--- /dev/null
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2022 Intel Corporation
+ */
+
+#include <errno.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <inttypes.h>
+#include <unistd.h>
+#include <fcntl.h>
+#include <poll.h>
+#include <sys/eventfd.h>
+#include <sys/ioctl.h>
+
+#include <rte_eal.h>
+#include <rte_malloc.h>
+#include <rte_memcpy.h>
+#include <rte_io.h>
+#include <rte_vfio.h>
+#include <rte_bus_pci.h>
+#include <rte_bus_ifpga.h>
+#include <rte_rawdev.h>
+
+#include "afu_pmd_core.h"
+#include "afu_pmd_n3000.h"
+
+static int nlb_afu_config(struct afu_rawdev *dev)
+{
+ struct n3000_afu_priv *priv = NULL;
+ struct rte_pmd_afu_nlb_cfg *cfg = NULL;
+ struct nlb_csr_cfg v;
+
+ if (!dev)
+ return -EINVAL;
+
+ if (!dev->priv)
+ return -ENOENT;
+
+ priv = (struct n3000_afu_priv *)dev->priv;
+ cfg = &priv->nlb_cfg;
+
+ v.csr = 0;
+
+ if (cfg->cont)
+ v.cont = 1;
+
+ if (cfg->cache_policy == NLB_WRPUSH_I)
+ v.wrpush_i = 1;
+ else
+ v.wrthru_en = cfg->cache_policy;
+
+ if (cfg->cache_hint == NLB_RDLINE_MIXED)
+ v.rdsel = 3;
+ else
+ v.rdsel = cfg->cache_hint;
+
+ v.mode = cfg->mode;
+ v.chsel = cfg->read_vc;
+ v.wr_chsel = cfg->write_vc;
+ v.wrfence_chsel = cfg->wrfence_vc;
+ v.wrthru_en = cfg->cache_policy;
+ v.multicl_len = cfg->multi_cl - 1;
+
+ IFPGA_RAWDEV_PMD_DEBUG("cfg: 0x%08x", v.csr);
+ rte_write32(v.csr, priv->nlb_ctx.addr + CSR_CFG);
+
+ return 0;
+}
+
+static void nlb_afu_report(struct afu_rawdev *dev, uint32_t cl)
+{
+ struct n3000_afu_priv *priv = NULL;
+ struct rte_pmd_afu_nlb_cfg *cfg = NULL;
+ struct nlb_dsm_status *stat = NULL;
+ uint64_t ticks = 0;
+ double num, rd_bw, wr_bw;
+
+ if (!dev || !dev->priv)
+ return;
+
+ priv = (struct n3000_afu_priv *)dev->priv;
+
+ cfg = &priv->nlb_cfg;
+ stat = priv->nlb_ctx.status_ptr;
+
+ if (cfg->cont)
+ ticks = stat->num_clocks - stat->start_overhead;
+ else
+ ticks = stat->num_clocks -
+ (stat->start_overhead + stat->end_overhead);
+
+ if (cfg->freq_mhz == 0)
+ cfg->freq_mhz = 200;
+
+ num = (double)stat->num_reads;
+ rd_bw = (num * CLS_TO_SIZE(1) * MHZ(cfg->freq_mhz)) / ticks;
+ num = (double)stat->num_writes;
+ wr_bw = (num * CLS_TO_SIZE(1) * MHZ(cfg->freq_mhz)) / ticks;
+
+ printf("Cachelines Read_Count Write_Count Clocks@%uMHz "
+ "Rd_Bandwidth Wr_Bandwidth\n", cfg->freq_mhz);
+ printf("%10u %10u %11u %12"PRIu64" %7.3f GB/s %7.3f GB/s\n",
+ cl, stat->num_reads, stat->num_writes, ticks,
+ rd_bw / 1e9, wr_bw / 1e9);
+}
+
+static int nlb_afu_test(struct afu_rawdev *dev)
