(struct e1000_hw *);
- void (*set_lan_id)(struct e1000_hw *);
- s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
- s32 (*led_on)(struct e1000_hw *);
- s32 (*led_off)(struct e1000_hw *);
- void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
- s32 (*reset_hw)(struct e1000_hw *);
- s32 (*init_hw)(struct e1000_hw *);
- void (*shutdown_serdes)(struct e1000_hw *);
- void (*power_up_serdes)(struct e1000_hw *);
- s32 (*setup_link)(struct e1000_hw *);
- s32 (*setup_physical_interface)(struct e1000_hw *);
- s32 (*setup_led)(struct e1000_hw *);
- void (*write_vfta)(struct e1000_hw *, u32, u32);
- void (*config_collision_dist)(struct e1000_hw *);
- void (*rar_set)(struct e1000_hw *, u8*, u32);
- s32 (*read_mac_addr)(struct e1000_hw *);
- s32 (*validate_mdi_setting)(struct e1000_hw *);
- s32 (*mng_host_if_write)(struct e1000_hw *, u8*, u16, u16, u8*);
- s32 (*mng_write_cmd_header)(struct e1000_hw *hw,
- struct e1000_host_mng_command_header*);
- s32 (*mng_enable_host_if)(struct e1000_hw *);
- s32 (*wait_autoneg)(struct e1000_hw *);
-};
-
-struct e1000_phy_operations {
- s32 (*init_params)(struct e1000_hw *);
- s32 (*acquire)(struct e1000_hw *);
- s32 (*check_polarity)(struct e1000_hw *);
- s32 (*check_reset_block)(struct e1000_hw *);
- s32 (*commit)(struct e1000_hw *);
- s32 (*force_speed_duplex)(struct e1000_hw *);
- s32 (*get_cfg_done)(struct e1000_hw *hw);
- s32 (*get_cable_length)(struct e1000_hw *);
- s32 (*get_info)(struct e1000_hw *);
- s32 (*read_reg)(struct e1000_hw *, u32, u16 *);
- s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *);
- void (*release)(struct e1000_hw *);
- s32 (*reset)(struct e1000_hw *);
- s32 (*set_d0_lplu_state)(struct e1000_hw *, bool);
- s32 (*set_d3_lplu_state)(struct e1000_hw *, bool);
- s32 (*write_reg)(struct e1000_hw *, u32, u16);
- s32 (*write_reg_locked)(struct e1000_hw *, u32, u16);
- void (*power_up)(struct e1000_hw *);
- void (*power_down)(struct e1000_hw *);
-};
-
-struct e1000_nvm_operations {
- s32 (*init_params)(struct e1000_hw *);
- s32 (*acquire)(struct e1000_hw *);
- s32 (*read)(struct e1000_hw *, u16, u16, u16 *);
- void (*release)(struct e1000_hw *);
- void (*reload)(struct e1000_hw *);
- s32 (*update)(struct e1000_hw *);
- s32 (*valid_led_default)(struct e1000_hw *, u16 *);
- s32 (*validate)(struct e1000_hw *);
- s32 (*write)(struct e1000_hw *, u16, u16, u16 *);
-};
-
-struct e1000_mac_info {
- struct e1000_mac_operations ops;
- u8 addr[ETH_ADDR_LEN];
- u8 perm_addr[ETH_ADDR_LEN];
-
- enum e1000_mac_type type;
-
- u32 collision_delta;
- u32 ledctl_default;
- u32 ledctl_mode1;
- u32 ledctl_mode2;
- u32 mc_filter_type;
- u32 tx_packet_delta;
- u32 txcw;
-
- u16 current_ifs_val;
- u16 ifs_max_val;
- u16 ifs_min_val;
- u16 ifs_ratio;
- u16 ifs_step_size;
- u16 mta_reg_count;
- u16 uta_reg_count;
-
- /* Maximum size of the MTA register table in all supported adapters */
- #define MAX_MTA_REG 128
- u32 mta_shadow[MAX_MTA_REG];
- u16 rar_entry_count;
-
- u8 forced_speed_duplex;
-
- bool adaptive_ifs;
- bool has_fwsm;
- bool arc_subsystem_valid;
- bool asf_firmware_present;
- bool autoneg;
- bool autoneg_failed;
- bool get_link_status;
- bool in_ifs_mode;
- enum e1000_serdes_link_state serdes_link_state;
- bool serdes_has_link;
- bool tx_pkt_filtering;
-};
-
-struct e1000_phy_info {
- struct e1000_phy_operations ops;
- enum e1000_phy_type type;
-
- enum e1000_1000t_rx_status local_rx;
- enum e1000_1000t_rx_status remote_rx;
- enum e1000_ms_type ms_type;
- enum e1000_ms_type original_ms_type;
- enum e1000_rev_polarity cable_polarity;
- enum e1000_smart_speed smart_speed;
-
- u32 addr;
- u32 id;
- u32 reset_delay_us; /* in usec */
- u32 revision;
-
- enum e1000_media_type media_type;
-
- u16 autoneg_advertised;
- u16 autoneg_mask;
- u16 cable_length;
- u16 max_cable_length;
- u16 min_cable_length;
-
- u8 mdix;
-
- bool disable_polarity_correction;
- bool is_mdix;
- bool polarity_correction;
- bool reset_disable;
- bool speed_downgraded;
- bool autoneg_wait_to_complete;
-};
-
-struct e1000_nvm_info {
- struct e1000_nvm_operations ops;
- enum e1000_nvm_type type;
- enum e1000_nvm_override override;
-
- u32 flash_bank_size;
- u32 flash_base_addr;
-
- u16 word_size;
- u16 delay_usec;
- u16 address_bits;
- u16 opcode_bits;
- u16 page_size;
-};
-
-struct e1000_bus_info {
- enum e1000_bus_type type;
- enum e1000_bus_speed speed;
- enum e1000_bus_width width;
-
- u16 func;
- u16 pci_cmd_word;
-};
-
-struct e1000_fc_info {
- u32 high_water; /* Flow control high-water mark */
- u32 low_water; /* Flow control low-water mark */
- u16 pause_time; /* Flow control pause timer */
- u16 refresh_time; /* Flow control refresh timer */
- bool send_xon; /* Flow control send XON */
- bool strict_ieee; /* Strict IEEE mode */
- enum e1000_fc_mode current_mode; /* FC mode in effect */
- enum e1000_fc_mode requested_mode; /* FC mode requested by caller */
-};
-
-struct e1000_mbx_operations {
- s32 (*init_params)(struct e1000_hw *hw);
- s32 (*read)(struct e1000_hw *, u32 *, u16, u16);
- s32 (*write)(struct e1000_hw *, u32 *, u16, u16);
- s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16);
- s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16);
- s32 (*check_for_msg)(struct e1000_hw *, u16);
- s32 (*check_for_ack)(struct e1000_hw *, u16);
- s32 (*check_for_rst)(struct e1000_hw *, u16);
-};
-
-struct e1000_mbx_stats {
- u32 msgs_tx;
- u32 msgs_rx;
-
- u32 acks;
- u32 reqs;
- u32 rsts;
-};
-
-struct e1000_mbx_info {
- struct e1000_mbx_operations ops;
- struct e1000_mbx_stats stats;
- u32 timeout;
- u32 usec_delay;
- u16 size;
-};
-
-struct e1000_dev_spec_82575 {
- bool sgmii_active;
- bool global_device_reset;
- bool eee_disable;
-};
-
-struct e1000_dev_spec_vf {
- u32 vf_number;
- u32 v2p_mailbox;
-};
-
-struct e1000_hw {
- void *back;
-
- u8 *hw_addr;
- u8 *flash_address;
- unsigned long io_base;
-
- struct e1000_mac_info mac;
- struct e1000_fc_info fc;
- struct e1000_phy_info phy;
- struct e1000_nvm_info nvm;
- struct e1000_bus_info bus;
- struct e1000_mbx_info mbx;
- struct e1000_host_mng_dhcp_cookie mng_cookie;
-
- union {
- struct e1000_dev_spec_82575 _82575;
- struct e1000_dev_spec_vf vf;
- } dev_spec;
-
- u16 device_id;
- u16 subsystem_vendor_id;
- u16 subsystem_device_id;
- u16 vendor_id;
-
- u8 revision_id;
-};
-
-#include "e1000_82575.h"
-
-/* These functions must be implemented by drivers */
-s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
-s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
-void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
-void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
-
-#endif
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#include "e1000_api.h"
-
-static s32 e1000_set_default_fc_generic(struct e1000_hw *hw);
-static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw);
-static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw);
-static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
-static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
-
-/**
- * e1000_init_mac_ops_generic - Initialize MAC function pointers
- * @hw: pointer to the HW structure
- *
- * Setups up the function pointers to no-op functions
- **/
-void e1000_init_mac_ops_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- DEBUGFUNC("e1000_init_mac_ops_generic");
-
- /* General Setup */
- mac->ops.init_params = e1000_null_ops_generic;
- mac->ops.init_hw = e1000_null_ops_generic;
- mac->ops.reset_hw = e1000_null_ops_generic;
- mac->ops.setup_physical_interface = e1000_null_ops_generic;
- mac->ops.get_bus_info = e1000_null_ops_generic;
- mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie;
- mac->ops.read_mac_addr = e1000_read_mac_addr_generic;
- mac->ops.config_collision_dist = e1000_config_collision_dist_generic;
- mac->ops.clear_hw_cntrs = e1000_null_mac_generic;
- /* LED */
- mac->ops.cleanup_led = e1000_null_ops_generic;
- mac->ops.setup_led = e1000_null_ops_generic;
- mac->ops.blink_led = e1000_null_ops_generic;
- mac->ops.led_on = e1000_null_ops_generic;
- mac->ops.led_off = e1000_null_ops_generic;
- /* LINK */
- mac->ops.setup_link = e1000_null_ops_generic;
- mac->ops.get_link_up_info = e1000_null_link_info;
- mac->ops.check_for_link = e1000_null_ops_generic;
- mac->ops.wait_autoneg = e1000_wait_autoneg_generic;
- /* Management */
- mac->ops.check_mng_mode = e1000_null_mng_mode;
- mac->ops.mng_host_if_write = e1000_mng_host_if_write_generic;
- mac->ops.mng_write_cmd_header = e1000_mng_write_cmd_header_generic;
- mac->ops.mng_enable_host_if = e1000_mng_enable_host_if_generic;
- /* VLAN, MC, etc. */
- mac->ops.update_mc_addr_list = e1000_null_update_mc;
- mac->ops.clear_vfta = e1000_null_mac_generic;
- mac->ops.write_vfta = e1000_null_write_vfta;
- mac->ops.rar_set = e1000_rar_set_generic;
- mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic;
-}
-
-/**
- * e1000_null_ops_generic - No-op function, returns 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_ops_generic(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_null_ops_generic");
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_null_mac_generic - No-op function, return void
- * @hw: pointer to the HW structure
- **/
-void e1000_null_mac_generic(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_null_mac_generic");
- return;
-}
-
-/**
- * e1000_null_link_info - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d)
-{
- DEBUGFUNC("e1000_null_link_info");
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_null_mng_mode - No-op function, return FALSE
- * @hw: pointer to the HW structure
- **/
-bool e1000_null_mng_mode(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_null_mng_mode");
- return FALSE;
-}
-
-/**
- * e1000_null_update_mc - No-op function, return void
- * @hw: pointer to the HW structure
- **/
-void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a)
-{
- DEBUGFUNC("e1000_null_update_mc");
- return;
-}
-
-/**
- * e1000_null_write_vfta - No-op function, return void
- * @hw: pointer to the HW structure
- **/
-void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b)
-{
- DEBUGFUNC("e1000_null_write_vfta");
- return;
-}
-
-/**
- * e1000_null_rar_set - No-op function, return void
- * @hw: pointer to the HW structure
- **/
-void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a)
-{
- DEBUGFUNC("e1000_null_rar_set");
- return;
-}
-
-/**
- * e1000_get_bus_info_pci_generic - Get PCI(x) bus information
- * @hw: pointer to the HW structure
- *
- * Determines and stores the system bus information for a particular
- * network interface. The following bus information is determined and stored:
- * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
- **/
-s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- struct e1000_bus_info *bus = &hw->bus;
- u32 status = E1000_READ_REG(hw, E1000_STATUS);
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_get_bus_info_pci_generic");
-
- /* PCI or PCI-X? */
- bus->type = (status & E1000_STATUS_PCIX_MODE)
- ? e1000_bus_type_pcix
- : e1000_bus_type_pci;
-
- /* Bus speed */
- if (bus->type == e1000_bus_type_pci) {
- bus->speed = (status & E1000_STATUS_PCI66)
- ? e1000_bus_speed_66
- : e1000_bus_speed_33;
- } else {
- switch (status & E1000_STATUS_PCIX_SPEED) {
- case E1000_STATUS_PCIX_SPEED_66:
- bus->speed = e1000_bus_speed_66;
- break;
- case E1000_STATUS_PCIX_SPEED_100:
- bus->speed = e1000_bus_speed_100;
- break;
- case E1000_STATUS_PCIX_SPEED_133:
- bus->speed = e1000_bus_speed_133;
- break;
- default:
- bus->speed = e1000_bus_speed_reserved;
- break;
- }
- }
-
- /* Bus width */
- bus->width = (status & E1000_STATUS_BUS64)
- ? e1000_bus_width_64
- : e1000_bus_width_32;
-
- /* Which PCI(-X) function? */
- mac->ops.set_lan_id(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_get_bus_info_pcie_generic - Get PCIe bus information
- * @hw: pointer to the HW structure
- *
- * Determines and stores the system bus information for a particular
- * network interface. The following bus information is determined and stored:
- * bus speed, bus width, type (PCIe), and PCIe function.
- **/
-s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- struct e1000_bus_info *bus = &hw->bus;
- s32 ret_val;
- u16 pcie_link_status;
-
- DEBUGFUNC("e1000_get_bus_info_pcie_generic");
-
- bus->type = e1000_bus_type_pci_express;
-
- ret_val = e1000_read_pcie_cap_reg(hw,
- PCIE_LINK_STATUS,
- &pcie_link_status);
- if (ret_val) {
- bus->width = e1000_bus_width_unknown;
- bus->speed = e1000_bus_speed_unknown;
- } else {
- switch (pcie_link_status & PCIE_LINK_SPEED_MASK) {
- case PCIE_LINK_SPEED_2500:
- bus->speed = e1000_bus_speed_2500;
- break;
- case PCIE_LINK_SPEED_5000:
- bus->speed = e1000_bus_speed_5000;
- break;
- default:
- bus->speed = e1000_bus_speed_unknown;
- break;
- }
-
- bus->width = (enum e1000_bus_width)((pcie_link_status &
- PCIE_LINK_WIDTH_MASK) >>
- PCIE_LINK_WIDTH_SHIFT);
- }
-
- mac->ops.set_lan_id(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
- *
- * @hw: pointer to the HW structure
- *
- * Determines the LAN function id by reading memory-mapped registers
- * and swaps the port value if requested.
- **/
-static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
-{
- struct e1000_bus_info *bus = &hw->bus;
- u32 reg;
-
- /*
- * The status register reports the correct function number
- * for the device regardless of function swap state.
- */
- reg = E1000_READ_REG(hw, E1000_STATUS);
- bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
-}
-
-/**
- * e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices
- * @hw: pointer to the HW structure
- *
- * Determines the LAN function id by reading PCI config space.
- **/
-void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw)
-{
- struct e1000_bus_info *bus = &hw->bus;
- u16 pci_header_type;
- u32 status;
-
- e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
- if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
- status = E1000_READ_REG(hw, E1000_STATUS);
- bus->func = (status & E1000_STATUS_FUNC_MASK)
- >> E1000_STATUS_FUNC_SHIFT;
- } else {
- bus->func = 0;
- }
-}
-
-/**
- * e1000_set_lan_id_single_port - Set LAN id for a single port device
- * @hw: pointer to the HW structure
- *
- * Sets the LAN function id to zero for a single port device.
- **/
-void e1000_set_lan_id_single_port(struct e1000_hw *hw)
-{
- struct e1000_bus_info *bus = &hw->bus;
-
- bus->func = 0;
-}
-
-/**
- * e1000_clear_vfta_generic - Clear VLAN filter table
- * @hw: pointer to the HW structure
- *
- * Clears the register array which contains the VLAN filter table by
- * setting all the values to 0.
- **/
-void e1000_clear_vfta_generic(struct e1000_hw *hw)
-{
- u32 offset;
-
- DEBUGFUNC("e1000_clear_vfta_generic");
-
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
- E1000_WRITE_FLUSH(hw);
- }
-}
-
-/**
- * e1000_write_vfta_generic - Write value to VLAN filter table
- * @hw: pointer to the HW structure
- * @offset: register offset in VLAN filter table
- * @value: register value written to VLAN filter table
- *
- * Writes value at the given offset in the register array which stores
- * the VLAN filter table.
- **/
-void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
-{
- DEBUGFUNC("e1000_write_vfta_generic");
-
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * e1000_init_rx_addrs_generic - Initialize receive address's
- * @hw: pointer to the HW structure
- * @rar_count: receive address registers
- *
- * Setup the receive address registers by setting the base receive address
- * register to the devices MAC address and clearing all the other receive
- * address registers to 0.
- **/
-void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
-{
- u32 i;
- u8 mac_addr[ETH_ADDR_LEN] = {0};
-
- DEBUGFUNC("e1000_init_rx_addrs_generic");
-
- /* Setup the receive address */
- DEBUGOUT("Programming MAC Address into RAR[0]\n");
-
- hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
-
- /* Zero out the other (rar_entry_count - 1) receive addresses */
- DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
- for (i = 1; i < rar_count; i++)
- hw->mac.ops.rar_set(hw, mac_addr, i);
-}
-
-/**
- * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
- * @hw: pointer to the HW structure
- *
- * Checks the nvm for an alternate MAC address. An alternate MAC address
- * can be setup by pre-boot software and must be treated like a permanent
- * address and must override the actual permanent MAC address. If an
- * alternate MAC address is found it is programmed into RAR0, replacing
- * the permanent address that was installed into RAR0 by the Si on reset.
- * This function will return SUCCESS unless it encounters an error while
- * reading the EEPROM.
- **/
-s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
-{
- u32 i;
- s32 ret_val = E1000_SUCCESS;
- u16 offset, nvm_alt_mac_addr_offset, nvm_data;
- u8 alt_mac_addr[ETH_ADDR_LEN];
-
- DEBUGFUNC("e1000_check_alt_mac_addr_generic");
-
- ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
- if (ret_val)
- goto out;
-
- if (!(nvm_data & NVM_COMPAT_LOM))
- goto out;
-
- ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
- &nvm_alt_mac_addr_offset);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- if (nvm_alt_mac_addr_offset == 0xFFFF) {
- /* There is no Alternate MAC Address */
- goto out;
- }
-
- if (hw->bus.func == E1000_FUNC_1)
- nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
- if (hw->bus.func == E1000_FUNC_2)
- nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
-
- if (hw->bus.func == E1000_FUNC_3)
- nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
- for (i = 0; i < ETH_ADDR_LEN; i += 2) {
- offset = nvm_alt_mac_addr_offset + (i >> 1);
- ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
- alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
- }
-
- /* if multicast bit is set, the alternate address will not be used */
- if (alt_mac_addr[0] & 0x01) {
- DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
- goto out;
- }
-
- /*
- * We have a valid alternate MAC address, and we want to treat it the
- * same as the normal permanent MAC address stored by the HW into the
- * RAR. Do this by mapping this address into RAR0.
- */
- hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_rar_set_generic - Set receive address register
- * @hw: pointer to the HW structure
- * @addr: pointer to the receive address
- * @index: receive address array register
- *
- * Sets the receive address array register at index to the address passed
- * in by addr.
- **/
-void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
-{
- u32 rar_low, rar_high;
-
- DEBUGFUNC("e1000_rar_set_generic");
-
- /*
- * HW expects these in little endian so we reverse the byte order
- * from network order (big endian) to little endian
- */
- rar_low = ((u32) addr[0] |
- ((u32) addr[1] << 8) |
- ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
-
- rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
-
- /* If MAC address zero, no need to set the AV bit */
- if (rar_low || rar_high)
- rar_high |= E1000_RAH_AV;
-
- /*
- * Some bridges will combine consecutive 32-bit writes into
- * a single burst write, which will malfunction on some parts.
- * The flushes avoid this.
- */
- E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * e1000_update_mc_addr_list_generic - Update Multicast addresses
- * @hw: pointer to the HW structure
- * @mc_addr_list: array of multicast addresses to program
- * @mc_addr_count: number of multicast addresses to program
- *
- * Updates entire Multicast Table Array.
- * The caller must have a packed mc_addr_list of multicast addresses.
- **/
-void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count)
-{
- u32 hash_value, hash_bit, hash_reg;
- int i;
-
- DEBUGFUNC("e1000_update_mc_addr_list_generic");
-
- /* clear mta_shadow */
- memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
-
- /* update mta_shadow from mc_addr_list */
- for (i = 0; (u32) i < mc_addr_count; i++) {
- hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
-
- hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
- hash_bit = hash_value & 0x1F;
-
- hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
- mc_addr_list += (ETH_ADDR_LEN);
- }
-
- /* replace the entire MTA table */
- for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * e1000_hash_mc_addr_generic - Generate a multicast hash value
- * @hw: pointer to the HW structure
- * @mc_addr: pointer to a multicast address
- *
- * Generates a multicast address hash value which is used to determine
- * the multicast filter table array address and new table value.
- **/
-u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
-{
- u32 hash_value, hash_mask;
- u8 bit_shift = 0;
-
- DEBUGFUNC("e1000_hash_mc_addr_generic");
-
- /* Register count multiplied by bits per register */
- hash_mask = (hw->mac.mta_reg_count * 32) - 1;
-
- /*
- * For a mc_filter_type of 0, bit_shift is the number of left-shifts
- * where 0xFF would still fall within the hash mask.
- */
- while (hash_mask >> bit_shift != 0xFF)
- bit_shift++;
-
- /*
- * The portion of the address that is used for the hash table
- * is determined by the mc_filter_type setting.
- * The algorithm is such that there is a total of 8 bits of shifting.
- * The bit_shift for a mc_filter_type of 0 represents the number of
- * left-shifts where the MSB of mc_addr[5] would still fall within
- * the hash_mask. Case 0 does this exactly. Since there are a total
- * of 8 bits of shifting, then mc_addr[4] will shift right the
- * remaining number of bits. Thus 8 - bit_shift. The rest of the
- * cases are a variation of this algorithm...essentially raising the
- * number of bits to shift mc_addr[5] left, while still keeping the
- * 8-bit shifting total.
- *
- * For example, given the following Destination MAC Address and an
- * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
- * we can see that the bit_shift for case 0 is 4. These are the hash
- * values resulting from each mc_filter_type...
- * [0] [1] [2] [3] [4] [5]
- * 01 AA 00 12 34 56
- * LSB MSB
- *
- * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
- * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
- * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
- * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
- */
- switch (hw->mac.mc_filter_type) {
- default:
- case 0:
- break;
- case 1:
- bit_shift += 1;
- break;
- case 2:
- bit_shift += 2;
- break;
- case 3:
- bit_shift += 4;
- break;
- }
-
- hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
- (((u16) mc_addr[5]) << bit_shift)));
-
- return hash_value;
-}
-
-/**
- * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
- * @hw: pointer to the HW structure
- *
- * In certain situations, a system BIOS may report that the PCIx maximum
- * memory read byte count (MMRBC) value is higher than than the actual
- * value. We check the PCIx command register with the current PCIx status
- * register.
- **/
-void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
-{
- u16 cmd_mmrbc;
- u16 pcix_cmd;
- u16 pcix_stat_hi_word;
- u16 stat_mmrbc;
-
- DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
-
- /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
- if (hw->bus.type != e1000_bus_type_pcix)
- return;
-
- e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
- e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
- cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
- PCIX_COMMAND_MMRBC_SHIFT;
- stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
- PCIX_STATUS_HI_MMRBC_SHIFT;
- if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
- stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
- if (cmd_mmrbc > stat_mmrbc) {
- pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
- pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
- e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
- }
-}
-
-/**
- * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the base hardware counters by reading the counter registers.
- **/
-void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
-
- E1000_READ_REG(hw, E1000_CRCERRS);
- E1000_READ_REG(hw, E1000_SYMERRS);
- E1000_READ_REG(hw, E1000_MPC);
- E1000_READ_REG(hw, E1000_SCC);
- E1000_READ_REG(hw, E1000_ECOL);
- E1000_READ_REG(hw, E1000_MCC);
- E1000_READ_REG(hw, E1000_LATECOL);
- E1000_READ_REG(hw, E1000_COLC);
- E1000_READ_REG(hw, E1000_DC);
- E1000_READ_REG(hw, E1000_SEC);
- E1000_READ_REG(hw, E1000_RLEC);
- E1000_READ_REG(hw, E1000_XONRXC);
- E1000_READ_REG(hw, E1000_XONTXC);
- E1000_READ_REG(hw, E1000_XOFFRXC);
- E1000_READ_REG(hw, E1000_XOFFTXC);
- E1000_READ_REG(hw, E1000_FCRUC);
- E1000_READ_REG(hw, E1000_GPRC);
- E1000_READ_REG(hw, E1000_BPRC);
- E1000_READ_REG(hw, E1000_MPRC);
- E1000_READ_REG(hw, E1000_GPTC);
- E1000_READ_REG(hw, E1000_GORCL);
- E1000_READ_REG(hw, E1000_GORCH);
- E1000_READ_REG(hw, E1000_GOTCL);
- E1000_READ_REG(hw, E1000_GOTCH);
- E1000_READ_REG(hw, E1000_RNBC);
- E1000_READ_REG(hw, E1000_RUC);
- E1000_READ_REG(hw, E1000_RFC);
- E1000_READ_REG(hw, E1000_ROC);
- E1000_READ_REG(hw, E1000_RJC);
- E1000_READ_REG(hw, E1000_TORL);
- E1000_READ_REG(hw, E1000_TORH);
- E1000_READ_REG(hw, E1000_TOTL);
- E1000_READ_REG(hw, E1000_TOTH);
- E1000_READ_REG(hw, E1000_TPR);
- E1000_READ_REG(hw, E1000_TPT);
- E1000_READ_REG(hw, E1000_MPTC);
- E1000_READ_REG(hw, E1000_BPTC);
-}
-
-/**
- * e1000_check_for_copper_link_generic - Check for link (Copper)
- * @hw: pointer to the HW structure
- *
- * Checks to see of the link status of the hardware has changed. If a
- * change in link status has been detected, then we read the PHY registers
- * to get the current speed/duplex if link exists.
- **/
-s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- bool link;
-
- DEBUGFUNC("e1000_check_for_copper_link");
-
- /*
- * We only want to go out to the PHY registers to see if Auto-Neg
- * has completed and/or if our link status has changed. The
- * get_link_status flag is set upon receiving a Link Status
- * Change or Rx Sequence Error interrupt.
- */
- if (!mac->get_link_status) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
-
- /*
- * First we want to see if the MII Status Register reports
- * link. If so, then we want to get the current speed/duplex
- * of the PHY.
- */
- ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- goto out;
-
- if (!link)
- goto out; /* No link detected */
-
- mac->get_link_status = FALSE;
-
- /*
- * Check if there was DownShift, must be checked
- * immediately after link-up
- */
- e1000_check_downshift_generic(hw);
-
- /*
- * If we are forcing speed/duplex, then we simply return since
- * we have already determined whether we have link or not.
- */
- if (!mac->autoneg) {
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- /*
- * Auto-Neg is enabled. Auto Speed Detection takes care
- * of MAC speed/duplex configuration. So we only need to
- * configure Collision Distance in the MAC.
- */
- mac->ops.config_collision_dist(hw);
-
- /*
- * Configure Flow Control now that Auto-Neg has completed.
- * First, we need to restore the desired flow control
- * settings because we may have had to re-autoneg with a
- * different link partner.
- */
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- if (ret_val)
- DEBUGOUT("Error configuring flow control\n");
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_check_for_fiber_link_generic - Check for link (Fiber)
- * @hw: pointer to the HW structure
- *
- * Checks for link up on the hardware. If link is not up and we have
- * a signal, then we need to force link up.
- **/
-s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 rxcw;
- u32 ctrl;
- u32 status;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_check_for_fiber_link_generic");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- status = E1000_READ_REG(hw, E1000_STATUS);
- rxcw = E1000_READ_REG(hw, E1000_RXCW);
-
- /*
- * If we don't have link (auto-negotiation failed or link partner
- * cannot auto-negotiate), the cable is plugged in (we have signal),
- * and our link partner is not trying to auto-negotiate with us (we
- * are receiving idles or data), we need to force link up. We also
- * need to give auto-negotiation time to complete, in case the cable
- * was just plugged in. The autoneg_failed flag does this.
- */
- /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
- if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
- (!(rxcw & E1000_RXCW_C))) {
- if (mac->autoneg_failed == 0) {
- mac->autoneg_failed = 1;
- goto out;
- }
- DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
-
- /* Disable auto-negotiation in the TXCW register */
- E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
-
- /* Force link-up and also force full-duplex. */
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- /* Configure Flow Control after forcing link up. */
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring flow control\n");
- goto out;
- }
- } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /*
- * If we are forcing link and we are receiving /C/ ordered
- * sets, re-enable auto-negotiation in the TXCW register
- * and disable forced link in the Device Control register
- * in an attempt to auto-negotiate with our link partner.
- */
- DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
- E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
- E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
-
- mac->serdes_has_link = TRUE;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_check_for_serdes_link_generic - Check for link (Serdes)
- * @hw: pointer to the HW structure
- *
- * Checks for link up on the hardware. If link is not up and we have
- * a signal, then we need to force link up.
- **/
-s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 rxcw;
- u32 ctrl;
- u32 status;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_check_for_serdes_link_generic");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- status = E1000_READ_REG(hw, E1000_STATUS);
- rxcw = E1000_READ_REG(hw, E1000_RXCW);
-
- /*
- * If we don't have link (auto-negotiation failed or link partner
- * cannot auto-negotiate), and our link partner is not trying to
- * auto-negotiate with us (we are receiving idles or data),
- * we need to force link up. We also need to give auto-negotiation
- * time to complete.
- */
- /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
- if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
- if (mac->autoneg_failed == 0) {
- mac->autoneg_failed = 1;
- goto out;
- }
- DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
-
- /* Disable auto-negotiation in the TXCW register */
- E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
-
- /* Force link-up and also force full-duplex. */
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- /* Configure Flow Control after forcing link up. */
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring flow control\n");
- goto out;
- }
- } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /*
- * If we are forcing link and we are receiving /C/ ordered
- * sets, re-enable auto-negotiation in the TXCW register
- * and disable forced link in the Device Control register
- * in an attempt to auto-negotiate with our link partner.
- */
- DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
- E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
- E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
-
- mac->serdes_has_link = TRUE;
- } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
- /*
- * If we force link for non-auto-negotiation switch, check
- * link status based on MAC synchronization for internal
- * serdes media type.
- */
- /* SYNCH bit and IV bit are sticky. */
- usec_delay(10);
- rxcw = E1000_READ_REG(hw, E1000_RXCW);
- if (rxcw & E1000_RXCW_SYNCH) {
- if (!(rxcw & E1000_RXCW_IV)) {
- mac->serdes_has_link = TRUE;
- DEBUGOUT("SERDES: Link up - forced.\n");
- }
- } else {
- mac->serdes_has_link = FALSE;
- DEBUGOUT("SERDES: Link down - force failed.\n");
- }
- }
-
- if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
- status = E1000_READ_REG(hw, E1000_STATUS);
- if (status & E1000_STATUS_LU) {
- /* SYNCH bit and IV bit are sticky, so reread rxcw. */
- usec_delay(10);
- rxcw = E1000_READ_REG(hw, E1000_RXCW);
- if (rxcw & E1000_RXCW_SYNCH) {
- if (!(rxcw & E1000_RXCW_IV)) {
- mac->serdes_has_link = TRUE;
- DEBUGOUT("SERDES: Link up - autoneg "
- "completed sucessfully.\n");
- } else {
- mac->serdes_has_link = FALSE;
- DEBUGOUT("SERDES: Link down - invalid"
- "codewords detected in autoneg.\n");
- }
- } else {
- mac->serdes_has_link = FALSE;
- DEBUGOUT("SERDES: Link down - no sync.\n");
- }
- } else {
- mac->serdes_has_link = FALSE;
- DEBUGOUT("SERDES: Link down - autoneg failed\n");
- }
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_setup_link_generic - Setup flow control and link settings
- * @hw: pointer to the HW structure
- *
- * Determines which flow control settings to use, then configures flow
- * control. Calls the appropriate media-specific link configuration
- * function. Assuming the adapter has a valid link partner, a valid link
- * should be established. Assumes the hardware has previously been reset
- * and the transmitter and receiver are not enabled.
- **/
-s32 e1000_setup_link_generic(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_setup_link_generic");
-
- /*
- * In the case of the phy reset being blocked, we already have a link.
- * We do not need to set it up again.
- */
- if (e1000_check_reset_block(hw))
- goto out;
-
- /*
- * If requested flow control is set to default, set flow control
- * based on the EEPROM flow control settings.
- */
- if (hw->fc.requested_mode == e1000_fc_default) {
- ret_val = e1000_set_default_fc_generic(hw);
- if (ret_val)
- goto out;
- }
-
- /*
- * Save off the requested flow control mode for use later. Depending
- * on the link partner's capabilities, we may or may not use this mode.
- */
- hw->fc.current_mode = hw->fc.requested_mode;
-
- DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
- hw->fc.current_mode);
-
- /* Call the necessary media_type subroutine to configure the link. */
- ret_val = hw->mac.ops.setup_physical_interface(hw);
- if (ret_val)
- goto out;
-
- /*
- * Initialize the flow control address, type, and PAUSE timer
- * registers to their default values. This is done even if flow
- * control is disabled, because it does not hurt anything to
- * initialize these registers.
- */
- DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
- E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
- E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
-
- E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
-
- ret_val = e1000_set_fc_watermarks_generic(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
- * @hw: pointer to the HW structure
- *
- * Configures collision distance and flow control for fiber and serdes
- * links. Upon successful setup, poll for link.
- **/
-s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 ctrl;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- /* Take the link out of reset */
- ctrl &= ~E1000_CTRL_LRST;
-
- mac->ops.config_collision_dist(hw);
-
- ret_val = e1000_commit_fc_settings_generic(hw);
- if (ret_val)
- goto out;
-
- /*
- * Since auto-negotiation is enabled, take the link out of reset (the
- * link will be in reset, because we previously reset the chip). This
- * will restart auto-negotiation. If auto-negotiation is successful
- * then the link-up status bit will be set and the flow control enable
- * bits (RFCE and TFCE) will be set according to their negotiated value.
- */
- DEBUGOUT("Auto-negotiation enabled\n");
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
- msec_delay(1);
-
- /*
- * For these adapters, the SW definable pin 1 is set when the optics
- * detect a signal. If we have a signal, then poll for a "Link-Up"
- * indication.
- */
- if (hw->phy.media_type == e1000_media_type_internal_serdes ||
- (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
- ret_val = e1000_poll_fiber_serdes_link_generic(hw);
- } else {
- DEBUGOUT("No signal detected\n");
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_config_collision_dist_generic - Configure collision distance
- * @hw: pointer to the HW structure
- *
- * Configures the collision distance to the default value and is used
- * during link setup.
- **/
-void e1000_config_collision_dist_generic(struct e1000_hw *hw)
-{
- u32 tctl;
-
- DEBUGFUNC("e1000_config_collision_dist_generic");
-
- tctl = E1000_READ_REG(hw, E1000_TCTL);
-
- tctl &= ~E1000_TCTL_COLD;
- tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
-
- E1000_WRITE_REG(hw, E1000_TCTL, tctl);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * e1000_poll_fiber_serdes_link_generic - Poll for link up
- * @hw: pointer to the HW structure
- *
- * Polls for link up by reading the status register, if link fails to come
- * up with auto-negotiation, then the link is forced if a signal is detected.
- **/
-static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 i, status;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
-
- /*
- * If we have a signal (the cable is plugged in, or assumed TRUE for
- * serdes media) then poll for a "Link-Up" indication in the Device
- * Status Register. Time-out if a link isn't seen in 500 milliseconds
- * seconds (Auto-negotiation should complete in less than 500
- * milliseconds even if the other end is doing it in SW).
- */
- for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
- msec_delay(10);
- status = E1000_READ_REG(hw, E1000_STATUS);
- if (status & E1000_STATUS_LU)
- break;
- }
- if (i == FIBER_LINK_UP_LIMIT) {
- DEBUGOUT("Never got a valid link from auto-neg!!!\n");
- mac->autoneg_failed = 1;
- /*
- * AutoNeg failed to achieve a link, so we'll call
- * mac->check_for_link. This routine will force the
- * link up if we detect a signal. This will allow us to
- * communicate with non-autonegotiating link partners.
- */
- ret_val = mac->ops.check_for_link(hw);
- if (ret_val) {
- DEBUGOUT("Error while checking for link\n");
- goto out;
- }
- mac->autoneg_failed = 0;
- } else {
- mac->autoneg_failed = 0;
- DEBUGOUT("Valid Link Found\n");
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_commit_fc_settings_generic - Configure flow control
- * @hw: pointer to the HW structure
- *
- * Write the flow control settings to the Transmit Config Word Register (TXCW)
- * base on the flow control settings in e1000_mac_info.
- **/
-static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 txcw;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_commit_fc_settings_generic");
-
- /*
- * Check for a software override of the flow control settings, and
- * setup the device accordingly. If auto-negotiation is enabled, then
- * software will have to set the "PAUSE" bits to the correct value in
- * the Transmit Config Word Register (TXCW) and re-start auto-
- * negotiation. However, if auto-negotiation is disabled, then
- * software will have to manually configure the two flow control enable
- * bits in the CTRL register.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames,
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames but we
- * do not support receiving pause frames).
- * 3: Both Rx and Tx flow control (symmetric) are enabled.
- */
- switch (hw->fc.current_mode) {
- case e1000_fc_none:
- /* Flow control completely disabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
- break;
- case e1000_fc_rx_pause:
- /*
- * Rx Flow control is enabled and Tx Flow control is disabled
- * by a software over-ride. Since there really isn't a way to
- * advertise that we are capable of Rx Pause ONLY, we will
- * advertise that we support both symmetric and asymmetric Rx
- * PAUSE. Later, we will disable the adapter's ability to send
- * PAUSE frames.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- case e1000_fc_tx_pause:
- /*
- * Tx Flow control is enabled, and Rx Flow control is disabled,
- * by a software over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
- break;
- case e1000_fc_full:
- /*
- * Flow control (both Rx and Tx) is enabled by a software
- * over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- break;
- }
-
- E1000_WRITE_REG(hw, E1000_TXCW, txcw);
- mac->txcw = txcw;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
- * @hw: pointer to the HW structure
- *
- * Sets the flow control high/low threshold (watermark) registers. If
- * flow control XON frame transmission is enabled, then set XON frame
- * transmission as well.
- **/
-s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
-{
- u32 fcrtl = 0, fcrth = 0;
-
- DEBUGFUNC("e1000_set_fc_watermarks_generic");
-
- /*
- * Set the flow control receive threshold registers. Normally,
- * these registers will be set to a default threshold that may be
- * adjusted later by the driver's runtime code. However, if the
- * ability to transmit pause frames is not enabled, then these
- * registers will be set to 0.
- */
- if (hw->fc.current_mode & e1000_fc_tx_pause) {
- /*
- * We need to set up the Receive Threshold high and low water
- * marks as well as (optionally) enabling the transmission of
- * XON frames.
- */
- fcrtl = hw->fc.low_water;
- if (hw->fc.send_xon)
- fcrtl |= E1000_FCRTL_XONE;
-
- fcrth = hw->fc.high_water;
- }
- E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
- E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_default_fc_generic - Set flow control default values
- * @hw: pointer to the HW structure
- *
- * Read the EEPROM for the default values for flow control and store the
- * values.
- **/
-static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 nvm_data;
-
- DEBUGFUNC("e1000_set_default_fc_generic");
-
- /*
- * Read and store word 0x0F of the EEPROM. This word contains bits
- * that determine the hardware's default PAUSE (flow control) mode,
- * a bit that determines whether the HW defaults to enabling or
- * disabling auto-negotiation, and the direction of the
- * SW defined pins. If there is no SW over-ride of the flow
- * control setting, then the variable hw->fc will
- * be initialized based on a value in the EEPROM.
- */
- ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
-
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
- hw->fc.requested_mode = e1000_fc_none;
- else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
- NVM_WORD0F_ASM_DIR)
- hw->fc.requested_mode = e1000_fc_tx_pause;
- else
- hw->fc.requested_mode = e1000_fc_full;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_force_mac_fc_generic - Force the MAC's flow control settings
- * @hw: pointer to the HW structure
- *
- * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
- * device control register to reflect the adapter settings. TFCE and RFCE
- * need to be explicitly set by software when a copper PHY is used because
- * autonegotiation is managed by the PHY rather than the MAC. Software must
- * also configure these bits when link is forced on a fiber connection.
- **/
-s32 e1000_force_mac_fc_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_force_mac_fc_generic");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- /*
- * Because we didn't get link via the internal auto-negotiation
- * mechanism (we either forced link or we got link via PHY
- * auto-neg), we have to manually enable/disable transmit an
- * receive flow control.
- *
- * The "Case" statement below enables/disable flow control
- * according to the "hw->fc.current_mode" parameter.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause
- * frames but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * frames but we do not receive pause frames).
- * 3: Both Rx and Tx flow control (symmetric) is enabled.
- * other: No other values should be possible at this point.
- */
- DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
-
- switch (hw->fc.current_mode) {
- case e1000_fc_none:
- ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
- break;
- case e1000_fc_rx_pause:
- ctrl &= (~E1000_CTRL_TFCE);
- ctrl |= E1000_CTRL_RFCE;
- break;
- case e1000_fc_tx_pause:
- ctrl &= (~E1000_CTRL_RFCE);
- ctrl |= E1000_CTRL_TFCE;
- break;
- case e1000_fc_full:
- ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_config_fc_after_link_up_generic - Configures flow control after link
- * @hw: pointer to the HW structure
- *
- * Checks the status of auto-negotiation after link up to ensure that the
- * speed and duplex were not forced. If the link needed to be forced, then
- * flow control needs to be forced also. If auto-negotiation is enabled
- * and did not fail, then we configure flow control based on our link
- * partner.
- **/
-s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val = E1000_SUCCESS;
- u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
- u16 speed, duplex;
-
- DEBUGFUNC("e1000_config_fc_after_link_up_generic");
-
- /*
- * Check for the case where we have fiber media and auto-neg failed
- * so we had to force link. In this case, we need to force the
- * configuration of the MAC to match the "fc" parameter.
- */
- if (mac->autoneg_failed) {
- if (hw->phy.media_type == e1000_media_type_fiber ||
- hw->phy.media_type == e1000_media_type_internal_serdes)
- ret_val = e1000_force_mac_fc_generic(hw);
- } else {
- if (hw->phy.media_type == e1000_media_type_copper)
- ret_val = e1000_force_mac_fc_generic(hw);
- }
-
- if (ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- goto out;
- }
-
- /*
- * Check for the case where we have copper media and auto-neg is
- * enabled. In this case, we need to check and see if Auto-Neg
- * has completed, and if so, how the PHY and link partner has
- * flow control configured.
- */
- if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
- /*
- * Read the MII Status Register and check to see if AutoNeg
- * has completed. We read this twice because this reg has
- * some "sticky" (latched) bits.
- */
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- goto out;
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- goto out;
-
- if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
- DEBUGOUT("Copper PHY and Auto Neg "
- "has not completed.\n");
- goto out;
- }
-
- /*
- * The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement
- * Register (Address 4) and the Auto_Negotiation Base
- * Page Ability Register (Address 5) to determine how
- * flow control was negotiated.
- */
- ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
- &mii_nway_adv_reg);
- if (ret_val)
- goto out;
- ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
- &mii_nway_lp_ability_reg);
- if (ret_val)
- goto out;
-
- /*
- * Two bits in the Auto Negotiation Advertisement Register
- * (Address 4) and two bits in the Auto Negotiation Base
- * Page Ability Register (Address 5) determine flow control
- * for both the PHY and the link partner. The following
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
- * 1999, describes these PAUSE resolution bits and how flow
- * control is determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | e1000_fc_none
- * 0 | 1 | 0 | DC | e1000_fc_none
- * 0 | 1 | 1 | 0 | e1000_fc_none
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- * 1 | 0 | 0 | DC | e1000_fc_none
- * 1 | DC | 1 | DC | e1000_fc_full
- * 1 | 1 | 0 | 0 | e1000_fc_none
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- *
- * Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | E1000_fc_full
- *
- */
- if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
- /*
- * Now we need to check if the user selected Rx ONLY
- * of pause frames. In this case, we had to advertise
- * FULL flow control because we could not advertise Rx
- * ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
- */
- if (hw->fc.requested_mode == e1000_fc_full) {
- hw->fc.current_mode = e1000_fc_full;
- DEBUGOUT("Flow Control = FULL.\r\n");
- } else {
- hw->fc.current_mode = e1000_fc_rx_pause;
- DEBUGOUT("Flow Control = "
- "Rx PAUSE frames only.\r\n");
- }
- }
- /*
- * For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- */
- else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_tx_pause;
- DEBUGOUT("Flow Control = Tx PAUSE frames only.\r\n");
- }
- /*
- * For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- */
- else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_rx_pause;
- DEBUGOUT("Flow Control = Rx PAUSE frames only.\r\n");
- } else {
- /*
- * Per the IEEE spec, at this point flow control
- * should be disabled.
- */
- hw->fc.current_mode = e1000_fc_none;
- DEBUGOUT("Flow Control = NONE.\r\n");
- }
-
- /*
- * Now we need to do one last check... If we auto-
- * negotiated to HALF DUPLEX, flow control should not be
- * enabled per IEEE 802.3 spec.
- */
- ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
- if (ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- goto out;
- }
-
- if (duplex == HALF_DUPLEX)
- hw->fc.current_mode = e1000_fc_none;
-
- /*
- * Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- ret_val = e1000_force_mac_fc_generic(hw);
- if (ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- goto out;
- }
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * Read the status register for the current speed/duplex and store the current
- * speed and duplex for copper connections.
- **/
-s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
-{
- u32 status;
-
- DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
-
- status = E1000_READ_REG(hw, E1000_STATUS);
- if (status & E1000_STATUS_SPEED_1000) {
- *speed = SPEED_1000;
- DEBUGOUT("1000 Mbs, ");
- } else if (status & E1000_STATUS_SPEED_100) {
- *speed = SPEED_100;
- DEBUGOUT("100 Mbs, ");
- } else {
- *speed = SPEED_10;
- DEBUGOUT("10 Mbs, ");
- }
-
- if (status & E1000_STATUS_FD) {
- *duplex = FULL_DUPLEX;
- DEBUGOUT("Full Duplex\n");
- } else {
- *duplex = HALF_DUPLEX;
- DEBUGOUT("Half Duplex\n");
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * Sets the speed and duplex to gigabit full duplex (the only possible option)
- * for fiber/serdes links.
- **/
-s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
- u16 *speed, u16 *duplex)
-{
- DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
-
- *speed = SPEED_1000;
- *duplex = FULL_DUPLEX;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_hw_semaphore_generic - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the HW semaphore to access the PHY or NVM
- **/
-s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
-{
- u32 swsm;
- s32 ret_val = E1000_SUCCESS;
- s32 timeout = hw->nvm.word_size + 1;
- s32 i = 0;
-
- DEBUGFUNC("e1000_get_hw_semaphore_generic");
-
- /* Get the SW semaphore */
- while (i < timeout) {
- swsm = E1000_READ_REG(hw, E1000_SWSM);
- if (!(swsm & E1000_SWSM_SMBI))
- break;
-
- usec_delay(50);
- i++;
- }
-
- if (i == timeout) {
- DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
-
- /* Get the FW semaphore. */
- for (i = 0; i < timeout; i++) {
- swsm = E1000_READ_REG(hw, E1000_SWSM);
- E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
-
- /* Semaphore acquired if bit latched */
- if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
- break;
-
- usec_delay(50);
- }
-
- if (i == timeout) {
- /* Release semaphores */
- e1000_put_hw_semaphore_generic(hw);
- DEBUGOUT("Driver can't access the NVM\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_put_hw_semaphore_generic - Release hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Release hardware semaphore used to access the PHY or NVM
- **/
-void e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
-{
- u32 swsm;
-
- DEBUGFUNC("e1000_put_hw_semaphore_generic");
-
- swsm = E1000_READ_REG(hw, E1000_SWSM);
-
- swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
-
- E1000_WRITE_REG(hw, E1000_SWSM, swsm);
-}
-
-/**
- * e1000_get_auto_rd_done_generic - Check for auto read completion
- * @hw: pointer to the HW structure
- *
- * Check EEPROM for Auto Read done bit.
- **/
-s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
-{
- s32 i = 0;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_get_auto_rd_done_generic");
-
- while (i < AUTO_READ_DONE_TIMEOUT) {
- if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
- break;
- msec_delay(1);
- i++;
- }
-
- if (i == AUTO_READ_DONE_TIMEOUT) {
- DEBUGOUT("Auto read by HW from NVM has not completed.\n");
- ret_val = -E1000_ERR_RESET;
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_valid_led_default_generic - Verify a valid default LED config
- * @hw: pointer to the HW structure
- * @data: pointer to the NVM (EEPROM)
- *
- * Read the EEPROM for the current default LED configuration. If the
- * LED configuration is not valid, set to a valid LED configuration.
- **/
-s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_valid_led_default_generic");
-
- ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
- *data = ID_LED_DEFAULT;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_id_led_init_generic -
- * @hw: pointer to the HW structure
- *
- **/
-s32 e1000_id_led_init_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- const u32 ledctl_mask = 0x000000FF;
- const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
- const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
- u16 data, i, temp;
- const u16 led_mask = 0x0F;
-
- DEBUGFUNC("e1000_id_led_init_generic");
-
- ret_val = hw->nvm.ops.valid_led_default(hw, &data);
- if (ret_val)
- goto out;
-
- mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
- mac->ledctl_mode1 = mac->ledctl_default;
- mac->ledctl_mode2 = mac->ledctl_default;
-
- for (i = 0; i < 4; i++) {
- temp = (data >> (i << 2)) & led_mask;
- switch (temp) {
- case ID_LED_ON1_DEF2:
- case ID_LED_ON1_ON2:
- case ID_LED_ON1_OFF2:
- mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode1 |= ledctl_on << (i << 3);
- break;
- case ID_LED_OFF1_DEF2:
- case ID_LED_OFF1_ON2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode1 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- switch (temp) {
- case ID_LED_DEF1_ON2:
- case ID_LED_ON1_ON2:
- case ID_LED_OFF1_ON2:
- mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode2 |= ledctl_on << (i << 3);
- break;
- case ID_LED_DEF1_OFF2:
- case ID_LED_ON1_OFF2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode2 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_setup_led_generic - Configures SW controllable LED
- * @hw: pointer to the HW structure
- *
- * This prepares the SW controllable LED for use and saves the current state
- * of the LED so it can be later restored.
- **/
-s32 e1000_setup_led_generic(struct e1000_hw *hw)
-{
- u32 ledctl;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_setup_led_generic");
-
- if (hw->mac.ops.setup_led != e1000_setup_led_generic) {
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- if (hw->phy.media_type == e1000_media_type_fiber) {
- ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
- hw->mac.ledctl_default = ledctl;
- /* Turn off LED0 */
- ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
- E1000_LEDCTL_LED0_BLINK |
- E1000_LEDCTL_LED0_MODE_MASK);
- ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
- E1000_LEDCTL_LED0_MODE_SHIFT);
- E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
- } else if (hw->phy.media_type == e1000_media_type_copper) {
- E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_cleanup_led_generic - Set LED config to default operation
- * @hw: pointer to the HW structure
- *
- * Remove the current LED configuration and set the LED configuration
- * to the default value, saved from the EEPROM.
- **/
-s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_cleanup_led_generic");
-
- E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_blink_led_generic - Blink LED
- * @hw: pointer to the HW structure
- *
- * Blink the LEDs which are set to be on.
