buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
RTE_PKTMBUF_HEADROOM);
+ /* Check if scattered RX needs to be used. */
+ if ((rxq->max_pkt_len + 2 * ICE_VLAN_TAG_SIZE) > buf_size)
+ dev->data->scattered_rx = 1;
+
rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
/* Init the Rx tail register*/
mb->vlan_tci, mb->vlan_tci_outer);
}
+#ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
+#define ICE_LOOK_AHEAD 8
+#if (ICE_LOOK_AHEAD != 8)
+#error "PMD ICE: ICE_LOOK_AHEAD must be 8\n"
+#endif
+static inline int
+ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
+{
+ volatile union ice_rx_desc *rxdp;
+ struct ice_rx_entry *rxep;
+ struct rte_mbuf *mb;
+ uint16_t pkt_len;
+ uint64_t qword1;
+ uint32_t rx_status;
+ int32_t s[ICE_LOOK_AHEAD], nb_dd;
+ int32_t i, j, nb_rx = 0;
+ uint64_t pkt_flags = 0;
+ uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
+
+ rxdp = &rxq->rx_ring[rxq->rx_tail];
+ rxep = &rxq->sw_ring[rxq->rx_tail];
+
+ qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
+ rx_status = (qword1 & ICE_RXD_QW1_STATUS_M) >> ICE_RXD_QW1_STATUS_S;
+
+ /* Make sure there is at least 1 packet to receive */
+ if (!(rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)))
+ return 0;
+
+ /**
+ * Scan LOOK_AHEAD descriptors at a time to determine which
+ * descriptors reference packets that are ready to be received.
+ */
+ for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
+ rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
+ /* Read desc statuses backwards to avoid race condition */
+ for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--) {
+ qword1 = rte_le_to_cpu_64(
+ rxdp[j].wb.qword1.status_error_len);
+ s[j] = (qword1 & ICE_RXD_QW1_STATUS_M) >>
+ ICE_RXD_QW1_STATUS_S;
+ }
+
+ rte_smp_rmb();
+
+ /* Compute how many status bits were set */
+ for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
+ nb_dd += s[j] & (1 << ICE_RX_DESC_STATUS_DD_S);
+
+ nb_rx += nb_dd;
+
+ /* Translate descriptor info to mbuf parameters */
+ for (j = 0; j < nb_dd; j++) {
+ mb = rxep[j].mbuf;
+ qword1 = rte_le_to_cpu_64(
+ rxdp[j].wb.qword1.status_error_len);
+ pkt_len = ((qword1 & ICE_RXD_QW1_LEN_PBUF_M) >>
+ ICE_RXD_QW1_LEN_PBUF_S) - rxq->crc_len;
+ mb->data_len = pkt_len;
+ mb->pkt_len = pkt_len;
+ mb->ol_flags = 0;
+ pkt_flags = ice_rxd_status_to_pkt_flags(qword1);
+ pkt_flags |= ice_rxd_error_to_pkt_flags(qword1);
+ if (pkt_flags & PKT_RX_RSS_HASH)
+ mb->hash.rss =
+ rte_le_to_cpu_32(
+ rxdp[j].wb.qword0.hi_dword.rss);
+ mb->packet_type = ptype_tbl[(uint8_t)(
+ (qword1 &
+ ICE_RXD_QW1_PTYPE_M) >>
+ ICE_RXD_QW1_PTYPE_S)];
+ ice_rxd_to_vlan_tci(mb, &rxdp[j]);
+
+ mb->ol_flags |= pkt_flags;
+ }
+
+ for (j = 0; j < ICE_LOOK_AHEAD; j++)
+ rxq->rx_stage[i + j] = rxep[j].mbuf;
+
+ if (nb_dd != ICE_LOOK_AHEAD)
+ break;
+ }
+
+ /* Clear software ring entries */
+ for (i = 0; i < nb_rx; i++)
+ rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
+
+ PMD_RX_LOG(DEBUG, "ice_rx_scan_hw_ring: "
+ "port_id=%u, queue_id=%u, nb_rx=%d",
+ rxq->port_id, rxq->queue_id, nb_rx);
+
+ return nb_rx;
+}
+
+static inline uint16_t
+ice_rx_fill_from_stage(struct ice_rx_queue *rxq,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ uint16_t i;
+ struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
+
+ nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
+
+ for (i = 0; i < nb_pkts; i++)
+ rx_pkts[i] = stage[i];
+
+ rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
+ rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
+
+ return nb_pkts;
+}
+
+static inline int
+ice_rx_alloc_bufs(struct ice_rx_queue *rxq)
+{
+ volatile union ice_rx_desc *rxdp;
+ struct ice_rx_entry *rxep;
+ struct rte_mbuf *mb;
+ uint16_t alloc_idx, i;
+ uint64_t dma_addr;
+ int diag;
+
+ /* Allocate buffers in bulk */
+ alloc_idx = (uint16_t)(rxq->rx_free_trigger -
+ (rxq->rx_free_thresh - 1));
+ rxep = &rxq->sw_ring[alloc_idx];
+ diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
+ rxq->rx_free_thresh);
+ if (unlikely(diag != 0)) {
+ PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
+ return -ENOMEM;
+ }
+
+ rxdp = &rxq->rx_ring[alloc_idx];
+ for (i = 0; i < rxq->rx_free_thresh; i++) {
+ if (likely(i < (rxq->rx_free_thresh - 1)))
+ /* Prefetch next mbuf */
+ rte_prefetch0(rxep[i + 1].mbuf);
+
+ mb = rxep[i].mbuf;
+ rte_mbuf_refcnt_set(mb, 1);
+ mb->next = NULL;
+ mb->data_off = RTE_PKTMBUF_HEADROOM;
+ mb->nb_segs = 1;
+ mb->port = rxq->port_id;
+ dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
+ rxdp[i].read.hdr_addr = 0;
+ rxdp[i].read.pkt_addr = dma_addr;
+ }
+
+ /* Update rx tail regsiter */
+ rte_wmb();
+ ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
+
+ rxq->rx_free_trigger =
+ (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
+ if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
+ rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
+
+ return 0;
+}
+
+static inline uint16_t
+rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
+{
+ struct ice_rx_queue *rxq = (struct ice_rx_queue *)rx_queue;
+ uint16_t nb_rx = 0;
+ struct rte_eth_dev *dev;
+
+ if (!nb_pkts)
+ return 0;
+
+ if (rxq->rx_nb_avail)
+ return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
+
+ nb_rx = (uint16_t)ice_rx_scan_hw_ring(rxq);
+ rxq->rx_next_avail = 0;
+ rxq->rx_nb_avail = nb_rx;
+ rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
+
+ if (rxq->rx_tail > rxq->rx_free_trigger) {
+ if (ice_rx_alloc_bufs(rxq) != 0) {
+ uint16_t i, j;
+
+ dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
+ dev->data->rx_mbuf_alloc_failed +=
+ rxq->rx_free_thresh;
+ PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
+ "port_id=%u, queue_id=%u",
+ rxq->port_id, rxq->queue_id);
+ rxq->rx_nb_avail = 0;
+ rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
+ for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
+ rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
+
+ return 0;
+ }
+ }
+
+ if (rxq->rx_tail >= rxq->nb_rx_desc)
+ rxq->rx_tail = 0;
+
+ if (rxq->rx_nb_avail)
+ return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
+
+ return 0;
+}
+
+static uint16_t
+ice_recv_pkts_bulk_alloc(void *rx_queue,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ uint16_t nb_rx = 0;
+ uint16_t n;
+ uint16_t count;
+
+ if (unlikely(nb_pkts == 0))
+ return nb_rx;
+
+ if (likely(nb_pkts <= ICE_RX_MAX_BURST))
+ return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