+{
+ struct n3000_afu_priv *priv = NULL;
+ struct nlb_afu_ctx *ctx = NULL;
+ struct rte_pmd_afu_nlb_cfg *cfg = NULL;
+ struct nlb_csr_ctl ctl;
+ uint32_t *ptr = NULL;
+ uint32_t i, j, cl, val = 0;
+ uint64_t sval = 0;
+ int ret = 0;
+
+ if (!dev)
+ return -EINVAL;
+
+ if (!dev->priv)
+ return -ENOENT;
+
+ priv = (struct n3000_afu_priv *)dev->priv;
+ ctx = &priv->nlb_ctx;
+ cfg = &priv->nlb_cfg;
+
+ /* initialize registers */
+ IFPGA_RAWDEV_PMD_DEBUG("dsm_addr: 0x%"PRIx64, ctx->dsm_iova);
+ rte_write64(ctx->dsm_iova, ctx->addr + CSR_AFU_DSM_BASEL);
+
+ ctl.csr = 0;
+ rte_write32(ctl.csr, ctx->addr + CSR_CTL);
+ ctl.reset = 1;
+ rte_write32(ctl.csr, ctx->addr + CSR_CTL);
+
+ IFPGA_RAWDEV_PMD_DEBUG("src_addr: 0x%"PRIx64, ctx->src_iova);
+ rte_write64(SIZE_TO_CLS(ctx->src_iova), ctx->addr + CSR_SRC_ADDR);
+ IFPGA_RAWDEV_PMD_DEBUG("dst_addr: 0x%"PRIx64, ctx->dest_iova);
+ rte_write64(SIZE_TO_CLS(ctx->dest_iova), ctx->addr + CSR_DST_ADDR);
+
+ ret = nlb_afu_config(dev);
+ if (ret)
+ return ret;
+
+ /* initialize src data */
+ ptr = (uint32_t *)ctx->src_ptr;
+ j = CLS_TO_SIZE(cfg->end) >> 2;
+ for (i = 0; i < j; i++)
+ *ptr++ = i;
+
+ /* start test */
+ for (cl = cfg->begin; cl <= cfg->end; cl += cfg->multi_cl) {
+ memset(ctx->dest_ptr, 0, CLS_TO_SIZE(cl));
+ memset(ctx->dsm_ptr, 0, DSM_SIZE);
+
+ ctl.csr = 0;
+ rte_write32(ctl.csr, ctx->addr + CSR_CTL);
+ ctl.reset = 1;
+ rte_write32(ctl.csr, ctx->addr + CSR_CTL);
+
+ rte_write32(cl, ctx->addr + CSR_NUM_LINES);
+
+ rte_delay_us(10);
+
+ ctl.start = 1;
+ rte_write32(ctl.csr, ctx->addr + CSR_CTL);
+
+ if (cfg->cont) {
+ rte_delay_ms(cfg->timeout * 1000);
+ ctl.force_completion = 1;
+ rte_write32(ctl.csr, ctx->addr + CSR_CTL);
+ ret = dsm_poll_timeout(&ctx->status_ptr->test_complete,
+ val, (val & 0x1) == 1, DSM_POLL_INTERVAL,
+ DSM_TIMEOUT);
+ if (ret) {
+ printf("DSM poll timeout\n");
+ goto end;
+ }
+ } else {
+ ret = dsm_poll_timeout(&ctx->status_ptr->test_complete,
+ val, (val & 0x1) == 1, DSM_POLL_INTERVAL,
+ DSM_TIMEOUT);
+ if (ret) {
+ printf("DSM poll timeout\n");
+ goto end;
+ }
+ ctl.force_completion = 1;
+ rte_write32(ctl.csr, ctx->addr + CSR_CTL);
+ }
+
+ nlb_afu_report(dev, cl);
+
+ i = 0;
+ while (i++ < 100) {
+ sval = rte_read64(ctx->addr + CSR_STATUS1);
+ if (sval == 0)
+ break;
+ rte_delay_us(1000);
+ }
+
+ ptr = (uint32_t *)ctx->dest_ptr;
+ j = CLS_TO_SIZE(cl) >> 2;
+ for (i = 0; i < j; i++) {
+ if (*ptr++ != i) {
+ IFPGA_RAWDEV_PMD_ERR("Data mismatch @ %u", i);