- **/
-s32 e1000_blink_led_generic(struct e1000_hw *hw)
-{
- u32 ledctl_blink = 0;
- u32 i;
-
- DEBUGFUNC("e1000_blink_led_generic");
-
- if (hw->phy.media_type == e1000_media_type_fiber) {
- /* always blink LED0 for PCI-E fiber */
- ledctl_blink = E1000_LEDCTL_LED0_BLINK |
- (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
- } else {
- /*
- * set the blink bit for each LED that's "on" (0x0E)
- * in ledctl_mode2
- */
- ledctl_blink = hw->mac.ledctl_mode2;
- for (i = 0; i < 4; i++)
- if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
- E1000_LEDCTL_MODE_LED_ON)
- ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
- (i * 8));
- }
-
- E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_led_on_generic - Turn LED on
- * @hw: pointer to the HW structure
- *
- * Turn LED on.
- **/
-s32 e1000_led_on_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
-
- DEBUGFUNC("e1000_led_on_generic");
-
- switch (hw->phy.media_type) {
- case e1000_media_type_fiber:
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- break;
- case e1000_media_type_copper:
- E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
- break;
- default:
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_led_off_generic - Turn LED off
- * @hw: pointer to the HW structure
- *
- * Turn LED off.
- **/
-s32 e1000_led_off_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
-
- DEBUGFUNC("e1000_led_off_generic");
-
- switch (hw->phy.media_type) {
- case e1000_media_type_fiber:
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- break;
- case e1000_media_type_copper:
- E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
- break;
- default:
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
- * @hw: pointer to the HW structure
- * @no_snoop: bitmap of snoop events
- *
- * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
- **/
-void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
-{
- u32 gcr;
-
- DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
-
- if (hw->bus.type != e1000_bus_type_pci_express)
- goto out;
-
- if (no_snoop) {
- gcr = E1000_READ_REG(hw, E1000_GCR);
- gcr &= ~(PCIE_NO_SNOOP_ALL);
- gcr |= no_snoop;
- E1000_WRITE_REG(hw, E1000_GCR, gcr);
- }
-out:
- return;
-}
-
-/**
- * e1000_disable_pcie_master_generic - Disables PCI-express master access
- * @hw: pointer to the HW structure
- *
- * Returns E1000_SUCCESS if successful, else returns -10
- * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
- * the master requests to be disabled.
- *
- * Disables PCI-Express master access and verifies there are no pending
- * requests.
- **/
-s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 timeout = MASTER_DISABLE_TIMEOUT;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_disable_pcie_master_generic");
-
- if (hw->bus.type != e1000_bus_type_pci_express)
- goto out;
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- while (timeout) {
- if (!(E1000_READ_REG(hw, E1000_STATUS) &
- E1000_STATUS_GIO_MASTER_ENABLE))
- break;
- usec_delay(100);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("Master requests are pending.\n");
- ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
- * @hw: pointer to the HW structure
- *
- * Reset the Adaptive Interframe Spacing throttle to default values.
- **/
-void e1000_reset_adaptive_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
-
- DEBUGFUNC("e1000_reset_adaptive_generic");
-
- if (!mac->adaptive_ifs) {
- DEBUGOUT("Not in Adaptive IFS mode!\n");
- goto out;
- }
-
- mac->current_ifs_val = 0;
- mac->ifs_min_val = IFS_MIN;
- mac->ifs_max_val = IFS_MAX;
- mac->ifs_step_size = IFS_STEP;
- mac->ifs_ratio = IFS_RATIO;
-
- mac->in_ifs_mode = FALSE;
- E1000_WRITE_REG(hw, E1000_AIT, 0);
-out:
- return;
-}
-
-/**
- * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
- * @hw: pointer to the HW structure
- *
- * Update the Adaptive Interframe Spacing Throttle value based on the
- * time between transmitted packets and time between collisions.
- **/
-void e1000_update_adaptive_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
-
- DEBUGFUNC("e1000_update_adaptive_generic");
-
- if (!mac->adaptive_ifs) {
- DEBUGOUT("Not in Adaptive IFS mode!\n");
- goto out;
- }
-
- if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
- if (mac->tx_packet_delta > MIN_NUM_XMITS) {
- mac->in_ifs_mode = TRUE;
- if (mac->current_ifs_val < mac->ifs_max_val) {
- if (!mac->current_ifs_val)
- mac->current_ifs_val = mac->ifs_min_val;
- else
- mac->current_ifs_val +=
- mac->ifs_step_size;
- E1000_WRITE_REG(hw, E1000_AIT, mac->current_ifs_val);
- }
- }
- } else {
- if (mac->in_ifs_mode &&
- (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
- mac->current_ifs_val = 0;
- mac->in_ifs_mode = FALSE;
- E1000_WRITE_REG(hw, E1000_AIT, 0);
- }
- }
-out:
- return;
-}
-
-/**
- * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
- * @hw: pointer to the HW structure
- *
- * Verify that when not using auto-negotiation that MDI/MDIx is correctly
- * set, which is forced to MDI mode only.
- **/
-static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_validate_mdi_setting_generic");
-
- if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
- DEBUGOUT("Invalid MDI setting detected\n");
- hw->phy.mdix = 1;
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
- * @hw: pointer to the HW structure
- * @reg: 32bit register offset such as E1000_SCTL
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes an address/data control type register. There are several of these
- * and they all have the format address << 8 | data and bit 31 is polled for
- * completion.
- **/
-s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
- u32 offset, u8 data)
-{
- u32 i, regvalue = 0;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
-
- /* Set up the address and data */
- regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
- E1000_WRITE_REG(hw, reg, regvalue);
-
- /* Poll the ready bit to see if the MDI read completed */
- for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
- usec_delay(5);
- regvalue = E1000_READ_REG(hw, reg);
- if (regvalue & E1000_GEN_CTL_READY)
- break;
- }
- if (!(regvalue & E1000_GEN_CTL_READY)) {
- DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
-out:
- return ret_val;
-}
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#ifndef _E1000_MAC_H_
-#define _E1000_MAC_H_
-
-/*
- * Functions that should not be called directly from drivers but can be used
- * by other files in this 'shared code'
- */
-void e1000_init_mac_ops_generic(struct e1000_hw *hw);
-void e1000_null_mac_generic(struct e1000_hw *hw);
-s32 e1000_null_ops_generic(struct e1000_hw *hw);
-s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d);
-bool e1000_null_mng_mode(struct e1000_hw *hw);
-void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a);
-void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b);
-void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a);
-s32 e1000_blink_led_generic(struct e1000_hw *hw);
-s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw);
-s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw);
-s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw);
-s32 e1000_cleanup_led_generic(struct e1000_hw *hw);
-s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw);
-s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw);
-s32 e1000_force_mac_fc_generic(struct e1000_hw *hw);
-s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw);
-s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw);
-s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw);
-void e1000_set_lan_id_single_port(struct e1000_hw *hw);
-void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw);
-s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw);
-s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
- u16 *duplex);
-s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
- u16 *speed, u16 *duplex);
-s32 e1000_id_led_init_generic(struct e1000_hw *hw);
-s32 e1000_led_on_generic(struct e1000_hw *hw);
-s32 e1000_led_off_generic(struct e1000_hw *hw);
-void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count);
-s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw);
-s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw);
-s32 e1000_setup_led_generic(struct e1000_hw *hw);
-s32 e1000_setup_link_generic(struct e1000_hw *hw);
-s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
- u32 offset, u8 data);
-
-u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr);
-
-void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw);
-void e1000_clear_vfta_generic(struct e1000_hw *hw);
-void e1000_config_collision_dist_generic(struct e1000_hw *hw);
-void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count);
-void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw);
-void e1000_put_hw_semaphore_generic(struct e1000_hw *hw);
-void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
-s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw);
-void e1000_reset_adaptive_generic(struct e1000_hw *hw);
-void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop);
-void e1000_update_adaptive_generic(struct e1000_hw *hw);
-void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value);
-
-#endif
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#include "e1000_api.h"
-
-/**
- * e1000_calculate_checksum - Calculate checksum for buffer
- * @buffer: pointer to EEPROM
- * @length: size of EEPROM to calculate a checksum for
- *
- * Calculates the checksum for some buffer on a specified length. The
- * checksum calculated is returned.
- **/
-u8 e1000_calculate_checksum(u8 *buffer, u32 length)
-{
- u32 i;
- u8 sum = 0;
-
- DEBUGFUNC("e1000_calculate_checksum");
-
- if (!buffer)
- return 0;
-
- for (i = 0; i < length; i++)
- sum += buffer[i];
-
- return (u8) (0 - sum);
-}
-
-/**
- * e1000_mng_enable_host_if_generic - Checks host interface is enabled
- * @hw: pointer to the HW structure
- *
- * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
- *
- * This function checks whether the HOST IF is enabled for command operation
- * and also checks whether the previous command is completed. It busy waits
- * in case of previous command is not completed.
- **/
-s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw)
-{
- u32 hicr;
- s32 ret_val = E1000_SUCCESS;
- u8 i;
-
- DEBUGFUNC("e1000_mng_enable_host_if_generic");
-
- if (!(hw->mac.arc_subsystem_valid)) {
- DEBUGOUT("ARC subsystem not valid.\n");
- ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
- goto out;
- }
-
- /* Check that the host interface is enabled. */
- hicr = E1000_READ_REG(hw, E1000_HICR);
- if ((hicr & E1000_HICR_EN) == 0) {
- DEBUGOUT("E1000_HOST_EN bit disabled.\n");
- ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
- goto out;
- }
- /* check the previous command is completed */
- for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
- hicr = E1000_READ_REG(hw, E1000_HICR);
- if (!(hicr & E1000_HICR_C))
- break;
- msec_delay_irq(1);
- }
-
- if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
- DEBUGOUT("Previous command timeout failed .\n");
- ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_check_mng_mode_generic - Generic check management mode
- * @hw: pointer to the HW structure
- *
- * Reads the firmware semaphore register and returns TRUE (>0) if
- * manageability is enabled, else FALSE (0).
- **/
-bool e1000_check_mng_mode_generic(struct e1000_hw *hw)
-{
- u32 fwsm = E1000_READ_REG(hw, E1000_FWSM);
-
- DEBUGFUNC("e1000_check_mng_mode_generic");
-
-
- return (fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
-}
-
-/**
- * e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on Tx
- * @hw: pointer to the HW structure
- *
- * Enables packet filtering on transmit packets if manageability is enabled
- * and host interface is enabled.
- **/
-bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw)
-{
- struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
- u32 *buffer = (u32 *)&hw->mng_cookie;
- u32 offset;
- s32 ret_val, hdr_csum, csum;
- u8 i, len;
-
- DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic");
-
- hw->mac.tx_pkt_filtering = TRUE;
-
- /* No manageability, no filtering */
- if (!hw->mac.ops.check_mng_mode(hw)) {
- hw->mac.tx_pkt_filtering = FALSE;
- goto out;
- }
-
- /*
- * If we can't read from the host interface for whatever
- * reason, disable filtering.
- */
- ret_val = hw->mac.ops.mng_enable_host_if(hw);
- if (ret_val != E1000_SUCCESS) {
- hw->mac.tx_pkt_filtering = FALSE;
- goto out;
- }
-
- /* Read in the header. Length and offset are in dwords. */
- len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
- offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
- for (i = 0; i < len; i++)
- *(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF,
- offset + i);
- hdr_csum = hdr->checksum;
- hdr->checksum = 0;
- csum = e1000_calculate_checksum((u8 *)hdr,
- E1000_MNG_DHCP_COOKIE_LENGTH);
- /*
- * If either the checksums or signature don't match, then
- * the cookie area isn't considered valid, in which case we
- * take the safe route of assuming Tx filtering is enabled.
- */
- if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
- hw->mac.tx_pkt_filtering = TRUE;
- goto out;
- }
-
- /* Cookie area is valid, make the final check for filtering. */
- if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
- hw->mac.tx_pkt_filtering = FALSE;
- goto out;
- }
-
-out:
- return hw->mac.tx_pkt_filtering;
-}
-
-/**
- * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface
- * @hw: pointer to the HW structure
- * @buffer: pointer to the host interface
- * @length: size of the buffer
- *
- * Writes the DHCP information to the host interface.
- **/
-s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer,
- u16 length)
-{
- struct e1000_host_mng_command_header hdr;
- s32 ret_val;
- u32 hicr;
-
- DEBUGFUNC("e1000_mng_write_dhcp_info_generic");
-
- hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
- hdr.command_length = length;
- hdr.reserved1 = 0;
- hdr.reserved2 = 0;
- hdr.checksum = 0;
-
- /* Enable the host interface */
- ret_val = hw->mac.ops.mng_enable_host_if(hw);
- if (ret_val)
- goto out;
-
- /* Populate the host interface with the contents of "buffer". */
- ret_val = hw->mac.ops.mng_host_if_write(hw, buffer, length,
- sizeof(hdr), &(hdr.checksum));
- if (ret_val)
- goto out;
-
- /* Write the manageability command header */
- ret_val = hw->mac.ops.mng_write_cmd_header(hw, &hdr);
- if (ret_val)
- goto out;
-
- /* Tell the ARC a new command is pending. */
- hicr = E1000_READ_REG(hw, E1000_HICR);
- E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_mng_write_cmd_header_generic - Writes manageability command header
- * @hw: pointer to the HW structure
- * @hdr: pointer to the host interface command header
- *
- * Writes the command header after does the checksum calculation.
- **/
-s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
- struct e1000_host_mng_command_header *hdr)
-{
- u16 i, length = sizeof(struct e1000_host_mng_command_header);
-
- DEBUGFUNC("e1000_mng_write_cmd_header_generic");
-
- /* Write the whole command header structure with new checksum. */
-
- hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
-
- length >>= 2;
- /* Write the relevant command block into the ram area. */
- for (i = 0; i < length; i++) {
- E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
- *((u32 *) hdr + i));
- E1000_WRITE_FLUSH(hw);
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_mng_host_if_write_generic - Write to the manageability host interface
- * @hw: pointer to the HW structure
- * @buffer: pointer to the host interface buffer
- * @length: size of the buffer
- * @offset: location in the buffer to write to
- * @sum: sum of the data (not checksum)
- *
- * This function writes the buffer content at the offset given on the host if.
- * It also does alignment considerations to do the writes in most efficient
- * way. Also fills up the sum of the buffer in *buffer parameter.
- **/
-s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
- u16 length, u16 offset, u8 *sum)
-{
- u8 *tmp;
- u8 *bufptr = buffer;
- u32 data = 0;
- s32 ret_val = E1000_SUCCESS;
- u16 remaining, i, j, prev_bytes;
-
- DEBUGFUNC("e1000_mng_host_if_write_generic");
-
- /* sum = only sum of the data and it is not checksum */
-
- if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
- ret_val = -E1000_ERR_PARAM;
- goto out;
- }
-
- tmp = (u8 *)&data;
- prev_bytes = offset & 0x3;
- offset >>= 2;
-
- if (prev_bytes) {
- data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset);
- for (j = prev_bytes; j < sizeof(u32); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data);
- length -= j - prev_bytes;
- offset++;
- }
-
- remaining = length & 0x3;
- length -= remaining;
-
- /* Calculate length in DWORDs */
- length >>= 2;
-
- /*
- * The device driver writes the relevant command block into the
- * ram area.
- */
- for (i = 0; i < length; i++) {
- for (j = 0; j < sizeof(u32); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
-
- E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i,
- data);
- }
- if (remaining) {
- for (j = 0; j < sizeof(u32); j++) {
- if (j < remaining)
- *(tmp + j) = *bufptr++;
- else
- *(tmp + j) = 0;
-
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, data);
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_enable_mng_pass_thru - Check if management passthrough is needed
- * @hw: pointer to the HW structure
- *
- * Verifies the hardware needs to leave interface enabled so that frames can
- * be directed to and from the management interface.
- **/
-bool e1000_enable_mng_pass_thru(struct e1000_hw *hw)
-{
- u32 manc;
- u32 fwsm, factps;
- bool ret_val = FALSE;
-
- DEBUGFUNC("e1000_enable_mng_pass_thru");
-
- if (!hw->mac.asf_firmware_present)
- goto out;
-
- manc = E1000_READ_REG(hw, E1000_MANC);
-
- if (!(manc & E1000_MANC_RCV_TCO_EN))
- goto out;
-
- if (hw->mac.has_fwsm) {
- fwsm = E1000_READ_REG(hw, E1000_FWSM);
- factps = E1000_READ_REG(hw, E1000_FACTPS);
-
- if (!(factps & E1000_FACTPS_MNGCG) &&
- ((fwsm & E1000_FWSM_MODE_MASK) ==
- (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
- ret_val = TRUE;
- goto out;
- }
- } else if ((manc & E1000_MANC_SMBUS_EN) &&
- !(manc & E1000_MANC_ASF_EN)) {
- ret_val = TRUE;
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_host_interface_command - Writes buffer to host interface
- * @hw: pointer to the HW structure
- * @buffer: contains a command to write
- * @length: the byte length of the buffer, must be multiple of 4 bytes
- *
- * Writes a buffer to the Host Interface. Upon success, returns E1000_SUCCESS
- * else returns E1000_ERR_HOST_INTERFACE_COMMAND.
- **/
-s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length)
-{
- u32 hicr, i;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_host_interface_command");
-
- if (!(hw->mac.arc_subsystem_valid)) {
- DEBUGOUT("Hardware doesn't support host interface command.\n");
- goto out;
- }
-
- if (!hw->mac.asf_firmware_present) {
- DEBUGOUT("Firmware is not present.\n");
- goto out;
- }
-
- if (length == 0 || length & 0x3 ||
- length > E1000_HI_MAX_BLOCK_BYTE_LENGTH) {
- DEBUGOUT("Buffer length failure.\n");
- ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
- goto out;
- }
-
- /* Check that the host interface is enabled. */
- hicr = E1000_READ_REG(hw, E1000_HICR);
- if ((hicr & E1000_HICR_EN) == 0) {
- DEBUGOUT("E1000_HOST_EN bit disabled.\n");
- ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
- goto out;
- }
-
- /* Calculate length in DWORDs */
- length >>= 2;
-
- /*
- * The device driver writes the relevant command block
- * into the ram area.
- */
- for (i = 0; i < length; i++)
- E1000_WRITE_REG_ARRAY_DWORD(hw,
- E1000_HOST_IF,
- i,
- *((u32 *)buffer + i));
-
- /* Setting this bit tells the ARC that a new command is pending. */
- E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
-
- for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) {
- hicr = E1000_READ_REG(hw, E1000_HICR);
- if (!(hicr & E1000_HICR_C))
- break;
- msec_delay(1);
- }
-
- /* Check command successful completion. */
- if (i == E1000_HI_COMMAND_TIMEOUT ||
- (!(E1000_READ_REG(hw, E1000_HICR) & E1000_HICR_SV))) {
- DEBUGOUT("Command has failed with no status valid.\n");
- ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
- goto out;
- }
-
- for (i = 0; i < length; i++)
- *((u32 *)buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw,
- E1000_HOST_IF,
- i);
-
-out:
- return ret_val;
-}
-
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#ifndef _E1000_MANAGE_H_
-#define _E1000_MANAGE_H_
-
-bool e1000_check_mng_mode_generic(struct e1000_hw *hw);
-bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw);
-s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw);
-s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
- u16 length, u16 offset, u8 *sum);
-s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
- struct e1000_host_mng_command_header *hdr);
-s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw,
- u8 *buffer, u16 length);
-bool e1000_enable_mng_pass_thru(struct e1000_hw *hw);
-u8 e1000_calculate_checksum(u8 *buffer, u32 length);
-s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length);
-
-enum e1000_mng_mode {
- e1000_mng_mode_none = 0,
- e1000_mng_mode_asf,
- e1000_mng_mode_pt,
- e1000_mng_mode_ipmi,
- e1000_mng_mode_host_if_only
-};
-
-#define E1000_FACTPS_MNGCG 0x20000000
-
-#define E1000_FWSM_MODE_MASK 0xE
-#define E1000_FWSM_MODE_SHIFT 1
-
-#define E1000_MNG_IAMT_MODE 0x3
-#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10
-#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0
-#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10
-#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
-#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1
-#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2
-
-#define E1000_VFTA_ENTRY_SHIFT 5
-#define E1000_VFTA_ENTRY_MASK 0x7F
-#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
-
-#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Num of bytes in range */
-#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Num of dwords in range */
-#define E1000_HI_COMMAND_TIMEOUT 500 /* Process HI command limit */
-
-#define E1000_HICR_EN 0x01 /* Enable bit - RO */
-/* Driver sets this bit when done to put command in RAM */
-#define E1000_HICR_C 0x02
-#define E1000_HICR_SV 0x04 /* Status Validity */
-#define E1000_HICR_FW_RESET_ENABLE 0x40
-#define E1000_HICR_FW_RESET 0x80
-
-/* Intel(R) Active Management Technology signature */
-#define E1000_IAMT_SIGNATURE 0x544D4149
-
-#endif
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#include "e1000_mbx.h"
-
-/**
- * e1000_null_mbx_check_for_flag - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_null_mbx_check_for_flag(struct e1000_hw *hw, u16 mbx_id)
-{
- DEBUGFUNC("e1000_null_mbx_check_flag");
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_null_mbx_transact - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_null_mbx_transact(struct e1000_hw *hw, u32 *msg, u16 size,
- u16 mbx_id)
-{
- DEBUGFUNC("e1000_null_mbx_rw_msg");
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_mbx - Reads a message from the mailbox
- * @hw: pointer to the HW structure
- * @msg: The message buffer
- * @size: Length of buffer
- * @mbx_id: id of mailbox to read
- *
- * returns SUCCESS if it successfuly read message from buffer
- **/
-s32 e1000_read_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_read_mbx");
-
- /* limit read to size of mailbox */
- if (size > mbx->size)
- size = mbx->size;
-
- if (mbx->ops.read)
- ret_val = mbx->ops.read(hw, msg, size, mbx_id);
-
- return ret_val;
-}
-
-/**
- * e1000_write_mbx - Write a message to the mailbox
- * @hw: pointer to the HW structure
- * @msg: The message buffer
- * @size: Length of buffer
- * @mbx_id: id of mailbox to write
- *
- * returns SUCCESS if it successfully copied message into the buffer
- **/
-s32 e1000_write_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_write_mbx");
-
- if (size > mbx->size)
- ret_val = -E1000_ERR_MBX;
-
- else if (mbx->ops.write)
- ret_val = mbx->ops.write(hw, msg, size, mbx_id);
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_msg - checks to see if someone sent us mail
- * @hw: pointer to the HW structure
- * @mbx_id: id of mailbox to check
- *
- * returns SUCCESS if the Status bit was found or else ERR_MBX
- **/
-s32 e1000_check_for_msg(struct e1000_hw *hw, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_check_for_msg");
-
- if (mbx->ops.check_for_msg)
- ret_val = mbx->ops.check_for_msg(hw, mbx_id);
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_ack - checks to see if someone sent us ACK
- * @hw: pointer to the HW structure
- * @mbx_id: id of mailbox to check
- *
- * returns SUCCESS if the Status bit was found or else ERR_MBX
- **/
-s32 e1000_check_for_ack(struct e1000_hw *hw, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_check_for_ack");
-
- if (mbx->ops.check_for_ack)
- ret_val = mbx->ops.check_for_ack(hw, mbx_id);
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_rst - checks to see if other side has reset
- * @hw: pointer to the HW structure
- * @mbx_id: id of mailbox to check
- *
- * returns SUCCESS if the Status bit was found or else ERR_MBX
- **/
-s32 e1000_check_for_rst(struct e1000_hw *hw, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_check_for_rst");
-
- if (mbx->ops.check_for_rst)
- ret_val = mbx->ops.check_for_rst(hw, mbx_id);
-
- return ret_val;
-}
-
-/**
- * e1000_poll_for_msg - Wait for message notification
- * @hw: pointer to the HW structure
- * @mbx_id: id of mailbox to write
- *
- * returns SUCCESS if it successfully received a message notification
- **/
-static s32 e1000_poll_for_msg(struct e1000_hw *hw, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- int countdown = mbx->timeout;
-
- DEBUGFUNC("e1000_poll_for_msg");
-
- if (!countdown || !mbx->ops.check_for_msg)
- goto out;
-
- while (countdown && mbx->ops.check_for_msg(hw, mbx_id)) {
- countdown--;
- if (!countdown)
- break;
- usec_delay(mbx->usec_delay);
- }
-
- /* if we failed, all future posted messages fail until reset */
- if (!countdown)
- mbx->timeout = 0;
-out:
- return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
-}
-
-/**
- * e1000_poll_for_ack - Wait for message acknowledgement
- * @hw: pointer to the HW structure
- * @mbx_id: id of mailbox to write
- *
- * returns SUCCESS if it successfully received a message acknowledgement
- **/
-static s32 e1000_poll_for_ack(struct e1000_hw *hw, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- int countdown = mbx->timeout;
-
- DEBUGFUNC("e1000_poll_for_ack");
-
- if (!countdown || !mbx->ops.check_for_ack)
- goto out;
-
- while (countdown && mbx->ops.check_for_ack(hw, mbx_id)) {
- countdown--;
- if (!countdown)
- break;
- usec_delay(mbx->usec_delay);
- }
-
- /* if we failed, all future posted messages fail until reset */
- if (!countdown)
- mbx->timeout = 0;
-out:
- return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
-}
-
-/**
- * e1000_read_posted_mbx - Wait for message notification and receive message
- * @hw: pointer to the HW structure
- * @msg: The message buffer
- * @size: Length of buffer
- * @mbx_id: id of mailbox to write
- *
- * returns SUCCESS if it successfully received a message notification and
- * copied it into the receive buffer.
- **/
-s32 e1000_read_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_read_posted_mbx");
-
- if (!mbx->ops.read)
- goto out;
-
- ret_val = e1000_poll_for_msg(hw, mbx_id);
-
- /* if ack received read message, otherwise we timed out */
- if (!ret_val)
- ret_val = mbx->ops.read(hw, msg, size, mbx_id);
-out:
- return ret_val;
-}
-
-/**
- * e1000_write_posted_mbx - Write a message to the mailbox, wait for ack
- * @hw: pointer to the HW structure
- * @msg: The message buffer
- * @size: Length of buffer
- * @mbx_id: id of mailbox to write
- *
- * returns SUCCESS if it successfully copied message into the buffer and
- * received an ack to that message within delay * timeout period
- **/
-s32 e1000_write_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_write_posted_mbx");
-
- /* exit if either we can't write or there isn't a defined timeout */
- if (!mbx->ops.write || !mbx->timeout)
- goto out;
-
- /* send msg */
- ret_val = mbx->ops.write(hw, msg, size, mbx_id);
-
- /* if msg sent wait until we receive an ack */
- if (!ret_val)
- ret_val = e1000_poll_for_ack(hw, mbx_id);
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_mbx_ops_generic - Initialize mbx function pointers
- * @hw: pointer to the HW structure
- *
- * Sets the function pointers to no-op functions
- **/
-void e1000_init_mbx_ops_generic(struct e1000_hw *hw)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- mbx->ops.init_params = e1000_null_ops_generic;
- mbx->ops.read = e1000_null_mbx_transact;
- mbx->ops.write = e1000_null_mbx_transact;
- mbx->ops.check_for_msg = e1000_null_mbx_check_for_flag;
- mbx->ops.check_for_ack = e1000_null_mbx_check_for_flag;
- mbx->ops.check_for_rst = e1000_null_mbx_check_for_flag;
- mbx->ops.read_posted = e1000_read_posted_mbx;
- mbx->ops.write_posted = e1000_write_posted_mbx;
-}
-
-/**
- * e1000_read_v2p_mailbox - read v2p mailbox
- * @hw: pointer to the HW structure
- *
- * This function is used to read the v2p mailbox without losing the read to
- * clear status bits.
- **/
-static u32 e1000_read_v2p_mailbox(struct e1000_hw *hw)
-{
- u32 v2p_mailbox = E1000_READ_REG(hw, E1000_V2PMAILBOX(0));
-
- v2p_mailbox |= hw->dev_spec.vf.v2p_mailbox;
- hw->dev_spec.vf.v2p_mailbox |= v2p_mailbox & E1000_V2PMAILBOX_R2C_BITS;
-
- return v2p_mailbox;
-}
-
-/**
- * e1000_check_for_bit_vf - Determine if a status bit was set
- * @hw: pointer to the HW structure
- * @mask: bitmask for bits to be tested and cleared
- *
- * This function is used to check for the read to clear bits within
- * the V2P mailbox.
- **/
-static s32 e1000_check_for_bit_vf(struct e1000_hw *hw, u32 mask)
-{
- u32 v2p_mailbox = e1000_read_v2p_mailbox(hw);
- s32 ret_val = -E1000_ERR_MBX;
-
- if (v2p_mailbox & mask)
- ret_val = E1000_SUCCESS;
-
- hw->dev_spec.vf.v2p_mailbox &= ~mask;
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_msg_vf - checks to see if the PF has sent mail
- * @hw: pointer to the HW structure
- * @mbx_id: id of mailbox to check
- *
- * returns SUCCESS if the PF has set the Status bit or else ERR_MBX
- **/
-static s32 e1000_check_for_msg_vf(struct e1000_hw *hw, u16 mbx_id)
-{
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_check_for_msg_vf");
-
- if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFSTS)) {
- ret_val = E1000_SUCCESS;
- hw->mbx.stats.reqs++;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_ack_vf - checks to see if the PF has ACK'd
- * @hw: pointer to the HW structure
- * @mbx_id: id of mailbox to check
- *
- * returns SUCCESS if the PF has set the ACK bit or else ERR_MBX
- **/
-static s32 e1000_check_for_ack_vf(struct e1000_hw *hw, u16 mbx_id)
-{
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_check_for_ack_vf");
-
- if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFACK)) {
- ret_val = E1000_SUCCESS;
- hw->mbx.stats.acks++;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_rst_vf - checks to see if the PF has reset
- * @hw: pointer to the HW structure
- * @mbx_id: id of mailbox to check
- *
- * returns TRUE if the PF has set the reset done bit or else FALSE
- **/
-static s32 e1000_check_for_rst_vf(struct e1000_hw *hw, u16 mbx_id)
-{
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_check_for_rst_vf");
-
- if (!e1000_check_for_bit_vf(hw, (E1000_V2PMAILBOX_RSTD |
- E1000_V2PMAILBOX_RSTI))) {
- ret_val = E1000_SUCCESS;
- hw->mbx.stats.rsts++;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_obtain_mbx_lock_vf - obtain mailbox lock
- * @hw: pointer to the HW structure
- *
- * return SUCCESS if we obtained the mailbox lock
- **/
-static s32 e1000_obtain_mbx_lock_vf(struct e1000_hw *hw)
-{
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_obtain_mbx_lock_vf");
-
- /* Take ownership of the buffer */
- E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_VFU);
-
- /* reserve mailbox for vf use */
- if (e1000_read_v2p_mailbox(hw) & E1000_V2PMAILBOX_VFU)
- ret_val = E1000_SUCCESS;
-
- return ret_val;
-}
-
-/**
- * e1000_write_mbx_vf - Write a message to the mailbox
- * @hw: pointer to the HW structure
- * @msg: The message buffer
- * @size: Length of buffer
- * @mbx_id: id of mailbox to write
- *
- * returns SUCCESS if it successfully copied message into the buffer
- **/
-static s32 e1000_write_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size,
- u16 mbx_id)
-{
- s32 ret_val;
- u16 i;
-
-
- DEBUGFUNC("e1000_write_mbx_vf");
-
- /* lock the mailbox to prevent pf/vf race condition */
- ret_val = e1000_obtain_mbx_lock_vf(hw);
- if (ret_val)
- goto out_no_write;
-
- /* flush msg and acks as we are overwriting the message buffer */
- e1000_check_for_msg_vf(hw, 0);
- e1000_check_for_ack_vf(hw, 0);
-
- /* copy the caller specified message to the mailbox memory buffer */
- for (i = 0; i < size; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(0), i, msg[i]);
-
- /* update stats */
- hw->mbx.stats.msgs_tx++;
-
- /* Drop VFU and interrupt the PF to tell it a message has been sent */
- E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_REQ);
-
-out_no_write:
- return ret_val;
-}
-
-/**
- * e1000_read_mbx_vf - Reads a message from the inbox intended for vf
- * @hw: pointer to the HW structure
- * @msg: The message buffer
- * @size: Length of buffer
- * @mbx_id: id of mailbox to read
- *
- * returns SUCCESS if it successfuly read message from buffer
- **/
-static s32 e1000_read_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size,
- u16 mbx_id)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 i;
-
- DEBUGFUNC("e1000_read_mbx_vf");
-
- /* lock the mailbox to prevent pf/vf race condition */
- ret_val = e1000_obtain_mbx_lock_vf(hw);
- if (ret_val)
- goto out_no_read;
-
- /* copy the message from the mailbox memory buffer */
- for (i = 0; i < size; i++)
- msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(0), i);
-
- /* Acknowledge receipt and release mailbox, then we're done */
- E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_ACK);
-
- /* update stats */
- hw->mbx.stats.msgs_rx++;
-
-out_no_read:
- return ret_val;
-}
-
-/**
- * e1000_init_mbx_params_vf - set initial values for vf mailbox
- * @hw: pointer to the HW structure
- *
- * Initializes the hw->mbx struct to correct values for vf mailbox
- */
-s32 e1000_init_mbx_params_vf(struct e1000_hw *hw)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
-
- /* start mailbox as timed out and let the reset_hw call set the timeout
- * value to begin communications */
- mbx->timeout = 0;
- mbx->usec_delay = E1000_VF_MBX_INIT_DELAY;
-
- mbx->size = E1000_VFMAILBOX_SIZE;
-
- mbx->ops.read = e1000_read_mbx_vf;
- mbx->ops.write = e1000_write_mbx_vf;
- mbx->ops.read_posted = e1000_read_posted_mbx;
- mbx->ops.write_posted = e1000_write_posted_mbx;
- mbx->ops.check_for_msg = e1000_check_for_msg_vf;
- mbx->ops.check_for_ack = e1000_check_for_ack_vf;
- mbx->ops.check_for_rst = e1000_check_for_rst_vf;
-
- mbx->stats.msgs_tx = 0;
- mbx->stats.msgs_rx = 0;
- mbx->stats.reqs = 0;
- mbx->stats.acks = 0;
- mbx->stats.rsts = 0;
-
- return E1000_SUCCESS;
-}
-
-static s32 e1000_check_for_bit_pf(struct e1000_hw *hw, u32 mask)
-{
- u32 mbvficr = E1000_READ_REG(hw, E1000_MBVFICR);
- s32 ret_val = -E1000_ERR_MBX;
-
- if (mbvficr & mask) {
- ret_val = E1000_SUCCESS;
- E1000_WRITE_REG(hw, E1000_MBVFICR, mask);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_msg_pf - checks to see if the VF has sent mail
- * @hw: pointer to the HW structure
- * @vf_number: the VF index
- *
- * returns SUCCESS if the VF has set the Status bit or else ERR_MBX
- **/
-static s32 e1000_check_for_msg_pf(struct e1000_hw *hw, u16 vf_number)
-{
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_check_for_msg_pf");
-
- if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFREQ_VF1 << vf_number)) {
- ret_val = E1000_SUCCESS;
- hw->mbx.stats.reqs++;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_ack_pf - checks to see if the VF has ACKed
- * @hw: pointer to the HW structure
- * @vf_number: the VF index
- *
- * returns SUCCESS if the VF has set the Status bit or else ERR_MBX
- **/
-static s32 e1000_check_for_ack_pf(struct e1000_hw *hw, u16 vf_number)
-{
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_check_for_ack_pf");
-
- if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFACK_VF1 << vf_number)) {
- ret_val = E1000_SUCCESS;
- hw->mbx.stats.acks++;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_rst_pf - checks to see if the VF has reset
- * @hw: pointer to the HW structure
- * @vf_number: the VF index
- *
- * returns SUCCESS if the VF has set the Status bit or else ERR_MBX
- **/
-static s32 e1000_check_for_rst_pf(struct e1000_hw *hw, u16 vf_number)
-{
- u32 vflre = E1000_READ_REG(hw, E1000_VFLRE);
- s32 ret_val = -E1000_ERR_MBX;
-
- DEBUGFUNC("e1000_check_for_rst_pf");
-
- if (vflre & (1 << vf_number)) {
- ret_val = E1000_SUCCESS;
- E1000_WRITE_REG(hw, E1000_VFLRE, (1 << vf_number));
- hw->mbx.stats.rsts++;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_obtain_mbx_lock_pf - obtain mailbox lock
- * @hw: pointer to the HW structure
- * @vf_number: the VF index
- *
- * return SUCCESS if we obtained the mailbox lock
- **/
-static s32 e1000_obtain_mbx_lock_pf(struct e1000_hw *hw, u16 vf_number)
-{
- s32 ret_val = -E1000_ERR_MBX;
- u32 p2v_mailbox;
-
- DEBUGFUNC("e1000_obtain_mbx_lock_pf");
-
- /* Take ownership of the buffer */
- E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_PFU);
-
- /* reserve mailbox for vf use */
- p2v_mailbox = E1000_READ_REG(hw, E1000_P2VMAILBOX(vf_number));
- if (p2v_mailbox & E1000_P2VMAILBOX_PFU)
- ret_val = E1000_SUCCESS;
-
- return ret_val;
-}
-
-/**
- * e1000_write_mbx_pf - Places a message in the mailbox
- * @hw: pointer to the HW structure
- * @msg: The message buffer
- * @size: Length of buffer
- * @vf_number: the VF index
- *
- * returns SUCCESS if it successfully copied message into the buffer
- **/
-static s32 e1000_write_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size,
- u16 vf_number)
-{
- s32 ret_val;
- u16 i;
-
- DEBUGFUNC("e1000_write_mbx_pf");
-
- /* lock the mailbox to prevent pf/vf race condition */
- ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number);
- if (ret_val)
- goto out_no_write;
-
- /* flush msg and acks as we are overwriting the message buffer */
- e1000_check_for_msg_pf(hw, vf_number);
- e1000_check_for_ack_pf(hw, vf_number);
-
- /* copy the caller specified message to the mailbox memory buffer */
- for (i = 0; i < size; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i, msg[i]);
-
- /* Interrupt VF to tell it a message has been sent and release buffer*/
- E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_STS);
-
- /* update stats */
- hw->mbx.stats.msgs_tx++;
-
-out_no_write:
- return ret_val;
-
-}
-
-/**
- * e1000_read_mbx_pf - Read a message from the mailbox
- * @hw: pointer to the HW structure
- * @msg: The message buffer
- * @size: Length of buffer
- * @vf_number: the VF index
- *
- * This function copies a message from the mailbox buffer to the caller's
- * memory buffer. The presumption is that the caller knows that there was
- * a message due to a VF request so no polling for message is needed.
- **/
-static s32 e1000_read_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size,
- u16 vf_number)
-{
- s32 ret_val;
- u16 i;
-
- DEBUGFUNC("e1000_read_mbx_pf");
-
- /* lock the mailbox to prevent pf/vf race condition */
- ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number);
- if (ret_val)
- goto out_no_read;
-
- /* copy the message to the mailbox memory buffer */
- for (i = 0; i < size; i++)
- msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i);
-
- /* Acknowledge the message and release buffer */
- E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_ACK);
-
- /* update stats */
- hw->mbx.stats.msgs_rx++;
-
-out_no_read:
- return ret_val;
-}
-
-/**
- * e1000_init_mbx_params_pf - set initial values for pf mailbox
- * @hw: pointer to the HW structure
- *
- * Initializes the hw->mbx struct to correct values for pf mailbox
- */
-s32 e1000_init_mbx_params_pf(struct e1000_hw *hw)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
-
- switch (hw->mac.type) {
- case e1000_82576:
- case e1000_i350:
- mbx->timeout = 0;
- mbx->usec_delay = 0;
-
- mbx->size = E1000_VFMAILBOX_SIZE;
-
- mbx->ops.read = e1000_read_mbx_pf;
- mbx->ops.write = e1000_write_mbx_pf;
- mbx->ops.read_posted = e1000_read_posted_mbx;
- mbx->ops.write_posted = e1000_write_posted_mbx;
- mbx->ops.check_for_msg = e1000_check_for_msg_pf;
- mbx->ops.check_for_ack = e1000_check_for_ack_pf;
- mbx->ops.check_for_rst = e1000_check_for_rst_pf;
-
- mbx->stats.msgs_tx = 0;
- mbx->stats.msgs_rx = 0;
- mbx->stats.reqs = 0;
- mbx->stats.acks = 0;
- mbx->stats.rsts = 0;
- default:
- return E1000_SUCCESS;
- }
-}
-
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#ifndef _E1000_MBX_H_
-#define _E1000_MBX_H_
-
-#include "e1000_api.h"
-
-/* Define mailbox register bits */
-#define E1000_V2PMAILBOX_REQ 0x00000001 /* Request for PF Ready bit */
-#define E1000_V2PMAILBOX_ACK 0x00000002 /* Ack PF message received */
-#define E1000_V2PMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */
-#define E1000_V2PMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */
-#define E1000_V2PMAILBOX_PFSTS 0x00000010 /* PF wrote a message in the MB */
-#define E1000_V2PMAILBOX_PFACK 0x00000020 /* PF ack the previous VF msg */
-#define E1000_V2PMAILBOX_RSTI 0x00000040 /* PF has reset indication */
-#define E1000_V2PMAILBOX_RSTD 0x00000080 /* PF has indicated reset done */
-#define E1000_V2PMAILBOX_R2C_BITS 0x000000B0 /* All read to clear bits */
-
-#define E1000_P2VMAILBOX_STS 0x00000001 /* Initiate message send to VF */
-#define E1000_P2VMAILBOX_ACK 0x00000002 /* Ack message recv'd from VF */
-#define E1000_P2VMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */
-#define E1000_P2VMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */
-#define E1000_P2VMAILBOX_RVFU 0x00000010 /* Reset VFU - used when VF stuck */
-
-#define E1000_MBVFICR_VFREQ_MASK 0x000000FF /* bits for VF messages */
-#define E1000_MBVFICR_VFREQ_VF1 0x00000001 /* bit for VF 1 message */
-#define E1000_MBVFICR_VFACK_MASK 0x00FF0000 /* bits for VF acks */
-#define E1000_MBVFICR_VFACK_VF1 0x00010000 /* bit for VF 1 ack */
-
-#define E1000_VFMAILBOX_SIZE 16 /* 16 32 bit words - 64 bytes */
-
-/* If it's a E1000_VF_* msg then it originates in the VF and is sent to the
- * PF. The reverse is TRUE if it is E1000_PF_*.
- * Message ACK's are the value or'd with 0xF0000000
- */
-#define E1000_VT_MSGTYPE_ACK 0x80000000 /* Messages below or'd with
- * this are the ACK */
-#define E1000_VT_MSGTYPE_NACK 0x40000000 /* Messages below or'd with
- * this are the NACK */
-#define E1000_VT_MSGTYPE_CTS 0x20000000 /* Indicates that VF is still
- clear to send requests */
-#define E1000_VT_MSGINFO_SHIFT 16
-/* bits 23:16 are used for exra info for certain messages */
-#define E1000_VT_MSGINFO_MASK (0xFF << E1000_VT_MSGINFO_SHIFT)
-
-#define E1000_VF_RESET 0x01 /* VF requests reset */
-#define E1000_VF_SET_MAC_ADDR 0x02 /* VF requests to set MAC addr */
-#define E1000_VF_SET_MULTICAST 0x03 /* VF requests to set MC addr */
-#define E1000_VF_SET_MULTICAST_COUNT_MASK (0x1F << E1000_VT_MSGINFO_SHIFT)
-#define E1000_VF_SET_MULTICAST_OVERFLOW (0x80 << E1000_VT_MSGINFO_SHIFT)
-#define E1000_VF_SET_VLAN 0x04 /* VF requests to set VLAN */
-#define E1000_VF_SET_VLAN_ADD (0x01 << E1000_VT_MSGINFO_SHIFT)
-#define E1000_VF_SET_LPE 0x05 /* VF requests to set VMOLR.LPE */
-#define E1000_VF_SET_PROMISC 0x06 /*VF requests to clear VMOLR.ROPE/MPME*/
-#define E1000_VF_SET_PROMISC_UNICAST (0x01 << E1000_VT_MSGINFO_SHIFT)
-#define E1000_VF_SET_PROMISC_MULTICAST (0x02 << E1000_VT_MSGINFO_SHIFT)
-
-#define E1000_PF_CONTROL_MSG 0x0100 /* PF control message */
-
-#define E1000_VF_MBX_INIT_TIMEOUT 2000 /* number of retries on mailbox */
-#define E1000_VF_MBX_INIT_DELAY 500 /* microseconds between retries */
-
-s32 e1000_read_mbx(struct e1000_hw *, u32 *, u16, u16);
-s32 e1000_write_mbx(struct e1000_hw *, u32 *, u16, u16);
-s32 e1000_read_posted_mbx(struct e1000_hw *, u32 *, u16, u16);
-s32 e1000_write_posted_mbx(struct e1000_hw *, u32 *, u16, u16);
-s32 e1000_check_for_msg(struct e1000_hw *, u16);
-s32 e1000_check_for_ack(struct e1000_hw *, u16);
-s32 e1000_check_for_rst(struct e1000_hw *, u16);
-void e1000_init_mbx_ops_generic(struct e1000_hw *hw);
-s32 e1000_init_mbx_params_vf(struct e1000_hw *);
-s32 e1000_init_mbx_params_pf(struct e1000_hw *);
-
-#endif /* _E1000_MBX_H_ */
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#include "e1000_api.h"
-
-static void e1000_stop_nvm(struct e1000_hw *hw);
-static void e1000_reload_nvm_generic(struct e1000_hw *hw);
-
-/**
- * e1000_init_nvm_ops_generic - Initialize NVM function pointers
- * @hw: pointer to the HW structure
- *
- * Setups up the function pointers to no-op functions
- **/
-void e1000_init_nvm_ops_generic(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- DEBUGFUNC("e1000_init_nvm_ops_generic");
-
- /* Initialize function pointers */
- nvm->ops.init_params = e1000_null_ops_generic;
- nvm->ops.acquire = e1000_null_ops_generic;
- nvm->ops.read = e1000_null_read_nvm;
- nvm->ops.release = e1000_null_nvm_generic;
- nvm->ops.reload = e1000_reload_nvm_generic;
- nvm->ops.update = e1000_null_ops_generic;
- nvm->ops.valid_led_default = e1000_null_led_default;
- nvm->ops.validate = e1000_null_ops_generic;
- nvm->ops.write = e1000_null_write_nvm;
-}
-
-/**
- * e1000_null_nvm_read - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c)
-{
- DEBUGFUNC("e1000_null_read_nvm");
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_null_nvm_generic - No-op function, return void
- * @hw: pointer to the HW structure
- **/
-void e1000_null_nvm_generic(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_null_nvm_generic");
- return;
-}
-
-/**
- * e1000_null_led_default - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data)
-{
- DEBUGFUNC("e1000_null_led_default");
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_null_write_nvm - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c)
-{
- DEBUGFUNC("e1000_null_write_nvm");
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_raise_eec_clk - Raise EEPROM clock
- * @hw: pointer to the HW structure
- * @eecd: pointer to the EEPROM
- *
- * Enable/Raise the EEPROM clock bit.
- **/
-static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
-{
- *eecd = *eecd | E1000_EECD_SK;
- E1000_WRITE_REG(hw, E1000_EECD, *eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->nvm.delay_usec);
-}
-
-/**
- * e1000_lower_eec_clk - Lower EEPROM clock
- * @hw: pointer to the HW structure
- * @eecd: pointer to the EEPROM
- *
- * Clear/Lower the EEPROM clock bit.
- **/
-static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
-{
- *eecd = *eecd & ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, E1000_EECD, *eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->nvm.delay_usec);
-}
-
-/**
- * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
- * @hw: pointer to the HW structure
- * @data: data to send to the EEPROM
- * @count: number of bits to shift out
- *
- * We need to shift 'count' bits out to the EEPROM. So, the value in the
- * "data" parameter will be shifted out to the EEPROM one bit at a time.
- * In order to do this, "data" must be broken down into bits.
- **/
-static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- u32 mask;
-
- DEBUGFUNC("e1000_shift_out_eec_bits");
-
- mask = 0x01 << (count - 1);
- if (nvm->type == e1000_nvm_eeprom_microwire)
- eecd &= ~E1000_EECD_DO;
- else
- if (nvm->type == e1000_nvm_eeprom_spi)
- eecd |= E1000_EECD_DO;
-
- do {
- eecd &= ~E1000_EECD_DI;
-
- if (data & mask)
- eecd |= E1000_EECD_DI;
-
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(nvm->delay_usec);
-
- e1000_raise_eec_clk(hw, &eecd);
- e1000_lower_eec_clk(hw, &eecd);
-
- mask >>= 1;
- } while (mask);
-
- eecd &= ~E1000_EECD_DI;
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
-}
-
-/**
- * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
- * @hw: pointer to the HW structure
- * @count: number of bits to shift in
- *
- * In order to read a register from the EEPROM, we need to shift 'count' bits
- * in from the EEPROM. Bits are "shifted in" by raising the clock input to
- * the EEPROM (setting the SK bit), and then reading the value of the data out
- * "DO" bit. During this "shifting in" process the data in "DI" bit should
- * always be clear.
- **/
-static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
-{
- u32 eecd;
- u32 i;
- u16 data;
-
- DEBUGFUNC("e1000_shift_in_eec_bits");
-
- eecd = E1000_READ_REG(hw, E1000_EECD);
-
- eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
- data = 0;
-
- for (i = 0; i < count; i++) {
- data <<= 1;
- e1000_raise_eec_clk(hw, &eecd);
-
- eecd = E1000_READ_REG(hw, E1000_EECD);
-
- eecd &= ~E1000_EECD_DI;
- if (eecd & E1000_EECD_DO)
- data |= 1;
-
- e1000_lower_eec_clk(hw, &eecd);
- }
-
- return data;
-}
-
-/**
- * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
- * @hw: pointer to the HW structure
- * @ee_reg: EEPROM flag for polling
- *
- * Polls the EEPROM status bit for either read or write completion based
- * upon the value of 'ee_reg'.
- **/
-s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
-{
- u32 attempts = 100000;
- u32 i, reg = 0;
- s32 ret_val = -E1000_ERR_NVM;
-
- DEBUGFUNC("e1000_poll_eerd_eewr_done");
-
- for (i = 0; i < attempts; i++) {
- if (ee_reg == E1000_NVM_POLL_READ)
- reg = E1000_READ_REG(hw, E1000_EERD);
- else
- reg = E1000_READ_REG(hw, E1000_EEWR);
-
- if (reg & E1000_NVM_RW_REG_DONE) {
- ret_val = E1000_SUCCESS;
- break;
- }
-
- usec_delay(5);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_acquire_nvm_generic - Generic request for access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Set the EEPROM access request bit and wait for EEPROM access grant bit.
- * Return successful if access grant bit set, else clear the request for
- * EEPROM access and return -E1000_ERR_NVM (-1).
- **/
-s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
-{
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_acquire_nvm_generic");
-
- E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
- eecd = E1000_READ_REG(hw, E1000_EECD);
-
- while (timeout) {
- if (eecd & E1000_EECD_GNT)
- break;
- usec_delay(5);
- eecd = E1000_READ_REG(hw, E1000_EECD);
- timeout--;
- }
-
- if (!timeout) {
- eecd &= ~E1000_EECD_REQ;
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- DEBUGOUT("Could not acquire NVM grant\n");
- ret_val = -E1000_ERR_NVM;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_standby_nvm - Return EEPROM to standby state
- * @hw: pointer to the HW structure
- *
- * Return the EEPROM to a standby state.
- **/
-static void e1000_standby_nvm(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-
- DEBUGFUNC("e1000_standby_nvm");
-
- if (nvm->type == e1000_nvm_eeprom_microwire) {
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(nvm->delay_usec);
-
- e1000_raise_eec_clk(hw, &eecd);
-
- /* Select EEPROM */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(nvm->delay_usec);
-
- e1000_lower_eec_clk(hw, &eecd);
- } else
- if (nvm->type == e1000_nvm_eeprom_spi) {
- /* Toggle CS to flush commands */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(nvm->delay_usec);
- eecd &= ~E1000_EECD_CS;
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(nvm->delay_usec);
- }
-}
-
-/**
- * e1000_stop_nvm - Terminate EEPROM command
- * @hw: pointer to the HW structure
- *
- * Terminates the current command by inverting the EEPROM's chip select pin.