+
+ while (nb_pkts) {
+ n = RTE_MIN(nb_pkts, ICE_RX_MAX_BURST);
+ count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
+ nb_rx = (uint16_t)(nb_rx + count);
+ nb_pkts = (uint16_t)(nb_pkts - count);
+ if (count < n)
+ break;
+ }
+
+ return nb_rx;
+}
+#else
+static uint16_t
+ice_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
+ struct rte_mbuf __rte_unused **rx_pkts,
+ uint16_t __rte_unused nb_pkts)
+{
+ return 0;
+}
+#endif /* RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC */
+
+static uint16_t
+ice_recv_scattered_pkts(void *rx_queue,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ struct ice_rx_queue *rxq = rx_queue;
+ volatile union ice_rx_desc *rx_ring = rxq->rx_ring;
+ volatile union ice_rx_desc *rxdp;
+ union ice_rx_desc rxd;
+ struct ice_rx_entry *sw_ring = rxq->sw_ring;
+ struct ice_rx_entry *rxe;
+ struct rte_mbuf *first_seg = rxq->pkt_first_seg;
+ struct rte_mbuf *last_seg = rxq->pkt_last_seg;
+ struct rte_mbuf *nmb; /* new allocated mbuf */
+ struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
+ uint16_t rx_id = rxq->rx_tail;
+ uint16_t nb_rx = 0;
+ uint16_t nb_hold = 0;
+ uint16_t rx_packet_len;
+ uint32_t rx_status;
+ uint64_t qword1;
+ uint64_t dma_addr;
+ uint64_t pkt_flags = 0;
+ uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
+ struct rte_eth_dev *dev;
+
+ while (nb_rx < nb_pkts) {
+ rxdp = &rx_ring[rx_id];
+ qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
+ rx_status = (qword1 & ICE_RXD_QW1_STATUS_M) >>
+ ICE_RXD_QW1_STATUS_S;
+
+ /* Check the DD bit first */
+ if (!(rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)))
+ break;
+
+ /* allocate mbuf */
+ nmb = rte_mbuf_raw_alloc(rxq->mp);
+ if (unlikely(!nmb)) {
+ dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
+ dev->data->rx_mbuf_alloc_failed++;
+ break;
+ }
+ rxd = *rxdp; /* copy descriptor in ring to temp variable*/
+
+ nb_hold++;
+ rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
+ rx_id++;
+ if (unlikely(rx_id == rxq->nb_rx_desc))
+ rx_id = 0;
+
+ /* Prefetch next mbuf */
+ rte_prefetch0(sw_ring[rx_id].mbuf);
+
+ /**
+ * When next RX descriptor is on a cache line boundary,
+ * prefetch the next 4 RX descriptors and next 8 pointers
+ * to mbufs.
+ */
+ if ((rx_id & 0x3) == 0) {
+ rte_prefetch0(&rx_ring[rx_id]);
+ rte_prefetch0(&sw_ring[rx_id]);
+ }
+
+ rxm = rxe->mbuf;
+ rxe->mbuf = nmb;
+ dma_addr =
+ rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
+
+ /* Set data buffer address and data length of the mbuf */
+ rxdp->read.hdr_addr = 0;
+ rxdp->read.pkt_addr = dma_addr;
+ rx_packet_len = (qword1 & ICE_RXD_QW1_LEN_PBUF_M) >>
+ ICE_RXD_QW1_LEN_PBUF_S;
+ rxm->data_len = rx_packet_len;
+ rxm->data_off = RTE_PKTMBUF_HEADROOM;
+ ice_rxd_to_vlan_tci(rxm, rxdp);
+ rxm->packet_type = ptype_tbl[(uint8_t)((qword1 &
+ ICE_RXD_QW1_PTYPE_M) >>
+ ICE_RXD_QW1_PTYPE_S)];
+
+ /**
+ * If this is the first buffer of the received packet, set the
+ * pointer to the first mbuf of the packet and initialize its
+ * context. Otherwise, update the total length and the number
+ * of segments of the current scattered packet, and update the
+ * pointer to the last mbuf of the current packet.