+ break;
+ }
+ }
+ }
+
+end:
+ return ret;
+}
+
+static void dma_afu_buf_free(struct dma_afu_ctx *ctx)
+{
+ int i = 0;
+
+ if (!ctx)
+ return;
+
+ for (i = 0; i < NUM_DMA_BUF; i++) {
+ rte_free(ctx->dma_buf[i]);
+ ctx->dma_buf[i] = NULL;
+ }
+
+ rte_free(ctx->data_buf);
+ ctx->data_buf = NULL;
+
+ rte_free(ctx->ref_buf);
+ ctx->ref_buf = NULL;
+}
+
+static int dma_afu_buf_alloc(struct dma_afu_ctx *ctx,
+ struct rte_pmd_afu_dma_cfg *cfg)
+{
+ size_t page_sz = sysconf(_SC_PAGE_SIZE);
+ int i, ret = 0;
+
+ if (!ctx || !cfg)
+ return -EINVAL;
+
+ for (i = 0; i < NUM_DMA_BUF; i++) {
+ ctx->dma_buf[i] = (uint64_t *)rte_zmalloc(NULL, cfg->size,
+ TEST_MEM_ALIGN);
+ if (!ctx->dma_buf[i]) {
+ ret = -ENOMEM;
+ goto free_dma_buf;
+ }
+ ctx->dma_iova[i] = rte_malloc_virt2iova(ctx->dma_buf[i]);
+ if (ctx->dma_iova[i] == RTE_BAD_IOVA) {
+ ret = -ENOMEM;
+ goto free_dma_buf;
+ }
+ }
+
+ ctx->data_buf = rte_malloc(NULL, cfg->length, page_sz);
+ if (!ctx->data_buf) {
+ ret = -ENOMEM;
+ goto free_dma_buf;
+ }
+
+ ctx->ref_buf = rte_malloc(NULL, cfg->length, page_sz);
+ if (!ctx->ref_buf) {
+ ret = -ENOMEM;
+ goto free_data_buf;
+ }
+
+ return 0;
+
+free_data_buf:
+ rte_free(ctx->data_buf);
+ ctx->data_buf = NULL;
+free_dma_buf:
+ for (i = 0; i < NUM_DMA_BUF; i++) {
+ rte_free(ctx->dma_buf[i]);
+ ctx->dma_buf[i] = NULL;
+ }
+ return ret;
+}
+
+static void dma_afu_buf_init(struct dma_afu_ctx *ctx, size_t size)
+{
+ int *ptr = NULL;
+ size_t i = 0;
+ size_t dword_size = 0;
+
+ if (!ctx || !size)
+ return;
+
+ ptr = (int *)ctx->ref_buf;
+
+ if (ctx->pattern) {
+ memset(ptr, ctx->pattern, size);
+ } else {
+ srand(99);
+ dword_size = size >> 2;
+ for (i = 0; i < dword_size; i++)
+ *ptr++ = rand();
+ }
+ rte_memcpy(ctx->data_buf, ctx->ref_buf, size);
+}
+
+static int dma_afu_buf_verify(struct dma_afu_ctx *ctx, size_t size)
+{
+ uint8_t *src = NULL;
+ uint8_t *dst = NULL;
+ size_t i = 0;
+ int n = 0;
+
+ if (!ctx || !size)
+ return -EINVAL;
+
+ src = (uint8_t *)ctx->ref_buf;
+ dst = (uint8_t *)ctx->data_buf;
+
+ if (memcmp(src, dst, size)) {
+ printf("Transfer is corrupted\n");
+ if (ctx->verbose) {
+ for (i = 0; i < size; i++) {
+ if (*src != *dst) {
+ if (++n >= ERR_CHECK_LIMIT)
+ break;
+ printf("Mismatch at 0x%zx, "
+ "Expected %02x Actual %02x\n",
+ i, *src, *dst);
+ }
+ src++;
+ dst++;
+ }
+ if (n < ERR_CHECK_LIMIT) {
+ printf("Found %d error bytes\n", n);
+ } else {
+ printf("......\n");
+ printf("Found more than %d error bytes\n", n);