- **/
-static void e1000_stop_nvm(struct e1000_hw *hw)
-{
- u32 eecd;
-
- DEBUGFUNC("e1000_stop_nvm");
-
- eecd = E1000_READ_REG(hw, E1000_EECD);
- if (hw->nvm.type == e1000_nvm_eeprom_spi) {
- /* Pull CS high */
- eecd |= E1000_EECD_CS;
- e1000_lower_eec_clk(hw, &eecd);
- } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
- /* CS on Microwire is active-high */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- e1000_raise_eec_clk(hw, &eecd);
- e1000_lower_eec_clk(hw, &eecd);
- }
-}
-
-/**
- * e1000_release_nvm_generic - Release exclusive access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Stop any current commands to the EEPROM and clear the EEPROM request bit.
- **/
-void e1000_release_nvm_generic(struct e1000_hw *hw)
-{
- u32 eecd;
-
- DEBUGFUNC("e1000_release_nvm_generic");
-
- e1000_stop_nvm(hw);
-
- eecd = E1000_READ_REG(hw, E1000_EECD);
- eecd &= ~E1000_EECD_REQ;
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
-}
-
-/**
- * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
- * @hw: pointer to the HW structure
- *
- * Setups the EEPROM for reading and writing.
- **/
-static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- s32 ret_val = E1000_SUCCESS;
- u8 spi_stat_reg;
-
- DEBUGFUNC("e1000_ready_nvm_eeprom");
-
- if (nvm->type == e1000_nvm_eeprom_microwire) {
- /* Clear SK and DI */
- eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- /* Set CS */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- } else
- if (nvm->type == e1000_nvm_eeprom_spi) {
- u16 timeout = NVM_MAX_RETRY_SPI;
-
- /* Clear SK and CS */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- E1000_WRITE_REG(hw, E1000_EECD, eecd);
- usec_delay(1);
-
- /*
- * Read "Status Register" repeatedly until the LSB is cleared.
- * The EEPROM will signal that the command has been completed
- * by clearing bit 0 of the internal status register. If it's
- * not cleared within 'timeout', then error out.
- */
- while (timeout) {
- e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
- hw->nvm.opcode_bits);
- spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
- if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
- break;
-
- usec_delay(5);
- e1000_standby_nvm(hw);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("SPI NVM Status error\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_read_nvm_spi - Read EEPROM's using SPI
- * @hw: pointer to the HW structure
- * @offset: offset of word in the EEPROM to read
- * @words: number of words to read
- * @data: word read from the EEPROM
- *
- * Reads a 16 bit word from the EEPROM.
- **/
-s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 i = 0;
- s32 ret_val;
- u16 word_in;
- u8 read_opcode = NVM_READ_OPCODE_SPI;
-
- DEBUGFUNC("e1000_read_nvm_spi");
-
- /*
- * A check for invalid values: offset too large, too many words,
- * and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
-
- ret_val = nvm->ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_ready_nvm_eeprom(hw);
- if (ret_val)
- goto release;
-
- e1000_standby_nvm(hw);
-
- if ((nvm->address_bits == 8) && (offset >= 128))
- read_opcode |= NVM_A8_OPCODE_SPI;
-
- /* Send the READ command (opcode + addr) */
- e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
- e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
-
- /*
- * Read the data. SPI NVMs increment the address with each byte
- * read and will roll over if reading beyond the end. This allows
- * us to read the whole NVM from any offset
- */
- for (i = 0; i < words; i++) {
- word_in = e1000_shift_in_eec_bits(hw, 16);
- data[i] = (word_in >> 8) | (word_in << 8);
- }
-
-release:
- nvm->ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_read_nvm_microwire - Reads EEPROM's using microwire
- * @hw: pointer to the HW structure
- * @offset: offset of word in the EEPROM to read
- * @words: number of words to read
- * @data: word read from the EEPROM
- *
- * Reads a 16 bit word from the EEPROM.
- **/
-s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 i = 0;
- s32 ret_val;
- u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
-
- DEBUGFUNC("e1000_read_nvm_microwire");
-
- /*
- * A check for invalid values: offset too large, too many words,
- * and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
-
- ret_val = nvm->ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_ready_nvm_eeprom(hw);
- if (ret_val)
- goto release;
-
- for (i = 0; i < words; i++) {
- /* Send the READ command (opcode + addr) */
- e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
- e1000_shift_out_eec_bits(hw, (u16)(offset + i),
- nvm->address_bits);
-
- /*
- * Read the data. For microwire, each word requires the
- * overhead of setup and tear-down.
- */
- data[i] = e1000_shift_in_eec_bits(hw, 16);
- e1000_standby_nvm(hw);
- }
-
-release:
- nvm->ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_read_nvm_eerd - Reads EEPROM using EERD register
- * @hw: pointer to the HW structure
- * @offset: offset of word in the EEPROM to read
- * @words: number of words to read
- * @data: word read from the EEPROM
- *
- * Reads a 16 bit word from the EEPROM using the EERD register.
- **/
-s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 i, eerd = 0;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_read_nvm_eerd");
-
- /*
- * A check for invalid values: offset too large, too many words,
- * too many words for the offset, and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
-
- for (i = 0; i < words; i++) {
- eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
- E1000_NVM_RW_REG_START;
-
- E1000_WRITE_REG(hw, E1000_EERD, eerd);
- ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
- if (ret_val)
- break;
-
- data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
- E1000_NVM_RW_REG_DATA);
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_write_nvm_spi - Write to EEPROM using SPI
- * @hw: pointer to the HW structure
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the EEPROM
- *
- * Writes data to EEPROM at offset using SPI interface.
- *
- * If e1000_update_nvm_checksum is not called after this function , the
- * EEPROM will most likely contain an invalid checksum.
- **/
-s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- s32 ret_val;
- u16 widx = 0;
-
- DEBUGFUNC("e1000_write_nvm_spi");
-
- /*
- * A check for invalid values: offset too large, too many words,
- * and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
-
- ret_val = nvm->ops.acquire(hw);
- if (ret_val)
- goto out;
-
- while (widx < words) {
- u8 write_opcode = NVM_WRITE_OPCODE_SPI;
-
- ret_val = e1000_ready_nvm_eeprom(hw);
- if (ret_val)
- goto release;
-
- e1000_standby_nvm(hw);
-
- /* Send the WRITE ENABLE command (8 bit opcode) */
- e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
- nvm->opcode_bits);
-
- e1000_standby_nvm(hw);
-
- /*
- * Some SPI eeproms use the 8th address bit embedded in the
- * opcode
- */
- if ((nvm->address_bits == 8) && (offset >= 128))
- write_opcode |= NVM_A8_OPCODE_SPI;
-
- /* Send the Write command (8-bit opcode + addr) */
- e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
- e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
- nvm->address_bits);
-
- /* Loop to allow for up to whole page write of eeprom */
- while (widx < words) {
- u16 word_out = data[widx];
- word_out = (word_out >> 8) | (word_out << 8);
- e1000_shift_out_eec_bits(hw, word_out, 16);
- widx++;
-
- if ((((offset + widx) * 2) % nvm->page_size) == 0) {
- e1000_standby_nvm(hw);
- break;
- }
- }
- }
-
- msec_delay(10);
-release:
- nvm->ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_write_nvm_microwire - Writes EEPROM using microwire
- * @hw: pointer to the HW structure
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the EEPROM
- *
- * Writes data to EEPROM at offset using microwire interface.
- *
- * If e1000_update_nvm_checksum is not called after this function , the
- * EEPROM will most likely contain an invalid checksum.
- **/
-s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- s32 ret_val;
- u32 eecd;
- u16 words_written = 0;
- u16 widx = 0;
-
- DEBUGFUNC("e1000_write_nvm_microwire");
-
- /*
- * A check for invalid values: offset too large, too many words,
- * and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
-
- ret_val = nvm->ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_ready_nvm_eeprom(hw);
- if (ret_val)
- goto release;
-
- e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
- (u16)(nvm->opcode_bits + 2));
-
- e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
-
- e1000_standby_nvm(hw);
-
- while (words_written < words) {
- e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
- nvm->opcode_bits);
-
- e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
- nvm->address_bits);
-
- e1000_shift_out_eec_bits(hw, data[words_written], 16);
-
- e1000_standby_nvm(hw);
-
- for (widx = 0; widx < 200; widx++) {
- eecd = E1000_READ_REG(hw, E1000_EECD);
- if (eecd & E1000_EECD_DO)
- break;
- usec_delay(50);
- }
-
- if (widx == 200) {
- DEBUGOUT("NVM Write did not complete\n");
- ret_val = -E1000_ERR_NVM;
- goto release;
- }
-
- e1000_standby_nvm(hw);
-
- words_written++;
- }
-
- e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
- (u16)(nvm->opcode_bits + 2));
-
- e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
-
-release:
- nvm->ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_read_pba_string_generic - Read device part number
- * @hw: pointer to the HW structure
- * @pba_num: pointer to device part number
- * @pba_num_size: size of part number buffer
- *
- * Reads the product board assembly (PBA) number from the EEPROM and stores
- * the value in pba_num.
- **/
-s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
- u32 pba_num_size)
-{
- s32 ret_val;
- u16 nvm_data;
- u16 pba_ptr;
- u16 offset;
- u16 length;
-
- DEBUGFUNC("e1000_read_pba_string_generic");
-
- if (pba_num == NULL) {
- DEBUGOUT("PBA string buffer was null\n");
- ret_val = E1000_ERR_INVALID_ARGUMENT;
- goto out;
- }
-
- ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- /*
- * if nvm_data is not ptr guard the PBA must be in legacy format which
- * means pba_ptr is actually our second data word for the PBA number
- * and we can decode it into an ascii string
- */
- if (nvm_data != NVM_PBA_PTR_GUARD) {
- DEBUGOUT("NVM PBA number is not stored as string\n");
-
- /* we will need 11 characters to store the PBA */
- if (pba_num_size < 11) {
- DEBUGOUT("PBA string buffer too small\n");
- return E1000_ERR_NO_SPACE;
- }
-
- /* extract hex string from data and pba_ptr */
- pba_num[0] = (nvm_data >> 12) & 0xF;
- pba_num[1] = (nvm_data >> 8) & 0xF;
- pba_num[2] = (nvm_data >> 4) & 0xF;
- pba_num[3] = nvm_data & 0xF;
- pba_num[4] = (pba_ptr >> 12) & 0xF;
- pba_num[5] = (pba_ptr >> 8) & 0xF;
- pba_num[6] = '-';
- pba_num[7] = 0;
- pba_num[8] = (pba_ptr >> 4) & 0xF;
- pba_num[9] = pba_ptr & 0xF;
-
- /* put a null character on the end of our string */
- pba_num[10] = '\0';
-
- /* switch all the data but the '-' to hex char */
- for (offset = 0; offset < 10; offset++) {
- if (pba_num[offset] < 0xA)
- pba_num[offset] += '0';
- else if (pba_num[offset] < 0x10)
- pba_num[offset] += 'A' - 0xA;
- }
-
- goto out;
- }
-
- ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- if (length == 0xFFFF || length == 0) {
- DEBUGOUT("NVM PBA number section invalid length\n");
- ret_val = E1000_ERR_NVM_PBA_SECTION;
- goto out;
- }
- /* check if pba_num buffer is big enough */
- if (pba_num_size < (((u32)length * 2) - 1)) {
- DEBUGOUT("PBA string buffer too small\n");
- ret_val = E1000_ERR_NO_SPACE;
- goto out;
- }
-
- /* trim pba length from start of string */
- pba_ptr++;
- length--;
-
- for (offset = 0; offset < length; offset++) {
- ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
- pba_num[offset * 2] = (u8)(nvm_data >> 8);
- pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
- }
- pba_num[offset * 2] = '\0';
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_read_pba_length_generic - Read device part number length
- * @hw: pointer to the HW structure
- * @pba_num_size: size of part number buffer
- *
- * Reads the product board assembly (PBA) number length from the EEPROM and
- * stores the value in pba_num_size.
- **/
-s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size)
-{
- s32 ret_val;
- u16 nvm_data;
- u16 pba_ptr;
- u16 length;
-
- DEBUGFUNC("e1000_read_pba_length_generic");
-
- if (pba_num_size == NULL) {
- DEBUGOUT("PBA buffer size was null\n");
- ret_val = E1000_ERR_INVALID_ARGUMENT;
- goto out;
- }
-
- ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- /* if data is not ptr guard the PBA must be in legacy format */
- if (nvm_data != NVM_PBA_PTR_GUARD) {
- *pba_num_size = 11;
- goto out;
- }
-
- ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- if (length == 0xFFFF || length == 0) {
- DEBUGOUT("NVM PBA number section invalid length\n");
- ret_val = E1000_ERR_NVM_PBA_SECTION;
- goto out;
- }
-
- /*
- * Convert from length in u16 values to u8 chars, add 1 for NULL,
- * and subtract 2 because length field is included in length.
- */
- *pba_num_size = ((u32)length * 2) - 1;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_read_mac_addr_generic - Read device MAC address
- * @hw: pointer to the HW structure
- *
- * Reads the device MAC address from the EEPROM and stores the value.
- * Since devices with two ports use the same EEPROM, we increment the
- * last bit in the MAC address for the second port.
- **/
-s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
-{
- u32 rar_high;
- u32 rar_low;
- u16 i;
-
- rar_high = E1000_READ_REG(hw, E1000_RAH(0));
- rar_low = E1000_READ_REG(hw, E1000_RAL(0));
-
- for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
- hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
-
- for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
- hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
-
- for (i = 0; i < ETH_ADDR_LEN; i++)
- hw->mac.addr[i] = hw->mac.perm_addr[i];
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- * and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
-s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 checksum = 0;
- u16 i, nvm_data;
-
- DEBUGFUNC("e1000_validate_nvm_checksum_generic");
-
- for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
- ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
- checksum += nvm_data;
- }
-
- if (checksum != (u16) NVM_SUM) {
- DEBUGOUT("NVM Checksum Invalid\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_update_nvm_checksum_generic - Update EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Updates the EEPROM checksum by reading/adding each word of the EEPROM
- * up to the checksum. Then calculates the EEPROM checksum and writes the
- * value to the EEPROM.
- **/
-s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 checksum = 0;
- u16 i, nvm_data;
-
- DEBUGFUNC("e1000_update_nvm_checksum");
-
- for (i = 0; i < NVM_CHECKSUM_REG; i++) {
- ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error while updating checksum.\n");
- goto out;
- }
- checksum += nvm_data;
- }
- checksum = (u16) NVM_SUM - checksum;
- ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
- if (ret_val)
- DEBUGOUT("NVM Write Error while updating checksum.\n");
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_reload_nvm_generic - Reloads EEPROM
- * @hw: pointer to the HW structure
- *
- * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
- * extended control register.
- **/
-static void e1000_reload_nvm_generic(struct e1000_hw *hw)
-{
- u32 ctrl_ext;
-
- DEBUGFUNC("e1000_reload_nvm_generic");
-
- usec_delay(10);
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
-}
-
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#ifndef _E1000_NVM_H_
-#define _E1000_NVM_H_
-
-void e1000_init_nvm_ops_generic(struct e1000_hw *hw);
-s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c);
-void e1000_null_nvm_generic(struct e1000_hw *hw);
-s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data);
-s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c);
-s32 e1000_acquire_nvm_generic(struct e1000_hw *hw);
-
-s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
-s32 e1000_read_mac_addr_generic(struct e1000_hw *hw);
-s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
- u32 pba_num_size);
-s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size);
-s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
-s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
-s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data);
-s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data);
-s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw);
-s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
-s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data);
-s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw);
-void e1000_release_nvm_generic(struct e1000_hw *hw);
-
-#define E1000_STM_OPCODE 0xDB00
-
-#endif
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#include "e1000_api.h"
-
-/*
- * NOTE: the following routines using the e1000
- * naming style are provided to the shared
- * code but are OS specific
- */
-
-void
-e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
-{
- return;
-}
-
-void
-e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
-{
- *value = 0;
- return;
-}
-
-/*
- * Read the PCI Express capabilities
- */
-int32_t
-e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
-{
- return E1000_NOT_IMPLEMENTED;
-}
-
-/*
- * Write the PCI Express capabilities
- */
-int32_t
-e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
-{
- return E1000_NOT_IMPLEMENTED;
-}
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#ifndef _E1000_OSDEP_H_
-#define _E1000_OSDEP_H_
-
-#include <stdint.h>
-#include <stdio.h>
-#include <stdarg.h>
-#include <string.h>
-#include <rte_common.h>
-#include <rte_cycles.h>
-#include <rte_log.h>
-
-#include "../e1000_logs.h"
-
-/* Remove some compiler warnings for the files in this dir */
-#ifdef __INTEL_COMPILER
-#pragma warning(disable:2259) /* conversion may lose significant bits */
-#pragma warning(disable:869) /* Parameter was never referenced */
-#pragma warning(disable:181) /* Arg incompatible with format string */
-#else
-#pragma GCC diagnostic ignored "-Wunused-parameter"
-#pragma GCC diagnostic ignored "-Wformat"
-#pragma GCC diagnostic ignored "-Wuninitialized"
-#if (((__GNUC__) >= 4) && ((__GNUC_MINOR__) >= 7))
-#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
-#endif
-#endif
-
-#define DELAY(x) rte_delay_us(x)
-#define usec_delay(x) DELAY(x)
-#define msec_delay(x) DELAY(1000*(x))
-#define msec_delay_irq(x) DELAY(1000*(x))
-
-#define DEBUGFUNC(F) DEBUGOUT(F);
-#define DEBUGOUT(S, args...) PMD_DRV_LOG(DEBUG, S, ##args)
-#define DEBUGOUT1(S, args...) DEBUGOUT(S, ##args)
-#define DEBUGOUT2(S, args...) DEBUGOUT(S, ##args)
-#define DEBUGOUT3(S, args...) DEBUGOUT(S, ##args)
-#define DEBUGOUT6(S, args...) DEBUGOUT(S, ##args)
-#define DEBUGOUT7(S, args...) DEBUGOUT(S, ##args)
-
-#define FALSE 0
-#define TRUE 1
-
-typedef uint64_t u64;
-typedef uint32_t u32;
-typedef uint16_t u16;
-typedef uint8_t u8;
-typedef int64_t s64;
-typedef int32_t s32;
-typedef int16_t s16;
-typedef int8_t s8;
-typedef int bool;
-
-#define __le16 u16
-#define __le32 u32
-#define __le64 u64
-
-#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, E1000_STATUS)
-
-#define E1000_PCI_REG(reg) (*((volatile uint32_t *)(reg)))
-
-#define E1000_PCI_REG_WRITE(reg, value) do { \
- E1000_PCI_REG((reg)) = (value); \
-} while (0)
-
-#define E1000_PCI_REG_ADDR(hw, reg) \
- ((volatile uint32_t *)((char *)(hw)->hw_addr + (reg)))
-
-#define E1000_PCI_REG_ARRAY_ADDR(hw, reg, index) \
- E1000_PCI_REG_ADDR((hw), (reg) + ((index) << 2))
-
-static inline uint32_t e1000_read_addr(volatile void* addr)
-{
- return E1000_PCI_REG(addr);
-}
-
-/* Register READ/WRITE macros */
-
-#define E1000_READ_REG(hw, reg) \
- e1000_read_addr(E1000_PCI_REG_ADDR((hw), (reg)))
-
-#define E1000_WRITE_REG(hw, reg, value) \
- E1000_PCI_REG_WRITE(E1000_PCI_REG_ADDR((hw), (reg)), (value))
-
-#define E1000_READ_REG_ARRAY(hw, reg, index) \
- E1000_PCI_REG(E1000_PCI_REG_ARRAY_ADDR((hw), (reg), (index)))
-
-#define E1000_WRITE_REG_ARRAY(hw, reg, index, value) \
- E1000_PCI_REG_WRITE(E1000_PCI_REG_ARRAY_ADDR((hw), (reg), (index)), (value))
-
-#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
-#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY
-
-#endif /* _E1000_OSDEP_H_ */
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#include "e1000_api.h"
-
-static s32 e1000_copper_link_autoneg(struct e1000_hw *hw);
-static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw);
-/* Cable length tables */
-static const u16 e1000_m88_cable_length_table[] = {
- 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
-#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
- (sizeof(e1000_m88_cable_length_table) / \
- sizeof(e1000_m88_cable_length_table[0]))
-
-static const u16 e1000_igp_2_cable_length_table[] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
- 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
- 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
- 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
- 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
- 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
- 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
- 124};
-#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
- (sizeof(e1000_igp_2_cable_length_table) / \
- sizeof(e1000_igp_2_cable_length_table[0]))
-
-/**
- * e1000_init_phy_ops_generic - Initialize PHY function pointers
- * @hw: pointer to the HW structure
- *
- * Setups up the function pointers to no-op functions
- **/
-void e1000_init_phy_ops_generic(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- DEBUGFUNC("e1000_init_phy_ops_generic");
-
- /* Initialize function pointers */
- phy->ops.init_params = e1000_null_ops_generic;
- phy->ops.acquire = e1000_null_ops_generic;
- phy->ops.check_polarity = e1000_null_ops_generic;
- phy->ops.check_reset_block = e1000_null_ops_generic;
- phy->ops.commit = e1000_null_ops_generic;
- phy->ops.force_speed_duplex = e1000_null_ops_generic;
- phy->ops.get_cfg_done = e1000_null_ops_generic;
- phy->ops.get_cable_length = e1000_null_ops_generic;
- phy->ops.get_info = e1000_null_ops_generic;
- phy->ops.read_reg = e1000_null_read_reg;
- phy->ops.read_reg_locked = e1000_null_read_reg;
- phy->ops.release = e1000_null_phy_generic;
- phy->ops.reset = e1000_null_ops_generic;
- phy->ops.set_d0_lplu_state = e1000_null_lplu_state;
- phy->ops.set_d3_lplu_state = e1000_null_lplu_state;
- phy->ops.write_reg = e1000_null_write_reg;
- phy->ops.write_reg_locked = e1000_null_write_reg;
- phy->ops.power_up = e1000_null_phy_generic;
- phy->ops.power_down = e1000_null_phy_generic;
-}
-
-/**
- * e1000_null_read_reg - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- DEBUGFUNC("e1000_null_read_reg");
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_null_phy_generic - No-op function, return void
- * @hw: pointer to the HW structure
- **/
-void e1000_null_phy_generic(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_null_phy_generic");
- return;
-}
-
-/**
- * e1000_null_lplu_state - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active)
-{
- DEBUGFUNC("e1000_null_lplu_state");
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_null_write_reg - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data)
-{
- DEBUGFUNC("e1000_null_write_reg");
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_check_reset_block_generic - Check if PHY reset is blocked
- * @hw: pointer to the HW structure
- *
- * Read the PHY management control register and check whether a PHY reset
- * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise
- * return E1000_BLK_PHY_RESET (12).
- **/
-s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
-{
- u32 manc;
-
- DEBUGFUNC("e1000_check_reset_block");
-
- manc = E1000_READ_REG(hw, E1000_MANC);
-
- return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
- E1000_BLK_PHY_RESET : E1000_SUCCESS;
-}
-
-/**
- * e1000_get_phy_id - Retrieve the PHY ID and revision
- * @hw: pointer to the HW structure
- *
- * Reads the PHY registers and stores the PHY ID and possibly the PHY
- * revision in the hardware structure.
- **/
-s32 e1000_get_phy_id(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u16 phy_id;
-
- DEBUGFUNC("e1000_get_phy_id");
-
- if (!(phy->ops.read_reg))
- goto out;
-
- ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
- if (ret_val)
- goto out;
-
- phy->id = (u32)(phy_id << 16);
- usec_delay(20);
- ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
- if (ret_val)
- goto out;
-
- phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
- phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_phy_reset_dsp_generic - Reset PHY DSP
- * @hw: pointer to the HW structure
- *
- * Reset the digital signal processor.
- **/
-s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_phy_reset_dsp_generic");
-
- if (!(hw->phy.ops.write_reg))
- goto out;
-
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
- if (ret_val)
- goto out;
-
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_read_phy_reg_mdic - Read MDI control register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the MDI control register in the PHY at offset and stores the
- * information read to data.
- **/
-s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 i, mdic = 0;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_read_phy_reg_mdic");
-
- if (offset > MAX_PHY_REG_ADDRESS) {
- DEBUGOUT1("PHY Address %d is out of range\n", offset);
- return -E1000_ERR_PARAM;
- }
-
- /*
- * Set up Op-code, Phy Address, and register offset in the MDI
- * Control register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- mdic = ((offset << E1000_MDIC_REG_SHIFT) |
- (phy->addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_READ));
-
- E1000_WRITE_REG(hw, E1000_MDIC, mdic);
-
- /*
- * Poll the ready bit to see if the MDI read completed
- * Increasing the time out as testing showed failures with
- * the lower time out
- */
- for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
- usec_delay(50);
- mdic = E1000_READ_REG(hw, E1000_MDIC);
- if (mdic & E1000_MDIC_READY)
- break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- DEBUGOUT("MDI Read did not complete\n");
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
- if (mdic & E1000_MDIC_ERROR) {
- DEBUGOUT("MDI Error\n");
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
- *data = (u16) mdic;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_mdic - Write MDI control register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write to register at offset
- *
- * Writes data to MDI control register in the PHY at offset.
- **/
-s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 i, mdic = 0;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_write_phy_reg_mdic");
-
- if (offset > MAX_PHY_REG_ADDRESS) {
- DEBUGOUT1("PHY Address %d is out of range\n", offset);
- return -E1000_ERR_PARAM;
- }
-
- /*
- * Set up Op-code, Phy Address, and register offset in the MDI
- * Control register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- mdic = (((u32)data) |
- (offset << E1000_MDIC_REG_SHIFT) |
- (phy->addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_WRITE));
-
- E1000_WRITE_REG(hw, E1000_MDIC, mdic);
-
- /*
- * Poll the ready bit to see if the MDI read completed
- * Increasing the time out as testing showed failures with
- * the lower time out
- */
- for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
- usec_delay(50);
- mdic = E1000_READ_REG(hw, E1000_MDIC);
- if (mdic & E1000_MDIC_READY)
- break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- DEBUGOUT("MDI Write did not complete\n");
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
- if (mdic & E1000_MDIC_ERROR) {
- DEBUGOUT("MDI Error\n");
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_read_phy_reg_i2c - Read PHY register using i2c
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the PHY register at offset using the i2c interface and stores the
- * retrieved information in data.
- **/
-s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 i, i2ccmd = 0;
-
- DEBUGFUNC("e1000_read_phy_reg_i2c");
-
- /*
- * Set up Op-code, Phy Address, and register address in the I2CCMD
- * register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
- (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
- (E1000_I2CCMD_OPCODE_READ));
-
- E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
-
- /* Poll the ready bit to see if the I2C read completed */
- for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
- usec_delay(50);
- i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
- if (i2ccmd & E1000_I2CCMD_READY)
- break;
- }
- if (!(i2ccmd & E1000_I2CCMD_READY)) {
- DEBUGOUT("I2CCMD Read did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (i2ccmd & E1000_I2CCMD_ERROR) {
- DEBUGOUT("I2CCMD Error bit set\n");
- return -E1000_ERR_PHY;
- }
-
- /* Need to byte-swap the 16-bit value. */
- *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_phy_reg_i2c - Write PHY register using i2c
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes the data to PHY register at the offset using the i2c interface.
- **/
-s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 i, i2ccmd = 0;
- u16 phy_data_swapped;
-
- DEBUGFUNC("e1000_write_phy_reg_i2c");
-
- /* Swap the data bytes for the I2C interface */
- phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
-
- /*
- * Set up Op-code, Phy Address, and register address in the I2CCMD
- * register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
- (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
- E1000_I2CCMD_OPCODE_WRITE |
- phy_data_swapped);
-
- E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
-
- /* Poll the ready bit to see if the I2C read completed */
- for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
- usec_delay(50);
- i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
- if (i2ccmd & E1000_I2CCMD_READY)
- break;
- }
- if (!(i2ccmd & E1000_I2CCMD_READY)) {
- DEBUGOUT("I2CCMD Write did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (i2ccmd & E1000_I2CCMD_ERROR) {
- DEBUGOUT("I2CCMD Error bit set\n");
- return -E1000_ERR_PHY;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_phy_reg_m88 - Read m88 PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and storing the retrieved information in data. Release any acquired
- * semaphores before exiting.
- **/
-s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_read_phy_reg_m88");
-
- if (!(hw->phy.ops.acquire))
- goto out;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_m88 - Write m88 PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
-{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_write_phy_reg_m88");
-
- if (!(hw->phy.ops.acquire))
- goto out;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * __e1000_read_phy_reg_igp - Read igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and stores the retrieved information in data. Release any acquired
- * semaphores before exiting.
- **/
-static s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
- bool locked)
-{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("__e1000_read_phy_reg_igp");
-
- if (!locked) {
- if (!(hw->phy.ops.acquire))
- goto out;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
- }
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- ret_val = e1000_write_phy_reg_mdic(hw,
- IGP01E1000_PHY_PAGE_SELECT,
- (u16)offset);
- if (ret_val)
- goto release;
- }
-
- ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
-release:
- if (!locked)
- hw->phy.ops.release(hw);
-out:
- return ret_val;
-}
-
-/**
- * e1000_read_phy_reg_igp - Read igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore then reads the PHY register at offset and stores the
- * retrieved information in data.
- * Release the acquired semaphore before exiting.
- **/
-s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_phy_reg_igp(hw, offset, data, FALSE);
-}
-
-/**
- * e1000_read_phy_reg_igp_locked - Read igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the PHY register at offset and stores the retrieved information
- * in data. Assumes semaphore already acquired.
- **/
-s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_phy_reg_igp(hw, offset, data, TRUE);
-}
-
-/**
- * e1000_write_phy_reg_igp - Write igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-static s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
- bool locked)
-{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_write_phy_reg_igp");
-
- if (!locked) {
- if (!(hw->phy.ops.acquire))
- goto out;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
- }
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- ret_val = e1000_write_phy_reg_mdic(hw,
- IGP01E1000_PHY_PAGE_SELECT,
- (u16)offset);
- if (ret_val)
- goto release;
- }
-
- ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
-release:
- if (!locked)
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_igp - Write igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_phy_reg_igp(hw, offset, data, FALSE);
-}
-
-/**
- * e1000_write_phy_reg_igp_locked - Write igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes the data to PHY register at the offset.
- * Assumes semaphore already acquired.
- **/
-s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_phy_reg_igp(hw, offset, data, TRUE);
-}
-
-/**
- * __e1000_read_kmrn_reg - Read kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary. Then reads the PHY register at offset
- * using the kumeran interface. The information retrieved is stored in data.
- * Release any acquired semaphores before exiting.
- **/
-static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
- bool locked)
-{
- u32 kmrnctrlsta;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("__e1000_read_kmrn_reg");
-
- if (!locked) {
- if (!(hw->phy.ops.acquire))
- goto out;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
- }
-
- kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
- E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
-
- usec_delay(2);
-
- kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
- *data = (u16)kmrnctrlsta;
-
- if (!locked)
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_read_kmrn_reg_generic - Read kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore then reads the PHY register at offset using the
- * kumeran interface. The information retrieved is stored in data.
- * Release the acquired semaphore before exiting.
- **/
-s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_kmrn_reg(hw, offset, data, FALSE);
-}
-
-/**
- * e1000_read_kmrn_reg_locked - Read kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the PHY register at offset using the kumeran interface. The
- * information retrieved is stored in data.
- * Assumes semaphore already acquired.
- **/
-s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_kmrn_reg(hw, offset, data, TRUE);
-}
-
-/**
- * __e1000_write_kmrn_reg - Write kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary. Then write the data to PHY register
- * at the offset using the kumeran interface. Release any acquired semaphores
- * before exiting.
- **/
-static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
- bool locked)
-{
- u32 kmrnctrlsta;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_write_kmrn_reg_generic");
-
- if (!locked) {
- if (!(hw->phy.ops.acquire))
- goto out;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
- }
-
- kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | data;
- E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
-
- usec_delay(2);
-
- if (!locked)
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_write_kmrn_reg_generic - Write kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore then writes the data to the PHY register at the offset
- * using the kumeran interface. Release the acquired semaphore before exiting.
- **/
-s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_kmrn_reg(hw, offset, data, FALSE);
-}
-
-/**
- * e1000_write_kmrn_reg_locked - Write kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Write the data to PHY register at the offset using the kumeran interface.
- * Assumes semaphore already acquired.
- **/
-s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_kmrn_reg(hw, offset, data, TRUE);
-}
-
-/**
- * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
- * @hw: pointer to the HW structure
- *
- * Sets up Carrier-sense on Transmit and downshift values.
- **/
-s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 phy_data;
-
- DEBUGFUNC("e1000_copper_link_setup_82577");
-
- if (hw->phy.reset_disable) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
-
- if (hw->phy.type == e1000_phy_82580) {
- ret_val = hw->phy.ops.reset(hw);
- if (ret_val) {
- DEBUGOUT("Error resetting the PHY.\n");
- goto out;
- }
- }
-
- /* Enable CRS on Tx. This must be set for half-duplex operation. */
- ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data);
- if (ret_val)
- goto out;
-
- phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
-
- /* Enable downshift */
- phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
-
- ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
- * @hw: pointer to the HW structure
- *
- * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
- * and downshift values are set also.
- **/
-s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
-
- DEBUGFUNC("e1000_copper_link_setup_m88");
-
- if (phy->reset_disable) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
-
- /* Enable CRS on Tx. This must be set for half-duplex operation. */
- ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- goto out;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-
- /*
- * Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
- switch (phy->mdix) {
- case 1:
- phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
- break;
- case 2:
- phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
- break;
- case 3:
- phy_data |= M88E1000_PSCR_AUTO_X_1000T;
- break;
- case 0:
- default:
- phy_data |= M88E1000_PSCR_AUTO_X_MODE;
- break;
- }
-
- /*
- * Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if (phy->disable_polarity_correction == 1)
- phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
-
- ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- goto out;
-
- if (phy->revision < E1000_REVISION_4) {
- /*
- * Force TX_CLK in the Extended PHY Specific Control Register
- * to 25MHz clock.
- */
- ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- &phy_data);
- if (ret_val)
- goto out;
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
- if ((phy->revision == E1000_REVISION_2) &&
- (phy->id == M88E1111_I_PHY_ID)) {
- /* 82573L PHY - set the downshift counter to 5x. */
- phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
- phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
- } else {
- /* Configure Master and Slave downshift values */
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
- }
- ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- phy_data);
- if (ret_val)
- goto out;
- }
-
- /* Commit the changes. */
- ret_val = phy->ops.commit(hw);
- if (ret_val) {
- DEBUGOUT("Error committing the PHY changes\n");
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
- * @hw: pointer to the HW structure
- *
- * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
- * Also enables and sets the downshift parameters.
- **/
-s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
-
- DEBUGFUNC("e1000_copper_link_setup_m88_gen2");
-
- if (phy->reset_disable) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
-
- /* Enable CRS on Tx. This must be set for half-duplex operation. */
- ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- goto out;
-
- /*
- * Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
- switch (phy->mdix) {
- case 1:
- phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
- break;
- case 2:
- phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
- break;
- case 3:
- /* M88E1112 does not support this mode) */
- if (phy->id != M88E1112_E_PHY_ID) {
- phy_data |= M88E1000_PSCR_AUTO_X_1000T;
- break;
- }
- case 0:
- default:
- phy_data |= M88E1000_PSCR_AUTO_X_MODE;
- break;
- }
-
- /*
- * Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if (phy->disable_polarity_correction == 1)
- phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
-
- /* Enable downshift and setting it to X6 */
- phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
- phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
- phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
-
- ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- goto out;
-
- /* Commit the changes. */
- ret_val = phy->ops.commit(hw);
- if (ret_val) {
- DEBUGOUT("Error committing the PHY changes\n");
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_copper_link_setup_igp - Setup igp PHY's for copper link
- * @hw: pointer to the HW structure
- *
- * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
- * igp PHY's.
- **/
-s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- DEBUGFUNC("e1000_copper_link_setup_igp");
-
- if (phy->reset_disable) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
-
- ret_val = hw->phy.ops.reset(hw);
- if (ret_val) {
- DEBUGOUT("Error resetting the PHY.\n");
- goto out;
- }
-
- /*
- * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
- * timeout issues when LFS is enabled.
- */
- msec_delay(100);
-
- /* disable lplu d0 during driver init */
- if (hw->phy.ops.set_d0_lplu_state) {
- ret_val = hw->phy.ops.set_d0_lplu_state(hw, FALSE);
- if (ret_val) {
- DEBUGOUT("Error Disabling LPLU D0\n");
- goto out;
- }
- }
- /* Configure mdi-mdix settings */
- ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
- if (ret_val)
- goto out;
-
- data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-
- switch (phy->mdix) {
- case 1:
- data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 2:
- data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 0:
- default:
- data |= IGP01E1000_PSCR_AUTO_MDIX;
- break;
- }
- ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
- if (ret_val)
- goto out;
-
- /* set auto-master slave resolution settings */
- if (hw->mac.autoneg) {
- /*
- * when autonegotiation advertisement is only 1000Mbps then we
- * should disable SmartSpeed and enable Auto MasterSlave
- * resolution as hardware default.
- */
- if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
- /* Disable SmartSpeed */
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- goto out;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- goto out;
-
- /* Set auto Master/Slave resolution process */
- ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
- if (ret_val)
- goto out;
-
- data &= ~CR_1000T_MS_ENABLE;
- ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
- if (ret_val)
- goto out;
- }
-
- ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
- if (ret_val)
- goto out;
-
- /* load defaults for future use */
- phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
- ((data & CR_1000T_MS_VALUE) ?
- e1000_ms_force_master :
- e1000_ms_force_slave) :
- e1000_ms_auto;
-
- switch (phy->ms_type) {
- case e1000_ms_force_master:
- data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
- break;
- case e1000_ms_force_slave:
- data |= CR_1000T_MS_ENABLE;
- data &= ~(CR_1000T_MS_VALUE);
- break;
- case e1000_ms_auto:
- data &= ~CR_1000T_MS_ENABLE;
- default:
- break;
- }
- ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
- if (ret_val)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
- * @hw: pointer to the HW structure
- *
- * Performs initial bounds checking on autoneg advertisement parameter, then
- * configure to advertise the full capability. Setup the PHY to autoneg
- * and restart the negotiation process between the link partner. If
- * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
- **/
-static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_ctrl;
-
- DEBUGFUNC("e1000_copper_link_autoneg");
-
- /*
- * Perform some bounds checking on the autoneg advertisement
- * parameter.
- */
- phy->autoneg_advertised &= phy->autoneg_mask;
-
- /*
- * If autoneg_advertised is zero, we assume it was not defaulted
- * by the calling code so we set to advertise full capability.
- */
- if (phy->autoneg_advertised == 0)
- phy->autoneg_advertised = phy->autoneg_mask;
-
- DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
- ret_val = e1000_phy_setup_autoneg(hw);
- if (ret_val) {
- DEBUGOUT("Error Setting up Auto-Negotiation\n");
- goto out;
- }
- DEBUGOUT("Restarting Auto-Neg\n");
-
- /*
- * Restart auto-negotiation by setting the Auto Neg Enable bit and
- * the Auto Neg Restart bit in the PHY control register.
- */
- ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
- if (ret_val)
- goto out;
-
- phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
- ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
- if (ret_val)
- goto out;
-
- /*
- * Does the user want to wait for Auto-Neg to complete here, or
- * check at a later time (for example, callback routine).
- */
- if (phy->autoneg_wait_to_complete) {
- ret_val = hw->mac.ops.wait_autoneg(hw);
- if (ret_val) {
- DEBUGOUT("Error while waiting for "
- "autoneg to complete\n");
- goto out;
- }
- }
-
- hw->mac.get_link_status = TRUE;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
- * @hw: pointer to the HW structure
- *
- * Reads the MII auto-neg advertisement register and/or the 1000T control
- * register and if the PHY is already setup for auto-negotiation, then
- * return successful. Otherwise, setup advertisement and flow control to
- * the appropriate values for the wanted auto-negotiation.
- **/
-static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 mii_autoneg_adv_reg;
- u16 mii_1000t_ctrl_reg = 0;
-
- DEBUGFUNC("e1000_phy_setup_autoneg");
-
- phy->autoneg_advertised &= phy->autoneg_mask;
-
- /* Read the MII Auto-Neg Advertisement Register (Address 4). */
- ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
- if (ret_val)
- goto out;
-
- if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
- /* Read the MII 1000Base-T Control Register (Address 9). */
- ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
- &mii_1000t_ctrl_reg);
- if (ret_val)
- goto out;
- }
-
- /*
- * Need to parse both autoneg_advertised and fc and set up
- * the appropriate PHY registers. First we will parse for
- * autoneg_advertised software override. Since we can advertise
- * a plethora of combinations, we need to check each bit
- * individually.
- */
-
- /*
- * First we clear all the 10/100 mb speed bits in the Auto-Neg
- * Advertisement Register (Address 4) and the 1000 mb speed bits in
- * the 1000Base-T Control Register (Address 9).
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
- NWAY_AR_100TX_HD_CAPS |
- NWAY_AR_10T_FD_CAPS |
- NWAY_AR_10T_HD_CAPS);
- mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
-
- DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
-
- /* Do we want to advertise 10 Mb Half Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
- DEBUGOUT("Advertise 10mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
- }
-
- /* Do we want to advertise 10 Mb Full Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
- DEBUGOUT("Advertise 10mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Half Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
- DEBUGOUT("Advertise 100mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Full Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
- DEBUGOUT("Advertise 100mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
- }
-
- /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
- if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
- DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
-
- /* Do we want to advertise 1000 Mb Full Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
- DEBUGOUT("Advertise 1000mb Full duplex\n");
- mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
- }
-
- /*
- * Check for a software override of the flow control settings, and
- * setup the PHY advertisement registers accordingly. If
- * auto-negotiation is enabled, then software will have to set the
- * "PAUSE" bits to the correct value in the Auto-Negotiation
- * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
- * negotiation.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * but we do not support receiving pause frames).
- * 3: Both Rx and Tx flow control (symmetric) are enabled.
- * other: No software override. The flow control configuration
- * in the EEPROM is used.
- */
- switch (hw->fc.current_mode) {
- case e1000_fc_none:
- /*
- * Flow control (Rx & Tx) is completely disabled by a
- * software over-ride.
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case e1000_fc_rx_pause:
- /*
- * Rx Flow control is enabled, and Tx Flow control is
- * disabled, by a software over-ride.
- *
- * Since there really isn't a way to advertise that we are
- * capable of Rx Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric Rx PAUSE. Later
- * (in e1000_config_fc_after_link_up) we will disable the
- * hw's ability to send PAUSE frames.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case e1000_fc_tx_pause:
- /*
- * Tx Flow control is enabled, and Rx Flow control is
- * disabled, by a software over-ride.
- */
- mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
- mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
- break;
- case e1000_fc_full:
- /*
- * Flow control (both Rx and Tx) is enabled by a software
- * over-ride.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
- if (ret_val)
- goto out;
-
- DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
-
- if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
- ret_val = phy->ops.write_reg(hw,
- PHY_1000T_CTRL,
- mii_1000t_ctrl_reg);
- if (ret_val)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_setup_copper_link_generic - Configure copper link settings
- * @hw: pointer to the HW structure
- *
- * Calls the appropriate function to configure the link for auto-neg or forced
- * speed and duplex. Then we check for link, once link is established calls
- * to configure collision distance and flow control are called. If link is
- * not established, we return -E1000_ERR_PHY (-2).
- **/
-s32 e1000_setup_copper_link_generic(struct e1000_hw *hw)
-{
- s32 ret_val;
- bool link;
-
- DEBUGFUNC("e1000_setup_copper_link_generic");
-
- if (hw->mac.autoneg) {
- /*
- * Setup autoneg and flow control advertisement and perform
- * autonegotiation.
- */
- ret_val = e1000_copper_link_autoneg(hw);
- if (ret_val)
- goto out;
- } else {
- /*
- * PHY will be set to 10H, 10F, 100H or 100F
- * depending on user settings.
- */
- DEBUGOUT("Forcing Speed and Duplex\n");
- ret_val = hw->phy.ops.force_speed_duplex(hw);
- if (ret_val) {
- DEBUGOUT("Error Forcing Speed and Duplex\n");
- goto out;
- }
- }
-
- /*
- * Check link status. Wait up to 100 microseconds for link to become
- * valid.
- */
- ret_val = e1000_phy_has_link_generic(hw,
- COPPER_LINK_UP_LIMIT,
- 10,
- &link);
- if (ret_val)
- goto out;
-
- if (link) {
- DEBUGOUT("Valid link established!!!\n");
- e1000_config_collision_dist_generic(hw);
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- } else {
- DEBUGOUT("Unable to establish link!!!\n");
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
- * @hw: pointer to the HW structure
- *
- * Calls the PHY setup function to force speed and duplex. Clears the
- * auto-crossover to force MDI manually. Waits for link and returns
- * successful if link up is successful, else -E1000_ERR_PHY (-2).
- **/
-s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
-
- ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
- if (ret_val)
- goto out;
-
- e1000_phy_force_speed_duplex_setup(hw, &phy_data);
-
- ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
- if (ret_val)
- goto out;
-
- /*
- * Clear Auto-Crossover to force MDI manually. IGP requires MDI
- * forced whenever speed and duplex are forced.
- */
- ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- goto out;
-
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-
- ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
- goto out;
-
- DEBUGOUT1("IGP PSCR: %X\n", phy_data);
-
- usec_delay(1);
-
- if (phy->autoneg_wait_to_complete) {
- DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
-
- ret_val = e1000_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- goto out;
-
- if (!link)
- DEBUGOUT("Link taking longer than expected.\n");
-
- /* Try once more */
- ret_val = e1000_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
- * @hw: pointer to the HW structure
- *
- * Calls the PHY setup function to force speed and duplex. Clears the
- * auto-crossover to force MDI manually. Resets the PHY to commit the
- * changes. If time expires while waiting for link up, we reset the DSP.
- * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
- * successful completion, else return corresponding error code.
- **/
-s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
-
- /*
- * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
- * forced whenever speed and duplex are forced.
- */
- ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- goto out;
-
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
- ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- goto out;
-
- DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
-
- ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
- if (ret_val)
- goto out;
-
- e1000_phy_force_speed_duplex_setup(hw, &phy_data);
-
- ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
- if (ret_val)
- goto out;
-
- /* Reset the phy to commit changes. */
- ret_val = hw->phy.ops.commit(hw);
- if (ret_val)
- goto out;
-
- if (phy->autoneg_wait_to_complete) {
- DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
-
- ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- goto out;
-
- if (!link) {
- if (hw->phy.type != e1000_phy_m88 ||
- hw->phy.id == I347AT4_E_PHY_ID ||
- hw->phy.id == M88E1340M_E_PHY_ID ||
- hw->phy.id == M88E1112_E_PHY_ID) {
- DEBUGOUT("Link taking longer than expected.\n");
- } else {
- /*
- * We didn't get link.
- * Reset the DSP and cross our fingers.
- */
- ret_val = phy->ops.write_reg(hw,
- M88E1000_PHY_PAGE_SELECT,
- 0x001d);
- if (ret_val)
- goto out;
- ret_val = e1000_phy_reset_dsp_generic(hw);
- if (ret_val)
- goto out;
- }
- }
-
- /* Try once more */
- ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- goto out;
- }
-
- if (hw->phy.type != e1000_phy_m88 ||
- hw->phy.id == I347AT4_E_PHY_ID ||
- hw->phy.id == M88E1340M_E_PHY_ID ||
- hw->phy.id == M88E1112_E_PHY_ID)
- goto out;
-
- ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- goto out;
-
- /*
- * Resetting the phy means we need to re-force TX_CLK in the
- * Extended PHY Specific Control Register to 25MHz clock from
- * the reset value of 2.5MHz.
- */
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
- ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- goto out;
-
- /*
- * In addition, we must re-enable CRS on Tx for both half and full
- * duplex.
- */
- ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- goto out;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
- ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
- * @hw: pointer to the HW structure
- *
- * Forces the speed and duplex settings of the PHY.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- DEBUGFUNC("e1000_phy_force_speed_duplex_ife");
-
- ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data);
- if (ret_val)
- goto out;
-
- e1000_phy_force_speed_duplex_setup(hw, &data);
-
- ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data);
- if (ret_val)
- goto out;
-
- /* Disable MDI-X support for 10/100 */
- ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
- if (ret_val)
- goto out;
-
- data &= ~IFE_PMC_AUTO_MDIX;
- data &= ~IFE_PMC_FORCE_MDIX;
-
- ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data);
- if (ret_val)
- goto out;
-
- DEBUGOUT1("IFE PMC: %X\n", data);
-
- usec_delay(1);
-
- if (phy->autoneg_wait_to_complete) {
- DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
-
- ret_val = e1000_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- goto out;
-
- if (!link)
- DEBUGOUT("Link taking longer than expected.\n");
-
- /* Try once more */
- ret_val = e1000_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
- * @hw: pointer to the HW structure
- * @phy_ctrl: pointer to current value of PHY_CONTROL
- *
- * Forces speed and duplex on the PHY by doing the following: disable flow
- * control, force speed/duplex on the MAC, disable auto speed detection,
- * disable auto-negotiation, configure duplex, configure speed, configure
- * the collision distance, write configuration to CTRL register. The
- * caller must write to the PHY_CONTROL register for these settings to
- * take affect.
- **/
-void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 ctrl;
-
- DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
-
- /* Turn off flow control when forcing speed/duplex */
- hw->fc.current_mode = e1000_fc_none;
-
- /* Force speed/duplex on the mac */
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~E1000_CTRL_SPD_SEL;
-
- /* Disable Auto Speed Detection */
- ctrl &= ~E1000_CTRL_ASDE;
-
- /* Disable autoneg on the phy */
- *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
-
- /* Forcing Full or Half Duplex? */
- if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
- ctrl &= ~E1000_CTRL_FD;
- *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
- DEBUGOUT("Half Duplex\n");
- } else {
- ctrl |= E1000_CTRL_FD;
- *phy_ctrl |= MII_CR_FULL_DUPLEX;
- DEBUGOUT("Full Duplex\n");
- }
-
- /* Forcing 10mb or 100mb? */
- if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
- ctrl |= E1000_CTRL_SPD_100;
- *phy_ctrl |= MII_CR_SPEED_100;
- *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
- DEBUGOUT("Forcing 100mb\n");
- } else {
- ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
- *phy_ctrl |= MII_CR_SPEED_10;
- *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
- DEBUGOUT("Forcing 10mb\n");
- }
-
- e1000_config_collision_dist_generic(hw);
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-}
-
-/**
- * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * Success returns 0, Failure returns 1
- *
- * The low power link up (lplu) state is set to the power management level D3
- * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
- * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained.
- **/
-s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u16 data;
-
- DEBUGFUNC("e1000_set_d3_lplu_state_generic");
-
- if (!(hw->phy.ops.read_reg))
- goto out;
-
- ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
- if (ret_val)
- goto out;
-
- if (!active) {
- data &= ~IGP02E1000_PM_D3_LPLU;
- ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
- if (ret_val)
- goto out;
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- goto out;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- goto out;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- goto out;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- goto out;
- }
- } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
- (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
- (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
- data |= IGP02E1000_PM_D3_LPLU;
- ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
- if (ret_val)
- goto out;
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- goto out;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_check_downshift_generic - Checks whether a downshift in speed occurred
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns 1
- *
- * A downshift is detected by querying the PHY link health.
- **/
-s32 e1000_check_downshift_generic(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, offset, mask;
-
- DEBUGFUNC("e1000_check_downshift_generic");
-
- switch (phy->type) {
- case e1000_phy_m88:
- case e1000_phy_gg82563:
- offset = M88E1000_PHY_SPEC_STATUS;
- mask = M88E1000_PSSR_DOWNSHIFT;
- break;
- case e1000_phy_igp_2:
- case e1000_phy_igp_3:
- offset = IGP01E1000_PHY_LINK_HEALTH;
- mask = IGP01E1000_PLHR_SS_DOWNGRADE;
- break;
- default:
- /* speed downshift not supported */
- phy->speed_downgraded = FALSE;
- ret_val = E1000_SUCCESS;
- goto out;
- }
-
- ret_val = phy->ops.read_reg(hw, offset, &phy_data);
-
- if (!ret_val)
- phy->speed_downgraded = (phy_data & mask) ? TRUE : FALSE;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_check_polarity_m88 - Checks the polarity.