+ */
+ if (!first_seg) {
+ first_seg = rxm;
+ first_seg->nb_segs = 1;
+ first_seg->pkt_len = rx_packet_len;
+ } else {
+ first_seg->pkt_len =
+ (uint16_t)(first_seg->pkt_len +
+ rx_packet_len);
+ first_seg->nb_segs++;
+ last_seg->next = rxm;
+ }
+
+ /**
+ * If this is not the last buffer of the received packet,
+ * update the pointer to the last mbuf of the current scattered
+ * packet and continue to parse the RX ring.
+ */
+ if (!(rx_status & (1 << ICE_RX_DESC_STATUS_EOF_S))) {
+ last_seg = rxm;
+ continue;
+ }
+
+ /**
+ * This is the last buffer of the received packet. If the CRC
+ * is not stripped by the hardware:
+ * - Subtract the CRC length from the total packet length.
+ * - If the last buffer only contains the whole CRC or a part
+ * of it, free the mbuf associated to the last buffer. If part
+ * of the CRC is also contained in the previous mbuf, subtract
+ * the length of that CRC part from the data length of the
+ * previous mbuf.
+ */
+ rxm->next = NULL;
+ if (unlikely(rxq->crc_len > 0)) {
+ first_seg->pkt_len -= ETHER_CRC_LEN;
+ if (rx_packet_len <= ETHER_CRC_LEN) {
+ rte_pktmbuf_free_seg(rxm);
+ first_seg->nb_segs--;
+ last_seg->data_len =
+ (uint16_t)(last_seg->data_len -
+ (ETHER_CRC_LEN - rx_packet_len));
+ last_seg->next = NULL;
+ } else
+ rxm->data_len = (uint16_t)(rx_packet_len -
+ ETHER_CRC_LEN);
+ }
+
+ first_seg->port = rxq->port_id;
+ first_seg->ol_flags = 0;
+
+ pkt_flags = ice_rxd_status_to_pkt_flags(qword1);
+ pkt_flags |= ice_rxd_error_to_pkt_flags(qword1);
+ if (pkt_flags & PKT_RX_RSS_HASH)
+ first_seg->hash.rss =
+ rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
+
+ first_seg->ol_flags |= pkt_flags;
+ /* Prefetch data of first segment, if configured to do so. */
+ rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
+ first_seg->data_off));
+ rx_pkts[nb_rx++] = first_seg;
+ first_seg = NULL;
+ }
+
+ /* Record index of the next RX descriptor to probe. */
+ rxq->rx_tail = rx_id;
+ rxq->pkt_first_seg = first_seg;
+ rxq->pkt_last_seg = last_seg;
+
+ /**
+ * If the number of free RX descriptors is greater than the RX free
+ * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+ * register. Update the RDT with the value of the last processed RX
+ * descriptor minus 1, to guarantee that the RDT register is never
+ * equal to the RDH register, which creates a "full" ring situtation
+ * from the hardware point of view.
+ */
+ nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
+ if (nb_hold > rxq->rx_free_thresh) {
+ rx_id = (uint16_t)(rx_id == 0 ?