+ }
+ }
+ return -1;
+ }
+
+ printf("Transfer is verified\n");
+ return 0;
+}
+
+static void blk_write64(uint64_t *dev_addr, uint64_t *host_addr, uint64_t bytes)
+{
+ uint64_t qwords = bytes / sizeof(uint64_t);
+
+ if (!IS_ALIGNED_QWORD((uint64_t)dev_addr) ||
+ !IS_ALIGNED_QWORD((uint64_t)bytes))
+ return;
+
+ for (; qwords > 0; qwords--, host_addr++, dev_addr++)
+ rte_write64(*host_addr, dev_addr);
+}
+
+static void blk_read64(uint64_t *dev_addr, uint64_t *host_addr, uint64_t bytes)
+{
+ uint64_t qwords = bytes / sizeof(uint64_t);
+
+ if (!IS_ALIGNED_QWORD((uint64_t)dev_addr) ||
+ !IS_ALIGNED_QWORD((uint64_t)bytes))
+ return;
+
+ for (; qwords > 0; qwords--, host_addr++, dev_addr++)
+ *host_addr = rte_read64(dev_addr);
+}
+
+static void switch_ase_page(struct dma_afu_ctx *ctx, uint64_t addr)
+{
+ uint64_t requested_page = addr & ~DMA_ASE_WINDOW_MASK;
+
+ if (!ctx)
+ return;
+
+ if (requested_page != ctx->cur_ase_page) {
+ rte_write64(requested_page, ctx->ase_ctrl_addr);
+ ctx->cur_ase_page = requested_page;
+ }
+}
+
+static int ase_write_unaligned(struct dma_afu_ctx *ctx, uint64_t dev_addr,
+ uint64_t host_addr, uint32_t count)
+{
+ uint64_t dev_aligned_addr = 0;
+ uint64_t shift = 0;
+ uint64_t val = 0;
+ uintptr_t addr = (uintptr_t)host_addr; /* transfer to pointer size */
+
+ IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" --> 0x%"PRIx64" (0x%x)", host_addr,
+ dev_addr, count);
+
+ if (!ctx || (count >= QWORD_BYTES))
+ return -EINVAL;
+
+ if (!count)
+ return 0;
+
+ switch_ase_page(ctx, dev_addr);
+
+ shift = dev_addr % QWORD_BYTES;
+ dev_aligned_addr = (dev_addr - shift) & DMA_ASE_WINDOW_MASK;
+ val = rte_read64(ctx->ase_data_addr + dev_aligned_addr);
+ rte_memcpy(((char *)(&val)) + shift, (void *)addr, count);
+
+ /* write back to device */
+ rte_write64(val, ctx->ase_data_addr + dev_aligned_addr);
+
+ return 0;
+}
+
+static int ase_write(struct dma_afu_ctx *ctx, uint64_t *dst_ptr,
+ uint64_t *src_ptr, uint64_t *count)
+{
+ uint64_t src = *src_ptr;
+ uint64_t dst = *dst_ptr;
+ uint64_t align_bytes = *count;
+ uint64_t offset = 0;
+ uint64_t left_in_page = DMA_ASE_WINDOW;
+ uint64_t size_to_copy = 0;
+
+ IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" --> 0x%"PRIx64" (0x%"PRIx64")", src, dst,
+ align_bytes);
+
+ if (!ctx || !IS_ALIGNED_DWORD(dst))
+ return -EINVAL;
+
+ if (align_bytes < DWORD_BYTES)
+ return 0;
+
+ if (!IS_ALIGNED_QWORD(dst)) {
+ /* Write out a single DWORD to get QWORD aligned */