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- *
- * Polarity is determined based on the PHY specific status register.
- **/
-s32 e1000_check_polarity_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- DEBUGFUNC("e1000_check_polarity_m88");
-
- ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
-
- if (!ret_val)
- phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
-
- return ret_val;
-}
-
-/**
- * e1000_check_polarity_igp - Checks the polarity.
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- *
- * Polarity is determined based on the PHY port status register, and the
- * current speed (since there is no polarity at 100Mbps).
- **/
-s32 e1000_check_polarity_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data, offset, mask;
-
- DEBUGFUNC("e1000_check_polarity_igp");
-
- /*
- * Polarity is determined based on the speed of
- * our connection.
- */
- ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
- if (ret_val)
- goto out;
-
- if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
- offset = IGP01E1000_PHY_PCS_INIT_REG;
- mask = IGP01E1000_PHY_POLARITY_MASK;
- } else {
- /*
- * This really only applies to 10Mbps since
- * there is no polarity for 100Mbps (always 0).
- */
- offset = IGP01E1000_PHY_PORT_STATUS;
- mask = IGP01E1000_PSSR_POLARITY_REVERSED;
- }
-
- ret_val = phy->ops.read_reg(hw, offset, &data);
-
- if (!ret_val)
- phy->cable_polarity = (data & mask)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_check_polarity_ife - Check cable polarity for IFE PHY
- * @hw: pointer to the HW structure
- *
- * Polarity is determined on the polarity reversal feature being enabled.
- **/
-s32 e1000_check_polarity_ife(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, offset, mask;
-
- DEBUGFUNC("e1000_check_polarity_ife");
-
- /*
- * Polarity is determined based on the reversal feature being enabled.
- */
- if (phy->polarity_correction) {
- offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
- mask = IFE_PESC_POLARITY_REVERSED;
- } else {
- offset = IFE_PHY_SPECIAL_CONTROL;
- mask = IFE_PSC_FORCE_POLARITY;
- }
-
- ret_val = phy->ops.read_reg(hw, offset, &phy_data);
-
- if (!ret_val)
- phy->cable_polarity = (phy_data & mask)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
-
- return ret_val;
-}
-
-/**
- * e1000_wait_autoneg_generic - Wait for auto-neg completion
- * @hw: pointer to the HW structure
- *
- * Waits for auto-negotiation to complete or for the auto-negotiation time
- * limit to expire, which ever happens first.
- **/
-s32 e1000_wait_autoneg_generic(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 i, phy_status;
-
- DEBUGFUNC("e1000_wait_autoneg_generic");
-
- if (!(hw->phy.ops.read_reg))
- return E1000_SUCCESS;
-
- /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
- for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- break;
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- break;
- if (phy_status & MII_SR_AUTONEG_COMPLETE)
- break;
- msec_delay(100);
- }
-
- /*
- * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
- * has completed.
- */
- return ret_val;
-}
-
-/**
- * e1000_phy_has_link_generic - Polls PHY for link
- * @hw: pointer to the HW structure
- * @iterations: number of times to poll for link
- * @usec_interval: delay between polling attempts
- * @success: pointer to whether polling was successful or not
- *
- * Polls the PHY status register for link, 'iterations' number of times.
- **/
-s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
- u32 usec_interval, bool *success)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 i, phy_status;
-
- DEBUGFUNC("e1000_phy_has_link_generic");
-
- if (!(hw->phy.ops.read_reg))
- return E1000_SUCCESS;
-
- for (i = 0; i < iterations; i++) {
- /*
- * Some PHYs require the PHY_STATUS register to be read
- * twice due to the link bit being sticky. No harm doing
- * it across the board.
- */
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- /*
- * If the first read fails, another entity may have
- * ownership of the resources, wait and try again to
- * see if they have relinquished the resources yet.
- */
- usec_delay(usec_interval);
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- break;
- if (phy_status & MII_SR_LINK_STATUS)
- break;
- if (usec_interval >= 1000)
- msec_delay_irq(usec_interval/1000);
- else
- usec_delay(usec_interval);
- }
-
- *success = (i < iterations) ? TRUE : FALSE;
-
- return ret_val;
-}
-
-/**
- * e1000_get_cable_length_m88 - Determine cable length for m88 PHY
- * @hw: pointer to the HW structure
- *
- * Reads the PHY specific status register to retrieve the cable length
- * information. The cable length is determined by averaging the minimum and
- * maximum values to get the "average" cable length. The m88 PHY has four
- * possible cable length values, which are:
- * Register Value Cable Length
- * 0 < 50 meters
- * 1 50 - 80 meters
- * 2 80 - 110 meters
- * 3 110 - 140 meters
- * 4 > 140 meters
- **/
-s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, index;
-
- DEBUGFUNC("e1000_get_cable_length_m88");
-
- ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- goto out;
-
- index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT;
- if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
- phy->min_cable_length = e1000_m88_cable_length_table[index];
- phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
-
- phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
-out:
- return ret_val;
-}
-
-s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, phy_data2, index, default_page, is_cm;
-
- DEBUGFUNC("e1000_get_cable_length_m88_gen2");
-
- switch (hw->phy.id) {
- case M88E1340M_E_PHY_ID:
- case I347AT4_E_PHY_ID:
- /* Remember the original page select and set it to 7 */
- ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
- &default_page);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
- if (ret_val)
- goto out;
-
- /* Get cable length from PHY Cable Diagnostics Control Reg */
- ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
- &phy_data);
- if (ret_val)
- goto out;
-
- /* Check if the unit of cable length is meters or cm */
- ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
- if (ret_val)
- goto out;
-
- is_cm = !(phy_data & I347AT4_PCDC_CABLE_LENGTH_UNIT);
-
- /* Populate the phy structure with cable length in meters */
- phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
- phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
- phy->cable_length = phy_data / (is_cm ? 100 : 1);
-
- /* Reset the page selec to its original value */
- ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
- default_page);
- if (ret_val)
- goto out;
- break;
- case M88E1112_E_PHY_ID:
- /* Remember the original page select and set it to 5 */
- ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
- &default_page);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
- &phy_data);
- if (ret_val)
- goto out;
-
- index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT;
- if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
- phy->min_cable_length = e1000_m88_cable_length_table[index];
- phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
-
- phy->cable_length = (phy->min_cable_length +
- phy->max_cable_length) / 2;
-
- /* Reset the page select to its original value */
- ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
- default_page);
- if (ret_val)
- goto out;
-
- break;
- default:
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
- * @hw: pointer to the HW structure
- *
- * The automatic gain control (agc) normalizes the amplitude of the
- * received signal, adjusting for the attenuation produced by the
- * cable. By reading the AGC registers, which represent the
- * combination of coarse and fine gain value, the value can be put
- * into a lookup table to obtain the approximate cable length
- * for each channel.
- **/
-s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u16 phy_data, i, agc_value = 0;
- u16 cur_agc_index, max_agc_index = 0;
- u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
- static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
- IGP02E1000_PHY_AGC_A,
- IGP02E1000_PHY_AGC_B,
- IGP02E1000_PHY_AGC_C,
- IGP02E1000_PHY_AGC_D
- };
-
- DEBUGFUNC("e1000_get_cable_length_igp_2");
-
- /* Read the AGC registers for all channels */
- for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
- if (ret_val)
- goto out;
-
- /*
- * Getting bits 15:9, which represent the combination of
- * coarse and fine gain values. The result is a number
- * that can be put into the lookup table to obtain the
- * approximate cable length.
- */
- cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
- IGP02E1000_AGC_LENGTH_MASK;
-
- /* Array index bound check. */
- if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
- (cur_agc_index == 0)) {
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
- /* Remove min & max AGC values from calculation. */
- if (e1000_igp_2_cable_length_table[min_agc_index] >
- e1000_igp_2_cable_length_table[cur_agc_index])
- min_agc_index = cur_agc_index;
- if (e1000_igp_2_cable_length_table[max_agc_index] <
- e1000_igp_2_cable_length_table[cur_agc_index])
- max_agc_index = cur_agc_index;
-
- agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
- }
-
- agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
- e1000_igp_2_cable_length_table[max_agc_index]);
- agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
-
- /* Calculate cable length with the error range of +/- 10 meters. */
- phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
- (agc_value - IGP02E1000_AGC_RANGE) : 0;
- phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
-
- phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_phy_info_m88 - Retrieve PHY information
- * @hw: pointer to the HW structure
- *
- * Valid for only copper links. Read the PHY status register (sticky read)
- * to verify that link is up. Read the PHY special control register to
- * determine the polarity and 10base-T extended distance. Read the PHY
- * special status register to determine MDI/MDIx and current speed. If
- * speed is 1000, then determine cable length, local and remote receiver.
- **/
-s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- DEBUGFUNC("e1000_get_phy_info_m88");
-
- if (phy->media_type != e1000_media_type_copper) {
- DEBUGOUT("Phy info is only valid for copper media\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- goto out;
-
- if (!link) {
- DEBUGOUT("Phy info is only valid if link is up\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- goto out;
-
- phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
- ? TRUE : FALSE;
-
- ret_val = e1000_check_polarity_m88(hw);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- goto out;
-
- phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? TRUE : FALSE;
-
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
- ret_val = hw->phy.ops.get_cable_length(hw);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
- if (ret_val)
- goto out;
-
- phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
-
- phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
- } else {
- /* Set values to "undefined" */
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_phy_info_igp - Retrieve igp PHY information
- * @hw: pointer to the HW structure
- *
- * Read PHY status to determine if link is up. If link is up, then
- * set/determine 10base-T extended distance and polarity correction. Read
- * PHY port status to determine MDI/MDIx and speed. Based on the speed,
- * determine on the cable length, local and remote receiver.
- **/
-s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- DEBUGFUNC("e1000_get_phy_info_igp");
-
- ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- goto out;
-
- if (!link) {
- DEBUGOUT("Phy info is only valid if link is up\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- phy->polarity_correction = TRUE;
-
- ret_val = e1000_check_polarity_igp(hw);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
- if (ret_val)
- goto out;
-
- phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? TRUE : FALSE;
-
- if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
- ret_val = phy->ops.get_cable_length(hw);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
- if (ret_val)
- goto out;
-
- phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
-
- phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
- } else {
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_phy_info_ife - Retrieves various IFE PHY states
- * @hw: pointer to the HW structure
- *
- * Populates "phy" structure with various feature states.
- **/
-s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- DEBUGFUNC("e1000_get_phy_info_ife");
-
- ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- goto out;
-
- if (!link) {
- DEBUGOUT("Phy info is only valid if link is up\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
- if (ret_val)
- goto out;
- phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
- ? FALSE : TRUE;
-
- if (phy->polarity_correction) {
- ret_val = e1000_check_polarity_ife(hw);
- if (ret_val)
- goto out;
- } else {
- /* Polarity is forced */
- phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
- }
-
- ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
- if (ret_val)
- goto out;
-
- phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? TRUE : FALSE;
-
- /* The following parameters are undefined for 10/100 operation. */
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_phy_sw_reset_generic - PHY software reset
- * @hw: pointer to the HW structure
- *
- * Does a software reset of the PHY by reading the PHY control register and
- * setting/write the control register reset bit to the PHY.
- **/
-s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 phy_ctrl;
-
- DEBUGFUNC("e1000_phy_sw_reset_generic");
-
- if (!(hw->phy.ops.read_reg))
- goto out;
-
- ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
- if (ret_val)
- goto out;
-
- phy_ctrl |= MII_CR_RESET;
- ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
- if (ret_val)
- goto out;
-
- usec_delay(1);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_phy_hw_reset_generic - PHY hardware reset
- * @hw: pointer to the HW structure
- *
- * Verify the reset block is not blocking us from resetting. Acquire
- * semaphore (if necessary) and read/set/write the device control reset
- * bit in the PHY. Wait the appropriate delay time for the device to
- * reset and release the semaphore (if necessary).
- **/
-s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u32 ctrl;
-
- DEBUGFUNC("e1000_phy_hw_reset_generic");
-
- ret_val = phy->ops.check_reset_block(hw);
- if (ret_val) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
-
- ret_val = phy->ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(phy->reset_delay_us);
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(150);
-
- phy->ops.release(hw);
-
- ret_val = phy->ops.get_cfg_done(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_cfg_done_generic - Generic configuration done
- * @hw: pointer to the HW structure
- *
- * Generic function to wait 10 milli-seconds for configuration to complete
- * and return success.
- **/
-s32 e1000_get_cfg_done_generic(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_get_cfg_done_generic");
-
- msec_delay_irq(10);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_phy_init_script_igp3 - Inits the IGP3 PHY
- * @hw: pointer to the HW structure
- *
- * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
- **/
-s32 e1000_phy_init_script_igp3(struct e1000_hw *hw)
-{
- DEBUGOUT("Running IGP 3 PHY init script\n");
-
- /* PHY init IGP 3 */
- /* Enable rise/fall, 10-mode work in class-A */
- hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
- /* Remove all caps from Replica path filter */
- hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
- /* Bias trimming for ADC, AFE and Driver (Default) */
- hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
- /* Increase Hybrid poly bias */
- hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
- /* Add 4% to Tx amplitude in Gig mode */
- hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
- /* Disable trimming (TTT) */
- hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
- /* Poly DC correction to 94.6% + 2% for all channels */
- hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
- /* ABS DC correction to 95.9% */
- hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
- /* BG temp curve trim */
- hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
- /* Increasing ADC OPAMP stage 1 currents to max */
- hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
- /* Force 1000 ( required for enabling PHY regs configuration) */
- hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
- /* Set upd_freq to 6 */
- hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
- /* Disable NPDFE */
- hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
- /* Disable adaptive fixed FFE (Default) */
- hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
- /* Enable FFE hysteresis */
- hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
- /* Fixed FFE for short cable lengths */
- hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
- /* Fixed FFE for medium cable lengths */
- hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
- /* Fixed FFE for long cable lengths */
- hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
- /* Enable Adaptive Clip Threshold */
- hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
- /* AHT reset limit to 1 */
- hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
- /* Set AHT master delay to 127 msec */
- hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
- /* Set scan bits for AHT */
- hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
- /* Set AHT Preset bits */
- hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
- /* Change integ_factor of channel A to 3 */
- hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
- /* Change prop_factor of channels BCD to 8 */
- hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
- /* Change cg_icount + enable integbp for channels BCD */
- hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
- /*
- * Change cg_icount + enable integbp + change prop_factor_master
- * to 8 for channel A
- */
- hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
- /* Disable AHT in Slave mode on channel A */
- hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
- /*
- * Enable LPLU and disable AN to 1000 in non-D0a states,
- * Enable SPD+B2B
- */
- hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
- /* Enable restart AN on an1000_dis change */
- hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
- /* Enable wh_fifo read clock in 10/100 modes */
- hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
- /* Restart AN, Speed selection is 1000 */
- hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_phy_type_from_id - Get PHY type from id
- * @phy_id: phy_id read from the phy
- *
- * Returns the phy type from the id.
- **/
-enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
-{
- enum e1000_phy_type phy_type = e1000_phy_unknown;
-
- switch (phy_id) {
- case M88E1000_I_PHY_ID:
- case M88E1000_E_PHY_ID:
- case M88E1111_I_PHY_ID:
- case M88E1011_I_PHY_ID:
- case I347AT4_E_PHY_ID:
- case M88E1112_E_PHY_ID:
- case M88E1340M_E_PHY_ID:
- phy_type = e1000_phy_m88;
- break;
- case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
- phy_type = e1000_phy_igp_2;
- break;
- case GG82563_E_PHY_ID:
- phy_type = e1000_phy_gg82563;
- break;
- case IGP03E1000_E_PHY_ID:
- phy_type = e1000_phy_igp_3;
- break;
- case IFE_E_PHY_ID:
- case IFE_PLUS_E_PHY_ID:
- case IFE_C_E_PHY_ID:
- phy_type = e1000_phy_ife;
- break;
- case I82580_I_PHY_ID:
- phy_type = e1000_phy_82580;
- break;
- default:
- phy_type = e1000_phy_unknown;
- break;
- }
- return phy_type;
-}
-
-/**
- * e1000_determine_phy_address - Determines PHY address.
- * @hw: pointer to the HW structure
- *
- * This uses a trial and error method to loop through possible PHY
- * addresses. It tests each by reading the PHY ID registers and
- * checking for a match.
- **/
-s32 e1000_determine_phy_address(struct e1000_hw *hw)
-{
- s32 ret_val = -E1000_ERR_PHY_TYPE;
- u32 phy_addr = 0;
- u32 i;
- enum e1000_phy_type phy_type = e1000_phy_unknown;
-
- hw->phy.id = phy_type;
-
- for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
- hw->phy.addr = phy_addr;
- i = 0;
-
- do {
- e1000_get_phy_id(hw);
- phy_type = e1000_get_phy_type_from_id(hw->phy.id);
-
- /*
- * If phy_type is valid, break - we found our
- * PHY address
- */
- if (phy_type != e1000_phy_unknown) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
- msec_delay(1);
- i++;
- } while (i < 10);
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, restore the link to previous
- * settings.
- **/
-void e1000_power_up_phy_copper(struct e1000_hw *hw)
-{
- u16 mii_reg = 0;
-
- /* The PHY will retain its settings across a power down/up cycle */
- hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
- mii_reg &= ~MII_CR_POWER_DOWN;
- hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
-}
-
-/**
- * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, restore the link to previous
- * settings.
- **/
-void e1000_power_down_phy_copper(struct e1000_hw *hw)
-{
- u16 mii_reg = 0;
-
- /* The PHY will retain its settings across a power down/up cycle */
- hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
- mii_reg |= MII_CR_POWER_DOWN;
- hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
- msec_delay(1);
-}
-
-/**
- * e1000_check_polarity_82577 - Checks the polarity.
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- *
- * Polarity is determined based on the PHY specific status register.
- **/
-s32 e1000_check_polarity_82577(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- DEBUGFUNC("e1000_check_polarity_82577");
-
- ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
-
- if (!ret_val)
- phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
-
- return ret_val;
-}
-
-/**
- * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
- * @hw: pointer to the HW structure
- *
- * Calls the PHY setup function to force speed and duplex.
- **/
-s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- DEBUGFUNC("e1000_phy_force_speed_duplex_82577");
-
- ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
- if (ret_val)
- goto out;
-
- e1000_phy_force_speed_duplex_setup(hw, &phy_data);
-
- ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
- if (ret_val)
- goto out;
-
- usec_delay(1);
-
- if (phy->autoneg_wait_to_complete) {
- DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n");
-
- ret_val = e1000_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- goto out;
-
- if (!link)
- DEBUGOUT("Link taking longer than expected.\n");
-
- /* Try once more */
- ret_val = e1000_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
- * @hw: pointer to the HW structure
- *
- * Read PHY status to determine if link is up. If link is up, then
- * set/determine 10base-T extended distance and polarity correction. Read
- * PHY port status to determine MDI/MDIx and speed. Based on the speed,
- * determine on the cable length, local and remote receiver.
- **/
-s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- DEBUGFUNC("e1000_get_phy_info_82577");
-
- ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- goto out;
-
- if (!link) {
- DEBUGOUT("Phy info is only valid if link is up\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- phy->polarity_correction = TRUE;
-
- ret_val = e1000_check_polarity_82577(hw);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
- if (ret_val)
- goto out;
-
- phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? TRUE : FALSE;
-
- if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
- I82577_PHY_STATUS2_SPEED_1000MBPS) {
- ret_val = hw->phy.ops.get_cable_length(hw);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
- if (ret_val)
- goto out;
-
- phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
-
- phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
- } else {
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
- * @hw: pointer to the HW structure
- *
- * Reads the diagnostic status register and verifies result is valid before
- * placing it in the phy_cable_length field.
- **/
-s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, length;
-
- DEBUGFUNC("e1000_get_cable_length_82577");
-
- ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
- if (ret_val)
- goto out;
-
- length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
- I82577_DSTATUS_CABLE_LENGTH_SHIFT;
-
- if (length == E1000_CABLE_LENGTH_UNDEFINED)
- ret_val = -E1000_ERR_PHY;
-
- phy->cable_length = length;
-
-out:
- return ret_val;
-}
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#ifndef _E1000_PHY_H_
-#define _E1000_PHY_H_
-
-void e1000_init_phy_ops_generic(struct e1000_hw *hw);
-s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data);
-void e1000_null_phy_generic(struct e1000_hw *hw);
-s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active);
-s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_check_downshift_generic(struct e1000_hw *hw);
-s32 e1000_check_polarity_m88(struct e1000_hw *hw);
-s32 e1000_check_polarity_igp(struct e1000_hw *hw);
-s32 e1000_check_polarity_ife(struct e1000_hw *hw);
-s32 e1000_check_reset_block_generic(struct e1000_hw *hw);
-s32 e1000_copper_link_setup_igp(struct e1000_hw *hw);
-s32 e1000_copper_link_setup_m88(struct e1000_hw *hw);
-s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw);
-s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw);
-s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw);
-s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw);
-s32 e1000_get_cable_length_m88(struct e1000_hw *hw);
-s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw);
-s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw);
-s32 e1000_get_cfg_done_generic(struct e1000_hw *hw);
-s32 e1000_get_phy_id(struct e1000_hw *hw);
-s32 e1000_get_phy_info_igp(struct e1000_hw *hw);
-s32 e1000_get_phy_info_m88(struct e1000_hw *hw);
-s32 e1000_get_phy_info_ife(struct e1000_hw *hw);
-s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw);
-void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
-s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw);
-s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw);
-s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active);
-s32 e1000_setup_copper_link_generic(struct e1000_hw *hw);
-s32 e1000_wait_autoneg_generic(struct e1000_hw *hw);
-s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
-s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
- u32 usec_interval, bool *success);
-s32 e1000_phy_init_script_igp3(struct e1000_hw *hw);
-enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id);
-s32 e1000_determine_phy_address(struct e1000_hw *hw);
-void e1000_power_up_phy_copper(struct e1000_hw *hw);
-void e1000_power_down_phy_copper(struct e1000_hw *hw);
-s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_copper_link_setup_82577(struct e1000_hw *hw);
-s32 e1000_check_polarity_82577(struct e1000_hw *hw);
-s32 e1000_get_phy_info_82577(struct e1000_hw *hw);
-s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw);
-s32 e1000_get_cable_length_82577(struct e1000_hw *hw);
-
-#define E1000_MAX_PHY_ADDR 4
-
-/* IGP01E1000 Specific Registers */
-#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */
-#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */
-#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */
-#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */
-#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO */
-#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality */
-#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */
-#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */
-#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */
-#define IGP_PAGE_SHIFT 5
-#define PHY_REG_MASK 0x1F
-
-#define HV_INTC_FC_PAGE_START 768
-#define I82578_ADDR_REG 29
-#define I82577_ADDR_REG 16
-#define I82577_CFG_REG 22
-#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
-#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
-#define I82577_CTRL_REG 23
-
-/* 82577 specific PHY registers */
-#define I82577_PHY_CTRL_2 18
-#define I82577_PHY_LBK_CTRL 19
-#define I82577_PHY_STATUS_2 26
-#define I82577_PHY_DIAG_STATUS 31
-
-/* I82577 PHY Status 2 */
-#define I82577_PHY_STATUS2_REV_POLARITY 0x0400
-#define I82577_PHY_STATUS2_MDIX 0x0800
-#define I82577_PHY_STATUS2_SPEED_MASK 0x0300
-#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
-#define I82577_PHY_STATUS2_SPEED_100MBPS 0x0100
-
-/* I82577 PHY Control 2 */
-#define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
-#define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
-
-/* I82577 PHY Diagnostics Status */
-#define I82577_DSTATUS_CABLE_LENGTH 0x03FC
-#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
-
-/* 82580 PHY Power Management */
-#define E1000_82580_PHY_POWER_MGMT 0xE14
-#define E1000_82580_PM_SPD 0x0001 /* Smart Power Down */
-#define E1000_82580_PM_D0_LPLU 0x0002 /* For D0a states */
-#define E1000_82580_PM_D3_LPLU 0x0004 /* For all other states */
-
-#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
-#define IGP01E1000_PHY_POLARITY_MASK 0x0078
-
-#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
-#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */
-
-#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
-
-/* Enable flexible speed on link-up */
-#define IGP01E1000_GMII_FLEX_SPD 0x0010
-#define IGP01E1000_GMII_SPD 0x0020 /* Enable SPD */
-
-#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
-#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */
-#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */
-
-#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
-
-#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
-#define IGP01E1000_PSSR_MDIX 0x0800
-#define IGP01E1000_PSSR_SPEED_MASK 0xC000
-#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
-
-#define IGP02E1000_PHY_CHANNEL_NUM 4
-#define IGP02E1000_PHY_AGC_A 0x11B1
-#define IGP02E1000_PHY_AGC_B 0x12B1
-#define IGP02E1000_PHY_AGC_C 0x14B1
-#define IGP02E1000_PHY_AGC_D 0x18B1
-
-#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */
-#define IGP02E1000_AGC_LENGTH_MASK 0x7F
-#define IGP02E1000_AGC_RANGE 15
-
-#define IGP03E1000_PHY_MISC_CTRL 0x1B
-#define IGP03E1000_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Manually Set Duplex */
-
-#define E1000_CABLE_LENGTH_UNDEFINED 0xFF
-
-#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000
-#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16
-#define E1000_KMRNCTRLSTA_REN 0x00200000
-#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */
-#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */
-#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */
-#define E1000_KMRNCTRLSTA_IBIST_DISABLE 0x0200 /* Kumeran IBIST Disable */
-#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */
-
-#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10
-#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */
-#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */
-#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */
-
-/* IFE PHY Extended Status Control */
-#define IFE_PESC_POLARITY_REVERSED 0x0100
-
-/* IFE PHY Special Control */
-#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010
-#define IFE_PSC_FORCE_POLARITY 0x0020
-#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100
-
-/* IFE PHY Special Control and LED Control */
-#define IFE_PSCL_PROBE_MODE 0x0020
-#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
-#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
-
-/* IFE PHY MDIX Control */
-#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
-#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */
-#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */
-
-#endif
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#ifndef _E1000_REGS_H_
-#define _E1000_REGS_H_
-
-#define E1000_CTRL 0x00000 /* Device Control - RW */
-#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */
-#define E1000_STATUS 0x00008 /* Device Status - RO */
-#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
-#define E1000_EERD 0x00014 /* EEPROM Read - RW */
-#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
-#define E1000_FLA 0x0001C /* Flash Access - RW */
-#define E1000_MDIC 0x00020 /* MDI Control - RW */
-#define E1000_MDICNFG 0x00E04 /* MDI Config - RW */
-#define E1000_REGISTER_SET_SIZE 0x20000 /* CSR Size */
-#define E1000_EEPROM_INIT_CTRL_WORD_2 0x0F /* EEPROM Init Ctrl Word 2 */
-#define E1000_BARCTRL 0x5BBC /* BAR ctrl reg */
-#define E1000_BARCTRL_FLSIZE 0x0700 /* BAR ctrl Flsize */
-#define E1000_BARCTRL_CSRSIZE 0x2000 /* BAR ctrl CSR size */
-#define E1000_SCTL 0x00024 /* SerDes Control - RW */
-#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
-#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
-#define E1000_FEXT 0x0002C /* Future Extended - RW */
-#define E1000_FEXTNVM4 0x00024 /* Future Extended NVM 4 - RW */
-#define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */
-#define E1000_FCT 0x00030 /* Flow Control Type - RW */
-#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */
-#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
-#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
-#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
-#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
-#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
-#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
-#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */
-#define E1000_RCTL 0x00100 /* Rx Control - RW */
-#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
-#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */
-#define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */
-#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */
-#define E1000_EITR(_n) (0x01680 + (0x4 * (_n)))
-#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */
-#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */
-#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */
-#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */
-#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */
-#define E1000_GPIE 0x01514 /* General Purpose Interrupt Enable - RW */
-#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */
-#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */
-#define E1000_TCTL 0x00400 /* Tx Control - RW */
-#define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */
-#define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */
-#define E1000_TBT 0x00448 /* Tx Burst Timer - RW */
-#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
-#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
-#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
-#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
-#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
-#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
-#define E1000_PBS 0x01008 /* Packet Buffer Size */
-#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
-#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */
-#define E1000_FLASHT 0x01028 /* FLASH Timer Register */
-#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
-#define E1000_FLSWCTL 0x01030 /* FLASH control register */
-#define E1000_FLSWDATA 0x01034 /* FLASH data register */
-#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */
-#define E1000_FLOP 0x0103C /* FLASH Opcode Register */
-#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */
-#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */
-#define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */
-#define E1000_SWDSTS 0x01044 /* SW Device Status - RW */
-#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */
-#define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */
-#define E1000_VPDDIAG 0x01060 /* VPD Diagnostic - RO */
-#define E1000_ICR_V2 0x01500 /* Interrupt Cause - new location - RC */
-#define E1000_ICS_V2 0x01504 /* Interrupt Cause Set - new location - WO */
-#define E1000_IMS_V2 0x01508 /* Interrupt Mask Set/Read - new location - RW */
-#define E1000_IMC_V2 0x0150C /* Interrupt Mask Clear - new location - WO */
-#define E1000_IAM_V2 0x01510 /* Interrupt Ack Auto Mask - new location - RW */
-#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */
-#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
-#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
-#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */
-#define E1000_RDFPCQ(_n) (0x02430 + (0x4 * (_n)))
-#define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */
-#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */
-/* Split and Replication Rx Control - RW */
-#define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */
-#define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */
-#define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */
-#define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */
-#define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */
-#define E1000_PBDIAG 0x02458 /* Packet Buffer Diagnostic - RW */
-#define E1000_RXPBS 0x02404 /* Rx Packet Buffer Size - RW */
-#define E1000_IRPBS 0x02404 /* Same as RXPBS, renamed for newer adapters - RW */
-#define E1000_PBRWAC 0x024E8 /* Rx packet buffer wrap around counter - RO */
-#define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */
-#define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */
-/*
- * Convenience macros
- *
- * Note: "_n" is the queue number of the register to be written to.
- *
- * Example usage:
- * E1000_RDBAL_REG(current_rx_queue)
- */
-#define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \
- (0x0C000 + ((_n) * 0x40)))
-#define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \
- (0x0C004 + ((_n) * 0x40)))
-#define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \
- (0x0C008 + ((_n) * 0x40)))
-#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \
- (0x0C00C + ((_n) * 0x40)))
-#define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \
- (0x0C010 + ((_n) * 0x40)))
-#define E1000_RXCTL(_n) ((_n) < 4 ? (0x02814 + ((_n) * 0x100)) : \
- (0x0C014 + ((_n) * 0x40)))
-#define E1000_DCA_RXCTRL(_n) E1000_RXCTL(_n)
-#define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \
- (0x0C018 + ((_n) * 0x40)))
-#define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \
- (0x0C028 + ((_n) * 0x40)))
-#define E1000_RQDPC(_n) ((_n) < 4 ? (0x02830 + ((_n) * 0x100)) : \
- (0x0C030 + ((_n) * 0x40)))
-#define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \
- (0x0E000 + ((_n) * 0x40)))
-#define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \
- (0x0E004 + ((_n) * 0x40)))
-#define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \
- (0x0E008 + ((_n) * 0x40)))
-#define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \
- (0x0E010 + ((_n) * 0x40)))
-#define E1000_TXCTL(_n) ((_n) < 4 ? (0x03814 + ((_n) * 0x100)) : \
- (0x0E014 + ((_n) * 0x40)))
-#define E1000_DCA_TXCTRL(_n) E1000_TXCTL(_n)
-#define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \
- (0x0E018 + ((_n) * 0x40)))
-#define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \
- (0x0E028 + ((_n) * 0x40)))
-#define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : \
- (0x0E038 + ((_n) * 0x40)))
-#define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : \
- (0x0E03C + ((_n) * 0x40)))
-#define E1000_TARC(_n) (0x03840 + ((_n) * 0x100))
-#define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */
-#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
-#define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */
-#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */
-#define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4))
-#define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \
- (0x054E0 + ((_i - 16) * 8)))
-#define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \
- (0x054E4 + ((_i - 16) * 8)))
-#define E1000_SHRAL(_i) (0x05438 + ((_i) * 8))
-#define E1000_SHRAH(_i) (0x0543C + ((_i) * 8))
-#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
-#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
-#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
-#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
-#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
-#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
-#define E1000_PBSLAC 0x03100 /* Packet Buffer Slave Access Control */
-#define E1000_PBSLAD(_n) (0x03110 + (0x4 * (_n))) /* Packet Buffer DWORD (_n) */
-#define E1000_TXPBS 0x03404 /* Tx Packet Buffer Size - RW */
-#define E1000_ITPBS 0x03404 /* Same as TXPBS, renamed for newer adpaters - RW */
-#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
-#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
-#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
-#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
-#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
-#define E1000_TDPUMB 0x0357C /* DMA Tx Descriptor uC Mail Box - RW */
-#define E1000_TDPUAD 0x03580 /* DMA Tx Descriptor uC Addr Command - RW */
-#define E1000_TDPUWD 0x03584 /* DMA Tx Descriptor uC Data Write - RW */
-#define E1000_TDPURD 0x03588 /* DMA Tx Descriptor uC Data Read - RW */
-#define E1000_TDPUCTL 0x0358C /* DMA Tx Descriptor uC Control - RW */
-#define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */
-#define E1000_DTXTCPFLGL 0x0359C /* DMA Tx Control flag low - RW */
-#define E1000_DTXTCPFLGH 0x035A0 /* DMA Tx Control flag high - RW */
-#define E1000_DTXMXSZRQ 0x03540 /* DMA Tx Max Total Allow Size Requests - RW */
-#define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */
-#define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */
-#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
-#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
-#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
-#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
-#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
-#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
-#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
-#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
-#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
-#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
-#define E1000_COLC 0x04028 /* Collision Count - R/clr */
-#define E1000_DC 0x04030 /* Defer Count - R/clr */
-#define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */
-#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
-#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
-#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
-#define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */
-#define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */
-#define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */
-#define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */
-#define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */
-#define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */
-#define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */
-#define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */
-#define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */
-#define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */
-#define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */
-#define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */
-#define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */
-#define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */
-#define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */
-#define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */
-#define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */
-#define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */
-#define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */
-#define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */
-#define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */
-#define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */
-#define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */
-#define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */
-#define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */
-#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
-#define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */
-#define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */
-#define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */
-#define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */
-#define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */
-#define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */
-#define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */
-#define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */
-#define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */
-#define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */
-#define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */
-#define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */
-#define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */
-#define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */
-#define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */
-#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */
-#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */
-#define E1000_IAC 0x04100 /* Interrupt Assertion Count */
-#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Pkt Timer Expire Count */
-#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Abs Timer Expire Count */
-#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Pkt Timer Expire Count */
-#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Abs Timer Expire Count */
-#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */
-#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Min Thresh Count */
-#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Desc Min Thresh Count */
-#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */
-
-#define E1000_VFGPRC 0x00F10
-#define E1000_VFGORC 0x00F18
-#define E1000_VFMPRC 0x00F3C
-#define E1000_VFGPTC 0x00F14
-#define E1000_VFGOTC 0x00F34
-#define E1000_VFGOTLBC 0x00F50
-#define E1000_VFGPTLBC 0x00F44
-#define E1000_VFGORLBC 0x00F48
-#define E1000_VFGPRLBC 0x00F40
-/* Virtualization statistical counters */
-#define E1000_PFVFGPRC(_n) (0x010010 + (0x100 * (_n)))
-#define E1000_PFVFGPTC(_n) (0x010014 + (0x100 * (_n)))
-#define E1000_PFVFGORC(_n) (0x010018 + (0x100 * (_n)))
-#define E1000_PFVFGOTC(_n) (0x010034 + (0x100 * (_n)))
-#define E1000_PFVFMPRC(_n) (0x010038 + (0x100 * (_n)))
-#define E1000_PFVFGPRLBC(_n) (0x010040 + (0x100 * (_n)))
-#define E1000_PFVFGPTLBC(_n) (0x010044 + (0x100 * (_n)))
-#define E1000_PFVFGORLBC(_n) (0x010048 + (0x100 * (_n)))
-#define E1000_PFVFGOTLBC(_n) (0x010050 + (0x100 * (_n)))
-
-#define E1000_LSECTXUT 0x04300 /* LinkSec Tx Untagged Packet Count - OutPktsUntagged */
-#define E1000_LSECTXPKTE 0x04304 /* LinkSec Encrypted Tx Packets Count - OutPktsEncrypted */
-#define E1000_LSECTXPKTP 0x04308 /* LinkSec Protected Tx Packet Count - OutPktsProtected */
-#define E1000_LSECTXOCTE 0x0430C /* LinkSec Encrypted Tx Octets Count - OutOctetsEncrypted */
-#define E1000_LSECTXOCTP 0x04310 /* LinkSec Protected Tx Octets Count - OutOctetsProtected */
-#define E1000_LSECRXUT 0x04314 /* LinkSec Untagged non-Strict Rx Packet Count - InPktsUntagged/InPktsNoTag */
-#define E1000_LSECRXOCTD 0x0431C /* LinkSec Rx Octets Decrypted Count - InOctetsDecrypted */
-#define E1000_LSECRXOCTV 0x04320 /* LinkSec Rx Octets Validated - InOctetsValidated */
-#define E1000_LSECRXBAD 0x04324 /* LinkSec Rx Bad Tag - InPktsBadTag */
-#define E1000_LSECRXNOSCI 0x04328 /* LinkSec Rx Packet No SCI Count - InPktsNoSci */
-#define E1000_LSECRXUNSCI 0x0432C /* LinkSec Rx Packet Unknown SCI Count - InPktsUnknownSci */
-#define E1000_LSECRXUNCH 0x04330 /* LinkSec Rx Unchecked Packets Count - InPktsUnchecked */
-#define E1000_LSECRXDELAY 0x04340 /* LinkSec Rx Delayed Packet Count - InPktsDelayed */
-#define E1000_LSECRXLATE 0x04350 /* LinkSec Rx Late Packets Count - InPktsLate */
-#define E1000_LSECRXOK(_n) (0x04360 + (0x04 * (_n))) /* LinkSec Rx Packet OK Count - InPktsOk */
-#define E1000_LSECRXINV(_n) (0x04380 + (0x04 * (_n))) /* LinkSec Rx Invalid Count - InPktsInvalid */
-#define E1000_LSECRXNV(_n) (0x043A0 + (0x04 * (_n))) /* LinkSec Rx Not Valid Count - InPktsNotValid */
-#define E1000_LSECRXUNSA 0x043C0 /* LinkSec Rx Unused SA Count - InPktsUnusedSa */
-#define E1000_LSECRXNUSA 0x043D0 /* LinkSec Rx Not Using SA Count - InPktsNotUsingSa */
-#define E1000_LSECTXCAP 0x0B000 /* LinkSec Tx Capabilities Register - RO */
-#define E1000_LSECRXCAP 0x0B300 /* LinkSec Rx Capabilities Register - RO */
-#define E1000_LSECTXCTRL 0x0B004 /* LinkSec Tx Control - RW */
-#define E1000_LSECRXCTRL 0x0B304 /* LinkSec Rx Control - RW */
-#define E1000_LSECTXSCL 0x0B008 /* LinkSec Tx SCI Low - RW */
-#define E1000_LSECTXSCH 0x0B00C /* LinkSec Tx SCI High - RW */
-#define E1000_LSECTXSA 0x0B010 /* LinkSec Tx SA0 - RW */
-#define E1000_LSECTXPN0 0x0B018 /* LinkSec Tx SA PN 0 - RW */
-#define E1000_LSECTXPN1 0x0B01C /* LinkSec Tx SA PN 1 - RW */
-#define E1000_LSECRXSCL 0x0B3D0 /* LinkSec Rx SCI Low - RW */
-#define E1000_LSECRXSCH 0x0B3E0 /* LinkSec Rx SCI High - RW */
-#define E1000_LSECTXKEY0(_n) (0x0B020 + (0x04 * (_n))) /* LinkSec Tx 128-bit Key 0 - WO */
-#define E1000_LSECTXKEY1(_n) (0x0B030 + (0x04 * (_n))) /* LinkSec Tx 128-bit Key 1 - WO */
-#define E1000_LSECRXSA(_n) (0x0B310 + (0x04 * (_n))) /* LinkSec Rx SAs - RW */
-#define E1000_LSECRXPN(_n) (0x0B330 + (0x04 * (_n))) /* LinkSec Rx SAs - RW */
-/*
- * LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit
- * key - RW.
- */
-#define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m)))
-
-#define E1000_SSVPC 0x041A0 /* Switch Security Violation Packet Count */
-#define E1000_IPSCTRL 0xB430 /* IpSec Control Register */
-#define E1000_IPSRXCMD 0x0B408 /* IPSec Rx Command Register - RW */
-#define E1000_IPSRXIDX 0x0B400 /* IPSec Rx Index - RW */
-#define E1000_IPSRXIPADDR(_n) (0x0B420+ (0x04 * (_n))) /* IPSec Rx IPv4/v6 Address - RW */
-#define E1000_IPSRXKEY(_n) (0x0B410 + (0x04 * (_n))) /* IPSec Rx 128-bit Key - RW */
-#define E1000_IPSRXSALT 0x0B404 /* IPSec Rx Salt - RW */
-#define E1000_IPSRXSPI 0x0B40C /* IPSec Rx SPI - RW */
-#define E1000_IPSTXKEY(_n) (0x0B460 + (0x04 * (_n))) /* IPSec Tx 128-bit Key - RW */
-#define E1000_IPSTXSALT 0x0B454 /* IPSec Tx Salt - RW */
-#define E1000_IPSTXIDX 0x0B450 /* IPSec Tx SA IDX - RW */
-#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */
-#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */
-#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */
-#define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */
-#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */
-#define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */
-#define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */
-#define E1000_RPTHC 0x04104 /* Rx Packets To Host */
-#define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */
-#define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */
-#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */
-#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */
-#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */
-#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */
-#define E1000_LENERRS 0x04138 /* Length Errors Count */
-#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */
-#define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */
-#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */
-#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */
-#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */
-#define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Page - RW */
-#define E1000_1GSTAT_RCV 0x04228 /* 1GSTAT Code Violation Packet Count - RW */
-#define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */
-#define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */
-#define E1000_RFCTL 0x05008 /* Receive Filter Control*/
-#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
-#define E1000_RA 0x05400 /* Receive Address - RW Array */
-#define E1000_RA2 0x054E0 /* 2nd half of receive address array - RW Array */
-#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
-#define E1000_VT_CTL 0x0581C /* VMDq Control - RW */
-#define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */
-#define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */
-#define E1000_WUC 0x05800 /* Wakeup Control - RW */
-#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
-#define E1000_WUS 0x05810 /* Wakeup Status - RO */
-#define E1000_MANC 0x05820 /* Management Control - RW */
-#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
-#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
-#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
-#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
-#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
-#define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */
-#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
-#define E1000_HOST_IF 0x08800 /* Host Interface */
-#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
-#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
-#define E1000_FHFT(_n) (0x09000 + (_n * 0x100)) /* Flexible Host Filter Table */
-#define E1000_FHFT_EXT(_n) (0x09A00 + (_n * 0x100)) /* Ext Flexible Host Filter Table */
-
-
-#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */
-#define E1000_MDPHYA 0x0003C /* PHY address - RW */
-#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */
-#define E1000_MDEF(_n) (0x05890 + (4 * (_n))) /* Mngmt Decision Filters */
-#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */
-#define E1000_CCMCTL 0x05B48 /* CCM Control Register */
-#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */
-#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */
-#define E1000_GCR 0x05B00 /* PCI-Ex Control */
-#define E1000_GCR2 0x05B64 /* PCI-Ex Control #2 */
-#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */
-#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */
-#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */
-#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */
-#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */
-#define E1000_SWSM 0x05B50 /* SW Semaphore */
-#define E1000_FWSM 0x05B54 /* FW Semaphore */
-#define E1000_SWSM2 0x05B58 /* Driver-only SW semaphore (not used by BOOT agents) */
-#define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */
-#define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */
-#define E1000_UFUSE 0x05B78 /* UFUSE - RO */
-#define E1000_FFLT_DBG 0x05F04 /* Debug Register */
-#define E1000_HICR 0x08F00 /* Host Interface Control */
-#define E1000_FWSTS 0x08F0C /* FW Status */
-
-/* RSS registers */
-#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */
-#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */
-#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */
-#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate Interrupt Ext*/
-#define E1000_IMIRVP 0x05AC0 /* Immediate Interrupt Rx VLAN Priority - RW */
-#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) /* MSI-X Allocation Register
- * (_i) - RW */
-#define E1000_MSIXTADD(_i) (0x0C000 + ((_i) * 0x10)) /* MSI-X Table entry addr
- * low reg - RW */
-#define E1000_MSIXTUADD(_i) (0x0C004 + ((_i) * 0x10)) /* MSI-X Table entry addr
- * upper reg - RW */
-#define E1000_MSIXTMSG(_i) (0x0C008 + ((_i) * 0x10)) /* MSI-X Table entry
- * message reg - RW */
-#define E1000_MSIXVCTRL(_i) (0x0C00C + ((_i) * 0x10)) /* MSI-X Table entry
- * vector ctrl reg - RW */
-#define E1000_MSIXPBA 0x0E000 /* MSI-X Pending bit array */
-#define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) /* Redirection Table - RW */
-#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW */
-#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */
-#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */
-/* VT Registers */
-#define E1000_SWPBS 0x03004 /* Switch Packet Buffer Size - RW */
-#define E1000_MBVFICR 0x00C80 /* Mailbox VF Cause - RWC */
-#define E1000_MBVFIMR 0x00C84 /* Mailbox VF int Mask - RW */
-#define E1000_VFLRE 0x00C88 /* VF Register Events - RWC */
-#define E1000_VFRE 0x00C8C /* VF Receive Enables */
-#define E1000_VFTE 0x00C90 /* VF Transmit Enables */
-#define E1000_QDE 0x02408 /* Queue Drop Enable - RW */
-#define E1000_DTXSWC 0x03500 /* DMA Tx Switch Control - RW */
-#define E1000_WVBR 0x03554 /* VM Wrong Behavior - RWS */
-#define E1000_RPLOLR 0x05AF0 /* Replication Offload - RW */
-#define E1000_UTA 0x0A000 /* Unicast Table Array - RW */
-#define E1000_IOVTCL 0x05BBC /* IOV Control Register */
-#define E1000_VMRCTL 0X05D80 /* Virtual Mirror Rule Control */
-#define E1000_VMRVLAN 0x05D90 /* Virtual Mirror Rule VLAN */
-#define E1000_VMRVM 0x05DA0 /* Virtual Mirror Rule VM */
-#define E1000_MDFB 0x03558 /* Malicious Driver free block */
-#define E1000_LVMMC 0x03548 /* Last VM Misbehavior cause */
-#define E1000_TXSWC 0x05ACC /* Tx Switch Control */
-#define E1000_SCCRL 0x05DB0 /* Storm Control Control */
-#define E1000_BSCTRH 0x05DB8 /* Broadcast Storm Control Threshold */
-#define E1000_MSCTRH 0x05DBC /* Multicast Storm Control Threshold */
-/* These act per VF so an array friendly macro is used */
-#define E1000_V2PMAILBOX(_n) (0x00C40 + (4 * (_n)))
-#define E1000_P2VMAILBOX(_n) (0x00C00 + (4 * (_n)))
-#define E1000_VMBMEM(_n) (0x00800 + (64 * (_n)))
-#define E1000_VFVMBMEM(_n) (0x00800 + (_n))
-#define E1000_VMOLR(_n) (0x05AD0 + (4 * (_n)))
-#define E1000_VLVF(_n) (0x05D00 + (4 * (_n))) /* VLAN Virtual Machine
- * Filter - RW */
-#define E1000_VMVIR(_n) (0x03700 + (4 * (_n)))
-#define E1000_DVMOLR(_n) (0x0C038 + (0x40 * (_n))) /* DMA VM offload */
-/* Time Sync */
-#define E1000_TSYNCRXCTL 0x0B620 /* Rx Time Sync Control register - RW */
-#define E1000_TSYNCTXCTL 0x0B614 /* Tx Time Sync Control register - RW */
-#define E1000_TSYNCRXCFG 0x05F50 /* Time Sync Rx Configuration - RW */
-#define E1000_RXSTMPL 0x0B624 /* Rx timestamp Low - RO */
-#define E1000_RXSTMPH 0x0B628 /* Rx timestamp High - RO */
-#define E1000_RXSATRL 0x0B62C /* Rx timestamp attribute low - RO */
-#define E1000_RXSATRH 0x0B630 /* Rx timestamp attribute high - RO */
-#define E1000_TXSTMPL 0x0B618 /* Tx timestamp value Low - RO */
-#define E1000_TXSTMPH 0x0B61C /* Tx timestamp value High - RO */
-#define E1000_SYSTIML 0x0B600 /* System time register Low - RO */
-#define E1000_SYSTIMH 0x0B604 /* System time register High - RO */
-#define E1000_TIMINCA 0x0B608 /* Increment attributes register - RW */
-#define E1000_TSAUXC 0x0B640 /* Timesync Auxiliary Control register */
-#define E1000_SYSTIMR 0x0B6F8 /* System time register Residue */
-
-/* Filtering Registers */
-#define E1000_SAQF(_n) (0x05980 + (4 * (_n))) /* Source Address Queue Fltr */
-#define E1000_DAQF(_n) (0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */
-#define E1000_SPQF(_n) (0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */
-#define E1000_FTQF(_n) (0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */
-#define E1000_TTQF(_n) (0x059E0 + (4 * (_n))) /* 2-tuple Queue Fltr */
-#define E1000_SYNQF(_n) (0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */
-#define E1000_ETQF(_n) (0x05CB0 + (4 * (_n))) /* EType Queue Fltr */
-
-#define E1000_RTTDCS 0x3600 /* Reedtown Tx Desc plane control and status */
-#define E1000_RTTPCS 0x3474 /* Reedtown Tx Packet Plane control and status */
-#define E1000_RTRPCS 0x2474 /* Rx packet plane control and status */
-#define E1000_RTRUP2TC 0x05AC4 /* Rx User Priority to Traffic Class */
-#define E1000_RTTUP2TC 0x0418 /* Transmit User Priority to Traffic Class */
-#define E1000_RTTDTCRC(_n) (0x3610 + ((_n) * 4)) /* Tx Desc plane TC Rate-scheduler config */
-#define E1000_RTTPTCRC(_n) (0x3480 + ((_n) * 4)) /* Tx Packet plane TC Rate-Scheduler Config */
-#define E1000_RTRPTCRC(_n) (0x2480 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler Config */
-#define E1000_RTTDTCRS(_n) (0x3630 + ((_n) * 4)) /* Tx Desc Plane TC Rate-Scheduler Status */
-#define E1000_RTTDTCRM(_n) (0x3650 + ((_n) * 4)) /* Tx Desc Plane TC Rate-Scheduler MMW */
-#define E1000_RTTPTCRS(_n) (0x34A0 + ((_n) * 4)) /* Tx Packet plane TC Rate-Scheduler Status */
-#define E1000_RTTPTCRM(_n) (0x34C0 + ((_n) * 4)) /* Tx Packet plane TC Rate-scheduler MMW */
-#define E1000_RTRPTCRS(_n) (0x24A0 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler Status */
-#define E1000_RTRPTCRM(_n) (0x24C0 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler MMW */
-#define E1000_RTTDVMRM(_n) (0x3670 + ((_n) * 4)) /* Tx Desc plane VM Rate-Scheduler MMW*/
-#define E1000_RTTBCNRM(_n) (0x3690 + ((_n) * 4)) /* Tx BCN Rate-Scheduler MMW */
-#define E1000_RTTDQSEL 0x3604 /* Tx Desc Plane Queue Select */
-#define E1000_RTTDVMRC 0x3608 /* Tx Desc Plane VM Rate-Scheduler Config */
-#define E1000_RTTDVMRS 0x360C /* Tx Desc Plane VM Rate-Scheduler Status */
-#define E1000_RTTBCNRC 0x36B0 /* Tx BCN Rate-Scheduler Config */
-#define E1000_RTTBCNRS 0x36B4 /* Tx BCN Rate-Scheduler Status */
-#define E1000_RTTBCNCR 0xB200 /* Tx BCN Control Register */
-#define E1000_RTTBCNTG 0x35A4 /* Tx BCN Tagging */
-#define E1000_RTTBCNCP 0xB208 /* Tx BCN Congestion point */
-#define E1000_RTRBCNCR 0xB20C /* Rx BCN Control Register */
-#define E1000_RTTBCNRD 0x36B8 /* Tx BCN Rate Drift */
-#define E1000_PFCTOP 0x1080 /* Priority Flow Control Type and Opcode */
-#define E1000_RTTBCNIDX 0xB204 /* Tx BCN Congestion Point */
-#define E1000_RTTBCNACH 0x0B214 /* Tx BCN Control High */
-#define E1000_RTTBCNACL 0x0B210 /* Tx BCN Control Low */
-
-/* DMA Coalescing registers */
-#define E1000_DMACR 0x02508 /* Control Register */
-#define E1000_DMCTXTH 0x03550 /* Transmit Threshold */
-#define E1000_DMCTLX 0x02514 /* Time to Lx Request */
-#define E1000_DMCRTRH 0x05DD0 /* Receive Packet Rate Threshold */
-#define E1000_DMCCNT 0x05DD4 /* Current Rx Count */
-#define E1000_FCRTC 0x02170 /* Flow Control Rx high watermark */
-#define E1000_PCIEMISC 0x05BB8 /* PCIE misc config register */
-
-/* PCIe Parity Status Register */
-#define E1000_PCIEERRSTS 0x05BA8
-
-#define E1000_PROXYS 0x5F64 /* Proxying Status */
-#define E1000_PROXYFC 0x5F60 /* Proxying Filter Control */
-/* Thermal sensor configuration and status registers */
-#define E1000_THMJT 0x08100 /* Junction Temperature */
-#define E1000_THLOWTC 0x08104 /* Low Threshold Control */
-#define E1000_THMIDTC 0x08108 /* Mid Threshold Control */
-#define E1000_THHIGHTC 0x0810C /* High Threshold Control */
-#define E1000_THSTAT 0x08110 /* Thermal Sensor Status */
-
-/*Energy Efficient Ethernet "EEE" registers */
-#define E1000_IPCNFG 0x0E38 /* Internal PHY Configuration */
-#define E1000_LTRC 0x01A0 /* Latency Tolerance Reporting Control */
-#define E1000_EEER 0x0E30 /* Energy Efficient Ethernet "EEE"*/
-#define E1000_EEE_SU 0x0E34 /* EEE Setup */
-#define E1000_TLPIC 0x4148 /* EEE Tx LPI Count - TLPIC */
-#define E1000_RLPIC 0x414C /* EEE Rx LPI Count - RLPIC */
-
-/* OS2BMC Registers */
-#define E1000_B2OSPC 0x08FE0 /* BMC2OS packets sent by BMC */
-#define E1000_B2OGPRC 0x04158 /* BMC2OS packets received by host */
-#define E1000_O2BGPTC 0x08FE4 /* OS2BMC packets received by BMC */
-#define E1000_O2BSPC 0x0415C /* OS2BMC packets transmitted by host */
-
-#endif
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-
-#include "e1000_api.h"
-
-
-static s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
-static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
-static void e1000_release_vf(struct e1000_hw *hw);
-static s32 e1000_acquire_vf(struct e1000_hw *hw);
-static s32 e1000_setup_link_vf(struct e1000_hw *hw);
-static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
-static s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
-static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
-static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
- u16 *duplex);
-static s32 e1000_init_hw_vf(struct e1000_hw *hw);
-static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
-static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
-static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
-static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
-
-/**
- * e1000_init_phy_params_vf - Inits PHY params
- * @hw: pointer to the HW structure
- *
- * Doesn't do much - there's no PHY available to the VF.