+ (rxq->nb_rx_desc - 1) : (rx_id - 1));
+ /* write TAIL register */
+ ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
+ nb_hold = 0;
+ }
+ rxq->nb_rx_hold = nb_hold;
+
+ /* return received packet in the burst */
+ return nb_rx;
+}
+
const uint32_t *
ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
{
RTE_PTYPE_UNKNOWN
};
- if (dev->rx_pkt_burst == ice_recv_pkts)
+ if (dev->rx_pkt_burst == ice_recv_pkts ||
+#ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
+ dev->rx_pkt_burst == ice_recv_pkts_bulk_alloc ||
+#endif
+ dev->rx_pkt_burst == ice_recv_scattered_pkts)
return ptypes;
return NULL;
}
return 0;
}
+/* Construct the tx flags */
+static inline uint64_t
+ice_build_ctob(uint32_t td_cmd,
+ uint32_t td_offset,
+ uint16_t size,
+ uint32_t td_tag)
+{
+ return rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
+ ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
+ ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
+ ((uint64_t)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
+ ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
+}
+
/* Check if the context descriptor is needed for TX offloading */
static inline uint16_t
ice_calc_context_desc(uint64_t flags)
return nb_tx;
}
+static inline int __attribute__((always_inline))
+ice_tx_free_bufs(struct ice_tx_queue *txq)
+{
+ struct ice_tx_entry *txep;
+ uint16_t i;
+
+ if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
+ rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
+ rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
+ return 0;
+
+ txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)];
+
+ for (i = 0; i < txq->tx_rs_thresh; i++)
+ rte_prefetch0((txep + i)->mbuf);
+
+ if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) {
+ for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
+ rte_mempool_put(txep->mbuf->pool, txep->mbuf);
+ txep->mbuf = NULL;
+ }
+ } else {
+ for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
+ rte_pktmbuf_free_seg(txep->mbuf);
+ txep->mbuf = NULL;
+ }
+ }
+
+ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
+ txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
+ if (txq->tx_next_dd >= txq->nb_tx_desc)
+ txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
+
+ return txq->tx_rs_thresh;
+}
+
+/* Populate 4 descriptors with data from 4 mbufs */
+static inline void
+tx4(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
+{
+ uint64_t dma_addr;
+ uint32_t i;
+
+ for (i = 0; i < 4; i++, txdp++, pkts++) {
+ dma_addr = rte_mbuf_data_iova(*pkts);
+ txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
+ txdp->cmd_type_offset_bsz =
+ ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
+ (*pkts)->data_len, 0);
+ }
+}
+
+/* Populate 1 descriptor with data from 1 mbuf */
+static inline void
+tx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
+{
+ uint64_t dma_addr;
+
+ dma_addr = rte_mbuf_data_iova(*pkts);
+ txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
+ txdp->cmd_type_offset_bsz =
+ ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
+ (*pkts)->data_len, 0);
+}
+
+static inline void
+ice_tx_fill_hw_ring(struct ice_tx_queue *txq, struct rte_mbuf **pkts,
+ uint16_t nb_pkts)
+{
+ volatile struct ice_tx_desc *txdp = &txq->tx_ring[txq->tx_tail];
+ struct ice_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
+ const int N_PER_LOOP = 4;
+ const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
+ int mainpart, leftover;
+ int i, j;
+
+ /**
+ * Process most of the packets in chunks of N pkts. Any
+ * leftover packets will get processed one at a time.
+ */
+ mainpart = nb_pkts & ((uint32_t)~N_PER_LOOP_MASK);
+ leftover = nb_pkts & ((uint32_t)N_PER_LOOP_MASK);
+ for (i = 0; i < mainpart; i += N_PER_LOOP) {
+ /* Copy N mbuf pointers to the S/W ring */
+ for (j = 0; j < N_PER_LOOP; ++j)
+ (txep + i + j)->mbuf = *(pkts + i + j);
+ tx4(txdp + i, pkts + i);
+ }
+
+ if (unlikely(leftover > 0)) {
+ for (i = 0; i < leftover; ++i) {
+ (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
+ tx1(txdp + mainpart + i, pkts + mainpart + i);
+ }
+ }
+}
+
+static inline uint16_t
+tx_xmit_pkts(struct ice_tx_queue *txq,
+ struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ volatile struct ice_tx_desc *txr = txq->tx_ring;
+ uint16_t n = 0;
+
+ /**
+ * Begin scanning the H/W ring for done descriptors when the number
+ * of available descriptors drops below tx_free_thresh. For each done
+ * descriptor, free the associated buffer.