+ switch_ase_page(ctx, dst);
+ offset = dst & DMA_ASE_WINDOW_MASK;
+
+ rte_write32(*(uint32_t *)(uintptr_t)src,
+ ctx->ase_data_addr + offset);
+ src += DWORD_BYTES;
+ dst += DWORD_BYTES;
+ align_bytes -= DWORD_BYTES;
+ }
+
+ if (!align_bytes)
+ return 0;
+
+ /* Write out blocks of 64-bit values */
+ while (align_bytes >= QWORD_BYTES) {
+ left_in_page -= dst & DMA_ASE_WINDOW_MASK;
+ size_to_copy =
+ MIN(left_in_page, (align_bytes & ~(QWORD_BYTES - 1)));
+ if (size_to_copy < QWORD_BYTES)
+ break;
+ switch_ase_page(ctx, dst);
+ offset = dst & DMA_ASE_WINDOW_MASK;
+ blk_write64((uint64_t *)(ctx->ase_data_addr + offset),
+ (uint64_t *)(uintptr_t)src, size_to_copy);
+ src += size_to_copy;
+ dst += size_to_copy;
+ align_bytes -= size_to_copy;
+ }
+
+ if (align_bytes >= DWORD_BYTES) {
+ /* Write out remaining DWORD */
+ switch_ase_page(ctx, dst);
+ offset = dst & DMA_ASE_WINDOW_MASK;
+ rte_write32(*(uint32_t *)(uintptr_t)src,
+ ctx->ase_data_addr + offset);
+ src += DWORD_BYTES;
+ dst += DWORD_BYTES;
+ align_bytes -= DWORD_BYTES;
+ }
+
+ *src_ptr = src;
+ *dst_ptr = dst;
+ *count = align_bytes;
+
+ return 0;
+}
+
+static int ase_host_to_fpga(struct dma_afu_ctx *ctx, uint64_t *dst_ptr,
+ uint64_t *src_ptr, uint64_t count)
+{
+ uint64_t dst = *dst_ptr;
+ uint64_t src = *src_ptr;
+ uint64_t count_left = count;
+ uint64_t unaligned_size = 0;
+ int ret = 0;
+
+ IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" --> 0x%"PRIx64" (0x%"PRIx64")", src, dst,
+ count);
+
+ /* aligns address to 8 byte using dst masking method */
+ if (!IS_ALIGNED_DWORD(dst) && !IS_ALIGNED_QWORD(dst)) {
+ unaligned_size = QWORD_BYTES - (dst % QWORD_BYTES);
+ if (unaligned_size > count_left)
+ unaligned_size = count_left;
+ ret = ase_write_unaligned(ctx, dst, src, unaligned_size);
+ if (ret)
+ return ret;
+ count_left -= unaligned_size;
+ src += unaligned_size;
+ dst += unaligned_size;
+ }
+
+ /* Handles 8/4 byte MMIO transfer */
+ ret = ase_write(ctx, &dst, &src, &count_left);
+ if (ret)
+ return ret;
+
+ /* Left over unaligned bytes transferred using dst masking method */
+ unaligned_size = QWORD_BYTES - (dst % QWORD_BYTES);
+ if (unaligned_size > count_left)
+ unaligned_size = count_left;
+
+ ret = ase_write_unaligned(ctx, dst, src, unaligned_size);
+ if (ret)
+ return ret;
+
+ count_left -= unaligned_size;
+ *dst_ptr = dst + unaligned_size;
+ *src_ptr = src + unaligned_size;
+
+ return 0;
+}
+
+static int ase_read_unaligned(struct dma_afu_ctx *ctx, uint64_t dev_addr,