- **/
-static s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_phy_params_vf");
- hw->phy.type = e1000_phy_vf;
- hw->phy.ops.acquire = e1000_acquire_vf;
- hw->phy.ops.release = e1000_release_vf;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_nvm_params_vf - Inits NVM params
- * @hw: pointer to the HW structure
- *
- * Doesn't do much - there's no NVM available to the VF.
- **/
-static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_nvm_params_vf");
- hw->nvm.type = e1000_nvm_none;
- hw->nvm.ops.acquire = e1000_acquire_vf;
- hw->nvm.ops.release = e1000_release_vf;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_mac_params_vf - Inits MAC params
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
-
- DEBUGFUNC("e1000_init_mac_params_vf");
-
- /* Set media type */
- /*
- * Virtual functions don't care what they're media type is as they
- * have no direct access to the PHY, or the media. That is handled
- * by the physical function driver.
- */
- hw->phy.media_type = e1000_media_type_unknown;
-
- /* No ASF features for the VF driver */
- mac->asf_firmware_present = FALSE;
- /* ARC subsystem not supported */
- mac->arc_subsystem_valid = FALSE;
- /* Disable adaptive IFS mode so the generic funcs don't do anything */
- mac->adaptive_ifs = FALSE;
- /* VF's have no MTA Registers - PF feature only */
- mac->mta_reg_count = 128;
- /* VF's have no access to RAR entries */
- mac->rar_entry_count = 1;
-
- /* Function pointers */
- /* link setup */
- mac->ops.setup_link = e1000_setup_link_vf;
- /* bus type/speed/width */
- mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
- /* reset */
- mac->ops.reset_hw = e1000_reset_hw_vf;
- /* hw initialization */
- mac->ops.init_hw = e1000_init_hw_vf;
- /* check for link */
- mac->ops.check_for_link = e1000_check_for_link_vf;
- /* link info */
- mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
- /* multicast address update */
- mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
- /* set mac address */
- mac->ops.rar_set = e1000_rar_set_vf;
- /* read mac address */
- mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
-
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_function_pointers_vf - Inits function pointers
- * @hw: pointer to the HW structure
- **/
-void e1000_init_function_pointers_vf(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_function_pointers_vf");
-
- hw->mac.ops.init_params = e1000_init_mac_params_vf;
- hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
- hw->phy.ops.init_params = e1000_init_phy_params_vf;
- hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
-}
-
-/**
- * e1000_acquire_vf - Acquire rights to access PHY or NVM.
- * @hw: pointer to the HW structure
- *
- * There is no PHY or NVM so we want all attempts to acquire these to fail.
- * In addition, the MAC registers to access PHY/NVM don't exist so we don't
- * even want any SW to attempt to use them.
- **/
-static s32 e1000_acquire_vf(struct e1000_hw *hw)
-{
- return -E1000_ERR_PHY;
-}
-
-/**
- * e1000_release_vf - Release PHY or NVM
- * @hw: pointer to the HW structure
- *
- * There is no PHY or NVM so we want all attempts to acquire these to fail.
- * In addition, the MAC registers to access PHY/NVM don't exist so we don't
- * even want any SW to attempt to use them.
- **/
-static void e1000_release_vf(struct e1000_hw *hw)
-{
- return;
-}
-
-/**
- * e1000_setup_link_vf - Sets up link.
- * @hw: pointer to the HW structure
- *
- * Virtual functions cannot change link.
- **/
-static s32 e1000_setup_link_vf(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_setup_link_vf");
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_bus_info_pcie_vf - Gets the bus info.
- * @hw: pointer to the HW structure
- *
- * Virtual functions are not really on their own bus.
- **/
-static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
-{
- struct e1000_bus_info *bus = &hw->bus;
-
- DEBUGFUNC("e1000_get_bus_info_pcie_vf");
-
- /* Do not set type PCI-E because we don't want disable master to run */
- bus->type = e1000_bus_type_reserved;
- bus->speed = e1000_bus_speed_2500;
-
- return 0;
-}
-
-/**
- * e1000_get_link_up_info_vf - Gets link info.
- * @hw: pointer to the HW structure
- * @speed: pointer to 16 bit value to store link speed.
- * @duplex: pointer to 16 bit value to store duplex.
- *
- * Since we cannot read the PHY and get accurate link info, we must rely upon
- * the status register's data which is often stale and inaccurate.
- **/
-static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
-{
- s32 status;
-
- DEBUGFUNC("e1000_get_link_up_info_vf");
-
- status = E1000_READ_REG(hw, E1000_STATUS);
- if (status & E1000_STATUS_SPEED_1000) {
- *speed = SPEED_1000;
- DEBUGOUT("1000 Mbs, ");
- } else if (status & E1000_STATUS_SPEED_100) {
- *speed = SPEED_100;
- DEBUGOUT("100 Mbs, ");
- } else {
- *speed = SPEED_10;
- DEBUGOUT("10 Mbs, ");
- }
-
- if (status & E1000_STATUS_FD) {
- *duplex = FULL_DUPLEX;
- DEBUGOUT("Full Duplex\n");
- } else {
- *duplex = HALF_DUPLEX;
- DEBUGOUT("Half Duplex\n");
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_reset_hw_vf - Resets the HW
- * @hw: pointer to the HW structure
- *
- * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
- * This is all the reset we can perform on a VF.
- **/
-static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- u32 timeout = E1000_VF_INIT_TIMEOUT;
- s32 ret_val = -E1000_ERR_MAC_INIT;
- u32 ctrl, msgbuf[3];
- u8 *addr = (u8 *)(&msgbuf[1]);
-
- DEBUGFUNC("e1000_reset_hw_vf");
-
- DEBUGOUT("Issuing a function level reset to MAC\n");
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
-
- /* we cannot reset while the RSTI / RSTD bits are asserted */
- while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
- timeout--;
- usec_delay(5);
- }
-
- if (timeout) {
- /* mailbox timeout can now become active */
- mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
-
- msgbuf[0] = E1000_VF_RESET;
- mbx->ops.write_posted(hw, msgbuf, 1, 0);
-
- msec_delay(10);
-
- /* set our "perm_addr" based on info provided by PF */
- ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
- if (!ret_val) {
- if (msgbuf[0] == (E1000_VF_RESET |
- E1000_VT_MSGTYPE_ACK))
- memcpy(hw->mac.perm_addr, addr, 6);
- else
- ret_val = -E1000_ERR_MAC_INIT;
- }
- }
-
- return ret_val;
-}
-
-/**
- * e1000_init_hw_vf - Inits the HW
- * @hw: pointer to the HW structure
- *
- * Not much to do here except clear the PF Reset indication if there is one.
- **/
-static s32 e1000_init_hw_vf(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_hw_vf");
-
- /* attempt to set and restore our mac address */
- e1000_rar_set_vf(hw, hw->mac.addr, 0);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_rar_set_vf - set device MAC address
- * @hw: pointer to the HW structure
- * @addr: pointer to the receive address
- * @index receive address array register
- **/
-static void e1000_rar_set_vf(struct e1000_hw *hw, u8 * addr, u32 index)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- u32 msgbuf[3];
- u8 *msg_addr = (u8 *)(&msgbuf[1]);
- s32 ret_val;
-
- memset(msgbuf, 0, 12);
- msgbuf[0] = E1000_VF_SET_MAC_ADDR;
- memcpy(msg_addr, addr, 6);
- ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
-
- if (!ret_val)
- ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
-
- msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
-
- /* if nacked the address was rejected, use "perm_addr" */
- if (!ret_val &&
- (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
- e1000_read_mac_addr_vf(hw);
-}
-
-/**
- * e1000_hash_mc_addr_vf - Generate a multicast hash value
- * @hw: pointer to the HW structure
- * @mc_addr: pointer to a multicast address
- *
- * Generates a multicast address hash value which is used to determine
- * the multicast filter table array address and new table value.
- **/
-static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
-{
- u32 hash_value, hash_mask;
- u8 bit_shift = 0;
-
- DEBUGFUNC("e1000_hash_mc_addr_generic");
-
- /* Register count multiplied by bits per register */
- hash_mask = (hw->mac.mta_reg_count * 32) - 1;
-
- /*
- * The bit_shift is the number of left-shifts
- * where 0xFF would still fall within the hash mask.
- */
- while (hash_mask >> bit_shift != 0xFF)
- bit_shift++;
-
- hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
- (((u16) mc_addr[5]) << bit_shift)));
-
- return hash_value;
-}
-
-/**
- * e1000_update_mc_addr_list_vf - Update Multicast addresses
- * @hw: pointer to the HW structure
- * @mc_addr_list: array of multicast addresses to program
- * @mc_addr_count: number of multicast addresses to program
- *
- * Updates the Multicast Table Array.
- * The caller must have a packed mc_addr_list of multicast addresses.
- **/
-void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- u32 msgbuf[E1000_VFMAILBOX_SIZE];
- u16 *hash_list = (u16 *)&msgbuf[1];
- u32 hash_value;
- u32 i;
-
- DEBUGFUNC("e1000_update_mc_addr_list_vf");
-
- /* Each entry in the list uses 1 16 bit word. We have 30
- * 16 bit words available in our HW msg buffer (minus 1 for the
- * msg type). That's 30 hash values if we pack 'em right. If
- * there are more than 30 MC addresses to add then punt the
- * extras for now and then add code to handle more than 30 later.
- * It would be unusual for a server to request that many multi-cast
- * addresses except for in large enterprise network environments.
- */
-
- DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
-
- if (mc_addr_count > 30) {
- msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
- mc_addr_count = 30;
- }
-
- msgbuf[0] = E1000_VF_SET_MULTICAST;
- msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
-
- for (i = 0; i < mc_addr_count; i++) {
- hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
- DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
- hash_list[i] = hash_value & 0x0FFF;
- mc_addr_list += ETH_ADDR_LEN;
- }
-
- mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE, 0);
-}
-
-/**
- * e1000_vfta_set_vf - Set/Unset vlan filter table address
- * @hw: pointer to the HW structure
- * @vid: determines the vfta register and bit to set/unset
- * @set: if TRUE then set bit, else clear bit
- **/
-void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- u32 msgbuf[2];
-
- msgbuf[0] = E1000_VF_SET_VLAN;
- msgbuf[1] = vid;
- /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
- if (set)
- msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
-
- mbx->ops.write_posted(hw, msgbuf, 2, 0);
-}
-
-/** e1000_rlpml_set_vf - Set the maximum receive packet length
- * @hw: pointer to the HW structure
- * @max_size: value to assign to max frame size
- **/
-void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- u32 msgbuf[2];
-
- msgbuf[0] = E1000_VF_SET_LPE;
- msgbuf[1] = max_size;
-
- mbx->ops.write_posted(hw, msgbuf, 2, 0);
-}
-
-/**
- * e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
- * @hw: pointer to the HW structure
- * @uni: boolean indicating unicast promisc status
- * @multi: boolean indicating multicast promisc status
- **/
-s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- u32 msgbuf = E1000_VF_SET_PROMISC;
- s32 ret_val;
-
- switch (type) {
- case e1000_promisc_multicast:
- msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
- break;
- case e1000_promisc_enabled:
- msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
- case e1000_promisc_unicast:
- msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
- case e1000_promisc_disabled:
- break;
- default:
- return -E1000_ERR_MAC_INIT;
- }
-
- ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
-
- if (!ret_val)
- ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
-
- if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
- ret_val = -E1000_ERR_MAC_INIT;
-
- return ret_val;
-}
-
-/**
- * e1000_read_mac_addr_vf - Read device MAC address
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
-{
- int i;
-
- for (i = 0; i < ETH_ADDR_LEN; i++)
- hw->mac.addr[i] = hw->mac.perm_addr[i];
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_check_for_link_vf - Check for link for a virtual interface
- * @hw: pointer to the HW structure
- *
- * Checks to see if the underlying PF is still talking to the VF and
- * if it is then it reports the link state to the hardware, otherwise
- * it reports link down and returns an error.
- **/
-static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
-{
- struct e1000_mbx_info *mbx = &hw->mbx;
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val = E1000_SUCCESS;
- u32 in_msg = 0;
-
- DEBUGFUNC("e1000_check_for_link_vf");
-
- /*
- * We only want to run this if there has been a rst asserted.
- * in this case that could mean a link change, device reset,
- * or a virtual function reset
- */
-
- /* If we were hit with a reset or timeout drop the link */
- if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
- mac->get_link_status = TRUE;
-
- if (!mac->get_link_status)
- goto out;
-
- /* if link status is down no point in checking to see if pf is up */
- if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
- goto out;
-
- /* if the read failed it could just be a mailbox collision, best wait
- * until we are called again and don't report an error */
- if (mbx->ops.read(hw, &in_msg, 1, 0))
- goto out;
-
- /* if incoming message isn't clear to send we are waiting on response */
- if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
- /* message is not CTS and is NACK we have lost CTS status */
- if (in_msg & E1000_VT_MSGTYPE_NACK)
- ret_val = -E1000_ERR_MAC_INIT;
- goto out;
- }
-
- /* at this point we know the PF is talking to us, check and see if
- * we are still accepting timeout or if we had a timeout failure.
- * if we failed then we will need to reinit */
- if (!mbx->timeout) {
- ret_val = -E1000_ERR_MAC_INIT;
- goto out;
- }
-
- /* if we passed all the tests above then the link is up and we no
- * longer need to check for link */
- mac->get_link_status = FALSE;
-
-out:
- return ret_val;
-}
-
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#ifndef _E1000_VF_H_
-#define _E1000_VF_H_
-
-#include "e1000_osdep.h"
-#include "e1000_regs.h"
-#include "e1000_defines.h"
-
-struct e1000_hw;
-
-#define E1000_DEV_ID_82576_VF 0x10CA
-#define E1000_DEV_ID_I350_VF 0x1520
-
-#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */
-
-/* Additional Descriptor Control definitions */
-#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Tx Queue */
-#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Rx Queue */
-
-/* SRRCTL bit definitions */
-#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */
-#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00
-#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */
-#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000
-#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000
-#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000
-#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000
-#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000
-#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
-#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000
-#define E1000_SRRCTL_DROP_EN 0x80000000
-
-#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F
-#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00
-
-/* Interrupt Defines */
-#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */
-#define E1000_EITR(_n) (0x01680 + ((_n) << 2))
-#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */
-#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */
-#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */
-#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */
-#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */
-#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */
-#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */
-#define E1000_IVAR_VALID 0x80
-
-/* Receive Descriptor - Advanced */
-union e1000_adv_rx_desc {
- struct {
- u64 pkt_addr; /* Packet buffer address */
- u64 hdr_addr; /* Header buffer address */
- } read;
- struct {
- struct {
- union {
- u32 data;
- struct {
- /* RSS type, Packet type */
- u16 pkt_info;
- /* Split Header, header buffer len */
- u16 hdr_info;
- } hs_rss;
- } lo_dword;
- union {
- u32 rss; /* RSS Hash */
- struct {
- u16 ip_id; /* IP id */
- u16 csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- u32 status_error; /* ext status/error */
- u16 length; /* Packet length */
- u16 vlan; /* VLAN tag */
- } upper;
- } wb; /* writeback */
-};
-
-#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
-#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
-
-/* Transmit Descriptor - Advanced */
-union e1000_adv_tx_desc {
- struct {
- u64 buffer_addr; /* Address of descriptor's data buf */
- u32 cmd_type_len;
- u32 olinfo_status;
- } read;
- struct {
- u64 rsvd; /* Reserved */
- u32 nxtseq_seed;
- u32 status;
- } wb;
-};
-
-/* Adv Transmit Descriptor Config Masks */
-#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */
-#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */
-#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */
-#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */
-#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */
-#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */
-#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */
-#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */
-
-/* Context descriptors */
-struct e1000_adv_tx_context_desc {
- u32 vlan_macip_lens;
- u32 seqnum_seed;
- u32 type_tucmd_mlhl;
- u32 mss_l4len_idx;
-};
-
-#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */
-#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */
-#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */
-#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */
-#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */
-
-enum e1000_mac_type {
- e1000_undefined = 0,
- e1000_vfadapt,
- e1000_vfadapt_i350,
- e1000_num_macs /* List is 1-based, so subtract 1 for TRUE count. */
-};
-
-struct e1000_vf_stats {
- u64 base_gprc;
- u64 base_gptc;
- u64 base_gorc;
- u64 base_gotc;
- u64 base_mprc;
- u64 base_gotlbc;
- u64 base_gptlbc;
- u64 base_gorlbc;
- u64 base_gprlbc;
-
- u32 last_gprc;
- u32 last_gptc;
- u32 last_gorc;
- u32 last_gotc;
- u32 last_mprc;
- u32 last_gotlbc;
- u32 last_gptlbc;
- u32 last_gorlbc;
- u32 last_gprlbc;
-
- u64 gprc;
- u64 gptc;
- u64 gorc;
- u64 gotc;
- u64 mprc;
- u64 gotlbc;
- u64 gptlbc;
- u64 gorlbc;
- u64 gprlbc;
-};
-
-#include "e1000_mbx.h"
-
-struct e1000_mac_operations {
- /* Function pointers for the MAC. */
- s32 (*init_params)(struct e1000_hw *);
- s32 (*check_for_link)(struct e1000_hw *);
- void (*clear_vfta)(struct e1000_hw *);
- s32 (*get_bus_info)(struct e1000_hw *);
- s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
- void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
- s32 (*reset_hw)(struct e1000_hw *);
- s32 (*init_hw)(struct e1000_hw *);
- s32 (*setup_link)(struct e1000_hw *);
- void (*write_vfta)(struct e1000_hw *, u32, u32);
- void (*rar_set)(struct e1000_hw *, u8*, u32);
- s32 (*read_mac_addr)(struct e1000_hw *);
-};
-
-struct e1000_mac_info {
- struct e1000_mac_operations ops;
- u8 addr[6];
- u8 perm_addr[6];
-
- enum e1000_mac_type type;
-
- u16 mta_reg_count;
- u16 rar_entry_count;
-
- bool get_link_status;
-};
-
-struct e1000_mbx_operations {
- s32 (*init_params)(struct e1000_hw *hw);
- s32 (*read)(struct e1000_hw *, u32 *, u16, u16);
- s32 (*write)(struct e1000_hw *, u32 *, u16, u16);
- s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16);
- s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16);
- s32 (*check_for_msg)(struct e1000_hw *, u16);
- s32 (*check_for_ack)(struct e1000_hw *, u16);
- s32 (*check_for_rst)(struct e1000_hw *, u16);
-};
-
-struct e1000_mbx_stats {
- u32 msgs_tx;
- u32 msgs_rx;
-
- u32 acks;
- u32 reqs;
- u32 rsts;
-};
-
-struct e1000_mbx_info {
- struct e1000_mbx_operations ops;
- struct e1000_mbx_stats stats;
- u32 timeout;
- u32 usec_delay;
- u16 size;
-};
-
-struct e1000_dev_spec_vf {
- u32 vf_number;
- u32 v2p_mailbox;
-};
-
-struct e1000_hw {
- void *back;
-
- u8 *hw_addr;
- u8 *flash_address;
- unsigned long io_base;
-
- struct e1000_mac_info mac;
- struct e1000_mbx_info mbx;
-
- union {
- struct e1000_dev_spec_vf vf;
- } dev_spec;
-
- u16 device_id;
- u16 subsystem_vendor_id;
- u16 subsystem_device_id;
- u16 vendor_id;
-
- u8 revision_id;
-};
-
-enum e1000_promisc_type {
- e1000_promisc_disabled = 0, /* all promisc modes disabled */
- e1000_promisc_unicast = 1, /* unicast promiscuous enabled */
- e1000_promisc_multicast = 2, /* multicast promiscuous enabled */
- e1000_promisc_enabled = 3, /* both uni and multicast promisc */
- e1000_num_promisc_types
-};
-
-/* These functions must be implemented by drivers */
-s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
-void e1000_vfta_set_vf(struct e1000_hw *, u16, bool);
-void e1000_rlpml_set_vf(struct e1000_hw *, u16);
-s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type);
-#endif /* _E1000_VF_H_ */
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-
-#ifdef HAVE_KERNEL_OPTION_HEADERS
-#include "opt_device_polling.h"
-#include "opt_inet.h"
-#include "opt_altq.h"
-#endif
-
-#include <sys/param.h>
-#include <sys/systm.h>
-#if __FreeBSD_version >= 800000
-#include <sys/buf_ring.h>
-#endif
-#include <sys/bus.h>
-#include <sys/endian.h>
-#include <sys/kernel.h>
-#include <sys/kthread.h>
-#include <sys/malloc.h>
-#include <sys/mbuf.h>
-#include <sys/module.h>
-#include <sys/rman.h>
-#include <sys/socket.h>
-#include <sys/sockio.h>
-#include <sys/sysctl.h>
-#include <sys/taskqueue.h>
-#include <sys/eventhandler.h>
-#include <sys/pcpu.h>
-#include <sys/smp.h>
-#include <machine/smp.h>
-#include <machine/bus.h>
-#include <machine/resource.h>
-
-#include <net/bpf.h>
-#include <net/ethernet.h>
-#include <net/if.h>
-#include <net/if_arp.h>
-#include <net/if_dl.h>
-#include <net/if_media.h>
-
-#include <net/if_types.h>
-#include <net/if_vlan_var.h>
-
-#include <netinet/in_systm.h>
-#include <netinet/in.h>
-#include <netinet/if_ether.h>
-#include <netinet/ip.h>
-#include <netinet/ip6.h>
-#include <netinet/tcp.h>
-#include <netinet/tcp_lro.h>
-#include <netinet/udp.h>
-
-#include <machine/in_cksum.h>
-#include <dev/led/led.h>
-#include <dev/pci/pcivar.h>
-#include <dev/pci/pcireg.h>
-
-#include "e1000_api.h"
-#include "e1000_82575.h"
-#include "if_igb.h"
-
-/*********************************************************************
- * Set this to one to display debug statistics
- *********************************************************************/
-int igb_display_debug_stats = 0;
-
-/*********************************************************************
- * Driver version:
- *********************************************************************/
-char igb_driver_version[] = "version - 2.2.3";
-
-
-/*********************************************************************
- * PCI Device ID Table
- *
- * Used by probe to select devices to load on
- * Last field stores an index into e1000_strings
- * Last entry must be all 0s
- *
- * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
- *********************************************************************/
-
-static igb_vendor_info_t igb_vendor_info_array[] =
-{
- { 0x8086, E1000_DEV_ID_82575EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
- PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
- PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82576, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82576_NS, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82576_NS_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82576_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82576_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82576_SERDES_QUAD,
- PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82576_QUAD_COPPER,
- PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2,
- PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82576_VF, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82580_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82580_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82580_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82580_SGMII, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82580_COPPER_DUAL,
- PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82580_QUAD_FIBER,
- PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_DH89XXCC_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_DH89XXCC_SGMII, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_DH89XXCC_SFP, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE,
- PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_I350_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_I350_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_I350_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_I350_SGMII, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_I350_VF, PCI_ANY_ID, PCI_ANY_ID, 0},
- /* required last entry */
- { 0, 0, 0, 0, 0}
-};
-
-/*********************************************************************
- * Table of branding strings for all supported NICs.
- *********************************************************************/
-
-static char *igb_strings[] = {
- "Intel(R) PRO/1000 Network Connection"
-};
-
-/*********************************************************************
- * Function prototypes
- *********************************************************************/
-static int igb_probe(device_t);
-static int igb_attach(device_t);
-static int igb_detach(device_t);
-static int igb_shutdown(device_t);
-static int igb_suspend(device_t);
-static int igb_resume(device_t);
-static void igb_start(struct ifnet *);
-static void igb_start_locked(struct tx_ring *, struct ifnet *ifp);
-#if __FreeBSD_version >= 800000
-static int igb_mq_start(struct ifnet *, struct mbuf *);
-static int igb_mq_start_locked(struct ifnet *,
- struct tx_ring *, struct mbuf *);
-static void igb_qflush(struct ifnet *);
-#endif
-static int igb_ioctl(struct ifnet *, u_long, caddr_t);
-static void igb_init(void *);
-static void igb_init_locked(struct adapter *);
-static void igb_stop(void *);
-static void igb_media_status(struct ifnet *, struct ifmediareq *);
-static int igb_media_change(struct ifnet *);
-static void igb_identify_hardware(struct adapter *);
-static int igb_allocate_pci_resources(struct adapter *);
-static int igb_allocate_msix(struct adapter *);
-static int igb_allocate_legacy(struct adapter *);
-static int igb_setup_msix(struct adapter *);
-static void igb_free_pci_resources(struct adapter *);
-static void igb_local_timer(void *);
-static void igb_reset(struct adapter *);
-static int igb_setup_interface(device_t, struct adapter *);
-static int igb_allocate_queues(struct adapter *);
-static void igb_configure_queues(struct adapter *);
-
-static int igb_allocate_transmit_buffers(struct tx_ring *);
-static void igb_setup_transmit_structures(struct adapter *);
-static void igb_setup_transmit_ring(struct tx_ring *);
-static void igb_initialize_transmit_units(struct adapter *);
-static void igb_free_transmit_structures(struct adapter *);
-static void igb_free_transmit_buffers(struct tx_ring *);
-
-static int igb_allocate_receive_buffers(struct rx_ring *);
-static int igb_setup_receive_structures(struct adapter *);
-static int igb_setup_receive_ring(struct rx_ring *);
-static void igb_initialize_receive_units(struct adapter *);
-static void igb_free_receive_structures(struct adapter *);
-static void igb_free_receive_buffers(struct rx_ring *);
-static void igb_free_receive_ring(struct rx_ring *);
-
-static void igb_enable_intr(struct adapter *);
-static void igb_disable_intr(struct adapter *);
-static void igb_update_stats_counters(struct adapter *);
-static bool igb_txeof(struct tx_ring *);
-
-static __inline void igb_rx_discard(struct rx_ring *, int);
-static __inline void igb_rx_input(struct rx_ring *,
- struct ifnet *, struct mbuf *, u32);
-
-static bool igb_rxeof(struct igb_queue *, int, int *);
-static void igb_rx_checksum(u32, struct mbuf *, u32);
-static int igb_tx_ctx_setup(struct tx_ring *, struct mbuf *);
-static bool igb_tso_setup(struct tx_ring *, struct mbuf *, u32 *);
-static void igb_set_promisc(struct adapter *);
-static void igb_disable_promisc(struct adapter *);
-static void igb_set_multi(struct adapter *);
-static void igb_update_link_status(struct adapter *);
-static void igb_refresh_mbufs(struct rx_ring *, int);
-
-static void igb_register_vlan(void *, struct ifnet *, u16);
-static void igb_unregister_vlan(void *, struct ifnet *, u16);
-static void igb_setup_vlan_hw_support(struct adapter *);
-
-static int igb_xmit(struct tx_ring *, struct mbuf **);
-static int igb_dma_malloc(struct adapter *, bus_size_t,
- struct igb_dma_alloc *, int);
-static void igb_dma_free(struct adapter *, struct igb_dma_alloc *);
-static int igb_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
-static void igb_print_nvm_info(struct adapter *);
-static int igb_is_valid_ether_addr(u8 *);
-static void igb_add_hw_stats(struct adapter *);
-
-static void igb_vf_init_stats(struct adapter *);
-static void igb_update_vf_stats_counters(struct adapter *);
-
-/* Management and WOL Support */
-static void igb_init_manageability(struct adapter *);
-static void igb_release_manageability(struct adapter *);
-static void igb_get_hw_control(struct adapter *);
-static void igb_release_hw_control(struct adapter *);
-static void igb_enable_wakeup(device_t);
-static void igb_led_func(void *, int);
-
-static int igb_irq_fast(void *);
-static void igb_msix_que(void *);
-static void igb_msix_link(void *);
-static void igb_handle_que(void *context, int pending);
-static void igb_handle_link(void *context, int pending);
-
-static void igb_set_sysctl_value(struct adapter *, const char *,
- const char *, int *, int);
-static int igb_set_flowcntl(SYSCTL_HANDLER_ARGS);
-
-#ifdef DEVICE_POLLING
-static poll_handler_t igb_poll;
-#endif /* POLLING */
-
-/*********************************************************************
- * FreeBSD Device Interface Entry Points
- *********************************************************************/
-
-static device_method_t igb_methods[] = {
- /* Device interface */
- DEVMETHOD(device_probe, igb_probe),
- DEVMETHOD(device_attach, igb_attach),
- DEVMETHOD(device_detach, igb_detach),
- DEVMETHOD(device_shutdown, igb_shutdown),
- DEVMETHOD(device_suspend, igb_suspend),
- DEVMETHOD(device_resume, igb_resume),
- {0, 0}
-};
-
-static driver_t igb_driver = {
- "igb", igb_methods, sizeof(struct adapter),
-};
-
-static devclass_t igb_devclass;
-DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
-MODULE_DEPEND(igb, pci, 1, 1, 1);
-MODULE_DEPEND(igb, ether, 1, 1, 1);
-
-/*********************************************************************
- * Tunable default values.
- *********************************************************************/
-
-/* Descriptor defaults */
-static int igb_rxd = IGB_DEFAULT_RXD;
-static int igb_txd = IGB_DEFAULT_TXD;
-TUNABLE_INT("hw.igb.rxd", &igb_rxd);
-TUNABLE_INT("hw.igb.txd", &igb_txd);
-
-/*
-** AIM: Adaptive Interrupt Moderation
-** which means that the interrupt rate
-** is varied over time based on the
-** traffic for that interrupt vector
-*/
-static int igb_enable_aim = TRUE;
-TUNABLE_INT("hw.igb.enable_aim", &igb_enable_aim);
-
-/*
- * MSIX should be the default for best performance,
- * but this allows it to be forced off for testing.
- */
-static int igb_enable_msix = 1;
-TUNABLE_INT("hw.igb.enable_msix", &igb_enable_msix);
-
-/*
-** Tuneable Interrupt rate
-*/
-static int igb_max_interrupt_rate = 8000;
-TUNABLE_INT("hw.igb.max_interrupt_rate", &igb_max_interrupt_rate);
-
-/*
-** Header split causes the packet header to
-** be dma'd to a seperate mbuf from the payload.
-** this can have memory alignment benefits. But
-** another plus is that small packets often fit
-** into the header and thus use no cluster. Its
-** a very workload dependent type feature.
-*/
-static bool igb_header_split = FALSE;
-TUNABLE_INT("hw.igb.hdr_split", &igb_header_split);
-
-/*
-** This will autoconfigure based on
-** the number of CPUs if left at 0.
-*/
-static int igb_num_queues = 0;
-TUNABLE_INT("hw.igb.num_queues", &igb_num_queues);
-
-/* How many packets rxeof tries to clean at a time */
-static int igb_rx_process_limit = 100;
-TUNABLE_INT("hw.igb.rx_process_limit", &igb_rx_process_limit);
-
-/* Flow control setting - default to FULL */
-static int igb_fc_setting = e1000_fc_full;
-TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
-
-/* Energy Efficient Ethernet - default to off */
-static int igb_eee_disabled = TRUE;
-TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
-
-/*
-** DMA Coalescing, only for i350 - default to off,
-** this feature is for power savings
-*/
-static int igb_dma_coalesce = FALSE;
-TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
-
-/*********************************************************************
- * Device identification routine
- *
- * igb_probe determines if the driver should be loaded on
- * adapter based on PCI vendor/device id of the adapter.
- *
- * return BUS_PROBE_DEFAULT on success, positive on failure
- *********************************************************************/
-
-static int
-igb_probe(device_t dev)
-{
- char adapter_name[60];
- uint16_t pci_vendor_id = 0;
- uint16_t pci_device_id = 0;
- uint16_t pci_subvendor_id = 0;
- uint16_t pci_subdevice_id = 0;
- igb_vendor_info_t *ent;
-
- INIT_DEBUGOUT("igb_probe: begin");
-
- pci_vendor_id = pci_get_vendor(dev);
- if (pci_vendor_id != IGB_VENDOR_ID)
- return (ENXIO);
-
- pci_device_id = pci_get_device(dev);
- pci_subvendor_id = pci_get_subvendor(dev);
- pci_subdevice_id = pci_get_subdevice(dev);
-
- ent = igb_vendor_info_array;
- while (ent->vendor_id != 0) {
- if ((pci_vendor_id == ent->vendor_id) &&
- (pci_device_id == ent->device_id) &&
-
- ((pci_subvendor_id == ent->subvendor_id) ||
- (ent->subvendor_id == PCI_ANY_ID)) &&
-
- ((pci_subdevice_id == ent->subdevice_id) ||
- (ent->subdevice_id == PCI_ANY_ID))) {
- sprintf(adapter_name, "%s %s",
- igb_strings[ent->index],
- igb_driver_version);
- device_set_desc_copy(dev, adapter_name);
- return (BUS_PROBE_DEFAULT);
- }
- ent++;
- }
-
- return (ENXIO);
-}
-
-/*********************************************************************
- * Device initialization routine
- *
- * The attach entry point is called when the driver is being loaded.
- * This routine identifies the type of hardware, allocates all resources
- * and initializes the hardware.
- *
- * return 0 on success, positive on failure
- *********************************************************************/
-
-static int
-igb_attach(device_t dev)
-{
- struct adapter *adapter;
- int error = 0;
- u16 eeprom_data;
-
- INIT_DEBUGOUT("igb_attach: begin");
-
- adapter = device_get_softc(dev);
- adapter->dev = adapter->osdep.dev = dev;
- IGB_CORE_LOCK_INIT(adapter, device_get_nameunit(dev));
-
- /* SYSCTL stuff */
- SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
- SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
- OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
- igb_sysctl_nvm_info, "I", "NVM Information");
-
- SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
- SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
- OID_AUTO, "enable_aim", CTLTYPE_INT|CTLFLAG_RW,
- &igb_enable_aim, 1, "Interrupt Moderation");
-
- SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
- SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
- OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
- adapter, 0, igb_set_flowcntl, "I", "Flow Control");
-
- callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0);
-
- /* Determine hardware and mac info */
- igb_identify_hardware(adapter);
-
- /* Setup PCI resources */
- if (igb_allocate_pci_resources(adapter)) {
- device_printf(dev, "Allocation of PCI resources failed\n");
- error = ENXIO;
- goto err_pci;
- }
-
- /* Do Shared Code initialization */
- if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
- device_printf(dev, "Setup of Shared code failed\n");
- error = ENXIO;
- goto err_pci;
- }
-
- e1000_get_bus_info(&adapter->hw);
-
- /* Sysctl for limiting the amount of work done in the taskqueue */
- igb_set_sysctl_value(adapter, "rx_processing_limit",
- "max number of rx packets to process", &adapter->rx_process_limit,
- igb_rx_process_limit);
-
- /*
- * Validate number of transmit and receive descriptors. It
- * must not exceed hardware maximum, and must be multiple
- * of E1000_DBA_ALIGN.
- */
- if (((igb_txd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN) != 0 ||
- (igb_txd > IGB_MAX_TXD) || (igb_txd < IGB_MIN_TXD)) {
- device_printf(dev, "Using %d TX descriptors instead of %d!\n",
- IGB_DEFAULT_TXD, igb_txd);
- adapter->num_tx_desc = IGB_DEFAULT_TXD;
- } else
- adapter->num_tx_desc = igb_txd;
- if (((igb_rxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN) != 0 ||
- (igb_rxd > IGB_MAX_RXD) || (igb_rxd < IGB_MIN_RXD)) {
- device_printf(dev, "Using %d RX descriptors instead of %d!\n",
- IGB_DEFAULT_RXD, igb_rxd);
- adapter->num_rx_desc = IGB_DEFAULT_RXD;
- } else
- adapter->num_rx_desc = igb_rxd;
-
- adapter->hw.mac.autoneg = DO_AUTO_NEG;
- adapter->hw.phy.autoneg_wait_to_complete = FALSE;
- adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
-
- /* Copper options */
- if (adapter->hw.phy.media_type == e1000_media_type_copper) {
- adapter->hw.phy.mdix = AUTO_ALL_MODES;
- adapter->hw.phy.disable_polarity_correction = FALSE;
- adapter->hw.phy.ms_type = IGB_MASTER_SLAVE;
- }
-
- /*
- * Set the frame limits assuming
- * standard ethernet sized frames.
- */
- adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
- adapter->min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE;
-
- /*
- ** Allocate and Setup Queues
- */
- if (igb_allocate_queues(adapter)) {
- error = ENOMEM;
- goto err_pci;
- }
-
- /* Allocate the appropriate stats memory */
- if (adapter->vf_ifp) {
- adapter->stats =
- (struct e1000_vf_stats *)malloc(sizeof \
- (struct e1000_vf_stats), M_DEVBUF, M_NOWAIT | M_ZERO);
- igb_vf_init_stats(adapter);
- } else
- adapter->stats =
- (struct e1000_hw_stats *)malloc(sizeof \
- (struct e1000_hw_stats), M_DEVBUF, M_NOWAIT | M_ZERO);
- if (adapter->stats == NULL) {
- device_printf(dev, "Can not allocate stats memory\n");
- error = ENOMEM;
- goto err_late;
- }
-
- /* Allocate multicast array memory. */
- adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN *
- MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
- if (adapter->mta == NULL) {
- device_printf(dev, "Can not allocate multicast setup array\n");
- error = ENOMEM;
- goto err_late;
- }
-
- /* Some adapter-specific advanced features */
- if (adapter->hw.mac.type >= e1000_i350) {
- igb_set_sysctl_value(adapter, "dma_coalesce",
- "configure dma coalesce",
- &adapter->dma_coalesce, igb_dma_coalesce);
- igb_set_sysctl_value(adapter, "eee_disabled",
- "enable Energy Efficient Ethernet",
- &adapter->hw.dev_spec._82575.eee_disable,
- igb_eee_disabled);
- e1000_set_eee_i350(&adapter->hw);
- }
-
- /*
- ** Start from a known state, this is
- ** important in reading the nvm and
- ** mac from that.
- */
- e1000_reset_hw(&adapter->hw);
-
- /* Make sure we have a good EEPROM before we read from it */
- if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
- /*
- ** Some PCI-E parts fail the first check due to
- ** the link being in sleep state, call it again,
- ** if it fails a second time its a real issue.
- */
- if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
- device_printf(dev,
- "The EEPROM Checksum Is Not Valid\n");
- error = EIO;
- goto err_late;
- }
- }
-
- /*
- ** Copy the permanent MAC address out of the EEPROM
- */
- if (e1000_read_mac_addr(&adapter->hw) < 0) {
- device_printf(dev, "EEPROM read error while reading MAC"
- " address\n");
- error = EIO;
- goto err_late;
- }
- /* Check its sanity */
- if (!igb_is_valid_ether_addr(adapter->hw.mac.addr)) {
- device_printf(dev, "Invalid MAC address\n");
- error = EIO;
- goto err_late;
- }
-
- /*
- ** Configure Interrupts
- */
- if ((adapter->msix > 1) && (igb_enable_msix))
- error = igb_allocate_msix(adapter);
- else /* MSI or Legacy */
- error = igb_allocate_legacy(adapter);
- if (error)
- goto err_late;
-
- /* Setup OS specific network interface */
- if (igb_setup_interface(dev, adapter) != 0)
- goto err_late;
-
- /* Now get a good starting state */
- igb_reset(adapter);
-
- /* Initialize statistics */
- igb_update_stats_counters(adapter);
-
- adapter->hw.mac.get_link_status = 1;
- igb_update_link_status(adapter);
-
- /* Indicate SOL/IDER usage */
- if (e1000_check_reset_block(&adapter->hw))
- device_printf(dev,
- "PHY reset is blocked due to SOL/IDER session.\n");
-
- /* Determine if we have to control management hardware */
- adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
-
- /*
- * Setup Wake-on-Lan
- */
- /* APME bit in EEPROM is mapped to WUC.APME */
- eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC) & E1000_WUC_APME;
- if (eeprom_data)
- adapter->wol = E1000_WUFC_MAG;
-
- /* Register for VLAN events */
- adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
- igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
- adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
- igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
-
- igb_add_hw_stats(adapter);
-
- /* Tell the stack that the interface is not active */
- adapter->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
-
- adapter->led_dev = led_create(igb_led_func, adapter,
- device_get_nameunit(dev));
-
- INIT_DEBUGOUT("igb_attach: end");
-
- return (0);
-
-err_late:
- igb_free_transmit_structures(adapter);
- igb_free_receive_structures(adapter);
- igb_release_hw_control(adapter);
- if (adapter->ifp != NULL)
- if_free(adapter->ifp);
-err_pci:
- igb_free_pci_resources(adapter);
- free(adapter->mta, M_DEVBUF);
- IGB_CORE_LOCK_DESTROY(adapter);
-
- return (error);
-}
-
-/*********************************************************************
- * Device removal routine
- *
- * The detach entry point is called when the driver is being removed.
- * This routine stops the adapter and deallocates all the resources
- * that were allocated for driver operation.
- *
- * return 0 on success, positive on failure
- *********************************************************************/
-
-static int
-igb_detach(device_t dev)
-{
- struct adapter *adapter = device_get_softc(dev);
- struct ifnet *ifp = adapter->ifp;
-
- INIT_DEBUGOUT("igb_detach: begin");
-
- /* Make sure VLANS are not using driver */
- if (adapter->ifp->if_vlantrunk != NULL) {
- device_printf(dev,"Vlan in use, detach first\n");
- return (EBUSY);
- }
-
- if (adapter->led_dev != NULL)
- led_destroy(adapter->led_dev);
-
-#ifdef DEVICE_POLLING
- if (ifp->if_capenable & IFCAP_POLLING)
- ether_poll_deregister(ifp);
-#endif
-
- IGB_CORE_LOCK(adapter);
- adapter->in_detach = 1;
- igb_stop(adapter);
- IGB_CORE_UNLOCK(adapter);
-
- e1000_phy_hw_reset(&adapter->hw);
-
- /* Give control back to firmware */
- igb_release_manageability(adapter);
- igb_release_hw_control(adapter);
-
- if (adapter->wol) {
- E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
- E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
- igb_enable_wakeup(dev);
- }
-
- /* Unregister VLAN events */
- if (adapter->vlan_attach != NULL)
- EVENTHANDLER_DEREGISTER(vlan_config, adapter->vlan_attach);
- if (adapter->vlan_detach != NULL)
- EVENTHANDLER_DEREGISTER(vlan_unconfig, adapter->vlan_detach);
-
- ether_ifdetach(adapter->ifp);
-
- callout_drain(&adapter->timer);
-
- igb_free_pci_resources(adapter);
- bus_generic_detach(dev);
- if_free(ifp);
-
- igb_free_transmit_structures(adapter);
- igb_free_receive_structures(adapter);
- free(adapter->mta, M_DEVBUF);
-
- IGB_CORE_LOCK_DESTROY(adapter);
-
- return (0);
-}
-
-/*********************************************************************
- *
- * Shutdown entry point
- *
- **********************************************************************/
-
-static int
-igb_shutdown(device_t dev)
-{
- return igb_suspend(dev);
-}
-
-/*
- * Suspend/resume device methods.
- */
-static int
-igb_suspend(device_t dev)
-{
- struct adapter *adapter = device_get_softc(dev);
-
- IGB_CORE_LOCK(adapter);
-
- igb_stop(adapter);
-
- igb_release_manageability(adapter);
- igb_release_hw_control(adapter);
-
- if (adapter->wol) {
- E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
- E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
- igb_enable_wakeup(dev);
- }
-
- IGB_CORE_UNLOCK(adapter);
-
- return bus_generic_suspend(dev);
-}
-
-static int
-igb_resume(device_t dev)
-{
- struct adapter *adapter = device_get_softc(dev);
- struct ifnet *ifp = adapter->ifp;
-
- IGB_CORE_LOCK(adapter);
- igb_init_locked(adapter);
- igb_init_manageability(adapter);
-
- if ((ifp->if_flags & IFF_UP) &&
- (ifp->if_drv_flags & IFF_DRV_RUNNING))
- igb_start(ifp);
-
- IGB_CORE_UNLOCK(adapter);
-
- return bus_generic_resume(dev);
-}
-
-
-/*********************************************************************
- * Transmit entry point
- *
- * igb_start is called by the stack to initiate a transmit.
- * The driver will remain in this routine as long as there are
- * packets to transmit and transmit resources are available.
- * In case resources are not available stack is notified and
- * the packet is requeued.
- **********************************************************************/
-
-static void
-igb_start_locked(struct tx_ring *txr, struct ifnet *ifp)
-{
- struct adapter *adapter = ifp->if_softc;
- struct mbuf *m_head;
-
- IGB_TX_LOCK_ASSERT(txr);
-
- if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
- IFF_DRV_RUNNING)
- return;
- if (!adapter->link_active)
- return;
-
- /* Call cleanup if number of TX descriptors low */
- if (txr->tx_avail <= IGB_TX_CLEANUP_THRESHOLD)
- igb_txeof(txr);
-
- while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
- if (txr->tx_avail <= IGB_MAX_SCATTER) {
- ifp->if_drv_flags |= IFF_DRV_OACTIVE;
- break;
- }
- IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
- if (m_head == NULL)
- break;
- /*
- * Encapsulation can modify our pointer, and or make it
- * NULL on failure. In that event, we can't requeue.
- */
- if (igb_xmit(txr, &m_head)) {
- if (m_head == NULL)
- break;
- ifp->if_drv_flags |= IFF_DRV_OACTIVE;
- IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
- break;
- }
-
- /* Send a copy of the frame to the BPF listener */
- ETHER_BPF_MTAP(ifp, m_head);
-
- /* Set watchdog on */
- txr->watchdog_time = ticks;
- txr->queue_status = IGB_QUEUE_WORKING;
- }
-}
-
-/*
- * Legacy TX driver routine, called from the
- * stack, always uses tx[0], and spins for it.
- * Should not be used with multiqueue tx
- */
-static void
-igb_start(struct ifnet *ifp)
-{
- struct adapter *adapter = ifp->if_softc;
- struct tx_ring *txr = adapter->tx_rings;
-
- if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
- IGB_TX_LOCK(txr);
- igb_start_locked(txr, ifp);
- IGB_TX_UNLOCK(txr);
- }
- return;
-}
-
-#if __FreeBSD_version >= 800000
-/*
-** Multiqueue Transmit driver
-**
-*/
-static int
-igb_mq_start(struct ifnet *ifp, struct mbuf *m)
-{
- struct adapter *adapter = ifp->if_softc;
- struct igb_queue *que;
- struct tx_ring *txr;
- int i = 0, err = 0;
-
- /* Which queue to use */
- if ((m->m_flags & M_FLOWID) != 0)
- i = m->m_pkthdr.flowid % adapter->num_queues;
-
- txr = &adapter->tx_rings[i];
- que = &adapter->queues[i];
-
- if (IGB_TX_TRYLOCK(txr)) {
- err = igb_mq_start_locked(ifp, txr, m);
- IGB_TX_UNLOCK(txr);
- } else {
- err = drbr_enqueue(ifp, txr->br, m);
- taskqueue_enqueue(que->tq, &que->que_task);
- }
-
- return (err);
-}
-
-static int
-igb_mq_start_locked(struct ifnet *ifp, struct tx_ring *txr, struct mbuf *m)
-{
- struct adapter *adapter = txr->adapter;
- struct mbuf *next;
- int err = 0, enq;
-
- IGB_TX_LOCK_ASSERT(txr);
-
- if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
- IFF_DRV_RUNNING || adapter->link_active == 0) {
- if (m != NULL)
- err = drbr_enqueue(ifp, txr->br, m);
- return (err);
- }
-
- enq = 0;
- if (m == NULL) {
- next = drbr_dequeue(ifp, txr->br);
- } else if (drbr_needs_enqueue(ifp, txr->br)) {
- if ((err = drbr_enqueue(ifp, txr->br, m)) != 0)
- return (err);
- next = drbr_dequeue(ifp, txr->br);
- } else
- next = m;
-
- /* Process the queue */
- while (next != NULL) {
- if ((err = igb_xmit(txr, &next)) != 0) {
- if (next != NULL)
- err = drbr_enqueue(ifp, txr->br, next);
- break;
- }
- enq++;
- drbr_stats_update(ifp, next->m_pkthdr.len, next->m_flags);
- ETHER_BPF_MTAP(ifp, next);
- if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
- break;
- if (txr->tx_avail <= IGB_TX_CLEANUP_THRESHOLD)
- igb_txeof(txr);
- if (txr->tx_avail <= IGB_MAX_SCATTER) {
- ifp->if_drv_flags |= IFF_DRV_OACTIVE;
- break;
- }
- next = drbr_dequeue(ifp, txr->br);
- }
- if (enq > 0) {
- /* Set the watchdog */
- txr->queue_status = IGB_QUEUE_WORKING;
- txr->watchdog_time = ticks;
- }
- return (err);
-}
-
-/*
-** Flush all ring buffers
-*/
-static void
-igb_qflush(struct ifnet *ifp)
-{
- struct adapter *adapter = ifp->if_softc;
- struct tx_ring *txr = adapter->tx_rings;
- struct mbuf *m;
-
- for (int i = 0; i < adapter->num_queues; i++, txr++) {
- IGB_TX_LOCK(txr);
- while ((m = buf_ring_dequeue_sc(txr->br)) != NULL)
- m_freem(m);
- IGB_TX_UNLOCK(txr);
- }
- if_qflush(ifp);
-}
-#endif /* __FreeBSD_version >= 800000 */
-
-/*********************************************************************
- * Ioctl entry point
- *
- * igb_ioctl is called when the user wants to configure the
- * interface.