+ */
+ if (txq->nb_tx_free < txq->tx_free_thresh)
+ ice_tx_free_bufs(txq);
+
+ /* Use available descriptor only */
+ nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
+ if (unlikely(!nb_pkts))
+ return 0;
+
+ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
+ if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
+ n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
+ ice_tx_fill_hw_ring(txq, tx_pkts, n);
+ txr[txq->tx_next_rs].cmd_type_offset_bsz |=
+ rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
+ ICE_TXD_QW1_CMD_S);
+ txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
+ txq->tx_tail = 0;
+ }
+
+ /* Fill hardware descriptor ring with mbuf data */
+ ice_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
+ txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
+
+ /* Determin if RS bit needs to be set */
+ if (txq->tx_tail > txq->tx_next_rs) {
+ txr[txq->tx_next_rs].cmd_type_offset_bsz |=
+ rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
+ ICE_TXD_QW1_CMD_S);
+ txq->tx_next_rs =
+ (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
+ if (txq->tx_next_rs >= txq->nb_tx_desc)
+ txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
+ }
+
+ if (txq->tx_tail >= txq->nb_tx_desc)
+ txq->tx_tail = 0;
+
+ /* Update the tx tail register */
+ rte_wmb();
+ ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
+
+ return nb_pkts;
+}
+
+static uint16_t
+ice_xmit_pkts_simple(void *tx_queue,
+ struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ uint16_t nb_tx = 0;
+
+ if (likely(nb_pkts <= ICE_TX_MAX_BURST))
+ return tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
+ tx_pkts, nb_pkts);
+
+ while (nb_pkts) {
+ uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
+ ICE_TX_MAX_BURST);
+
+ ret = tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
+ &tx_pkts[nb_tx], num);
+ nb_tx = (uint16_t)(nb_tx + ret);
+ nb_pkts = (uint16_t)(nb_pkts - ret);
+ if (ret < num)
+ break;
+ }
+
+ return nb_tx;
+}
+
void __attribute__((cold))
ice_set_rx_function(struct rte_eth_dev *dev)
{
- dev->rx_pkt_burst = ice_recv_pkts;
+ PMD_INIT_FUNC_TRACE();
+ struct ice_adapter *ad =
+ ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
+
+ if (dev->data->scattered_rx) {
+ /* Set the non-LRO scattered function */
+ PMD_INIT_LOG(DEBUG,
+ "Using a Scattered function on port %d.",
+ dev->data->port_id);
+ dev->rx_pkt_burst = ice_recv_scattered_pkts;
+ } else if (ad->rx_bulk_alloc_allowed) {
+ PMD_INIT_LOG(DEBUG,
+ "Rx Burst Bulk Alloc Preconditions are "
+ "satisfied. Rx Burst Bulk Alloc function "
+ "will be used on port %d.",
+ dev->data->port_id);
+ dev->rx_pkt_burst = ice_recv_pkts_bulk_alloc;
+ } else {
+ PMD_INIT_LOG(DEBUG,
+ "Rx Burst Bulk Alloc Preconditions are not "
+ "satisfied, Normal Rx will be used on port %d.",
+ dev->data->port_id);
+ dev->rx_pkt_burst = ice_recv_pkts;
+ }
}
/*********************************************************************
void __attribute__((cold))
ice_set_tx_function(struct rte_eth_dev *dev)
{
+ struct ice_adapter *ad =
+ ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
+
+ if (ad->tx_simple_allowed) {
+ PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
+ dev->tx_pkt_burst = ice_xmit_pkts_simple;
+ dev->tx_pkt_prepare = NULL;
+ } else {
+ PMD_INIT_LOG(DEBUG, "Normal tx finally be used.");
dev->tx_pkt_burst = ice_xmit_pkts;
dev->tx_pkt_prepare = ice_prep_pkts;
+ }
}
/* For each value it means, datasheet of hardware can tell more details