* Copyright(c) 2020 Intel Corporation
*/
+#include <rte_common.h>
+#include <rte_lcore.h>
+#include <rte_spinlock.h>
+
#include "rte_power_intrinsics.h"
+/*
+ * Per-lcore structure holding current status of C0.2 sleeps.
+ */
+static struct power_wait_status {
+ rte_spinlock_t lock;
+ volatile void *monitor_addr; /**< NULL if not currently sleeping */
+} __rte_cache_aligned wait_status[RTE_MAX_LCORE];
+
+static inline void
+__umwait_wakeup(volatile void *addr)
+{
+ uint64_t val;
+
+ /* trigger a write but don't change the value */
+ val = __atomic_load_n((volatile uint64_t *)addr, __ATOMIC_RELAXED);
+ __atomic_compare_exchange_n((volatile uint64_t *)addr, &val, val, 0,
+ __ATOMIC_RELAXED, __ATOMIC_RELAXED);
+}
+
static bool wait_supported;
static inline uint64_t
{
const uint32_t tsc_l = (uint32_t)tsc_timestamp;
const uint32_t tsc_h = (uint32_t)(tsc_timestamp >> 32);
+ const unsigned int lcore_id = rte_lcore_id();
+ struct power_wait_status *s;
/* prevent user from running this instruction if it's not supported */
if (!wait_supported)
return -ENOTSUP;
+ /* prevent non-EAL thread from using this API */
+ if (lcore_id >= RTE_MAX_LCORE)
+ return -EINVAL;
+
if (pmc == NULL)
return -EINVAL;
if (__check_val_size(pmc->data_sz) < 0)
return -EINVAL;
+ s = &wait_status[lcore_id];
+
+ /* update sleep address */
+ rte_spinlock_lock(&s->lock);
+ s->monitor_addr = pmc->addr;
+
/*
* we're using raw byte codes for now as only the newest compiler
* versions support this instruction natively.
:
: "D"(pmc->addr));
+ /* now that we've put this address into monitor, we can unlock */
+ rte_spinlock_unlock(&s->lock);
+
+ /* if we have a comparison mask, we might not need to sleep at all */
if (pmc->mask) {
const uint64_t cur_value = __get_umwait_val(
pmc->addr, pmc->data_sz);
/* if the masked value is already matching, abort */
if (masked == pmc->val)
- return 0;
+ goto end;
}
+
/* execute UMWAIT */
asm volatile(".byte 0xf2, 0x0f, 0xae, 0xf7;"
: /* ignore rflags */
: "D"(0), /* enter C0.2 */
"a"(tsc_l), "d"(tsc_h));
+end:
+ /* erase sleep address */
+ rte_spinlock_lock(&s->lock);
+ s->monitor_addr = NULL;
+ rte_spinlock_unlock(&s->lock);
+
return 0;
}
if (i.power_monitor && i.power_pause)
wait_supported = 1;
}
+
+int
+rte_power_monitor_wakeup(const unsigned int lcore_id)
+{
+ struct power_wait_status *s;
+
+ /* prevent user from running this instruction if it's not supported */
+ if (!wait_supported)
+ return -ENOTSUP;
+
+ /* prevent buffer overrun */
+ if (lcore_id >= RTE_MAX_LCORE)
+ return -EINVAL;
+
+ s = &wait_status[lcore_id];
+
+ /*
+ * There is a race condition between sleep, wakeup and locking, but we
+ * don't need to handle it.
+ *
+ * Possible situations:
+ *
+ * 1. T1 locks, sets address, unlocks
+ * 2. T2 locks, triggers wakeup, unlocks
+ * 3. T1 sleeps
+ *
+ * In this case, because T1 has already set the address for monitoring,
+ * we will wake up immediately even if T2 triggers wakeup before T1
+ * goes to sleep.
+ *
+ * 1. T1 locks, sets address, unlocks, goes to sleep, and wakes up
+ * 2. T2 locks, triggers wakeup, and unlocks
+ * 3. T1 locks, erases address, and unlocks
+ *
+ * In this case, since we've already woken up, the "wakeup" was
+ * unneeded, and since T1 is still waiting on T2 releasing the lock, the
+ * wakeup address is still valid so it's perfectly safe to write it.
+ */
+ rte_spinlock_lock(&s->lock);
+ if (s->monitor_addr != NULL)
+ __umwait_wakeup(s->monitor_addr);
+ rte_spinlock_unlock(&s->lock);
+
+ return 0;
+}