- *
- * return 0 on success, positive on failure
- **********************************************************************/
-
-static int
-igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
-{
- struct adapter *adapter = ifp->if_softc;
- struct ifreq *ifr = (struct ifreq *)data;
-#ifdef INET
- struct ifaddr *ifa = (struct ifaddr *)data;
-#endif
- int error = 0;
-
- if (adapter->in_detach)
- return (error);
-
- switch (command) {
- case SIOCSIFADDR:
-#ifdef INET
- if (ifa->ifa_addr->sa_family == AF_INET) {
- /*
- * XXX
- * Since resetting hardware takes a very long time
- * and results in link renegotiation we only
- * initialize the hardware only when it is absolutely
- * required.
- */
- ifp->if_flags |= IFF_UP;
- if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
- IGB_CORE_LOCK(adapter);
- igb_init_locked(adapter);
- IGB_CORE_UNLOCK(adapter);
- }
- if (!(ifp->if_flags & IFF_NOARP))
- arp_ifinit(ifp, ifa);
- } else
-#endif
- error = ether_ioctl(ifp, command, data);
- break;
- case SIOCSIFMTU:
- {
- int max_frame_size;
-
- IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
-
- IGB_CORE_LOCK(adapter);
- max_frame_size = 9234;
- if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
- ETHER_CRC_LEN) {
- IGB_CORE_UNLOCK(adapter);
- error = EINVAL;
- break;
- }
-
- ifp->if_mtu = ifr->ifr_mtu;
- adapter->max_frame_size =
- ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
- igb_init_locked(adapter);
- IGB_CORE_UNLOCK(adapter);
- break;
- }
- case SIOCSIFFLAGS:
- IOCTL_DEBUGOUT("ioctl rcv'd:\
- SIOCSIFFLAGS (Set Interface Flags)");
- IGB_CORE_LOCK(adapter);
- if (ifp->if_flags & IFF_UP) {
- if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
- if ((ifp->if_flags ^ adapter->if_flags) &
- (IFF_PROMISC | IFF_ALLMULTI)) {
- igb_disable_promisc(adapter);
- igb_set_promisc(adapter);
- }
- } else
- igb_init_locked(adapter);
- } else
- if (ifp->if_drv_flags & IFF_DRV_RUNNING)
- igb_stop(adapter);
- adapter->if_flags = ifp->if_flags;
- IGB_CORE_UNLOCK(adapter);
- break;
- case SIOCADDMULTI:
- case SIOCDELMULTI:
- IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
- if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
- IGB_CORE_LOCK(adapter);
- igb_disable_intr(adapter);
- igb_set_multi(adapter);
-#ifdef DEVICE_POLLING
- if (!(ifp->if_capenable & IFCAP_POLLING))
-#endif
- igb_enable_intr(adapter);
- IGB_CORE_UNLOCK(adapter);
- }
- break;
- case SIOCSIFMEDIA:
- /*
- ** As the speed/duplex settings are being
- ** changed, we need toreset the PHY.
- */
- adapter->hw.phy.reset_disable = FALSE;
- /* Check SOL/IDER usage */
- IGB_CORE_LOCK(adapter);
- if (e1000_check_reset_block(&adapter->hw)) {
- IGB_CORE_UNLOCK(adapter);
- device_printf(adapter->dev, "Media change is"
- " blocked due to SOL/IDER session.\n");
- break;
- }
- IGB_CORE_UNLOCK(adapter);
- case SIOCGIFMEDIA:
- IOCTL_DEBUGOUT("ioctl rcv'd: \
- SIOCxIFMEDIA (Get/Set Interface Media)");
- error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
- break;
- case SIOCSIFCAP:
- {
- int mask, reinit;
-
- IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
- reinit = 0;
- mask = ifr->ifr_reqcap ^ ifp->if_capenable;
-#ifdef DEVICE_POLLING
- if (mask & IFCAP_POLLING) {
- if (ifr->ifr_reqcap & IFCAP_POLLING) {
- error = ether_poll_register(igb_poll, ifp);
- if (error)
- return (error);
- IGB_CORE_LOCK(adapter);
- igb_disable_intr(adapter);
- ifp->if_capenable |= IFCAP_POLLING;
- IGB_CORE_UNLOCK(adapter);
- } else {
- error = ether_poll_deregister(ifp);
- /* Enable interrupt even in error case */
- IGB_CORE_LOCK(adapter);
- igb_enable_intr(adapter);
- ifp->if_capenable &= ~IFCAP_POLLING;
- IGB_CORE_UNLOCK(adapter);
- }
- }
-#endif
- if (mask & IFCAP_HWCSUM) {
- ifp->if_capenable ^= IFCAP_HWCSUM;
- reinit = 1;
- }
- if (mask & IFCAP_TSO4) {
- ifp->if_capenable ^= IFCAP_TSO4;
- reinit = 1;
- }
- if (mask & IFCAP_VLAN_HWTAGGING) {
- ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
- reinit = 1;
- }
- if (mask & IFCAP_VLAN_HWFILTER) {
- ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
- reinit = 1;
- }
- if (mask & IFCAP_LRO) {
- ifp->if_capenable ^= IFCAP_LRO;
- reinit = 1;
- }
- if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING))
- igb_init(adapter);
- VLAN_CAPABILITIES(ifp);
- break;
- }
-
- default:
- error = ether_ioctl(ifp, command, data);
- break;
- }
-
- return (error);
-}
-
-
-/*********************************************************************
- * Init entry point
- *
- * This routine is used in two ways. It is used by the stack as
- * init entry point in network interface structure. It is also used
- * by the driver as a hw/sw initialization routine to get to a
- * consistent state.
- *
- * return 0 on success, positive on failure
- **********************************************************************/
-
-static void
-igb_init_locked(struct adapter *adapter)
-{
- struct ifnet *ifp = adapter->ifp;
- device_t dev = adapter->dev;
-
- INIT_DEBUGOUT("igb_init: begin");
-
- IGB_CORE_LOCK_ASSERT(adapter);
-
- igb_disable_intr(adapter);
- callout_stop(&adapter->timer);
-
- /* Get the latest mac address, User can use a LAA */
- bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac.addr,
- ETHER_ADDR_LEN);
-
- /* Put the address into the Receive Address Array */
- e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
-
- igb_reset(adapter);
- igb_update_link_status(adapter);
-
- E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
-
- /* Set hardware offload abilities */
- ifp->if_hwassist = 0;
- if (ifp->if_capenable & IFCAP_TXCSUM) {
- ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP);
-#if __FreeBSD_version >= 800000
- if (adapter->hw.mac.type == e1000_82576)
- ifp->if_hwassist |= CSUM_SCTP;
-#endif
- }
-
- if (ifp->if_capenable & IFCAP_TSO4)
- ifp->if_hwassist |= CSUM_TSO;
-
- /* Configure for OS presence */
- igb_init_manageability(adapter);
-
- /* Prepare transmit descriptors and buffers */
- igb_setup_transmit_structures(adapter);
- igb_initialize_transmit_units(adapter);
-
- /* Setup Multicast table */
- igb_set_multi(adapter);
-
- /*
- ** Figure out the desired mbuf pool
- ** for doing jumbo/packetsplit
- */
- if (adapter->max_frame_size <= 2048)
- adapter->rx_mbuf_sz = MCLBYTES;
- else if (adapter->max_frame_size <= 4096)
- adapter->rx_mbuf_sz = MJUMPAGESIZE;
- else
- adapter->rx_mbuf_sz = MJUM9BYTES;
-
- /* Prepare receive descriptors and buffers */
- if (igb_setup_receive_structures(adapter)) {
- device_printf(dev, "Could not setup receive structures\n");
- return;
- }
- igb_initialize_receive_units(adapter);
-
- /* Enable VLAN support */
- if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
- igb_setup_vlan_hw_support(adapter);
-
- /* Don't lose promiscuous settings */
- igb_set_promisc(adapter);
-
- ifp->if_drv_flags |= IFF_DRV_RUNNING;
- ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
-
- callout_reset(&adapter->timer, hz, igb_local_timer, adapter);
- e1000_clear_hw_cntrs_base_generic(&adapter->hw);
-
- if (adapter->msix > 1) /* Set up queue routing */
- igb_configure_queues(adapter);
-
- /* this clears any pending interrupts */
- E1000_READ_REG(&adapter->hw, E1000_ICR);
-#ifdef DEVICE_POLLING
- /*
- * Only enable interrupts if we are not polling, make sure
- * they are off otherwise.
- */
- if (ifp->if_capenable & IFCAP_POLLING)
- igb_disable_intr(adapter);
- else
-#endif /* DEVICE_POLLING */
- {
- igb_enable_intr(adapter);
- E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
- }
-
- /* Set Energy Efficient Ethernet */
- e1000_set_eee_i350(&adapter->hw);
-
- /* Don't reset the phy next time init gets called */
- adapter->hw.phy.reset_disable = TRUE;
-}
-
-static void
-igb_init(void *arg)
-{
- struct adapter *adapter = arg;
-
- IGB_CORE_LOCK(adapter);
- igb_init_locked(adapter);
- IGB_CORE_UNLOCK(adapter);
-}
-
-
-static void
-igb_handle_que(void *context, int pending)
-{
- struct igb_queue *que = context;
- struct adapter *adapter = que->adapter;
- struct tx_ring *txr = que->txr;
- struct ifnet *ifp = adapter->ifp;
-
- if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
- bool more;
-
- more = igb_rxeof(que, -1, NULL);
-
- IGB_TX_LOCK(txr);
- if (igb_txeof(txr))
- more = TRUE;
-#if __FreeBSD_version >= 800000
- if (!drbr_empty(ifp, txr->br))
- igb_mq_start_locked(ifp, txr, NULL);
-#else
- igb_start_locked(txr, ifp);
-#endif
- IGB_TX_UNLOCK(txr);
- if (more || (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
- taskqueue_enqueue(que->tq, &que->que_task);
- return;
- }
- }
-
-#ifdef DEVICE_POLLING
- if (ifp->if_capenable & IFCAP_POLLING)
- return;
-#endif
- /* Reenable this interrupt */
- if (que->eims)
- E1000_WRITE_REG(&adapter->hw, E1000_EIMS, que->eims);
- else
- igb_enable_intr(adapter);
-}
-
-/* Deal with link in a sleepable context */
-static void
-igb_handle_link(void *context, int pending)
-{
- struct adapter *adapter = context;
-
- adapter->hw.mac.get_link_status = 1;
- igb_update_link_status(adapter);
-}
-
-/*********************************************************************
- *
- * MSI/Legacy Deferred
- * Interrupt Service routine
- *
- *********************************************************************/
-static int
-igb_irq_fast(void *arg)
-{
- struct adapter *adapter = arg;
- struct igb_queue *que = adapter->queues;
- u32 reg_icr;
-
-
- reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
-
- /* Hot eject? */
- if (reg_icr == 0xffffffff)
- return FILTER_STRAY;
-
- /* Definitely not our interrupt. */
- if (reg_icr == 0x0)
- return FILTER_STRAY;
-
- if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
- return FILTER_STRAY;
-
- /*
- * Mask interrupts until the taskqueue is finished running. This is
- * cheap, just assume that it is needed. This also works around the
- * MSI message reordering errata on certain systems.
- */
- igb_disable_intr(adapter);
- taskqueue_enqueue(que->tq, &que->que_task);
-
- /* Link status change */
- if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
- taskqueue_enqueue(que->tq, &adapter->link_task);
-
- if (reg_icr & E1000_ICR_RXO)
- adapter->rx_overruns++;
- return FILTER_HANDLED;
-}
-
-#ifdef DEVICE_POLLING
-/*********************************************************************
- *
- * Legacy polling routine : if using this code you MUST be sure that
- * multiqueue is not defined, ie, set igb_num_queues to 1.
- *
- *********************************************************************/
-#if __FreeBSD_version >= 800000
-#define POLL_RETURN_COUNT(a) (a)
-static int
-#else
-#define POLL_RETURN_COUNT(a)
-static void
-#endif
-igb_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
-{
- struct adapter *adapter = ifp->if_softc;
- struct igb_queue *que = adapter->queues;
- struct tx_ring *txr = adapter->tx_rings;
- u32 reg_icr, rx_done = 0;
- u32 loop = IGB_MAX_LOOP;
- bool more;
-
- IGB_CORE_LOCK(adapter);
- if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
- IGB_CORE_UNLOCK(adapter);
- return POLL_RETURN_COUNT(rx_done);
- }
-
- if (cmd == POLL_AND_CHECK_STATUS) {
- reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
- /* Link status change */
- if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
- igb_handle_link(adapter, 0);
-
- if (reg_icr & E1000_ICR_RXO)
- adapter->rx_overruns++;
- }
- IGB_CORE_UNLOCK(adapter);
-
- igb_rxeof(que, count, &rx_done);
-
- IGB_TX_LOCK(txr);
- do {
- more = igb_txeof(txr);
- } while (loop-- && more);
-#if __FreeBSD_version >= 800000
- if (!drbr_empty(ifp, txr->br))
- igb_mq_start_locked(ifp, txr, NULL);
-#else
- igb_start_locked(txr, ifp);
-#endif
- IGB_TX_UNLOCK(txr);
- return POLL_RETURN_COUNT(rx_done);
-}
-#endif /* DEVICE_POLLING */
-
-/*********************************************************************
- *
- * MSIX TX Interrupt Service routine
- *
- **********************************************************************/
-static void
-igb_msix_que(void *arg)
-{
- struct igb_queue *que = arg;
- struct adapter *adapter = que->adapter;
- struct tx_ring *txr = que->txr;
- struct rx_ring *rxr = que->rxr;
- u32 newitr = 0;
- bool more_tx, more_rx;
-
- E1000_WRITE_REG(&adapter->hw, E1000_EIMC, que->eims);
- ++que->irqs;
-
- IGB_TX_LOCK(txr);
- more_tx = igb_txeof(txr);
- IGB_TX_UNLOCK(txr);
-
- more_rx = igb_rxeof(que, adapter->rx_process_limit, NULL);
-
- if (igb_enable_aim == FALSE)
- goto no_calc;
- /*
- ** Do Adaptive Interrupt Moderation:
- ** - Write out last calculated setting
- ** - Calculate based on average size over
- ** the last interval.
- */
- if (que->eitr_setting)
- E1000_WRITE_REG(&adapter->hw,
- E1000_EITR(que->msix), que->eitr_setting);
-
- que->eitr_setting = 0;
-
- /* Idle, do nothing */
- if ((txr->bytes == 0) && (rxr->bytes == 0))
- goto no_calc;
-
- /* Used half Default if sub-gig */
- if (adapter->link_speed != 1000)
- newitr = IGB_DEFAULT_ITR / 2;
- else {
- if ((txr->bytes) && (txr->packets))
- newitr = txr->bytes/txr->packets;
- if ((rxr->bytes) && (rxr->packets))
- newitr = max(newitr,
- (rxr->bytes / rxr->packets));
- newitr += 24; /* account for hardware frame, crc */
- /* set an upper boundary */
- newitr = min(newitr, 3000);
- /* Be nice to the mid range */
- if ((newitr > 300) && (newitr < 1200))
- newitr = (newitr / 3);
- else
- newitr = (newitr / 2);
- }
- newitr &= 0x7FFC; /* Mask invalid bits */
- if (adapter->hw.mac.type == e1000_82575)
- newitr |= newitr << 16;
- else
- newitr |= E1000_EITR_CNT_IGNR;
-
- /* save for next interrupt */
- que->eitr_setting = newitr;
-
- /* Reset state */
- txr->bytes = 0;
- txr->packets = 0;
- rxr->bytes = 0;
- rxr->packets = 0;
-
-no_calc:
- /* Schedule a clean task if needed*/
- if (more_tx || more_rx ||
- (adapter->ifp->if_drv_flags & IFF_DRV_OACTIVE))
- taskqueue_enqueue(que->tq, &que->que_task);
- else
- /* Reenable this interrupt */
- E1000_WRITE_REG(&adapter->hw, E1000_EIMS, que->eims);
- return;
-}
-
-
-/*********************************************************************
- *
- * MSIX Link Interrupt Service routine
- *
- **********************************************************************/
-
-static void
-igb_msix_link(void *arg)
-{
- struct adapter *adapter = arg;
- u32 icr;
-
- ++adapter->link_irq;
- icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
- if (!(icr & E1000_ICR_LSC))
- goto spurious;
- igb_handle_link(adapter, 0);
-
-spurious:
- /* Rearm */
- E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
- E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
- return;
-}
-
-
-/*********************************************************************
- *
- * Media Ioctl callback
- *
- * This routine is called whenever the user queries the status of
- * the interface using ifconfig.
- *
- **********************************************************************/
-static void
-igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
-{
- struct adapter *adapter = ifp->if_softc;
- u_char fiber_type = IFM_1000_SX;
-
- INIT_DEBUGOUT("igb_media_status: begin");
-
- IGB_CORE_LOCK(adapter);
- igb_update_link_status(adapter);
-
- ifmr->ifm_status = IFM_AVALID;
- ifmr->ifm_active = IFM_ETHER;
-
- if (!adapter->link_active) {
- IGB_CORE_UNLOCK(adapter);
- return;
- }
-
- ifmr->ifm_status |= IFM_ACTIVE;
-
- if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
- (adapter->hw.phy.media_type == e1000_media_type_internal_serdes))
- ifmr->ifm_active |= fiber_type | IFM_FDX;
- else {
- switch (adapter->link_speed) {
- case 10:
- ifmr->ifm_active |= IFM_10_T;
- break;
- case 100:
- ifmr->ifm_active |= IFM_100_TX;
- break;
- case 1000:
- ifmr->ifm_active |= IFM_1000_T;
- break;
- }
- if (adapter->link_duplex == FULL_DUPLEX)
- ifmr->ifm_active |= IFM_FDX;
- else
- ifmr->ifm_active |= IFM_HDX;
- }
- IGB_CORE_UNLOCK(adapter);
-}
-
-/*********************************************************************
- *
- * Media Ioctl callback
- *
- * This routine is called when the user changes speed/duplex using
- * media/mediopt option with ifconfig.
- *
- **********************************************************************/
-static int
-igb_media_change(struct ifnet *ifp)
-{
- struct adapter *adapter = ifp->if_softc;
- struct ifmedia *ifm = &adapter->media;
-
- INIT_DEBUGOUT("igb_media_change: begin");
-
- if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
- return (EINVAL);
-
- IGB_CORE_LOCK(adapter);
- switch (IFM_SUBTYPE(ifm->ifm_media)) {
- case IFM_AUTO:
- adapter->hw.mac.autoneg = DO_AUTO_NEG;
- adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
- break;
- case IFM_1000_LX:
- case IFM_1000_SX:
- case IFM_1000_T:
- adapter->hw.mac.autoneg = DO_AUTO_NEG;
- adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
- break;
- case IFM_100_TX:
- adapter->hw.mac.autoneg = FALSE;
- adapter->hw.phy.autoneg_advertised = 0;
- if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
- adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
- else
- adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
- break;
- case IFM_10_T:
- adapter->hw.mac.autoneg = FALSE;
- adapter->hw.phy.autoneg_advertised = 0;
- if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
- adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
- else
- adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
- break;
- default:
- device_printf(adapter->dev, "Unsupported media type\n");
- }
-
- igb_init_locked(adapter);
- IGB_CORE_UNLOCK(adapter);
-
- return (0);
-}
-
-
-/*********************************************************************
- *
- * This routine maps the mbufs to Advanced TX descriptors.
- * used by the 82575 adapter.
- *
- **********************************************************************/
-
-static int
-igb_xmit(struct tx_ring *txr, struct mbuf **m_headp)
-{
- struct adapter *adapter = txr->adapter;
- bus_dma_segment_t segs[IGB_MAX_SCATTER];
- bus_dmamap_t map;
- struct igb_tx_buffer *tx_buffer, *tx_buffer_mapped;
- union e1000_adv_tx_desc *txd = NULL;
- struct mbuf *m_head;
- u32 olinfo_status = 0, cmd_type_len = 0;
- int nsegs, i, j, error, first, last = 0;
- u32 hdrlen = 0;
-
- m_head = *m_headp;
-
-
- /* Set basic descriptor constants */
- cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
- cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
- if (m_head->m_flags & M_VLANTAG)
- cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
-
- /*
- * Map the packet for DMA.
- *
- * Capture the first descriptor index,
- * this descriptor will have the index
- * of the EOP which is the only one that
- * now gets a DONE bit writeback.
- */
- first = txr->next_avail_desc;
- tx_buffer = &txr->tx_buffers[first];
- tx_buffer_mapped = tx_buffer;
- map = tx_buffer->map;
-
- error = bus_dmamap_load_mbuf_sg(txr->txtag, map,
- *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
-
- if (error == EFBIG) {
- struct mbuf *m;
-
- m = m_defrag(*m_headp, M_DONTWAIT);
- if (m == NULL) {
- adapter->mbuf_defrag_failed++;
- m_freem(*m_headp);
- *m_headp = NULL;
- return (ENOBUFS);
- }
- *m_headp = m;
-
- /* Try it again */
- error = bus_dmamap_load_mbuf_sg(txr->txtag, map,
- *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
-
- if (error == ENOMEM) {
- adapter->no_tx_dma_setup++;
- return (error);
- } else if (error != 0) {
- adapter->no_tx_dma_setup++;
- m_freem(*m_headp);
- *m_headp = NULL;
- return (error);
- }
- } else if (error == ENOMEM) {
- adapter->no_tx_dma_setup++;
- return (error);
- } else if (error != 0) {
- adapter->no_tx_dma_setup++;
- m_freem(*m_headp);
- *m_headp = NULL;
- return (error);
- }
-
- /* Check again to be sure we have enough descriptors */
- if (nsegs > (txr->tx_avail - 2)) {
- txr->no_desc_avail++;
- bus_dmamap_unload(txr->txtag, map);
- return (ENOBUFS);
- }
- m_head = *m_headp;
-
- /*
- * Set up the context descriptor:
- * used when any hardware offload is done.
- * This includes CSUM, VLAN, and TSO. It
- * will use the first descriptor.
- */
- if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
- if (igb_tso_setup(txr, m_head, &hdrlen)) {
- cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
- olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
- olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
- } else
- return (ENXIO);
- } else if (igb_tx_ctx_setup(txr, m_head))
- olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
-
- /* Calculate payload length */
- olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
- << E1000_ADVTXD_PAYLEN_SHIFT);
-
- /* 82575 needs the queue index added */
- if (adapter->hw.mac.type == e1000_82575)
- olinfo_status |= txr->me << 4;
-
- /* Set up our transmit descriptors */
- i = txr->next_avail_desc;
- for (j = 0; j < nsegs; j++) {
- bus_size_t seg_len;
- bus_addr_t seg_addr;
-
- tx_buffer = &txr->tx_buffers[i];
- txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
- seg_addr = segs[j].ds_addr;
- seg_len = segs[j].ds_len;
-
- txd->read.buffer_addr = htole64(seg_addr);
- txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
- txd->read.olinfo_status = htole32(olinfo_status);
- last = i;
- if (++i == adapter->num_tx_desc)
- i = 0;
- tx_buffer->m_head = NULL;
- tx_buffer->next_eop = -1;
- }
-
- txr->next_avail_desc = i;
- txr->tx_avail -= nsegs;
-
- tx_buffer->m_head = m_head;
- tx_buffer_mapped->map = tx_buffer->map;
- tx_buffer->map = map;
- bus_dmamap_sync(txr->txtag, map, BUS_DMASYNC_PREWRITE);
-
- /*
- * Last Descriptor of Packet
- * needs End Of Packet (EOP)
- * and Report Status (RS)
- */
- txd->read.cmd_type_len |=
- htole32(E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_RS);
- /*
- * Keep track in the first buffer which
- * descriptor will be written back
- */
- tx_buffer = &txr->tx_buffers[first];
- tx_buffer->next_eop = last;
- txr->watchdog_time = ticks;
-
- /*
- * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
- * that this frame is available to transmit.
- */
- bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
- BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
- E1000_WRITE_REG(&adapter->hw, E1000_TDT(txr->me), i);
- ++txr->tx_packets;
-
- return (0);
-
-}
-
-static void
-igb_set_promisc(struct adapter *adapter)
-{
- struct ifnet *ifp = adapter->ifp;
- struct e1000_hw *hw = &adapter->hw;
- u32 reg;
-
- if (adapter->vf_ifp) {
- e1000_promisc_set_vf(hw, e1000_promisc_enabled);
- return;
- }
-
- reg = E1000_READ_REG(hw, E1000_RCTL);
- if (ifp->if_flags & IFF_PROMISC) {
- reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
- E1000_WRITE_REG(hw, E1000_RCTL, reg);
- } else if (ifp->if_flags & IFF_ALLMULTI) {
- reg |= E1000_RCTL_MPE;
- reg &= ~E1000_RCTL_UPE;
- E1000_WRITE_REG(hw, E1000_RCTL, reg);
- }
-}
-
-static void
-igb_disable_promisc(struct adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 reg;
-
- if (adapter->vf_ifp) {
- e1000_promisc_set_vf(hw, e1000_promisc_disabled);
- return;
- }
- reg = E1000_READ_REG(hw, E1000_RCTL);
- reg &= (~E1000_RCTL_UPE);
- reg &= (~E1000_RCTL_MPE);
- E1000_WRITE_REG(hw, E1000_RCTL, reg);
-}
-
-
-/*********************************************************************
- * Multicast Update
- *
- * This routine is called whenever multicast address list is updated.
- *
- **********************************************************************/
-
-static void
-igb_set_multi(struct adapter *adapter)
-{
- struct ifnet *ifp = adapter->ifp;
- struct ifmultiaddr *ifma;
- u32 reg_rctl = 0;
- u8 *mta;
-
- int mcnt = 0;
-
- IOCTL_DEBUGOUT("igb_set_multi: begin");
-
- mta = adapter->mta;
- bzero(mta, sizeof(uint8_t) * ETH_ADDR_LEN *
- MAX_NUM_MULTICAST_ADDRESSES);
-
-#if __FreeBSD_version < 800000
- IF_ADDR_LOCK(ifp);
-#else
- if_maddr_rlock(ifp);
-#endif
- TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
- if (ifma->ifma_addr->sa_family != AF_LINK)
- continue;
-
- if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
- break;
-
- bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
- &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
- mcnt++;
- }
-#if __FreeBSD_version < 800000
- IF_ADDR_UNLOCK(ifp);
-#else
- if_maddr_runlock(ifp);
-#endif
-
- if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
- reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
- reg_rctl |= E1000_RCTL_MPE;
- E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
- } else
- e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
-}
-
-
-/*********************************************************************
- * Timer routine:
- * This routine checks for link status,
- * updates statistics, and does the watchdog.
- *
- **********************************************************************/
-
-static void
-igb_local_timer(void *arg)
-{
- struct adapter *adapter = arg;
- device_t dev = adapter->dev;
- struct tx_ring *txr = adapter->tx_rings;
-
-
- IGB_CORE_LOCK_ASSERT(adapter);
-
- igb_update_link_status(adapter);
- igb_update_stats_counters(adapter);
-
- /*
- ** If flow control has paused us since last checking
- ** it invalidates the watchdog timing, so dont run it.
- */
- if (adapter->pause_frames) {
- adapter->pause_frames = 0;
- goto out;
- }
-
- /*
- ** Watchdog: check for time since any descriptor was cleaned
- */
- for (int i = 0; i < adapter->num_queues; i++, txr++)
- if (txr->queue_status == IGB_QUEUE_HUNG)
- goto timeout;
-out:
- callout_reset(&adapter->timer, hz, igb_local_timer, adapter);
-#ifndef DEVICE_POLLING
- /* Schedule all queue interrupts - deadlock protection */
- E1000_WRITE_REG(&adapter->hw, E1000_EICS, adapter->que_mask);
-#endif
- return;
-
-timeout:
- device_printf(adapter->dev, "Watchdog timeout -- resetting\n");
- device_printf(dev,"Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
- E1000_READ_REG(&adapter->hw, E1000_TDH(txr->me)),
- E1000_READ_REG(&adapter->hw, E1000_TDT(txr->me)));
- device_printf(dev,"TX(%d) desc avail = %d,"
- "Next TX to Clean = %d\n",
- txr->me, txr->tx_avail, txr->next_to_clean);
- adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
- adapter->watchdog_events++;
- igb_init_locked(adapter);
-}
-
-static void
-igb_update_link_status(struct adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct ifnet *ifp = adapter->ifp;
- device_t dev = adapter->dev;
- struct tx_ring *txr = adapter->tx_rings;
- u32 link_check, thstat, ctrl;
-
- link_check = thstat = ctrl = 0;
-
- /* Get the cached link value or read for real */
- switch (hw->phy.media_type) {
- case e1000_media_type_copper:
- if (hw->mac.get_link_status) {
- /* Do the work to read phy */
- e1000_check_for_link(hw);
- link_check = !hw->mac.get_link_status;
- } else
- link_check = TRUE;
- break;
- case e1000_media_type_fiber:
- e1000_check_for_link(hw);
- link_check = (E1000_READ_REG(hw, E1000_STATUS) &
- E1000_STATUS_LU);
- break;
- case e1000_media_type_internal_serdes:
- e1000_check_for_link(hw);
- link_check = adapter->hw.mac.serdes_has_link;
- break;
- /* VF device is type_unknown */
- case e1000_media_type_unknown:
- e1000_check_for_link(hw);
- link_check = !hw->mac.get_link_status;
- /* Fall thru */
- default:
- break;
- }
-
- /* Check for thermal downshift or shutdown */
- if (hw->mac.type == e1000_i350) {
- thstat = E1000_READ_REG(hw, E1000_THSTAT);
- ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
- }
-
- /* Now we check if a transition has happened */
- if (link_check && (adapter->link_active == 0)) {
- e1000_get_speed_and_duplex(&adapter->hw,
- &adapter->link_speed, &adapter->link_duplex);
- if (bootverbose)
- device_printf(dev, "Link is up %d Mbps %s\n",
- adapter->link_speed,
- ((adapter->link_duplex == FULL_DUPLEX) ?
- "Full Duplex" : "Half Duplex"));
- adapter->link_active = 1;
- ifp->if_baudrate = adapter->link_speed * 1000000;
- if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
- (thstat & E1000_THSTAT_LINK_THROTTLE))
- device_printf(dev, "Link: thermal downshift\n");
- /* This can sleep */
- if_link_state_change(ifp, LINK_STATE_UP);
- } else if (!link_check && (adapter->link_active == 1)) {
- ifp->if_baudrate = adapter->link_speed = 0;
- adapter->link_duplex = 0;
- if (bootverbose)
- device_printf(dev, "Link is Down\n");
- if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
- (thstat & E1000_THSTAT_PWR_DOWN))
- device_printf(dev, "Link: thermal shutdown\n");
- adapter->link_active = 0;
- /* This can sleep */
- if_link_state_change(ifp, LINK_STATE_DOWN);
- /* Turn off watchdogs */
- for (int i = 0; i < adapter->num_queues; i++, txr++)
- txr->queue_status = IGB_QUEUE_IDLE;
- }
-}
-
-/*********************************************************************
- *
- * This routine disables all traffic on the adapter by issuing a
- * global reset on the MAC and deallocates TX/RX buffers.
- *
- **********************************************************************/
-
-static void
-igb_stop(void *arg)
-{
- struct adapter *adapter = arg;
- struct ifnet *ifp = adapter->ifp;
- struct tx_ring *txr = adapter->tx_rings;
-
- IGB_CORE_LOCK_ASSERT(adapter);
-
- INIT_DEBUGOUT("igb_stop: begin");
-
- igb_disable_intr(adapter);
-
- callout_stop(&adapter->timer);
-
- /* Tell the stack that the interface is no longer active */
- ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
-
- /* Unarm watchdog timer. */
- for (int i = 0; i < adapter->num_queues; i++, txr++) {
- IGB_TX_LOCK(txr);
- txr->queue_status = IGB_QUEUE_IDLE;
- IGB_TX_UNLOCK(txr);
- }
-
- e1000_reset_hw(&adapter->hw);
- E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
-
- e1000_led_off(&adapter->hw);
- e1000_cleanup_led(&adapter->hw);
-}
-
-
-/*********************************************************************
- *
- * Determine hardware revision.
- *
- **********************************************************************/
-static void
-igb_identify_hardware(struct adapter *adapter)
-{
- device_t dev = adapter->dev;
-
- /* Make sure our PCI config space has the necessary stuff set */
- adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
- if (!((adapter->hw.bus.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
- (adapter->hw.bus.pci_cmd_word & PCIM_CMD_MEMEN))) {
- INIT_DEBUGOUT("Memory Access and/or Bus Master "
- "bits were not set!\n");
- adapter->hw.bus.pci_cmd_word |=
- (PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN);
- pci_write_config(dev, PCIR_COMMAND,
- adapter->hw.bus.pci_cmd_word, 2);
- }
-
- /* Save off the information about this board */
- adapter->hw.vendor_id = pci_get_vendor(dev);
- adapter->hw.device_id = pci_get_device(dev);
- adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
- adapter->hw.subsystem_vendor_id =
- pci_read_config(dev, PCIR_SUBVEND_0, 2);
- adapter->hw.subsystem_device_id =
- pci_read_config(dev, PCIR_SUBDEV_0, 2);
-
- /* Set MAC type early for PCI setup */
- e1000_set_mac_type(&adapter->hw);
-
- /* Are we a VF device? */
- if ((adapter->hw.mac.type == e1000_vfadapt) ||
- (adapter->hw.mac.type == e1000_vfadapt_i350))
- adapter->vf_ifp = 1;
- else
- adapter->vf_ifp = 0;
-}
-
-static int
-igb_allocate_pci_resources(struct adapter *adapter)
-{
- device_t dev = adapter->dev;
- int rid;
-
- rid = PCIR_BAR(0);
- adapter->pci_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
- &rid, RF_ACTIVE);
- if (adapter->pci_mem == NULL) {
- device_printf(dev, "Unable to allocate bus resource: memory\n");
- return (ENXIO);
- }
- adapter->osdep.mem_bus_space_tag =
- rman_get_bustag(adapter->pci_mem);
- adapter->osdep.mem_bus_space_handle =
- rman_get_bushandle(adapter->pci_mem);
- adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
-
- adapter->num_queues = 1; /* Defaults for Legacy or MSI */
-
- /* This will setup either MSI/X or MSI */
- adapter->msix = igb_setup_msix(adapter);
- adapter->hw.back = &adapter->osdep;
-
- return (0);
-}
-
-/*********************************************************************
- *
- * Setup the Legacy or MSI Interrupt handler
- *
- **********************************************************************/
-static int
-igb_allocate_legacy(struct adapter *adapter)
-{
- device_t dev = adapter->dev;
- struct igb_queue *que = adapter->queues;
- int error, rid = 0;
-
- /* Turn off all interrupts */
- E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
-
- /* MSI RID is 1 */
- if (adapter->msix == 1)
- rid = 1;
-
- /* We allocate a single interrupt resource */
- adapter->res = bus_alloc_resource_any(dev,
- SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
- if (adapter->res == NULL) {
- device_printf(dev, "Unable to allocate bus resource: "
- "interrupt\n");
- return (ENXIO);
- }
-
- /*
- * Try allocating a fast interrupt and the associated deferred
- * processing contexts.
- */
- TASK_INIT(&que->que_task, 0, igb_handle_que, que);
- /* Make tasklet for deferred link handling */
- TASK_INIT(&adapter->link_task, 0, igb_handle_link, adapter);
- que->tq = taskqueue_create_fast("igb_taskq", M_NOWAIT,
- taskqueue_thread_enqueue, &que->tq);
- taskqueue_start_threads(&que->tq, 1, PI_NET, "%s taskq",
- device_get_nameunit(adapter->dev));
- if ((error = bus_setup_intr(dev, adapter->res,
- INTR_TYPE_NET | INTR_MPSAFE, igb_irq_fast, NULL,
- adapter, &adapter->tag)) != 0) {
- device_printf(dev, "Failed to register fast interrupt "
- "handler: %d\n", error);
- taskqueue_free(que->tq);
- que->tq = NULL;
- return (error);
- }
-
- return (0);
-}
-
-
-/*********************************************************************
- *
- * Setup the MSIX Queue Interrupt handlers:
- *
- **********************************************************************/
-static int
-igb_allocate_msix(struct adapter *adapter)
-{
- device_t dev = adapter->dev;
- struct igb_queue *que = adapter->queues;
- int error, rid, vector = 0;
-
-
- for (int i = 0; i < adapter->num_queues; i++, vector++, que++) {
- rid = vector +1;
- que->res = bus_alloc_resource_any(dev,
- SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
- if (que->res == NULL) {
- device_printf(dev,
- "Unable to allocate bus resource: "
- "MSIX Queue Interrupt\n");
- return (ENXIO);
- }
- error = bus_setup_intr(dev, que->res,
- INTR_TYPE_NET | INTR_MPSAFE, NULL,
- igb_msix_que, que, &que->tag);
- if (error) {
- que->res = NULL;
- device_printf(dev, "Failed to register Queue handler");
- return (error);
- }
-#if __FreeBSD_version >= 800504
- bus_describe_intr(dev, que->res, que->tag, "que %d", i);
-#endif
- que->msix = vector;
- if (adapter->hw.mac.type == e1000_82575)
- que->eims = E1000_EICR_TX_QUEUE0 << i;
- else
- que->eims = 1 << vector;
- /*
- ** Bind the msix vector, and thus the
- ** rings to the corresponding cpu.
- */
- if (adapter->num_queues > 1)
- bus_bind_intr(dev, que->res, i);
- /* Make tasklet for deferred handling */
- TASK_INIT(&que->que_task, 0, igb_handle_que, que);
- que->tq = taskqueue_create_fast("igb_que", M_NOWAIT,
- taskqueue_thread_enqueue, &que->tq);
- taskqueue_start_threads(&que->tq, 1, PI_NET, "%s que",
- device_get_nameunit(adapter->dev));
- }
-
- /* And Link */
- rid = vector + 1;
- adapter->res = bus_alloc_resource_any(dev,
- SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
- if (adapter->res == NULL) {
- device_printf(dev,
- "Unable to allocate bus resource: "
- "MSIX Link Interrupt\n");
- return (ENXIO);
- }
- if ((error = bus_setup_intr(dev, adapter->res,
- INTR_TYPE_NET | INTR_MPSAFE, NULL,
- igb_msix_link, adapter, &adapter->tag)) != 0) {
- device_printf(dev, "Failed to register Link handler");
- return (error);
- }
-#if __FreeBSD_version >= 800504
- bus_describe_intr(dev, adapter->res, adapter->tag, "link");
-#endif
- adapter->linkvec = vector;
-
- return (0);
-}
-
-
-static void
-igb_configure_queues(struct adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct igb_queue *que;
- u32 tmp, ivar = 0, newitr = 0;
-
- /* First turn on RSS capability */
- if (adapter->hw.mac.type != e1000_82575)
- E1000_WRITE_REG(hw, E1000_GPIE,
- E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
- E1000_GPIE_PBA | E1000_GPIE_NSICR);
-
- /* Turn on MSIX */
- switch (adapter->hw.mac.type) {
- case e1000_82580:
- case e1000_i350:
- case e1000_vfadapt:
- case e1000_vfadapt_i350:
- /* RX entries */
- for (int i = 0; i < adapter->num_queues; i++) {
- u32 index = i >> 1;
- ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
- que = &adapter->queues[i];
- if (i & 1) {
- ivar &= 0xFF00FFFF;
- ivar |= (que->msix | E1000_IVAR_VALID) << 16;
- } else {
- ivar &= 0xFFFFFF00;
- ivar |= que->msix | E1000_IVAR_VALID;
- }
- E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
- }
- /* TX entries */
- for (int i = 0; i < adapter->num_queues; i++) {
- u32 index = i >> 1;
- ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
- que = &adapter->queues[i];
- if (i & 1) {
- ivar &= 0x00FFFFFF;
- ivar |= (que->msix | E1000_IVAR_VALID) << 24;
- } else {
- ivar &= 0xFFFF00FF;
- ivar |= (que->msix | E1000_IVAR_VALID) << 8;
- }
- E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
- adapter->que_mask |= que->eims;
- }
-
- /* And for the link interrupt */
- ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
- adapter->link_mask = 1 << adapter->linkvec;
- E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
- break;
- case e1000_82576:
- /* RX entries */
- for (int i = 0; i < adapter->num_queues; i++) {
- u32 index = i & 0x7; /* Each IVAR has two entries */
- ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
- que = &adapter->queues[i];
- if (i < 8) {
- ivar &= 0xFFFFFF00;
- ivar |= que->msix | E1000_IVAR_VALID;
- } else {
- ivar &= 0xFF00FFFF;
- ivar |= (que->msix | E1000_IVAR_VALID) << 16;
- }
- E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
- adapter->que_mask |= que->eims;
- }
- /* TX entries */
- for (int i = 0; i < adapter->num_queues; i++) {
- u32 index = i & 0x7; /* Each IVAR has two entries */
- ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
- que = &adapter->queues[i];
- if (i < 8) {
- ivar &= 0xFFFF00FF;
- ivar |= (que->msix | E1000_IVAR_VALID) << 8;
- } else {
- ivar &= 0x00FFFFFF;
- ivar |= (que->msix | E1000_IVAR_VALID) << 24;
- }
- E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
- adapter->que_mask |= que->eims;
- }
-
- /* And for the link interrupt */
- ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
- adapter->link_mask = 1 << adapter->linkvec;
- E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
- break;
-
- case e1000_82575:
- /* enable MSI-X support*/
- tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
- tmp |= E1000_CTRL_EXT_PBA_CLR;
- /* Auto-Mask interrupts upon ICR read. */
- tmp |= E1000_CTRL_EXT_EIAME;
- tmp |= E1000_CTRL_EXT_IRCA;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
-
- /* Queues */
- for (int i = 0; i < adapter->num_queues; i++) {
- que = &adapter->queues[i];
- tmp = E1000_EICR_RX_QUEUE0 << i;
- tmp |= E1000_EICR_TX_QUEUE0 << i;
- que->eims = tmp;
- E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
- i, que->eims);
- adapter->que_mask |= que->eims;
- }
-
- /* Link */
- E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
- E1000_EIMS_OTHER);
- adapter->link_mask |= E1000_EIMS_OTHER;
- default:
- break;
- }
-
- /* Set the starting interrupt rate */
- if (igb_max_interrupt_rate > 0)
- newitr = (4000000 / igb_max_interrupt_rate) & 0x7FFC;
-
- if (hw->mac.type == e1000_82575)
- newitr |= newitr << 16;
- else
- newitr |= E1000_EITR_CNT_IGNR;
-
- for (int i = 0; i < adapter->num_queues; i++) {
- que = &adapter->queues[i];
- E1000_WRITE_REG(hw, E1000_EITR(que->msix), newitr);
- }
-
- return;
-}
-
-
-static void
-igb_free_pci_resources(struct adapter *adapter)
-{
- struct igb_queue *que = adapter->queues;
- device_t dev = adapter->dev;
- int rid;
-
- /*
- ** There is a slight possibility of a failure mode
- ** in attach that will result in entering this function
- ** before interrupt resources have been initialized, and
- ** in that case we do not want to execute the loops below
- ** We can detect this reliably by the state of the adapter
- ** res pointer.
- */
- if (adapter->res == NULL)
- goto mem;
-
- /*
- * First release all the interrupt resources:
- */
- for (int i = 0; i < adapter->num_queues; i++, que++) {
- rid = que->msix + 1;
- if (que->tag != NULL) {
- bus_teardown_intr(dev, que->res, que->tag);
- que->tag = NULL;
- }
- if (que->res != NULL)
- bus_release_resource(dev,
- SYS_RES_IRQ, rid, que->res);
- }
-
- /* Clean the Legacy or Link interrupt last */
- if (adapter->linkvec) /* we are doing MSIX */
- rid = adapter->linkvec + 1;
- else
- (adapter->msix != 0) ? (rid = 1):(rid = 0);
-
- if (adapter->tag != NULL) {
- bus_teardown_intr(dev, adapter->res, adapter->tag);
- adapter->tag = NULL;
- }
- if (adapter->res != NULL)
- bus_release_resource(dev, SYS_RES_IRQ, rid, adapter->res);
-
-mem:
- if (adapter->msix)
- pci_release_msi(dev);
-
- if (adapter->msix_mem != NULL)
- bus_release_resource(dev, SYS_RES_MEMORY,
- PCIR_BAR(IGB_MSIX_BAR), adapter->msix_mem);
-
- if (adapter->pci_mem != NULL)
- bus_release_resource(dev, SYS_RES_MEMORY,
- PCIR_BAR(0), adapter->pci_mem);
-
-}
-
-/*
- * Setup Either MSI/X or MSI
- */
-static int
-igb_setup_msix(struct adapter *adapter)
-{
- device_t dev = adapter->dev;
- int rid, want, queues, msgs;
-
- /* tuneable override */
- if (igb_enable_msix == 0)
- goto msi;
-
- /* First try MSI/X */
- rid = PCIR_BAR(IGB_MSIX_BAR);
- adapter->msix_mem = bus_alloc_resource_any(dev,
- SYS_RES_MEMORY, &rid, RF_ACTIVE);
- if (!adapter->msix_mem) {
- /* May not be enabled */
- device_printf(adapter->dev,
- "Unable to map MSIX table \n");
- goto msi;
- }
-
- msgs = pci_msix_count(dev);
- if (msgs == 0) { /* system has msix disabled */
- bus_release_resource(dev, SYS_RES_MEMORY,
- PCIR_BAR(IGB_MSIX_BAR), adapter->msix_mem);
- adapter->msix_mem = NULL;
- goto msi;
- }
-
- /* Figure out a reasonable auto config value */
- queues = (mp_ncpus > (msgs-1)) ? (msgs-1) : mp_ncpus;
-
- /* Manual override */
- if (igb_num_queues != 0)
- queues = igb_num_queues;
- if (queues > 8) /* max queues */
- queues = 8;
-
- /* Can have max of 4 queues on 82575 */
- if ((adapter->hw.mac.type == e1000_82575) && (queues > 4))
- queues = 4;
-
- /* Limit the VF devices to one queue */
- if (adapter->vf_ifp)
- queues = 1;
-
- /*
- ** One vector (RX/TX pair) per queue
- ** plus an additional for Link interrupt
- */
- want = queues + 1;
- if (msgs >= want)
- msgs = want;
- else {
- device_printf(adapter->dev,
- "MSIX Configuration Problem, "
- "%d vectors configured, but %d queues wanted!\n",
- msgs, want);
- return (ENXIO);
- }
- if ((msgs) && pci_alloc_msix(dev, &msgs) == 0) {
- device_printf(adapter->dev,
- "Using MSIX interrupts with %d vectors\n", msgs);
- adapter->num_queues = queues;
- return (msgs);
- }
-msi:
- msgs = pci_msi_count(dev);
- if (msgs == 1 && pci_alloc_msi(dev, &msgs) == 0)
- device_printf(adapter->dev,"Using MSI interrupt\n");
- return (msgs);
-}
-
-/*********************************************************************
- *
- * Set up an fresh starting state
- *
- **********************************************************************/
-static void
-igb_reset(struct adapter *adapter)
-{
- device_t dev = adapter->dev;
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_fc_info *fc = &hw->fc;
- struct ifnet *ifp = adapter->ifp;
- u32 pba = 0;
- u16 hwm;
-
- INIT_DEBUGOUT("igb_reset: begin");
-
- /* Let the firmware know the OS is in control */
- igb_get_hw_control(adapter);
-
- /*
- * Packet Buffer Allocation (PBA)
- * Writing PBA sets the receive portion of the buffer
- * the remainder is used for the transmit buffer.
- */
- switch (hw->mac.type) {
- case e1000_82575:
- pba = E1000_PBA_32K;
- break;
- case e1000_82576:
- case e1000_vfadapt:
- pba = E1000_READ_REG(hw, E1000_RXPBS);
- pba &= E1000_RXPBS_SIZE_MASK_82576;
- break;
- case e1000_82580:
- case e1000_i350:
- case e1000_vfadapt_i350:
- pba = E1000_READ_REG(hw, E1000_RXPBS);
- pba = e1000_rxpbs_adjust_82580(pba);
- break;
- pba = E1000_PBA_35K;
- default:
- break;
- }
-
- /* Special needs in case of Jumbo frames */
- if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
- u32 tx_space, min_tx, min_rx;
- pba = E1000_READ_REG(hw, E1000_PBA);
- tx_space = pba >> 16;
- pba &= 0xffff;
- min_tx = (adapter->max_frame_size +
- sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
- min_tx = roundup2(min_tx, 1024);
- min_tx >>= 10;
- min_rx = adapter->max_frame_size;
- min_rx = roundup2(min_rx, 1024);
- min_rx >>= 10;
- if (tx_space < min_tx &&
- ((min_tx - tx_space) < pba)) {
- pba = pba - (min_tx - tx_space);
- /*
- * if short on rx space, rx wins
- * and must trump tx adjustment
- */
- if (pba < min_rx)
- pba = min_rx;
- }
- E1000_WRITE_REG(hw, E1000_PBA, pba);
- }
-
- INIT_DEBUGOUT1("igb_init: pba=%dK",pba);
-
- /*
- * These parameters control the automatic generation (Tx) and
- * response (Rx) to Ethernet PAUSE frames.
- * - High water mark should allow for at least two frames to be
- * received after sending an XOFF.
- * - Low water mark works best when it is very near the high water mark.
- * This allows the receiver to restart by sending XON when it has
- * drained a bit.
- */
- hwm = min(((pba << 10) * 9 / 10),
- ((pba << 10) - 2 * adapter->max_frame_size));
-
- if (hw->mac.type < e1000_82576) {
- fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
- fc->low_water = fc->high_water - 8;
- } else {
- fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
- fc->low_water = fc->high_water - 16;
- }
-
- fc->pause_time = IGB_FC_PAUSE_TIME;
- fc->send_xon = TRUE;
-
- /* Issue a global reset */
- e1000_reset_hw(hw);
- E1000_WRITE_REG(hw, E1000_WUC, 0);
-
- if (e1000_init_hw(hw) < 0)
- device_printf(dev, "Hardware Initialization Failed\n");
-
- /* Setup DMA Coalescing */
- if ((hw->mac.type == e1000_i350) &&
- (adapter->dma_coalesce == TRUE)) {
- u32 reg;
-
- hwm = (pba - 4) << 10;
- reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
- & E1000_DMACR_DMACTHR_MASK);
-
- /* transition to L0x or L1 if available..*/
- reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
-
- /* timer = +-1000 usec in 32usec intervals */
- reg |= (1000 >> 5);
- E1000_WRITE_REG(hw, E1000_DMACR, reg);
-
- /* No lower threshold */
- E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
-
- /* set hwm to PBA - 2 * max frame size */
- E1000_WRITE_REG(hw, E1000_FCRTC, hwm);
-
- /* Set the interval before transition */
- reg = E1000_READ_REG(hw, E1000_DMCTLX);
- reg |= 0x800000FF; /* 255 usec */
- E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
-
- /* free space in tx packet buffer to wake from DMA coal */
- E1000_WRITE_REG(hw, E1000_DMCTXTH,
- (20480 - (2 * adapter->max_frame_size)) >> 6);
-
- /* make low power state decision controlled by DMA coal */
- reg = E1000_READ_REG(hw, E1000_PCIEMISC);
- E1000_WRITE_REG(hw, E1000_PCIEMISC,
- reg | E1000_PCIEMISC_LX_DECISION);
- device_printf(dev, "DMA Coalescing enabled\n");
- }
-
- E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
- e1000_get_phy_info(hw);
- e1000_check_for_link(hw);
- return;
-}
-
-/*********************************************************************
- *
- * Setup networking device structure and register an interface.
- *
- **********************************************************************/
-static int
-igb_setup_interface(device_t dev, struct adapter *adapter)
-{
- struct ifnet *ifp;
-
- INIT_DEBUGOUT("igb_setup_interface: begin");
-
- ifp = adapter->ifp = if_alloc(IFT_ETHER);
- if (ifp == NULL) {
- device_printf(dev, "can not allocate ifnet structure\n");
- return (-1);
- }
- if_initname(ifp, device_get_name(dev), device_get_unit(dev));
- ifp->if_mtu = ETHERMTU;
- ifp->if_init = igb_init;
- ifp->if_softc = adapter;
- ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
- ifp->if_ioctl = igb_ioctl;
- ifp->if_start = igb_start;
-#if __FreeBSD_version >= 800000
- ifp->if_transmit = igb_mq_start;
- ifp->if_qflush = igb_qflush;
-#endif
- IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1);
- ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1;
- IFQ_SET_READY(&ifp->if_snd);
-
- ether_ifattach(ifp, adapter->hw.mac.addr);
-
- ifp->if_capabilities = ifp->if_capenable = 0;
-
- ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
- ifp->if_capabilities |= IFCAP_TSO4;
- ifp->if_capabilities |= IFCAP_JUMBO_MTU;
- ifp->if_capenable = ifp->if_capabilities;
-
- /* Don't enable LRO by default */
- ifp->if_capabilities |= IFCAP_LRO;
-
-#ifdef DEVICE_POLLING
- ifp->if_capabilities |= IFCAP_POLLING;
-#endif
-
- /*
- * Tell the upper layer(s) we
- * support full VLAN capability.
- */
- ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
- ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
- ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
-
- /*
- ** Dont turn this on by default, if vlans are
- ** created on another pseudo device (eg. lagg)
- ** then vlan events are not passed thru, breaking
- ** operation, but with HW FILTER off it works. If
- ** using vlans directly on the em driver you can
- ** enable this and get full hardware tag filtering.
- */
- ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
-
- /*
- * Specify the media types supported by this adapter and register
- * callbacks to update media and link information
- */
- ifmedia_init(&adapter->media, IFM_IMASK,
- igb_media_change, igb_media_status);
- if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
- (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
- 0, NULL);
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
- } else {
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
- 0, NULL);
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
- 0, NULL);
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
- 0, NULL);
- if (adapter->hw.phy.type != e1000_phy_ife) {
- ifmedia_add(&adapter->media,
- IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
- ifmedia_add(&adapter->media,
- IFM_ETHER | IFM_1000_T, 0, NULL);
- }
- }
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
- ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
- return (0);
-}
-
-
-/*
- * Manage DMA'able memory.
- */
-static void
-igb_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
-{
- if (error)
- return;
- *(bus_addr_t *) arg = segs[0].ds_addr;
-}
-
-static int
-igb_dma_malloc(struct adapter *adapter, bus_size_t size,
- struct igb_dma_alloc *dma, int mapflags)
-{
- int error;
-
- error = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */
- IGB_DBA_ALIGN, 0, /* alignment, bounds */
- BUS_SPACE_MAXADDR, /* lowaddr */
- BUS_SPACE_MAXADDR, /* highaddr */
- NULL, NULL, /* filter, filterarg */
- size, /* maxsize */
- 1, /* nsegments */
- size, /* maxsegsize */
- 0, /* flags */
- NULL, /* lockfunc */
- NULL, /* lockarg */
- &dma->dma_tag);
- if (error) {
- device_printf(adapter->dev,
- "%s: bus_dma_tag_create failed: %d\n",
- __func__, error);
- goto fail_0;
- }
-
- error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
- BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dma->dma_map);
- if (error) {
- device_printf(adapter->dev,
- "%s: bus_dmamem_alloc(%ju) failed: %d\n",
- __func__, (uintmax_t)size, error);
- goto fail_2;
- }
-
- dma->dma_paddr = 0;
- error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
- size, igb_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT);
- if (error || dma->dma_paddr == 0) {
- device_printf(adapter->dev,
- "%s: bus_dmamap_load failed: %d\n",
- __func__, error);
- goto fail_3;
- }
-
- return (0);
-
-fail_3:
- bus_dmamap_unload(dma->dma_tag, dma->dma_map);
-fail_2:
- bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
- bus_dma_tag_destroy(dma->dma_tag);
-fail_0:
- dma->dma_map = NULL;
- dma->dma_tag = NULL;
-
- return (error);
-}
-
-static void
-igb_dma_free(struct adapter *adapter, struct igb_dma_alloc *dma)
-{
- if (dma->dma_tag == NULL)
- return;
- if (dma->dma_map != NULL) {
- bus_dmamap_sync(dma->dma_tag, dma->dma_map,
- BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
- bus_dmamap_unload(dma->dma_tag, dma->dma_map);
- bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
- dma->dma_map = NULL;
- }
- bus_dma_tag_destroy(dma->dma_tag);
- dma->dma_tag = NULL;
-}
-
-
-/*********************************************************************
- *
- * Allocate memory for the transmit and receive rings, and then
- * the descriptors associated with each, called only once at attach.
- *
- **********************************************************************/
-static int
-igb_allocate_queues(struct adapter *adapter)
-{
- device_t dev = adapter->dev;
- struct igb_queue *que = NULL;
- struct tx_ring *txr = NULL;
- struct rx_ring *rxr = NULL;
- int rsize, tsize, error = E1000_SUCCESS;
- int txconf = 0, rxconf = 0;
-
- /* First allocate the top level queue structs */
- if (!(adapter->queues =
- (struct igb_queue *) malloc(sizeof(struct igb_queue) *
- adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
- device_printf(dev, "Unable to allocate queue memory\n");
- error = ENOMEM;
- goto fail;
- }
-
- /* Next allocate the TX ring struct memory */
- if (!(adapter->tx_rings =
- (struct tx_ring *) malloc(sizeof(struct tx_ring) *
- adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
- device_printf(dev, "Unable to allocate TX ring memory\n");
- error = ENOMEM;
- goto tx_fail;
- }
-
- /* Now allocate the RX */
- if (!(adapter->rx_rings =
- (struct rx_ring *) malloc(sizeof(struct rx_ring) *
- adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
- device_printf(dev, "Unable to allocate RX ring memory\n");
- error = ENOMEM;
- goto rx_fail;
- }
-
- tsize = roundup2(adapter->num_tx_desc *
- sizeof(union e1000_adv_tx_desc), IGB_DBA_ALIGN);
- /*
- * Now set up the TX queues, txconf is needed to handle the
- * possibility that things fail midcourse and we need to
- * undo memory gracefully
- */
- for (int i = 0; i < adapter->num_queues; i++, txconf++) {
- /* Set up some basics */
- txr = &adapter->tx_rings[i];
- txr->adapter = adapter;
- txr->me = i;
-
- /* Initialize the TX lock */
- snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
- device_get_nameunit(dev), txr->me);
- mtx_init(&txr->tx_mtx, txr->mtx_name, NULL, MTX_DEF);
-
- if (igb_dma_malloc(adapter, tsize,
- &txr->txdma, BUS_DMA_NOWAIT)) {
- device_printf(dev,
- "Unable to allocate TX Descriptor memory\n");
- error = ENOMEM;
- goto err_tx_desc;
- }
- txr->tx_base = (struct e1000_tx_desc *)txr->txdma.dma_vaddr;
- bzero((void *)txr->tx_base, tsize);
-
- /* Now allocate transmit buffers for the ring */
- if (igb_allocate_transmit_buffers(txr)) {
- device_printf(dev,
- "Critical Failure setting up transmit buffers\n");
- error = ENOMEM;
- goto err_tx_desc;
- }
-#if __FreeBSD_version >= 800000
- /* Allocate a buf ring */
- txr->br = buf_ring_alloc(IGB_BR_SIZE, M_DEVBUF,
- M_WAITOK, &txr->tx_mtx);
-#endif
- }
-
- /*
- * Next the RX queues...
- */
- rsize = roundup2(adapter->num_rx_desc *
- sizeof(union e1000_adv_rx_desc), IGB_DBA_ALIGN);
- for (int i = 0; i < adapter->num_queues; i++, rxconf++) {
- rxr = &adapter->rx_rings[i];
- rxr->adapter = adapter;
- rxr->me = i;
-
- /* Initialize the RX lock */
- snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
- device_get_nameunit(dev), txr->me);
- mtx_init(&rxr->rx_mtx, rxr->mtx_name, NULL, MTX_DEF);
-
- if (igb_dma_malloc(adapter, rsize,
- &rxr->rxdma, BUS_DMA_NOWAIT)) {
- device_printf(dev,
- "Unable to allocate RxDescriptor memory\n");
- error = ENOMEM;
- goto err_rx_desc;
- }
- rxr->rx_base = (union e1000_adv_rx_desc *)rxr->rxdma.dma_vaddr;
- bzero((void *)rxr->rx_base, rsize);
-
- /* Allocate receive buffers for the ring*/
- if (igb_allocate_receive_buffers(rxr)) {
- device_printf(dev,
- "Critical Failure setting up receive buffers\n");
- error = ENOMEM;
- goto err_rx_desc;
- }
- }
-
- /*
- ** Finally set up the queue holding structs
- */
- for (int i = 0; i < adapter->num_queues; i++) {
- que = &adapter->queues[i];
- que->adapter = adapter;
- que->txr = &adapter->tx_rings[i];
- que->rxr = &adapter->rx_rings[i];
- }
-
- return (0);
-
-err_rx_desc:
- for (rxr = adapter->rx_rings; rxconf > 0; rxr++, rxconf--)
- igb_dma_free(adapter, &rxr->rxdma);
-err_tx_desc:
- for (txr = adapter->tx_rings; txconf > 0; txr++, txconf--)
- igb_dma_free(adapter, &txr->txdma);
- free(adapter->rx_rings, M_DEVBUF);
-rx_fail:
-#if __FreeBSD_version >= 800000
- buf_ring_free(txr->br, M_DEVBUF);
-#endif
- free(adapter->tx_rings, M_DEVBUF);
-tx_fail:
- free(adapter->queues, M_DEVBUF);
-fail:
- return (error);
-}
-
-/*********************************************************************
- *
- * Allocate memory for tx_buffer structures. The tx_buffer stores all
- * the information needed to transmit a packet on the wire. This is
- * called only once at attach, setup is done every reset.
- *
- **********************************************************************/
-static int
-igb_allocate_transmit_buffers(struct tx_ring *txr)
-{
- struct adapter *adapter = txr->adapter;
- device_t dev = adapter->dev;
- struct igb_tx_buffer *txbuf;
- int error, i;
-
- /*
- * Setup DMA descriptor areas.
- */
- if ((error = bus_dma_tag_create(bus_get_dma_tag(dev),
- 1, 0, /* alignment, bounds */
- BUS_SPACE_MAXADDR, /* lowaddr */
- BUS_SPACE_MAXADDR, /* highaddr */
- NULL, NULL, /* filter, filterarg */
- IGB_TSO_SIZE, /* maxsize */
- IGB_MAX_SCATTER, /* nsegments */
- PAGE_SIZE, /* maxsegsize */
- 0, /* flags */
- NULL, /* lockfunc */
- NULL, /* lockfuncarg */
- &txr->txtag))) {
- device_printf(dev,"Unable to allocate TX DMA tag\n");
- goto fail;
- }
-
- if (!(txr->tx_buffers =
- (struct igb_tx_buffer *) malloc(sizeof(struct igb_tx_buffer) *
- adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO))) {
- device_printf(dev, "Unable to allocate tx_buffer memory\n");
- error = ENOMEM;
- goto fail;
- }
-
- /* Create the descriptor buffer dma maps */
- txbuf = txr->tx_buffers;
- for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) {
- error = bus_dmamap_create(txr->txtag, 0, &txbuf->map);
- if (error != 0) {
- device_printf(dev, "Unable to create TX DMA map\n");
- goto fail;
- }
- }
-
- return 0;
-fail:
- /* We free all, it handles case where we are in the middle */
- igb_free_transmit_structures(adapter);
- return (error);
-}
-
-/*********************************************************************
- *
- * Initialize a transmit ring.
- *
- **********************************************************************/
-static void
-igb_setup_transmit_ring(struct tx_ring *txr)
-{
- struct adapter *adapter = txr->adapter;
- struct igb_tx_buffer *txbuf;
- int i;
-
- /* Clear the old descriptor contents */
- IGB_TX_LOCK(txr);
- bzero((void *)txr->tx_base,
- (sizeof(union e1000_adv_tx_desc)) * adapter->num_tx_desc);
- /* Reset indices */
- txr->next_avail_desc = 0;
- txr->next_to_clean = 0;
-
- /* Free any existing tx buffers. */
- txbuf = txr->tx_buffers;
- for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) {
- if (txbuf->m_head != NULL) {
- bus_dmamap_sync(txr->txtag, txbuf->map,
- BUS_DMASYNC_POSTWRITE);
- bus_dmamap_unload(txr->txtag, txbuf->map);
- m_freem(txbuf->m_head);
- txbuf->m_head = NULL;
- }
- /* clear the watch index */
- txbuf->next_eop = -1;
- }
-
- /* Set number of descriptors available */
- txr->tx_avail = adapter->num_tx_desc;
-
- bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
- BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
- IGB_TX_UNLOCK(txr);
-}
-
-/*********************************************************************
- *
- * Initialize all transmit rings.
- *
- **********************************************************************/
-static void
-igb_setup_transmit_structures(struct adapter *adapter)
-{
- struct tx_ring *txr = adapter->tx_rings;
-
- for (int i = 0; i < adapter->num_queues; i++, txr++)
- igb_setup_transmit_ring(txr);
-
- return;
-}
-
-/*********************************************************************
- *
- * Enable transmit unit.
- *
- **********************************************************************/
-static void
-igb_initialize_transmit_units(struct adapter *adapter)
-{
- struct tx_ring *txr = adapter->tx_rings;
- struct e1000_hw *hw = &adapter->hw;
- u32 tctl, txdctl;
-
- INIT_DEBUGOUT("igb_initialize_transmit_units: begin");
- tctl = txdctl = 0;
-
- /* Setup the Tx Descriptor Rings */
- for (int i = 0; i < adapter->num_queues; i++, txr++) {
- u64 bus_addr = txr->txdma.dma_paddr;
-
- E1000_WRITE_REG(hw, E1000_TDLEN(i),
- adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
- E1000_WRITE_REG(hw, E1000_TDBAH(i),
- (uint32_t)(bus_addr >> 32));
- E1000_WRITE_REG(hw, E1000_TDBAL(i),
- (uint32_t)bus_addr);
-
- /* Setup the HW Tx Head and Tail descriptor pointers */
- E1000_WRITE_REG(hw, E1000_TDT(i), 0);
- E1000_WRITE_REG(hw, E1000_TDH(i), 0);
-
- HW_DEBUGOUT2("Base = %x, Length = %x\n",
- E1000_READ_REG(hw, E1000_TDBAL(i)),
- E1000_READ_REG(hw, E1000_TDLEN(i)));
-
- txr->queue_status = IGB_QUEUE_IDLE;
-
- txdctl |= IGB_TX_PTHRESH;
- txdctl |= IGB_TX_HTHRESH << 8;
- txdctl |= IGB_TX_WTHRESH << 16;
- txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
- E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
- }
-
- if (adapter->vf_ifp)
- return;
-
- e1000_config_collision_dist(hw);
-
- /* Program the Transmit Control Register */
- tctl = E1000_READ_REG(hw, E1000_TCTL);
- tctl &= ~E1000_TCTL_CT;
- tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
- (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
-
- /* This write will effectively turn on the transmit unit. */
- E1000_WRITE_REG(hw, E1000_TCTL, tctl);
-}
-
-/*********************************************************************
- *
- * Free all transmit rings.
- *
- **********************************************************************/
-static void
-igb_free_transmit_structures(struct adapter *adapter)
-{
- struct tx_ring *txr = adapter->tx_rings;
-
- for (int i = 0; i < adapter->num_queues; i++, txr++) {
- IGB_TX_LOCK(txr);
- igb_free_transmit_buffers(txr);
- igb_dma_free(adapter, &txr->txdma);
- IGB_TX_UNLOCK(txr);
- IGB_TX_LOCK_DESTROY(txr);
- }
- free(adapter->tx_rings, M_DEVBUF);
-}
-
-/*********************************************************************
- *
- * Free transmit ring related data structures.
- *
- **********************************************************************/
-static void
-igb_free_transmit_buffers(struct tx_ring *txr)
-{
- struct adapter *adapter = txr->adapter;
- struct igb_tx_buffer *tx_buffer;
- int i;
-
- INIT_DEBUGOUT("free_transmit_ring: begin");
-
- if (txr->tx_buffers == NULL)
- return;
-
- tx_buffer = txr->tx_buffers;
- for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
- if (tx_buffer->m_head != NULL) {
- bus_dmamap_sync(txr->txtag, tx_buffer->map,
- BUS_DMASYNC_POSTWRITE);
- bus_dmamap_unload(txr->txtag,
- tx_buffer->map);
- m_freem(tx_buffer->m_head);
- tx_buffer->m_head = NULL;
- if (tx_buffer->map != NULL) {
- bus_dmamap_destroy(txr->txtag,
- tx_buffer->map);
- tx_buffer->map = NULL;
- }
- } else if (tx_buffer->map != NULL) {
- bus_dmamap_unload(txr->txtag,
- tx_buffer->map);
- bus_dmamap_destroy(txr->txtag,
- tx_buffer->map);
- tx_buffer->map = NULL;
- }
- }
-#if __FreeBSD_version >= 800000
- if (txr->br != NULL)
- buf_ring_free(txr->br, M_DEVBUF);
-#endif
- if (txr->tx_buffers != NULL) {
- free(txr->tx_buffers, M_DEVBUF);
- txr->tx_buffers = NULL;
- }
- if (txr->txtag != NULL) {
- bus_dma_tag_destroy(txr->txtag);
- txr->txtag = NULL;
- }
- return;
-}
-
-/**********************************************************************
- *
- * Setup work for hardware segmentation offload (TSO)
- *
- **********************************************************************/
-static boolean_t
-igb_tso_setup(struct tx_ring *txr, struct mbuf *mp, u32 *hdrlen)
-{
- struct adapter *adapter = txr->adapter;
- struct e1000_adv_tx_context_desc *TXD;
- struct igb_tx_buffer *tx_buffer;
- u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
- u32 mss_l4len_idx = 0;
- u16 vtag = 0;
- int ctxd, ehdrlen, ip_hlen, tcp_hlen;
- struct ether_vlan_header *eh;
- struct ip *ip;
- struct tcphdr *th;
-
-
- /*
- * Determine where frame payload starts.
- * Jump over vlan headers if already present
- */
- eh = mtod(mp, struct ether_vlan_header *);
- if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN))
- ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
- else
- ehdrlen = ETHER_HDR_LEN;
-
- /* Ensure we have at least the IP+TCP header in the first mbuf. */
- if (mp->m_len < ehdrlen + sizeof(struct ip) + sizeof(struct tcphdr))
- return FALSE;
-
- /* Only supports IPV4 for now */
- ctxd = txr->next_avail_desc;
- tx_buffer = &txr->tx_buffers[ctxd];
- TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[ctxd];
-
- ip = (struct ip *)(mp->m_data + ehdrlen);
- if (ip->ip_p != IPPROTO_TCP)
- return FALSE; /* 0 */
- ip->ip_sum = 0;
- ip_hlen = ip->ip_hl << 2;
- th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
- th->th_sum = in_pseudo(ip->ip_src.s_addr,
- ip->ip_dst.s_addr, htons(IPPROTO_TCP));
- tcp_hlen = th->th_off << 2;
- /*
- * Calculate header length, this is used
- * in the transmit desc in igb_xmit
- */
- *hdrlen = ehdrlen + ip_hlen + tcp_hlen;
-
- /* VLAN MACLEN IPLEN */
- if (mp->m_flags & M_VLANTAG) {
- vtag = htole16(mp->m_pkthdr.ether_vtag);
- vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT);
- }
-
- vlan_macip_lens |= (ehdrlen << E1000_ADVTXD_MACLEN_SHIFT);
- vlan_macip_lens |= ip_hlen;
- TXD->vlan_macip_lens |= htole32(vlan_macip_lens);
-
- /* ADV DTYPE TUCMD */
- type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
- type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
- type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
- TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl);
-
- /* MSS L4LEN IDX */
- mss_l4len_idx |= (mp->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
- mss_l4len_idx |= (tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT);
- /* 82575 needs the queue index added */
- if (adapter->hw.mac.type == e1000_82575)
- mss_l4len_idx |= txr->me << 4;
- TXD->mss_l4len_idx = htole32(mss_l4len_idx);
-
- TXD->seqnum_seed = htole32(0);
- tx_buffer->m_head = NULL;
- tx_buffer->next_eop = -1;
-
- if (++ctxd == adapter->num_tx_desc)
- ctxd = 0;
-
- txr->tx_avail--;
- txr->next_avail_desc = ctxd;
- return TRUE;
-}
-
-
-/*********************************************************************
- *
- * Context Descriptor setup for VLAN or CSUM
- *
- **********************************************************************/
-
-static bool
-igb_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp)
-{
- struct adapter *adapter = txr->adapter;
- struct e1000_adv_tx_context_desc *TXD;
- struct igb_tx_buffer *tx_buffer;
- u32 vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
- struct ether_vlan_header *eh;
- struct ip *ip = NULL;
- struct ip6_hdr *ip6;
- int ehdrlen, ctxd, ip_hlen = 0;
- u16 etype, vtag = 0;
- u8 ipproto = 0;
- bool offload = TRUE;
-
- if ((mp->m_pkthdr.csum_flags & CSUM_OFFLOAD) == 0)
- offload = FALSE;
-
- vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
- ctxd = txr->next_avail_desc;
- tx_buffer = &txr->tx_buffers[ctxd];
- TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[ctxd];
-
- /*
- ** In advanced descriptors the vlan tag must
- ** be placed into the context descriptor, thus
- ** we need to be here just for that setup.
- */
- if (mp->m_flags & M_VLANTAG) {
- vtag = htole16(mp->m_pkthdr.ether_vtag);
- vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT);
- } else if (offload == FALSE)
- return FALSE;
-
- /*
- * Determine where frame payload starts.
- * Jump over vlan headers if already present,
- * helpful for QinQ too.
- */
- eh = mtod(mp, struct ether_vlan_header *);
- if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
- etype = ntohs(eh->evl_proto);
- ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
- } else {
- etype = ntohs(eh->evl_encap_proto);
- ehdrlen = ETHER_HDR_LEN;
- }
-
- /* Set the ether header length */
- vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
-
- switch (etype) {
- case ETHERTYPE_IP:
- ip = (struct ip *)(mp->m_data + ehdrlen);
- ip_hlen = ip->ip_hl << 2;
- if (mp->m_len < ehdrlen + ip_hlen) {
- offload = FALSE;
- break;
- }
- ipproto = ip->ip_p;
- type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
- break;
- case ETHERTYPE_IPV6:
- ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
- ip_hlen = sizeof(struct ip6_hdr);
- ipproto = ip6->ip6_nxt;
- type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
- break;
- default:
- offload = FALSE;
- break;
- }
-
- vlan_macip_lens |= ip_hlen;
- type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
-
- switch (ipproto) {
- case IPPROTO_TCP:
- if (mp->m_pkthdr.csum_flags & CSUM_TCP)
- type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
- break;
- case IPPROTO_UDP:
- if (mp->m_pkthdr.csum_flags & CSUM_UDP)
- type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
- break;
-#if __FreeBSD_version >= 800000
- case IPPROTO_SCTP:
- if (mp->m_pkthdr.csum_flags & CSUM_SCTP)
- type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP;
- break;
-#endif
- default:
- offload = FALSE;
- break;
- }
-
- /* 82575 needs the queue index added */
- if (adapter->hw.mac.type == e1000_82575)
- mss_l4len_idx = txr->me << 4;
-
- /* Now copy bits into descriptor */
- TXD->vlan_macip_lens |= htole32(vlan_macip_lens);
- TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl);
- TXD->seqnum_seed = htole32(0);
- TXD->mss_l4len_idx = htole32(mss_l4len_idx);
-
- tx_buffer->m_head = NULL;
- tx_buffer->next_eop = -1;
-
- /* We've consumed the first desc, adjust counters */
- if (++ctxd == adapter->num_tx_desc)
- ctxd = 0;
- txr->next_avail_desc = ctxd;
- --txr->tx_avail;
-
- return (offload);
-}
-
-
-/**********************************************************************
- *
- * Examine each tx_buffer in the used queue. If the hardware is done
- * processing the packet then free associated resources. The
- * tx_buffer is put back on the free queue.
- *
- * TRUE return means there's work in the ring to clean, FALSE its empty.
- **********************************************************************/
-static bool
-igb_txeof(struct tx_ring *txr)
-{
- struct adapter *adapter = txr->adapter;
- int first, last, done, processed;
- struct igb_tx_buffer *tx_buffer;
- struct e1000_tx_desc *tx_desc, *eop_desc;
- struct ifnet *ifp = adapter->ifp;
-
- IGB_TX_LOCK_ASSERT(txr);
-
- if (txr->tx_avail == adapter->num_tx_desc) {
- txr->queue_status = IGB_QUEUE_IDLE;
- return FALSE;
- }
-
- processed = 0;
- first = txr->next_to_clean;
- tx_desc = &txr->tx_base[first];
- tx_buffer = &txr->tx_buffers[first];
- last = tx_buffer->next_eop;
- eop_desc = &txr->tx_base[last];
-
- /*
- * What this does is get the index of the
- * first descriptor AFTER the EOP of the
- * first packet, that way we can do the
- * simple comparison on the inner while loop.
- */
- if (++last == adapter->num_tx_desc)
- last = 0;
- done = last;
-
- bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
- BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
-
- while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
- /* We clean the range of the packet */
- while (first != done) {
- tx_desc->upper.data = 0;
- tx_desc->lower.data = 0;
- tx_desc->buffer_addr = 0;
- ++txr->tx_avail;
- ++processed;
-
- if (tx_buffer->m_head) {
- txr->bytes +=
- tx_buffer->m_head->m_pkthdr.len;
- bus_dmamap_sync(txr->txtag,
- tx_buffer->map,
- BUS_DMASYNC_POSTWRITE);
- bus_dmamap_unload(txr->txtag,
- tx_buffer->map);
-
- m_freem(tx_buffer->m_head);
- tx_buffer->m_head = NULL;
- }
- tx_buffer->next_eop = -1;
- txr->watchdog_time = ticks;
-
- if (++first == adapter->num_tx_desc)
- first = 0;
-
- tx_buffer = &txr->tx_buffers[first];
- tx_desc = &txr->tx_base[first];
- }
- ++txr->packets;
- ++ifp->if_opackets;
- /* See if we can continue to the next packet */
- last = tx_buffer->next_eop;
- if (last != -1) {
- eop_desc = &txr->tx_base[last];
- /* Get new done point */
- if (++last == adapter->num_tx_desc) last = 0;
- done = last;
- } else
- break;
- }
- bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
- BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
-
- txr->next_to_clean = first;
-
- /*
- ** Watchdog calculation, we know there's
- ** work outstanding or the first return
- ** would have been taken, so none processed
- ** for too long indicates a hang.
- */
- if ((!processed) && ((ticks - txr->watchdog_time) > IGB_WATCHDOG))
- txr->queue_status = IGB_QUEUE_HUNG;
-
- /*
- * If we have a minimum free, clear IFF_DRV_OACTIVE
- * to tell the stack that it is OK to send packets.
- */
- if (txr->tx_avail > IGB_TX_CLEANUP_THRESHOLD) {
- ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
- /* All clean, turn off the watchdog */
- if (txr->tx_avail == adapter->num_tx_desc) {
- txr->queue_status = IGB_QUEUE_IDLE;
- return (FALSE);
- }
- }
- return (TRUE);
-}
-
-/*********************************************************************
- *
- * Refresh mbuf buffers for RX descriptor rings
- * - now keeps its own state so discards due to resource
- * exhaustion are unnecessary, if an mbuf cannot be obtained
- * it just returns, keeping its placeholder, thus it can simply
- * be recalled to try again.
- *
- **********************************************************************/
-static void
-igb_refresh_mbufs(struct rx_ring *rxr, int limit)
-{
- struct adapter *adapter = rxr->adapter;
- bus_dma_segment_t hseg[1];
- bus_dma_segment_t pseg[1];
- struct igb_rx_buf *rxbuf;
- struct mbuf *mh, *mp;
- int i, j, nsegs, error;
- bool refreshed = FALSE;
-
- i = j = rxr->next_to_refresh;
- /*
- ** Get one descriptor beyond
- ** our work mark to control
- ** the loop.
- */
- if (++j == adapter->num_rx_desc)
- j = 0;
-
- while (j != limit) {
- rxbuf = &rxr->rx_buffers[i];
- /* No hdr mbuf used with header split off */
- if (rxr->hdr_split == FALSE)
- goto no_split;
- if (rxbuf->m_head == NULL) {
- mh = m_gethdr(M_DONTWAIT, MT_DATA);
- if (mh == NULL)
- goto update;
- } else
- mh = rxbuf->m_head;
-
- mh->m_pkthdr.len = mh->m_len = MHLEN;
- mh->m_len = MHLEN;
- mh->m_flags |= M_PKTHDR;
- /* Get the memory mapping */
- error = bus_dmamap_load_mbuf_sg(rxr->htag,
- rxbuf->hmap, mh, hseg, &nsegs, BUS_DMA_NOWAIT);
- if (error != 0) {
- printf("Refresh mbufs: hdr dmamap load"
- " failure - %d\n", error);
- m_free(mh);
- rxbuf->m_head = NULL;
- goto update;
- }
- rxbuf->m_head = mh;
- bus_dmamap_sync(rxr->htag, rxbuf->hmap,
- BUS_DMASYNC_PREREAD);
- rxr->rx_base[i].read.hdr_addr =
- htole64(hseg[0].ds_addr);
-no_split:
- if (rxbuf->m_pack == NULL) {
- mp = m_getjcl(M_DONTWAIT, MT_DATA,
- M_PKTHDR, adapter->rx_mbuf_sz);
- if (mp == NULL)
- goto update;
- } else
- mp = rxbuf->m_pack;
-
- mp->m_pkthdr.len = mp->m_len = adapter->rx_mbuf_sz;
- /* Get the memory mapping */
- error = bus_dmamap_load_mbuf_sg(rxr->ptag,
- rxbuf->pmap, mp, pseg, &nsegs, BUS_DMA_NOWAIT);
- if (error != 0) {
- printf("Refresh mbufs: payload dmamap load"
- " failure - %d\n", error);
- m_free(mp);
- rxbuf->m_pack = NULL;
- goto update;
- }
- rxbuf->m_pack = mp;
- bus_dmamap_sync(rxr->ptag, rxbuf->pmap,
- BUS_DMASYNC_PREREAD);
- rxr->rx_base[i].read.pkt_addr =
- htole64(pseg[0].ds_addr);
- refreshed = TRUE; /* I feel wefreshed :) */
-
- i = j; /* our next is precalculated */
- rxr->next_to_refresh = i;
- if (++j == adapter->num_rx_desc)
- j = 0;
- }
-update:
- if (refreshed) /* update tail */
- E1000_WRITE_REG(&adapter->hw,
- E1000_RDT(rxr->me), rxr->next_to_refresh);
- return;
-}
-
-
-/*********************************************************************
- *
- * Allocate memory for rx_buffer structures. Since we use one
- * rx_buffer per received packet, the maximum number of rx_buffer's
- * that we'll need is equal to the number of receive descriptors
- * that we've allocated.
- *
- **********************************************************************/
-static int
-igb_allocate_receive_buffers(struct rx_ring *rxr)
-{
- struct adapter *adapter = rxr->adapter;
- device_t dev = adapter->dev;
- struct igb_rx_buf *rxbuf;
- int i, bsize, error;
-
- bsize = sizeof(struct igb_rx_buf) * adapter->num_rx_desc;
- if (!(rxr->rx_buffers =
- (struct igb_rx_buf *) malloc(bsize,
- M_DEVBUF, M_NOWAIT | M_ZERO))) {
- device_printf(dev, "Unable to allocate rx_buffer memory\n");
- error = ENOMEM;
- goto fail;
- }
-
- if ((error = bus_dma_tag_create(bus_get_dma_tag(dev),
- 1, 0, /* alignment, bounds */
- BUS_SPACE_MAXADDR, /* lowaddr */
- BUS_SPACE_MAXADDR, /* highaddr */
- NULL, NULL, /* filter, filterarg */
- MSIZE, /* maxsize */
- 1, /* nsegments */
- MSIZE, /* maxsegsize */
- 0, /* flags */
- NULL, /* lockfunc */
- NULL, /* lockfuncarg */
- &rxr->htag))) {
- device_printf(dev, "Unable to create RX DMA tag\n");
- goto fail;
- }
-
- if ((error = bus_dma_tag_create(bus_get_dma_tag(dev),
- 1, 0, /* alignment, bounds */
- BUS_SPACE_MAXADDR, /* lowaddr */
- BUS_SPACE_MAXADDR, /* highaddr */
- NULL, NULL, /* filter, filterarg */
- MJUM9BYTES, /* maxsize */
- 1, /* nsegments */
- MJUM9BYTES, /* maxsegsize */
- 0, /* flags */
- NULL, /* lockfunc */
- NULL, /* lockfuncarg */
- &rxr->ptag))) {
- device_printf(dev, "Unable to create RX payload DMA tag\n");
- goto fail;
- }
-
- for (i = 0; i < adapter->num_rx_desc; i++) {
- rxbuf = &rxr->rx_buffers[i];
- error = bus_dmamap_create(rxr->htag,
- BUS_DMA_NOWAIT, &rxbuf->hmap);
- if (error) {
- device_printf(dev,
- "Unable to create RX head DMA maps\n");
- goto fail;
- }
- error = bus_dmamap_create(rxr->ptag,
- BUS_DMA_NOWAIT, &rxbuf->pmap);
- if (error) {
- device_printf(dev,
- "Unable to create RX packet DMA maps\n");
- goto fail;
- }
- }
-
- return (0);
-
-fail:
- /* Frees all, but can handle partial completion */
- igb_free_receive_structures(adapter);
- return (error);
-}
-
-
-static void
-igb_free_receive_ring(struct rx_ring *rxr)
-{
- struct adapter *adapter = rxr->adapter;
- struct igb_rx_buf *rxbuf;
-
-
- for (int i = 0; i < adapter->num_rx_desc; i++) {
- rxbuf = &rxr->rx_buffers[i];
- if (rxbuf->m_head != NULL) {
- bus_dmamap_sync(rxr->htag, rxbuf->hmap,
- BUS_DMASYNC_POSTREAD);
- bus_dmamap_unload(rxr->htag, rxbuf->hmap);
- rxbuf->m_head->m_flags |= M_PKTHDR;
- m_freem(rxbuf->m_head);
- }
- if (rxbuf->m_pack != NULL) {
- bus_dmamap_sync(rxr->ptag, rxbuf->pmap,
- BUS_DMASYNC_POSTREAD);
- bus_dmamap_unload(rxr->ptag, rxbuf->pmap);
- rxbuf->m_pack->m_flags |= M_PKTHDR;
- m_freem(rxbuf->m_pack);
- }
- rxbuf->m_head = NULL;
- rxbuf->m_pack = NULL;
- }
-}
-
-
-/*********************************************************************
- *
- * Initialize a receive ring and its buffers.
- *
- **********************************************************************/
-static int
-igb_setup_receive_ring(struct rx_ring *rxr)
-{
- struct adapter *adapter;
- struct ifnet *ifp;
- device_t dev;
- struct igb_rx_buf *rxbuf;
- bus_dma_segment_t pseg[1], hseg[1];
- struct lro_ctrl *lro = &rxr->lro;
- int rsize, nsegs, error = 0;
-
- adapter = rxr->adapter;
- dev = adapter->dev;
- ifp = adapter->ifp;
-
- /* Clear the ring contents */
- IGB_RX_LOCK(rxr);
- rsize = roundup2(adapter->num_rx_desc *
- sizeof(union e1000_adv_rx_desc), IGB_DBA_ALIGN);
- bzero((void *)rxr->rx_base, rsize);
-
- /*
- ** Free current RX buffer structures and their mbufs
- */
- igb_free_receive_ring(rxr);
-
- /* Configure for header split? */
- if (igb_header_split)
- rxr->hdr_split = TRUE;
-
- /* Now replenish the ring mbufs */
- for (int j = 0; j < adapter->num_rx_desc; ++j) {
- struct mbuf *mh, *mp;
-
- rxbuf = &rxr->rx_buffers[j];
- if (rxr->hdr_split == FALSE)
- goto skip_head;
-
- /* First the header */
- rxbuf->m_head = m_gethdr(M_DONTWAIT, MT_DATA);
- if (rxbuf->m_head == NULL) {
- error = ENOBUFS;
- goto fail;
- }
- m_adj(rxbuf->m_head, ETHER_ALIGN);
- mh = rxbuf->m_head;
- mh->m_len = mh->m_pkthdr.len = MHLEN;
- mh->m_flags |= M_PKTHDR;
- /* Get the memory mapping */
- error = bus_dmamap_load_mbuf_sg(rxr->htag,
- rxbuf->hmap, rxbuf->m_head, hseg,
- &nsegs, BUS_DMA_NOWAIT);
- if (error != 0) /* Nothing elegant to do here */
- goto fail;
- bus_dmamap_sync(rxr->htag,
- rxbuf->hmap, BUS_DMASYNC_PREREAD);
- /* Update descriptor */
- rxr->rx_base[j].read.hdr_addr = htole64(hseg[0].ds_addr);
-
-skip_head:
- /* Now the payload cluster */
- rxbuf->m_pack = m_getjcl(M_DONTWAIT, MT_DATA,
- M_PKTHDR, adapter->rx_mbuf_sz);
- if (rxbuf->m_pack == NULL) {
- error = ENOBUFS;
- goto fail;
- }
- mp = rxbuf->m_pack;
- mp->m_pkthdr.len = mp->m_len = adapter->rx_mbuf_sz;
- /* Get the memory mapping */
- error = bus_dmamap_load_mbuf_sg(rxr->ptag,
- rxbuf->pmap, mp, pseg,
- &nsegs, BUS_DMA_NOWAIT);
- if (error != 0)
- goto fail;
- bus_dmamap_sync(rxr->ptag,
- rxbuf->pmap, BUS_DMASYNC_PREREAD);
- /* Update descriptor */
- rxr->rx_base[j].read.pkt_addr = htole64(pseg[0].ds_addr);
- }
-
- /* Setup our descriptor indices */
- rxr->next_to_check = 0;
- rxr->next_to_refresh = adapter->num_rx_desc - 1;
- rxr->lro_enabled = FALSE;
- rxr->rx_split_packets = 0;
- rxr->rx_bytes = 0;
-
- rxr->fmp = NULL;
- rxr->lmp = NULL;
- rxr->discard = FALSE;
-
- bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
- BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
-
- /*
- ** Now set up the LRO interface, we
- ** also only do head split when LRO
- ** is enabled, since so often they
- ** are undesireable in similar setups.
- */
- if (ifp->if_capenable & IFCAP_LRO) {
- error = tcp_lro_init(lro);
- if (error) {
- device_printf(dev, "LRO Initialization failed!\n");
- goto fail;
- }
- INIT_DEBUGOUT("RX LRO Initialized\n");
- rxr->lro_enabled = TRUE;
- lro->ifp = adapter->ifp;
- }
-
- IGB_RX_UNLOCK(rxr);
- return (0);
-
-fail:
- igb_free_receive_ring(rxr);
- IGB_RX_UNLOCK(rxr);
- return (error);
-}
-
-
-/*********************************************************************
- *
- * Initialize all receive rings.
- *
- **********************************************************************/
-static int
-igb_setup_receive_structures(struct adapter *adapter)
-{
- struct rx_ring *rxr = adapter->rx_rings;
- int i;
-
- for (i = 0; i < adapter->num_queues; i++, rxr++)
- if (igb_setup_receive_ring(rxr))
- goto fail;
-
- return (0);
-fail:
- /*
- * Free RX buffers allocated so far, we will only handle
- * the rings that completed, the failing case will have
- * cleaned up for itself. 'i' is the endpoint.
- */
- for (int j = 0; j > i; ++j) {
- rxr = &adapter->rx_rings[i];
- IGB_RX_LOCK(rxr);
- igb_free_receive_ring(rxr);
- IGB_RX_UNLOCK(rxr);
- }
-
- return (ENOBUFS);
-}
-
-/*********************************************************************
- *
- * Enable receive unit.
- *
- **********************************************************************/
-static void
-igb_initialize_receive_units(struct adapter *adapter)
-{
- struct rx_ring *rxr = adapter->rx_rings;
- struct ifnet *ifp = adapter->ifp;
- struct e1000_hw *hw = &adapter->hw;
- u32 rctl, rxcsum, psize, srrctl = 0;
-
- INIT_DEBUGOUT("igb_initialize_receive_unit: begin");
-
- /*
- * Make sure receives are disabled while setting
- * up the descriptor ring
- */
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
-
- /*
- ** Set up for header split
- */
- if (igb_header_split) {
- /* Use a standard mbuf for the header */
- srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
- srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
- } else
- srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
-
- /*
- ** Set up for jumbo frames
- */
- if (ifp->if_mtu > ETHERMTU) {
- rctl |= E1000_RCTL_LPE;
- if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
- srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
- rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
- } else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
- srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
- rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
- }
- /* Set maximum packet len */
- psize = adapter->max_frame_size;
- /* are we on a vlan? */
- if (adapter->ifp->if_vlantrunk != NULL)
- psize += VLAN_TAG_SIZE;
- E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
- } else {
- rctl &= ~E1000_RCTL_LPE;
- srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
- rctl |= E1000_RCTL_SZ_2048;
- }
-
- /* Setup the Base and Length of the Rx Descriptor Rings */
- for (int i = 0; i < adapter->num_queues; i++, rxr++) {
- u64 bus_addr = rxr->rxdma.dma_paddr;
- u32 rxdctl;
-
- E1000_WRITE_REG(hw, E1000_RDLEN(i),
- adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
- E1000_WRITE_REG(hw, E1000_RDBAH(i),
- (uint32_t)(bus_addr >> 32));
- E1000_WRITE_REG(hw, E1000_RDBAL(i),
- (uint32_t)bus_addr);
- E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
- /* Enable this Queue */
- rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
- rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
- rxdctl &= 0xFFF00000;
- rxdctl |= IGB_RX_PTHRESH;
- rxdctl |= IGB_RX_HTHRESH << 8;
- rxdctl |= IGB_RX_WTHRESH << 16;
- E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
- }
-
- /*
- ** Setup for RX MultiQueue
- */
- rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
- if (adapter->num_queues >1) {
- u32 random[10], mrqc, shift = 0;
- union igb_reta {
- u32 dword;
- u8 bytes[4];
- } reta;
-
- arc4rand(&random, sizeof(random), 0);
- if (adapter->hw.mac.type == e1000_82575)
- shift = 6;
- /* Warning FM follows */
- for (int i = 0; i < 128; i++) {
- reta.bytes[i & 3] =
- (i % adapter->num_queues) << shift;
- if ((i & 3) == 3)
- E1000_WRITE_REG(hw,
- E1000_RETA(i >> 2), reta.dword);
- }
- /* Now fill in hash table */
- mrqc = E1000_MRQC_ENABLE_RSS_4Q;
- for (int i = 0; i < 10; i++)
- E1000_WRITE_REG_ARRAY(hw,
- E1000_RSSRK(0), i, random[i]);
-
- mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
- E1000_MRQC_RSS_FIELD_IPV4_TCP);
- mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
- E1000_MRQC_RSS_FIELD_IPV6_TCP);
- mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
- E1000_MRQC_RSS_FIELD_IPV6_UDP);
- mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
- E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
-
- E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
-
- /*
- ** NOTE: Receive Full-Packet Checksum Offload
- ** is mutually exclusive with Multiqueue. However
- ** this is not the same as TCP/IP checksums which
- ** still work.
- */
- rxcsum |= E1000_RXCSUM_PCSD;
-#if __FreeBSD_version >= 800000
- /* For SCTP Offload */
- if ((hw->mac.type == e1000_82576)
- && (ifp->if_capenable & IFCAP_RXCSUM))
- rxcsum |= E1000_RXCSUM_CRCOFL;
-#endif
- } else {
- /* Non RSS setup */
- if (ifp->if_capenable & IFCAP_RXCSUM) {
- rxcsum |= E1000_RXCSUM_IPPCSE;
-#if __FreeBSD_version >= 800000
- if (adapter->hw.mac.type == e1000_82576)
- rxcsum |= E1000_RXCSUM_CRCOFL;
-#endif
- } else
- rxcsum &= ~E1000_RXCSUM_TUOFL;
- }
- E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
-
- /* Setup the Receive Control Register */
- rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
- rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
- E1000_RCTL_RDMTS_HALF |
- (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
- /* Strip CRC bytes. */
- rctl |= E1000_RCTL_SECRC;
- /* Make sure VLAN Filters are off */
- rctl &= ~E1000_RCTL_VFE;
- /* Don't store bad packets */
- rctl &= ~E1000_RCTL_SBP;
-
- /* Enable Receives */
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-
- /*
- * Setup the HW Rx Head and Tail Descriptor Pointers
- * - needs to be after enable
- */
- for (int i = 0; i < adapter->num_queues; i++) {
- rxr = &adapter->rx_rings[i];
- E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
- E1000_WRITE_REG(hw, E1000_RDT(i), rxr->next_to_refresh);
- }
- return;
-}
-
-/*********************************************************************
- *
- * Free receive rings.
- *
- **********************************************************************/
-static void
-igb_free_receive_structures(struct adapter *adapter)
-{
- struct rx_ring *rxr = adapter->rx_rings;
-
- for (int i = 0; i < adapter->num_queues; i++, rxr++) {
- struct lro_ctrl *lro = &rxr->lro;
- igb_free_receive_buffers(rxr);
- tcp_lro_free(lro);
- igb_dma_free(adapter, &rxr->rxdma);
- }
-
- free(adapter->rx_rings, M_DEVBUF);
-}
-
-/*********************************************************************
- *
- * Free receive ring data structures.
- *
- **********************************************************************/
-static void
-igb_free_receive_buffers(struct rx_ring *rxr)
-{
- struct adapter *adapter = rxr->adapter;
- struct igb_rx_buf *rxbuf;
- int i;
-
- INIT_DEBUGOUT("free_receive_structures: begin");
-
- /* Cleanup any existing buffers */
- if (rxr->rx_buffers != NULL) {
- for (i = 0; i < adapter->num_rx_desc; i++) {
- rxbuf = &rxr->rx_buffers[i];
- if (rxbuf->m_head != NULL) {
- bus_dmamap_sync(rxr->htag, rxbuf->hmap,
- BUS_DMASYNC_POSTREAD);
- bus_dmamap_unload(rxr->htag, rxbuf->hmap);
- rxbuf->m_head->m_flags |= M_PKTHDR;
- m_freem(rxbuf->m_head);
- }
- if (rxbuf->m_pack != NULL) {
- bus_dmamap_sync(rxr->ptag, rxbuf->pmap,
- BUS_DMASYNC_POSTREAD);
- bus_dmamap_unload(rxr->ptag, rxbuf->pmap);
- rxbuf->m_pack->m_flags |= M_PKTHDR;
- m_freem(rxbuf->m_pack);
- }
- rxbuf->m_head = NULL;
- rxbuf->m_pack = NULL;
- if (rxbuf->hmap != NULL) {
- bus_dmamap_destroy(rxr->htag, rxbuf->hmap);
- rxbuf->hmap = NULL;
- }
- if (rxbuf->pmap != NULL) {
- bus_dmamap_destroy(rxr->ptag, rxbuf->pmap);
- rxbuf->pmap = NULL;
- }
- }
- if (rxr->rx_buffers != NULL) {
- free(rxr->rx_buffers, M_DEVBUF);
- rxr->rx_buffers = NULL;
- }
- }
-
- if (rxr->htag != NULL) {
- bus_dma_tag_destroy(rxr->htag);
- rxr->htag = NULL;
- }
- if (rxr->ptag != NULL) {
- bus_dma_tag_destroy(rxr->ptag);
- rxr->ptag = NULL;
- }
-}
-
-static __inline void
-igb_rx_discard(struct rx_ring *rxr, int i)
-{
- struct igb_rx_buf *rbuf;
-
- rbuf = &rxr->rx_buffers[i];
-
- /* Partially received? Free the chain */
- if (rxr->fmp != NULL) {
- rxr->fmp->m_flags |= M_PKTHDR;
- m_freem(rxr->fmp);
- rxr->fmp = NULL;
- rxr->lmp = NULL;
- }
-
- /*
- ** With advanced descriptors the writeback
- ** clobbers the buffer addrs, so its easier
- ** to just free the existing mbufs and take
- ** the normal refresh path to get new buffers
- ** and mapping.
- */
- if (rbuf->m_head) {
- m_free(rbuf->m_head);
- rbuf->m_head = NULL;
- }
-
- if (rbuf->m_pack) {
- m_free(rbuf->m_pack);
- rbuf->m_pack = NULL;
- }
-
- return;
-}
-
-static __inline void
-igb_rx_input(struct rx_ring *rxr, struct ifnet *ifp, struct mbuf *m, u32 ptype)
-{
-
- /*
- * ATM LRO is only for IPv4/TCP packets and TCP checksum of the packet
- * should be computed by hardware. Also it should not have VLAN tag in
- * ethernet header.
- */
- if (rxr->lro_enabled &&
- (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
- (ptype & E1000_RXDADV_PKTTYPE_ETQF) == 0 &&
- (ptype & (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP)) ==
- (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP) &&
- (m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
- (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
- /*
- * Send to the stack if:
- ** - LRO not enabled, or
- ** - no LRO resources, or
- ** - lro enqueue fails
- */
- if (rxr->lro.lro_cnt != 0)
- if (tcp_lro_rx(&rxr->lro, m, 0) == 0)
- return;
- }
- IGB_RX_UNLOCK(rxr);
- (*ifp->if_input)(ifp, m);
- IGB_RX_LOCK(rxr);
-}
-
-/*********************************************************************
- *
- * This routine executes in interrupt context. It replenishes
- * the mbufs in the descriptor and sends data which has been
- * dma'ed into host memory to upper layer.
- *
- * We loop at most count times if count is > 0, or until done if
- * count < 0.
- *
- * Return TRUE if more to clean, FALSE otherwise
- *********************************************************************/
-static bool
-igb_rxeof(struct igb_queue *que, int count, int *done)
-{
- struct adapter *adapter = que->adapter;
- struct rx_ring *rxr = que->rxr;
- struct ifnet *ifp = adapter->ifp;
- struct lro_ctrl *lro = &rxr->lro;
- struct lro_entry *queued;
- int i, processed = 0, rxdone = 0;
- u32 ptype, staterr = 0;
- union e1000_adv_rx_desc *cur;
-
- IGB_RX_LOCK(rxr);
- /* Sync the ring. */
- bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
- BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
-
- /* Main clean loop */
- for (i = rxr->next_to_check; count != 0;) {
- struct mbuf *sendmp, *mh, *mp;
- struct igb_rx_buf *rxbuf;
- u16 hlen, plen, hdr, vtag;
- bool eop = FALSE;
-
- cur = &rxr->rx_base[i];
- staterr = le32toh(cur->wb.upper.status_error);
- if ((staterr & E1000_RXD_STAT_DD) == 0)
- break;
- if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
- break;
- count--;
- sendmp = mh = mp = NULL;
- cur->wb.upper.status_error = 0;
- rxbuf = &rxr->rx_buffers[i];
- plen = le16toh(cur->wb.upper.length);
- ptype = le32toh(cur->wb.lower.lo_dword.data) & IGB_PKTTYPE_MASK;
- if ((adapter->hw.mac.type == e1000_i350) &&
- (staterr & E1000_RXDEXT_STATERR_LB))
- vtag = be16toh(cur->wb.upper.vlan);
- else
- vtag = le16toh(cur->wb.upper.vlan);
- hdr = le16toh(cur->wb.lower.lo_dword.hs_rss.hdr_info);
- eop = ((staterr & E1000_RXD_STAT_EOP) == E1000_RXD_STAT_EOP);
-
- /* Make sure all segments of a bad packet are discarded */
- if (((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) != 0) ||
- (rxr->discard)) {
- ifp->if_ierrors++;
- ++rxr->rx_discarded;
- if (!eop) /* Catch subsequent segs */
- rxr->discard = TRUE;
- else
- rxr->discard = FALSE;
- igb_rx_discard(rxr, i);
- goto next_desc;
- }
-
- /*
- ** The way the hardware is configured to
- ** split, it will ONLY use the header buffer
- ** when header split is enabled, otherwise we
- ** get normal behavior, ie, both header and
- ** payload are DMA'd into the payload buffer.
- **
- ** The fmp test is to catch the case where a
- ** packet spans multiple descriptors, in that
- ** case only the first header is valid.
- */
- if (rxr->hdr_split && rxr->fmp == NULL) {
- hlen = (hdr & E1000_RXDADV_HDRBUFLEN_MASK) >>
- E1000_RXDADV_HDRBUFLEN_SHIFT;
- if (hlen > IGB_HDR_BUF)
- hlen = IGB_HDR_BUF;
- mh = rxr->rx_buffers[i].m_head;
- mh->m_len = hlen;
- /* clear buf pointer for refresh */
- rxbuf->m_head = NULL;
- /*
- ** Get the payload length, this
- ** could be zero if its a small
- ** packet.
- */
- if (plen > 0) {
- mp = rxr->rx_buffers[i].m_pack;
- mp->m_len = plen;
- mh->m_next = mp;
- /* clear buf pointer */
- rxbuf->m_pack = NULL;
- rxr->rx_split_packets++;
- }
- } else {
- /*
- ** Either no header split, or a
- ** secondary piece of a fragmented
- ** split packet.
- */
- mh = rxr->rx_buffers[i].m_pack;
- mh->m_len = plen;
- /* clear buf info for refresh */
- rxbuf->m_pack = NULL;
- }
-
- ++processed; /* So we know when to refresh */
-
- /* Initial frame - setup */
- if (rxr->fmp == NULL) {
- mh->m_pkthdr.len = mh->m_len;
- /* Save the head of the chain */
- rxr->fmp = mh;
- rxr->lmp = mh;
- if (mp != NULL) {
- /* Add payload if split */
- mh->m_pkthdr.len += mp->m_len;
- rxr->lmp = mh->m_next;
- }
- } else {
- /* Chain mbuf's together */
- rxr->lmp->m_next = mh;
- rxr->lmp = rxr->lmp->m_next;
- rxr->fmp->m_pkthdr.len += mh->m_len;
- }
-
- if (eop) {
- rxr->fmp->m_pkthdr.rcvif = ifp;
- ifp->if_ipackets++;
- rxr->rx_packets++;
- /* capture data for AIM */
- rxr->packets++;
- rxr->bytes += rxr->fmp->m_pkthdr.len;
- rxr->rx_bytes += rxr->fmp->m_pkthdr.len;
-
- if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
- igb_rx_checksum(staterr, rxr->fmp, ptype);
-
- if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
- (staterr & E1000_RXD_STAT_VP) != 0) {
- rxr->fmp->m_pkthdr.ether_vtag = vtag;
- rxr->fmp->m_flags |= M_VLANTAG;
- }
-#if __FreeBSD_version >= 800000
- rxr->fmp->m_pkthdr.flowid = que->msix;
- rxr->fmp->m_flags |= M_FLOWID;
-#endif
- sendmp = rxr->fmp;
- /* Make sure to set M_PKTHDR. */
- sendmp->m_flags |= M_PKTHDR;
- rxr->fmp = NULL;
- rxr->lmp = NULL;
- }
-
-next_desc:
- bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
- BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
-
- /* Advance our pointers to the next descriptor. */
- if (++i == adapter->num_rx_desc)
- i = 0;
- /*
- ** Send to the stack or LRO
- */
- if (sendmp != NULL) {
- rxr->next_to_check = i;
- igb_rx_input(rxr, ifp, sendmp, ptype);
- i = rxr->next_to_check;
- rxdone++;
- }
-
- /* Every 8 descriptors we go to refresh mbufs */
- if (processed == 8) {
- igb_refresh_mbufs(rxr, i);
- processed = 0;
- }
- }
-
- /* Catch any remainders */
- if (igb_rx_unrefreshed(rxr))
- igb_refresh_mbufs(rxr, i);
-
- rxr->next_to_check = i;
-
- /*
- * Flush any outstanding LRO work
- */
- while ((queued = SLIST_FIRST(&lro->lro_active)) != NULL) {
- SLIST_REMOVE_HEAD(&lro->lro_active, next);
- tcp_lro_flush(lro, queued);
- }
-
- if (done != NULL)
- *done = rxdone;
-
- IGB_RX_UNLOCK(rxr);
- return ((staterr & E1000_RXD_STAT_DD) ? TRUE : FALSE);
-}
-
-/*********************************************************************
- *
- * Verify that the hardware indicated that the checksum is valid.
- * Inform the stack about the status of checksum so that stack
- * doesn't spend time verifying the checksum.
- *
- *********************************************************************/
-static void
-igb_rx_checksum(u32 staterr, struct mbuf *mp, u32 ptype)
-{
- u16 status = (u16)staterr;
- u8 errors = (u8) (staterr >> 24);
- int sctp;
-
- /* Ignore Checksum bit is set */
- if (status & E1000_RXD_STAT_IXSM) {
- mp->m_pkthdr.csum_flags = 0;
- return;
- }
-
- if ((ptype & E1000_RXDADV_PKTTYPE_ETQF) == 0 &&
- (ptype & E1000_RXDADV_PKTTYPE_SCTP) != 0)
- sctp = 1;
- else
- sctp = 0;
- if (status & E1000_RXD_STAT_IPCS) {
- /* Did it pass? */
- if (!(errors & E1000_RXD_ERR_IPE)) {
- /* IP Checksum Good */
- mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
- mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
- } else
- mp->m_pkthdr.csum_flags = 0;
- }
-
- if (status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
- u16 type = (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
-#if __FreeBSD_version >= 800000
- if (sctp) /* reassign */
- type = CSUM_SCTP_VALID;
-#endif
- /* Did it pass? */
- if (!(errors & E1000_RXD_ERR_TCPE)) {
- mp->m_pkthdr.csum_flags |= type;
- if (sctp == 0)
- mp->m_pkthdr.csum_data = htons(0xffff);
- }
- }
- return;
-}
-
-/*
- * This routine is run via an vlan
- * config EVENT
- */
-static void
-igb_register_vlan(void *arg, struct ifnet *ifp, u16 vtag)
-{
- struct adapter *adapter = ifp->if_softc;
- u32 index, bit;
-
- if (ifp->if_softc != arg) /* Not our event */
- return;
-
- if ((vtag == 0) || (vtag > 4095)) /* Invalid */
- return;
-
- IGB_CORE_LOCK(adapter);
- index = (vtag >> 5) & 0x7F;
- bit = vtag & 0x1F;
- adapter->shadow_vfta[index] |= (1 << bit);
- ++adapter->num_vlans;
- /* Change hw filter setting */
- if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
- igb_setup_vlan_hw_support(adapter);
- IGB_CORE_UNLOCK(adapter);
-}
-
-/*
- * This routine is run via an vlan
- * unconfig EVENT
- */
-static void
-igb_unregister_vlan(void *arg, struct ifnet *ifp, u16 vtag)
-{
- struct adapter *adapter = ifp->if_softc;
- u32 index, bit;
-
- if (ifp->if_softc != arg)
- return;
-
- if ((vtag == 0) || (vtag > 4095)) /* Invalid */
- return;
-
- IGB_CORE_LOCK(adapter);
- index = (vtag >> 5) & 0x7F;
- bit = vtag & 0x1F;
- adapter->shadow_vfta[index] &= ~(1 << bit);
- --adapter->num_vlans;
- /* Change hw filter setting */
- if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
- igb_setup_vlan_hw_support(adapter);
- IGB_CORE_UNLOCK(adapter);
-}
-
-static void
-igb_setup_vlan_hw_support(struct adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct ifnet *ifp = adapter->ifp;
- u32 reg;
-
- if (adapter->vf_ifp) {
- e1000_rlpml_set_vf(hw,
- adapter->max_frame_size + VLAN_TAG_SIZE);
- return;
- }
-
- reg = E1000_READ_REG(hw, E1000_CTRL);
- reg |= E1000_CTRL_VME;
- E1000_WRITE_REG(hw, E1000_CTRL, reg);
-
- /* Enable the Filter Table */
- if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
- reg = E1000_READ_REG(hw, E1000_RCTL);
- reg &= ~E1000_RCTL_CFIEN;
- reg |= E1000_RCTL_VFE;
- E1000_WRITE_REG(hw, E1000_RCTL, reg);
- }
-
- /* Update the frame size */
- E1000_WRITE_REG(&adapter->hw, E1000_RLPML,
- adapter->max_frame_size + VLAN_TAG_SIZE);
-
- /* Don't bother with table if no vlans */
- if ((adapter->num_vlans == 0) ||
- ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
- return;
- /*
- ** A soft reset zero's out the VFTA, so
- ** we need to repopulate it now.
- */
- for (int i = 0; i < IGB_VFTA_SIZE; i++)
- if (adapter->shadow_vfta[i] != 0) {
- if (adapter->vf_ifp)
- e1000_vfta_set_vf(hw,
- adapter->shadow_vfta[i], TRUE);
- else
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
- i, adapter->shadow_vfta[i]);
- }
-}
-
-static void
-igb_enable_intr(struct adapter *adapter)
-{
- /* With RSS set up what to auto clear */
- if (adapter->msix_mem) {
- u32 mask = (adapter->que_mask | adapter->link_mask);
- E1000_WRITE_REG(&adapter->hw, E1000_EIAC, mask);
- E1000_WRITE_REG(&adapter->hw, E1000_EIAM, mask);
- E1000_WRITE_REG(&adapter->hw, E1000_EIMS, mask);
- E1000_WRITE_REG(&adapter->hw, E1000_IMS,
- E1000_IMS_LSC);
- } else {
- E1000_WRITE_REG(&adapter->hw, E1000_IMS,
- IMS_ENABLE_MASK);
- }
- E1000_WRITE_FLUSH(&adapter->hw);
-
- return;
-}
-
-static void
-igb_disable_intr(struct adapter *adapter)
-{
- if (adapter->msix_mem) {
- E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0);
- E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0);
- }
- E1000_WRITE_REG(&adapter->hw, E1000_IMC, ~0);
- E1000_WRITE_FLUSH(&adapter->hw);
- return;
-}
-
-/*
- * Bit of a misnomer, what this really means is
- * to enable OS management of the system... aka
- * to disable special hardware management features
- */
-static void
-igb_init_manageability(struct adapter *adapter)
-{
- if (adapter->has_manage) {
- int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
- int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
-
- /* disable hardware interception of ARP */
- manc &= ~(E1000_MANC_ARP_EN);
-
- /* enable receiving management packets to the host */
- manc |= E1000_MANC_EN_MNG2HOST;
- manc2h |= 1 << 5; /* Mng Port 623 */
- manc2h |= 1 << 6; /* Mng Port 664 */
- E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
- E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
- }
-}
-
-/*
- * Give control back to hardware management
- * controller if there is one.
- */
-static void
-igb_release_manageability(struct adapter *adapter)
-{
- if (adapter->has_manage) {
- int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
-
- /* re-enable hardware interception of ARP */
- manc |= E1000_MANC_ARP_EN;
- manc &= ~E1000_MANC_EN_MNG2HOST;
-
- E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
- }
-}
-
-/*
- * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means that
- * the driver is loaded.
- *
- */
-static void
-igb_get_hw_control(struct adapter *adapter)
-{
- u32 ctrl_ext;
-
- if (adapter->vf_ifp)
- return;
-
- /* Let firmware know the driver has taken over */
- ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
- E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
- ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
-}
-
-/*
- * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means that the
- * driver is no longer loaded.
- *
- */
-static void
-igb_release_hw_control(struct adapter *adapter)
-{
- u32 ctrl_ext;
-
- if (adapter->vf_ifp)
- return;
-
- /* Let firmware taken over control of h/w */
- ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
- E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
- ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
-}
-
-static int
-igb_is_valid_ether_addr(uint8_t *addr)
-{
- char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
-
- if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
- return (FALSE);
- }
-
- return (TRUE);
-}
-
-
-/*
- * Enable PCI Wake On Lan capability
- */
-static void
-igb_enable_wakeup(device_t dev)
-{
- u16 cap, status;
- u8 id;
-
- /* First find the capabilities pointer*/
- cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
- /* Read the PM Capabilities */
- id = pci_read_config(dev, cap, 1);
- if (id != PCIY_PMG) /* Something wrong */
- return;
- /* OK, we have the power capabilities, so
- now get the status register */
- cap += PCIR_POWER_STATUS;
- status = pci_read_config(dev, cap, 2);
- status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
- pci_write_config(dev, cap, status, 2);
- return;
-}
-
-static void
-igb_led_func(void *arg, int onoff)
-{
- struct adapter *adapter = arg;
-
- IGB_CORE_LOCK(adapter);
- if (onoff) {
- e1000_setup_led(&adapter->hw);
- e1000_led_on(&adapter->hw);
- } else {
- e1000_led_off(&adapter->hw);
- e1000_cleanup_led(&adapter->hw);
- }
- IGB_CORE_UNLOCK(adapter);
-}
-
-/**********************************************************************
- *
- * Update the board statistics counters.
- *
- **********************************************************************/
-static void
-igb_update_stats_counters(struct adapter *adapter)
-{
- struct ifnet *ifp;
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_hw_stats *stats;
-
- /*
- ** The virtual function adapter has only a
- ** small controlled set of stats, do only
- ** those and return.
- */
- if (adapter->vf_ifp) {
- igb_update_vf_stats_counters(adapter);
- return;
- }
-
- stats = (struct e1000_hw_stats *)adapter->stats;
-
- if(adapter->hw.phy.media_type == e1000_media_type_copper ||
- (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
- stats->symerrs +=
- E1000_READ_REG(hw,E1000_SYMERRS);
- stats->sec += E1000_READ_REG(hw, E1000_SEC);
- }
-
- stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
- stats->mpc += E1000_READ_REG(hw, E1000_MPC);
- stats->scc += E1000_READ_REG(hw, E1000_SCC);
- stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
-
- stats->mcc += E1000_READ_REG(hw, E1000_MCC);
- stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
- stats->colc += E1000_READ_REG(hw, E1000_COLC);
- stats->dc += E1000_READ_REG(hw, E1000_DC);
- stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
- stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
- stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
- /*
- ** For watchdog management we need to know if we have been
- ** paused during the last interval, so capture that here.
- */
- adapter->pause_frames = E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
- stats->xoffrxc += adapter->pause_frames;
- stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
- stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
- stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
- stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
- stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
- stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
- stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
- stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
- stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
- stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
- stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
- stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
-
- /* For the 64-bit byte counters the low dword must be read first. */
- /* Both registers clear on the read of the high dword */
-
- stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
- ((u64)E1000_READ_REG(hw, E1000_GORCH) << 32);
- stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
- ((u64)E1000_READ_REG(hw, E1000_GOTCH) << 32);
-
- stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
- stats->ruc += E1000_READ_REG(hw, E1000_RUC);
- stats->rfc += E1000_READ_REG(hw, E1000_RFC);
- stats->roc += E1000_READ_REG(hw, E1000_ROC);
- stats->rjc += E1000_READ_REG(hw, E1000_RJC);
-
- stats->tor += E1000_READ_REG(hw, E1000_TORH);
- stats->tot += E1000_READ_REG(hw, E1000_TOTH);
-
- stats->tpr += E1000_READ_REG(hw, E1000_TPR);
- stats->tpt += E1000_READ_REG(hw, E1000_TPT);
- stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
- stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
- stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
- stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
- stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
- stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
- stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
- stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
-
- /* Interrupt Counts */
-
- stats->iac += E1000_READ_REG(hw, E1000_IAC);
- stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
- stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
- stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
- stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
- stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
- stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
- stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
- stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
-
- /* Host to Card Statistics */
-
- stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
- stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
- stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
- stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
- stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
- stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
- stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
- stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
- ((u64)E1000_READ_REG(hw, E1000_HGORCH) << 32));
- stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
- ((u64)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
- stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
- stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
- stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
-
- stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
- stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
- stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
- stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
- stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
- stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
-
- ifp = adapter->ifp;
- ifp->if_collisions = stats->colc;
-
- /* Rx Errors */
- ifp->if_ierrors = adapter->dropped_pkts + stats->rxerrc +
- stats->crcerrs + stats->algnerrc +
- stats->ruc + stats->roc + stats->mpc + stats->cexterr;
-
- /* Tx Errors */
- ifp->if_oerrors = stats->ecol +
- stats->latecol + adapter->watchdog_events;
-
- /* Driver specific counters */
- adapter->device_control = E1000_READ_REG(hw, E1000_CTRL);
- adapter->rx_control = E1000_READ_REG(hw, E1000_RCTL);
- adapter->int_mask = E1000_READ_REG(hw, E1000_IMS);
- adapter->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
- adapter->packet_buf_alloc_tx =
- ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
- adapter->packet_buf_alloc_rx =
- (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
-}
-
-
-/**********************************************************************
- *
- * Initialize the VF board statistics counters.
- *
- **********************************************************************/
-static void
-igb_vf_init_stats(struct adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_vf_stats *stats;
-
- stats = (struct e1000_vf_stats *)adapter->stats;
- if (stats == NULL)
- return;
- stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
- stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
- stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
- stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
- stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
-}
-
-/**********************************************************************
- *
- * Update the VF board statistics counters.
- *
- **********************************************************************/
-static void
-igb_update_vf_stats_counters(struct adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_vf_stats *stats;
-
- if (adapter->link_speed == 0)
- return;
-
- stats = (struct e1000_vf_stats *)adapter->stats;
-
- UPDATE_VF_REG(E1000_VFGPRC,
- stats->last_gprc, stats->gprc);
- UPDATE_VF_REG(E1000_VFGORC,
- stats->last_gorc, stats->gorc);
- UPDATE_VF_REG(E1000_VFGPTC,
- stats->last_gptc, stats->gptc);
- UPDATE_VF_REG(E1000_VFGOTC,
- stats->last_gotc, stats->gotc);
- UPDATE_VF_REG(E1000_VFMPRC,
- stats->last_mprc, stats->mprc);
-}
-
-/* Export a single 32-bit register via a read-only sysctl. */
-static int
-igb_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
-{
- struct adapter *adapter;
- u_int val;
-
- adapter = oidp->oid_arg1;
- val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
- return (sysctl_handle_int(oidp, &val, 0, req));
-}
-
-/*
-** Tuneable interrupt rate handler
-*/
-static int
-igb_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)
-{
- struct igb_queue *que = ((struct igb_queue *)oidp->oid_arg1);
- int error;
- u32 reg, usec, rate;
-
- reg = E1000_READ_REG(&que->adapter->hw, E1000_EITR(que->msix));
- usec = ((reg & 0x7FFC) >> 2);
- if (usec > 0)
- rate = 1000000 / usec;
- else
- rate = 0;
- error = sysctl_handle_int(oidp, &rate, 0, req);
- if (error || !req->newptr)
- return error;
- return 0;
-}
-
-/*
- * Add sysctl variables, one per statistic, to the system.
- */
-static void
-igb_add_hw_stats(struct adapter *adapter)
-{
- device_t dev = adapter->dev;
-
- struct tx_ring *txr = adapter->tx_rings;
- struct rx_ring *rxr = adapter->rx_rings;
-
- struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
- struct sysctl_oid *tree = device_get_sysctl_tree(dev);
- struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
- struct e1000_hw_stats *stats = adapter->stats;
-
- struct sysctl_oid *stat_node, *queue_node, *int_node, *host_node;
- struct sysctl_oid_list *stat_list, *queue_list, *int_list, *host_list;
-
-#define QUEUE_NAME_LEN 32
- char namebuf[QUEUE_NAME_LEN];
-
- /* Driver Statistics */
- SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "link_irq",
- CTLFLAG_RD, &adapter->link_irq, 0,
- "Link MSIX IRQ Handled");
- SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
- CTLFLAG_RD, &adapter->dropped_pkts,
- "Driver dropped packets");
- SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_dma_fail",
- CTLFLAG_RD, &adapter->no_tx_dma_setup,
- "Driver tx dma failure in xmit");
- SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
- CTLFLAG_RD, &adapter->rx_overruns,
- "RX overruns");
- SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
- CTLFLAG_RD, &adapter->watchdog_events,
- "Watchdog timeouts");
-
- SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "device_control",
- CTLFLAG_RD, &adapter->device_control,
- "Device Control Register");
- SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_control",
- CTLFLAG_RD, &adapter->rx_control,
- "Receiver Control Register");
- SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "interrupt_mask",
- CTLFLAG_RD, &adapter->int_mask,
- "Interrupt Mask");
- SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "extended_int_mask",
- CTLFLAG_RD, &adapter->eint_mask,
- "Extended Interrupt Mask");
- SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_buf_alloc",
- CTLFLAG_RD, &adapter->packet_buf_alloc_tx,
- "Transmit Buffer Packet Allocation");
- SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_buf_alloc",
- CTLFLAG_RD, &adapter->packet_buf_alloc_rx,
- "Receive Buffer Packet Allocation");
- SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
- CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
- "Flow Control High Watermark");
- SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
- CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
- "Flow Control Low Watermark");
-
- for (int i = 0; i < adapter->num_queues; i++, rxr++, txr++) {
- struct lro_ctrl *lro = &rxr->lro;
-
- snprintf(namebuf, QUEUE_NAME_LEN, "queue%d", i);
- queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
- CTLFLAG_RD, NULL, "Queue Name");
- queue_list = SYSCTL_CHILDREN(queue_node);
-
- SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
- CTLFLAG_RD, &adapter->queues[i],
- sizeof(&adapter->queues[i]),
- igb_sysctl_interrupt_rate_handler,
- "IU", "Interrupt Rate");
-
- SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
- CTLFLAG_RD, adapter, E1000_TDH(txr->me),
- igb_sysctl_reg_handler, "IU",
- "Transmit Descriptor Head");
- SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
- CTLFLAG_RD, adapter, E1000_TDT(txr->me),
- igb_sysctl_reg_handler, "IU",
- "Transmit Descriptor Tail");
- SYSCTL_ADD_QUAD(ctx, queue_list, OID_AUTO, "no_desc_avail",
- CTLFLAG_RD, &txr->no_desc_avail,
- "Queue No Descriptor Available");
- SYSCTL_ADD_QUAD(ctx, queue_list, OID_AUTO, "tx_packets",
- CTLFLAG_RD, &txr->tx_packets,
- "Queue Packets Transmitted");
-
- SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
- CTLFLAG_RD, adapter, E1000_RDH(rxr->me),
- igb_sysctl_reg_handler, "IU",
- "Receive Descriptor Head");
- SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
- CTLFLAG_RD, adapter, E1000_RDT(rxr->me),
- igb_sysctl_reg_handler, "IU",
- "Receive Descriptor Tail");
- SYSCTL_ADD_QUAD(ctx, queue_list, OID_AUTO, "rx_packets",
- CTLFLAG_RD, &rxr->rx_packets,
- "Queue Packets Received");
- SYSCTL_ADD_QUAD(ctx, queue_list, OID_AUTO, "rx_bytes",
- CTLFLAG_RD, &rxr->rx_bytes,
- "Queue Bytes Received");
- SYSCTL_ADD_UINT(ctx, queue_list, OID_AUTO, "lro_queued",
- CTLFLAG_RD, &lro->lro_queued, 0,
- "LRO Queued");
- SYSCTL_ADD_UINT(ctx, queue_list, OID_AUTO, "lro_flushed",
- CTLFLAG_RD, &lro->lro_flushed, 0,
- "LRO Flushed");
- }
-
- /* MAC stats get their own sub node */
-
- stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
- CTLFLAG_RD, NULL, "MAC Statistics");
- stat_list = SYSCTL_CHILDREN(stat_node);
-
- /*
- ** VF adapter has a very limited set of stats
- ** since its not managing the metal, so to speak.
- */
- if (adapter->vf_ifp) {
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
- CTLFLAG_RD, &stats->gprc,
- "Good Packets Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
- CTLFLAG_RD, &stats->gptc,
- "Good Packets Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
- CTLFLAG_RD, &stats->gorc,
- "Good Octets Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
- CTLFLAG_RD, &stats->gotc,
- "Good Octets Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
- CTLFLAG_RD, &stats->mprc,
- "Multicast Packets Received");
- return;
- }
-
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "excess_coll",
- CTLFLAG_RD, &stats->ecol,
- "Excessive collisions");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "single_coll",
- CTLFLAG_RD, &stats->scc,
- "Single collisions");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
- CTLFLAG_RD, &stats->mcc,
- "Multiple collisions");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "late_coll",
- CTLFLAG_RD, &stats->latecol,
- "Late collisions");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "collision_count",
- CTLFLAG_RD, &stats->colc,
- "Collision Count");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
- CTLFLAG_RD, &stats->symerrs,
- "Symbol Errors");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
- CTLFLAG_RD, &stats->sec,
- "Sequence Errors");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "defer_count",
- CTLFLAG_RD, &stats->dc,
- "Defer Count");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "missed_packets",
- CTLFLAG_RD, &stats->mpc,
- "Missed Packets");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
- CTLFLAG_RD, &stats->rnbc,
- "Receive No Buffers");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
- CTLFLAG_RD, &stats->ruc,
- "Receive Undersize");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
- CTLFLAG_RD, &stats->rfc,
- "Fragmented Packets Received ");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
- CTLFLAG_RD, &stats->roc,
- "Oversized Packets Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
- CTLFLAG_RD, &stats->rjc,
- "Recevied Jabber");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_errs",
- CTLFLAG_RD, &stats->rxerrc,
- "Receive Errors");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "crc_errs",
- CTLFLAG_RD, &stats->crcerrs,
- "CRC errors");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
- CTLFLAG_RD, &stats->algnerrc,
- "Alignment Errors");
- /* On 82575 these are collision counts */
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
- CTLFLAG_RD, &stats->cexterr,
- "Collision/Carrier extension errors");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
- CTLFLAG_RD, &stats->xonrxc,
- "XON Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xon_txd",
- CTLFLAG_RD, &stats->xontxc,
- "XON Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
- CTLFLAG_RD, &stats->xoffrxc,
- "XOFF Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
- CTLFLAG_RD, &stats->xofftxc,
- "XOFF Transmitted");
- /* Packet Reception Stats */
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
- CTLFLAG_RD, &stats->tpr,
- "Total Packets Received ");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
- CTLFLAG_RD, &stats->gprc,
- "Good Packets Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
- CTLFLAG_RD, &stats->bprc,
- "Broadcast Packets Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
- CTLFLAG_RD, &stats->mprc,
- "Multicast Packets Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
- CTLFLAG_RD, &stats->prc64,
- "64 byte frames received ");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
- CTLFLAG_RD, &stats->prc127,
- "65-127 byte frames received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
- CTLFLAG_RD, &stats->prc255,
- "128-255 byte frames received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
- CTLFLAG_RD, &stats->prc511,
- "256-511 byte frames received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
- CTLFLAG_RD, &stats->prc1023,
- "512-1023 byte frames received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
- CTLFLAG_RD, &stats->prc1522,
- "1023-1522 byte frames received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
- CTLFLAG_RD, &stats->gorc,
- "Good Octets Received");
-
- /* Packet Transmission Stats */
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
- CTLFLAG_RD, &stats->gotc,
- "Good Octets Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
- CTLFLAG_RD, &stats->tpt,
- "Total Packets Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
- CTLFLAG_RD, &stats->gptc,
- "Good Packets Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
- CTLFLAG_RD, &stats->bptc,
- "Broadcast Packets Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
- CTLFLAG_RD, &stats->mptc,
- "Multicast Packets Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
- CTLFLAG_RD, &stats->ptc64,
- "64 byte frames transmitted ");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
- CTLFLAG_RD, &stats->ptc127,
- "65-127 byte frames transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
- CTLFLAG_RD, &stats->ptc255,
- "128-255 byte frames transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
- CTLFLAG_RD, &stats->ptc511,
- "256-511 byte frames transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
- CTLFLAG_RD, &stats->ptc1023,
- "512-1023 byte frames transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
- CTLFLAG_RD, &stats->ptc1522,
- "1024-1522 byte frames transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tso_txd",
- CTLFLAG_RD, &stats->tsctc,
- "TSO Contexts Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
- CTLFLAG_RD, &stats->tsctfc,
- "TSO Contexts Failed");
-
-
- /* Interrupt Stats */
-
- int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
- CTLFLAG_RD, NULL, "Interrupt Statistics");
- int_list = SYSCTL_CHILDREN(int_node);
-
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "asserts",
- CTLFLAG_RD, &stats->iac,
- "Interrupt Assertion Count");
-
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
- CTLFLAG_RD, &stats->icrxptc,
- "Interrupt Cause Rx Pkt Timer Expire Count");
-
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
- CTLFLAG_RD, &stats->icrxatc,
- "Interrupt Cause Rx Abs Timer Expire Count");
-
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
- CTLFLAG_RD, &stats->ictxptc,
- "Interrupt Cause Tx Pkt Timer Expire Count");
-
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
- CTLFLAG_RD, &stats->ictxatc,
- "Interrupt Cause Tx Abs Timer Expire Count");
-
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
- CTLFLAG_RD, &stats->ictxqec,
- "Interrupt Cause Tx Queue Empty Count");
-
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
- CTLFLAG_RD, &stats->ictxqmtc,
- "Interrupt Cause Tx Queue Min Thresh Count");
-
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
- CTLFLAG_RD, &stats->icrxdmtc,
- "Interrupt Cause Rx Desc Min Thresh Count");
-
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_overrun",
- CTLFLAG_RD, &stats->icrxoc,
- "Interrupt Cause Receiver Overrun Count");
-
- /* Host to Card Stats */
-
- host_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "host",
- CTLFLAG_RD, NULL,
- "Host to Card Statistics");
-
- host_list = SYSCTL_CHILDREN(host_node);
-
- SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "breaker_tx_pkt",
- CTLFLAG_RD, &stats->cbtmpc,
- "Circuit Breaker Tx Packet Count");
-
- SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "host_tx_pkt_discard",
- CTLFLAG_RD, &stats->htdpmc,
- "Host Transmit Discarded Packets");
-
- SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "rx_pkt",
- CTLFLAG_RD, &stats->rpthc,
- "Rx Packets To Host");
-
- SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "breaker_rx_pkts",
- CTLFLAG_RD, &stats->cbrmpc,
- "Circuit Breaker Rx Packet Count");
-
- SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "breaker_rx_pkt_drop",
- CTLFLAG_RD, &stats->cbrdpc,
- "Circuit Breaker Rx Dropped Count");
-
- SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "tx_good_pkt",
- CTLFLAG_RD, &stats->hgptc,
- "Host Good Packets Tx Count");
-
- SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "breaker_tx_pkt_drop",
- CTLFLAG_RD, &stats->htcbdpc,
- "Host Tx Circuit Breaker Dropped Count");
-
- SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "rx_good_bytes",
- CTLFLAG_RD, &stats->hgorc,
- "Host Good Octets Received Count");
-
- SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "tx_good_bytes",
- CTLFLAG_RD, &stats->hgotc,
- "Host Good Octets Transmit Count");
-
- SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "length_errors",
- CTLFLAG_RD, &stats->lenerrs,
- "Length Errors");
-
- SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "serdes_violation_pkt",
- CTLFLAG_RD, &stats->scvpc,
- "SerDes/SGMII Code Violation Pkt Count");
-
- SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "header_redir_missed",
- CTLFLAG_RD, &stats->hrmpc,
- "Header Redirection Missed Packet Count");
-}
-
-
-/**********************************************************************
- *
- * This routine provides a way to dump out the adapter eeprom,
- * often a useful debug/service tool. This only dumps the first
- * 32 words, stuff that matters is in that extent.
- *
- **********************************************************************/
-static int
-igb_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
-{
- struct adapter *adapter;
- int error;
- int result;
-
- result = -1;
- error = sysctl_handle_int(oidp, &result, 0, req);
-
- if (error || !req->newptr)
- return (error);
-
- /*
- * This value will cause a hex dump of the
- * first 32 16-bit words of the EEPROM to
- * the screen.
- */
- if (result == 1) {
- adapter = (struct adapter *)arg1;
- igb_print_nvm_info(adapter);
- }
-
- return (error);
-}
-
-static void
-igb_print_nvm_info(struct adapter *adapter)
-{
- u16 eeprom_data;
- int i, j, row = 0;
-
- /* Its a bit crude, but it gets the job done */
- printf("\nInterface EEPROM Dump:\n");
- printf("Offset\n0x0000 ");
- for (i = 0, j = 0; i < 32; i++, j++) {
- if (j == 8) { /* Make the offset block */
- j = 0; ++row;
- printf("\n0x00%x0 ",row);
- }
- e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
- printf("%04x ", eeprom_data);
- }
- printf("\n");
-}
-
-static void
-igb_set_sysctl_value(struct adapter *adapter, const char *name,
- const char *description, int *limit, int value)
-{
- *limit = value;
- SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
- SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
- OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description);
-}
-
-/*
-** Set flow control using sysctl:
-** Flow control values:
-** 0 - off
-** 1 - rx pause
-** 2 - tx pause
-** 3 - full
-*/
-static int
-igb_set_flowcntl(SYSCTL_HANDLER_ARGS)
-{
- int error;
- struct adapter *adapter;
-
- error = sysctl_handle_int(oidp, &igb_fc_setting, 0, req);
-
- if (error)
- return (error);
-
- adapter = (struct adapter *) arg1;
- switch (igb_fc_setting) {
- case e1000_fc_rx_pause:
- case e1000_fc_tx_pause:
- case e1000_fc_full:
- adapter->hw.fc.requested_mode = igb_fc_setting;
- break;
- case e1000_fc_none:
- default:
- adapter->hw.fc.requested_mode = e1000_fc_none;
- }
-
- adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
- e1000_force_mac_fc(&adapter->hw);
- return error;
-}
+++ /dev/null
-/******************************************************************************
-
- Copyright (c) 2001-2011, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#ifndef _IGB_H_DEFINED_
-#define _IGB_H_DEFINED_
-
-/* Tunables */
-
-/*
- * IGB_TXD: Maximum number of Transmit Descriptors
- *
- * This value is the number of transmit descriptors allocated by the driver.
- * Increasing this value allows the driver to queue more transmits. Each
- * descriptor is 16 bytes.
- * Since TDLEN should be multiple of 128bytes, the number of transmit
- * desscriptors should meet the following condition.
- * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0
- */
-#define IGB_MIN_TXD 256
-#define IGB_DEFAULT_TXD 1024
-#define IGB_MAX_TXD 4096
-
-/*
- * IGB_RXD: Maximum number of Transmit Descriptors
- *
- * This value is the number of receive descriptors allocated by the driver.
- * Increasing this value allows the driver to buffer more incoming packets.
- * Each descriptor is 16 bytes. A receive buffer is also allocated for each
- * descriptor. The maximum MTU size is 16110.
- * Since TDLEN should be multiple of 128bytes, the number of transmit
- * desscriptors should meet the following condition.
- * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0
- */
-#define IGB_MIN_RXD 256
-#define IGB_DEFAULT_RXD 1024
-#define IGB_MAX_RXD 4096
-
-/*
- * IGB_TIDV - Transmit Interrupt Delay Value
- * Valid Range: 0-65535 (0=off)
- * Default Value: 64
- * This value delays the generation of transmit interrupts in units of
- * 1.024 microseconds. Transmit interrupt reduction can improve CPU
- * efficiency if properly tuned for specific network traffic. If the
- * system is reporting dropped transmits, this value may be set too high
- * causing the driver to run out of available transmit descriptors.
- */
-#define IGB_TIDV 64
-
-/*
- * IGB_TADV - Transmit Absolute Interrupt Delay Value
- * Valid Range: 0-65535 (0=off)
- * Default Value: 64
- * This value, in units of 1.024 microseconds, limits the delay in which a
- * transmit interrupt is generated. Useful only if IGB_TIDV is non-zero,
- * this value ensures that an interrupt is generated after the initial
- * packet is sent on the wire within the set amount of time. Proper tuning,
- * along with IGB_TIDV, may improve traffic throughput in specific
- * network conditions.
- */
-#define IGB_TADV 64
-
-/*
- * IGB_RDTR - Receive Interrupt Delay Timer (Packet Timer)
- * Valid Range: 0-65535 (0=off)
- * Default Value: 0
- * This value delays the generation of receive interrupts in units of 1.024
- * microseconds. Receive interrupt reduction can improve CPU efficiency if
- * properly tuned for specific network traffic. Increasing this value adds
- * extra latency to frame reception and can end up decreasing the throughput
- * of TCP traffic. If the system is reporting dropped receives, this value
- * may be set too high, causing the driver to run out of available receive
- * descriptors.
- *
- * CAUTION: When setting IGB_RDTR to a value other than 0, adapters
- * may hang (stop transmitting) under certain network conditions.
- * If this occurs a WATCHDOG message is logged in the system
- * event log. In addition, the controller is automatically reset,
- * restoring the network connection. To eliminate the potential
- * for the hang ensure that IGB_RDTR is set to 0.
- */
-#define IGB_RDTR 0
-
-/*
- * Receive Interrupt Absolute Delay Timer (Not valid for 82542/82543/82544)
- * Valid Range: 0-65535 (0=off)
- * Default Value: 64
- * This value, in units of 1.024 microseconds, limits the delay in which a
- * receive interrupt is generated. Useful only if IGB_RDTR is non-zero,
- * this value ensures that an interrupt is generated after the initial
- * packet is received within the set amount of time. Proper tuning,
- * along with IGB_RDTR, may improve traffic throughput in specific network
- * conditions.
- */
-#define IGB_RADV 64
-
-/*
- * This parameter controls the duration of transmit watchdog timer.
- */
-#define IGB_WATCHDOG (10 * hz)
-
-/*
- * This parameter controls when the driver calls the routine to reclaim
- * transmit descriptors. Cleaning earlier seems a win.
- */
-#define IGB_TX_CLEANUP_THRESHOLD (adapter->num_tx_desc / 2)
-
-/*
- * This parameter controls whether or not autonegotation is enabled.
- * 0 - Disable autonegotiation
- * 1 - Enable autonegotiation
- */
-#define DO_AUTO_NEG 1
-
-/*
- * This parameter control whether or not the driver will wait for
- * autonegotiation to complete.
- * 1 - Wait for autonegotiation to complete
- * 0 - Don't wait for autonegotiation to complete
- */
-#define WAIT_FOR_AUTO_NEG_DEFAULT 0
-
-/* Tunables -- End */
-
-#define AUTONEG_ADV_DEFAULT (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
- ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
- ADVERTISE_1000_FULL)
-
-#define AUTO_ALL_MODES 0
-
-/* PHY master/slave setting */
-#define IGB_MASTER_SLAVE e1000_ms_hw_default
-
-/*
- * Micellaneous constants
- */
-#define IGB_VENDOR_ID 0x8086
-
-#define IGB_JUMBO_PBA 0x00000028
-#define IGB_DEFAULT_PBA 0x00000030
-#define IGB_SMARTSPEED_DOWNSHIFT 3
-#define IGB_SMARTSPEED_MAX 15
-#define IGB_MAX_LOOP 10
-
-#define IGB_RX_PTHRESH (hw->mac.type <= e1000_82576 ? 16 : 8)
-#define IGB_RX_HTHRESH 8
-#define IGB_RX_WTHRESH 1
-
-#define IGB_TX_PTHRESH 8
-#define IGB_TX_HTHRESH 1
-#define IGB_TX_WTHRESH ((hw->mac.type != e1000_82575 && \
- adapter->msix_mem) ? 1 : 16)
-
-#define MAX_NUM_MULTICAST_ADDRESSES 128
-#define PCI_ANY_ID (~0U)
-#define ETHER_ALIGN 2
-#define IGB_TX_BUFFER_SIZE ((uint32_t) 1514)
-#define IGB_FC_PAUSE_TIME 0x0680
-#define IGB_EEPROM_APME 0x400;
-#define IGB_QUEUE_IDLE 0
-#define IGB_QUEUE_WORKING 1
-#define IGB_QUEUE_HUNG 2
-
-/*
- * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
- * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary. This will
- * also optimize cache line size effect. H/W supports up to cache line size 128.
- */
-#define IGB_DBA_ALIGN 128
-
-#define SPEED_MODE_BIT (1<<21) /* On PCI-E MACs only */
-
-/* PCI Config defines */
-#define IGB_MSIX_BAR 3
-
-/* Defines for printing debug information */
-#define DEBUG_INIT 0
-#define DEBUG_IOCTL 0
-#define DEBUG_HW 0
-
-#define INIT_DEBUGOUT(S) if (DEBUG_INIT) printf(S "\n")
-#define INIT_DEBUGOUT1(S, A) if (DEBUG_INIT) printf(S "\n", A)
-#define INIT_DEBUGOUT2(S, A, B) if (DEBUG_INIT) printf(S "\n", A, B)
-#define IOCTL_DEBUGOUT(S) if (DEBUG_IOCTL) printf(S "\n")
-#define IOCTL_DEBUGOUT1(S, A) if (DEBUG_IOCTL) printf(S "\n", A)
-#define IOCTL_DEBUGOUT2(S, A, B) if (DEBUG_IOCTL) printf(S "\n", A, B)
-#define HW_DEBUGOUT(S) if (DEBUG_HW) printf(S "\n")
-#define HW_DEBUGOUT1(S, A) if (DEBUG_HW) printf(S "\n", A)
-#define HW_DEBUGOUT2(S, A, B) if (DEBUG_HW) printf(S "\n", A, B)
-
-#define IGB_MAX_SCATTER 64
-#define IGB_VFTA_SIZE 128
-#define IGB_BR_SIZE 4096 /* ring buf size */
-#define IGB_TSO_SIZE (65535 + sizeof(struct ether_vlan_header))
-#define IGB_TSO_SEG_SIZE 4096 /* Max dma segment size */
-#define IGB_HDR_BUF 128
-#define IGB_PKTTYPE_MASK 0x0000FFF0
-#define ETH_ZLEN 60
-#define ETH_ADDR_LEN 6
-
-/* Offload bits in mbuf flag */
-#if __FreeBSD_version >= 800000
-#define CSUM_OFFLOAD (CSUM_IP|CSUM_TCP|CSUM_UDP|CSUM_SCTP)
-#else
-#define CSUM_OFFLOAD (CSUM_IP|CSUM_TCP|CSUM_UDP)
-#endif
-
-/* Define the starting Interrupt rate per Queue */
-#define IGB_INTS_PER_SEC 8000
-#define IGB_DEFAULT_ITR ((1000000/IGB_INTS_PER_SEC) << 2)
-
-#define IGB_LINK_ITR 2000
-
-/* Precision Time Sync (IEEE 1588) defines */
-#define ETHERTYPE_IEEE1588 0x88F7
-#define PICOSECS_PER_TICK 20833
-#define TSYNC_PORT 319 /* UDP port for the protocol */
-
-/*
- * Bus dma allocation structure used by
- * e1000_dma_malloc and e1000_dma_free.
- */
-struct igb_dma_alloc {
- bus_addr_t dma_paddr;
- caddr_t dma_vaddr;
- bus_dma_tag_t dma_tag;
- bus_dmamap_t dma_map;
- bus_dma_segment_t dma_seg;
- int dma_nseg;
-};
-
-
-/*
-** Driver queue struct: this is the interrupt container
-** for the associated tx and rx ring.
-*/
-struct igb_queue {
- struct adapter *adapter;
- u32 msix; /* This queue's MSIX vector */
- u32 eims; /* This queue's EIMS bit */
- u32 eitr_setting;
- struct resource *res;
- void *tag;
- struct tx_ring *txr;
- struct rx_ring *rxr;
- struct task que_task;
- struct taskqueue *tq;
- u64 irqs;
-};
-
-/*
- * Transmit ring: one per queue
- */
-struct tx_ring {
- struct adapter *adapter;
- u32 me;
- struct mtx tx_mtx;
- char mtx_name[16];
- struct igb_dma_alloc txdma;
- struct e1000_tx_desc *tx_base;
- u32 next_avail_desc;
- u32 next_to_clean;
- volatile u16 tx_avail;
- struct igb_tx_buffer *tx_buffers;
-#if __FreeBSD_version >= 800000
- struct buf_ring *br;
-#endif
- bus_dma_tag_t txtag;
-
- u32 bytes;
- u32 packets;
-
- int queue_status;
- int watchdog_time;
- int tdt;
- int tdh;
- u64 no_desc_avail;
- u64 tx_packets;
-};
-
-/*
- * Receive ring: one per queue
- */
-struct rx_ring {
- struct adapter *adapter;
- u32 me;
- struct igb_dma_alloc rxdma;
- union e1000_adv_rx_desc *rx_base;
- struct lro_ctrl lro;
- bool lro_enabled;
- bool hdr_split;
- bool discard;
- struct mtx rx_mtx;
- char mtx_name[16];
- u32 next_to_refresh;
- u32 next_to_check;
- struct igb_rx_buf *rx_buffers;
- bus_dma_tag_t htag; /* dma tag for rx head */
- bus_dma_tag_t ptag; /* dma tag for rx packet */
- /*
- * First/last mbuf pointers, for
- * collecting multisegment RX packets.
- */
- struct mbuf *fmp;
- struct mbuf *lmp;
-
- u32 bytes;
- u32 packets;
- int rdt;
- int rdh;
-
- /* Soft stats */
- u64 rx_split_packets;
- u64 rx_discarded;
- u64 rx_packets;
- u64 rx_bytes;
-};
-
-struct adapter {
- struct ifnet *ifp;
- struct e1000_hw hw;
-
- struct e1000_osdep osdep;
- struct device *dev;
- struct cdev *led_dev;
-
- struct resource *pci_mem;
- struct resource *msix_mem;
- struct resource *res;
- void *tag;
- u32 que_mask;
-
- int linkvec;
- int link_mask;
- struct task link_task;
- int link_irq;
-
- struct ifmedia media;
- struct callout timer;
- int msix; /* total vectors allocated */
- int if_flags;
- int max_frame_size;
- int min_frame_size;
- int pause_frames;
- struct mtx core_mtx;
- int igb_insert_vlan_header;
- u16 num_queues;
- u16 vf_ifp; /* a VF interface */
-
- eventhandler_tag vlan_attach;
- eventhandler_tag vlan_detach;
- u32 num_vlans;
-
- /* Management and WOL features */
- int wol;
- int has_manage;
-
- /*
- ** Shadow VFTA table, this is needed because
- ** the real vlan filter table gets cleared during
- ** a soft reset and the driver needs to be able
- ** to repopulate it.
- */
- u32 shadow_vfta[IGB_VFTA_SIZE];
-
- /* Info about the interface */
- u8 link_active;
- u16 link_speed;
- u16 link_duplex;
- u32 smartspeed;
- u32 dma_coalesce;
-
- /* Interface queues */
- struct igb_queue *queues;
-
- /*
- * Transmit rings
- */
- struct tx_ring *tx_rings;
- u16 num_tx_desc;
-
- /* Multicast array pointer */
- u8 *mta;
-
- /*
- * Receive rings
- */
- struct rx_ring *rx_rings;
- bool rx_hdr_split;
- u16 num_rx_desc;
- int rx_process_limit;
- u32 rx_mbuf_sz;
- u32 rx_mask;
-
- /* Misc stats maintained by the driver */
- unsigned long dropped_pkts;
- unsigned long mbuf_defrag_failed;
- unsigned long mbuf_header_failed;
- unsigned long mbuf_packet_failed;
- unsigned long no_tx_map_avail;
- unsigned long no_tx_dma_setup;
- unsigned long watchdog_events;
- unsigned long rx_overruns;
- unsigned long device_control;
- unsigned long rx_control;
- unsigned long int_mask;
- unsigned long eint_mask;
- unsigned long packet_buf_alloc_rx;
- unsigned long packet_buf_alloc_tx;
-
- boolean_t in_detach;
-
-#ifdef IGB_IEEE1588
- /* IEEE 1588 precision time support */
- struct cyclecounter cycles;
- struct nettimer clock;
- struct nettime_compare compare;
- struct hwtstamp_ctrl hwtstamp;
-#endif
-
- void *stats;
-};
-
-/* ******************************************************************************
- * vendor_info_array
- *
- * This array contains the list of Subvendor/Subdevice IDs on which the driver
- * should load.
- *
- * ******************************************************************************/
-typedef struct _igb_vendor_info_t {
- unsigned int vendor_id;
- unsigned int device_id;
- unsigned int subvendor_id;
- unsigned int subdevice_id;
- unsigned int index;
-} igb_vendor_info_t;
-
-
-struct igb_tx_buffer {
- int next_eop; /* Index of the desc to watch */
- struct mbuf *m_head;
- bus_dmamap_t map; /* bus_dma map for packet */
-};
-
-struct igb_rx_buf {
- struct mbuf *m_head;
- struct mbuf *m_pack;
- bus_dmamap_t hmap; /* bus_dma map for header */
- bus_dmamap_t pmap; /* bus_dma map for packet */
-};
-
-/*
-** Find the number of unrefreshed RX descriptors
-*/
-static inline u16
-igb_rx_unrefreshed(struct rx_ring *rxr)
-{
- struct adapter *adapter = rxr->adapter;
-
- if (rxr->next_to_check > rxr->next_to_refresh)
- return (rxr->next_to_check - rxr->next_to_refresh - 1);
- else
- return ((adapter->num_rx_desc + rxr->next_to_check) -
- rxr->next_to_refresh - 1);
-}
-
-#define IGB_CORE_LOCK_INIT(_sc, _name) \
- mtx_init(&(_sc)->core_mtx, _name, "IGB Core Lock", MTX_DEF)
-#define IGB_CORE_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->core_mtx)
-#define IGB_CORE_LOCK(_sc) mtx_lock(&(_sc)->core_mtx)
-#define IGB_CORE_UNLOCK(_sc) mtx_unlock(&(_sc)->core_mtx)
-#define IGB_CORE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->core_mtx, MA_OWNED)
-
-#define IGB_TX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->tx_mtx)
-#define IGB_TX_LOCK(_sc) mtx_lock(&(_sc)->tx_mtx)
-#define IGB_TX_UNLOCK(_sc) mtx_unlock(&(_sc)->tx_mtx)
-#define IGB_TX_TRYLOCK(_sc) mtx_trylock(&(_sc)->tx_mtx)
-#define IGB_TX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tx_mtx, MA_OWNED)
-
-#define IGB_RX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->rx_mtx)
-#define IGB_RX_LOCK(_sc) mtx_lock(&(_sc)->rx_mtx)
-#define IGB_RX_UNLOCK(_sc) mtx_unlock(&(_sc)->rx_mtx)
-#define IGB_RX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->rx_mtx, MA_OWNED)
-
-#define UPDATE_VF_REG(reg, last, cur) \
-{ \
- u32 new = E1000_READ_REG(hw, reg); \
- if (new < last) \
- cur += 0x100000000LL; \
- last = new; \
- cur &= 0xFFFFFFFF00000000LL; \
- cur |= new; \
-}
-
-#if __FreeBSD_version < 800504
-static __inline int
-drbr_needs_enqueue(struct ifnet *ifp, struct buf_ring *br)
-{
-#ifdef ALTQ
- if (ALTQ_IS_ENABLED(&ifp->if_snd))
- return (1);
-#endif
- return (!buf_ring_empty(br));
-}
-#endif
-
-#endif /* _IGB_H_DEFINED_ */
-
-
endif
endif
-ifeq ($(CONFIG_RTE_LIBRTE_IGB_PMD),y)
-LDLIBS += -lrte_pmd_igb
+ifeq ($(CONFIG_RTE_LIBRTE_E1000_PMD),y)
+LDLIBS += -lrte_pmd_e1000
endif
ifeq ($(CONFIG_RTE_LIBRTE_IXGBE_PMD),y)
include $(RTE_SDK)/mk/rte.extvars.mk
endif
+CONFIG_RTE_LIBRTE_E1000_PMD = $(CONFIG_RTE_LIBRTE_IGB_PMD)
+
ifeq ($(RTE_ARCH),)
$(error RTE_ARCH is not defined)
endif