+ uint64_t host_addr, uint32_t count)
+{
+ uint64_t dev_aligned_addr = 0;
+ uint64_t shift = 0;
+ uint64_t val = 0;
+ uintptr_t addr = (uintptr_t)host_addr; /* transfer to pointer size */
+
+ IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" <-- 0x%"PRIx64" (0x%x)", host_addr,
+ dev_addr, count);
+
+ if (!ctx || (count >= QWORD_BYTES))
+ return -EINVAL;
+
+ if (!count)
+ return 0;
+
+ switch_ase_page(ctx, dev_addr);
+
+ shift = dev_addr % QWORD_BYTES;
+ dev_aligned_addr = (dev_addr - shift) & DMA_ASE_WINDOW_MASK;
+ val = rte_read64(ctx->ase_data_addr + dev_aligned_addr);
+ rte_memcpy((void *)addr, ((char *)(&val)) + shift, count);
+
+ return 0;
+}
+
+static int ase_read(struct dma_afu_ctx *ctx, uint64_t *src_ptr,
+ uint64_t *dst_ptr, uint64_t *count)
+{
+ uint64_t src = *src_ptr;
+ uint64_t dst = *dst_ptr;
+ uint64_t align_bytes = *count;
+ uint64_t offset = 0;
+ uint64_t left_in_page = DMA_ASE_WINDOW;
+ uint64_t size_to_copy = 0;
+
+ IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" <-- 0x%"PRIx64" (0x%"PRIx64")", dst, src,
+ align_bytes);
+
+ if (!ctx || !IS_ALIGNED_DWORD(src))
+ return -EINVAL;
+
+ if (align_bytes < DWORD_BYTES)
+ return 0;
+
+ if (!IS_ALIGNED_QWORD(src)) {
+ /* Read a single DWORD to get QWORD aligned */
+ switch_ase_page(ctx, src);
+ offset = src & DMA_ASE_WINDOW_MASK;
+ *(uint32_t *)(uintptr_t)dst =
+ rte_read32(ctx->ase_data_addr + offset);
+ src += DWORD_BYTES;
+ dst += DWORD_BYTES;
+ align_bytes -= DWORD_BYTES;
+ }
+
+ if (!align_bytes)
+ return 0;
+
+ /* Read blocks of 64-bit values */
+ while (align_bytes >= QWORD_BYTES) {
+ left_in_page -= src & DMA_ASE_WINDOW_MASK;
+ size_to_copy =
+ MIN(left_in_page, (align_bytes & ~(QWORD_BYTES - 1)));
+ if (size_to_copy < QWORD_BYTES)
+ break;
+ switch_ase_page(ctx, src);
+ offset = src & DMA_ASE_WINDOW_MASK;
+ blk_read64((uint64_t *)(ctx->ase_data_addr + offset),
+ (uint64_t *)(uintptr_t)dst, size_to_copy);
+ src += size_to_copy;
+ dst += size_to_copy;
+ align_bytes -= size_to_copy;
+ }
+
+ if (align_bytes >= DWORD_BYTES) {
+ /* Read remaining DWORD */
+ switch_ase_page(ctx, src);
+ offset = src & DMA_ASE_WINDOW_MASK;
+ *(uint32_t *)(uintptr_t)dst =
+ rte_read32(ctx->ase_data_addr + offset);
+ src += DWORD_BYTES;
+ dst += DWORD_BYTES;
+ align_bytes -= DWORD_BYTES;
+ }
+
+ *src_ptr = src;
+ *dst_ptr = dst;
+ *count = align_bytes;
+
+ return 0;
+}
+
+static int ase_fpga_to_host(struct dma_afu_ctx *ctx, uint64_t *src_ptr,
+ uint64_t *dst_ptr, uint64_t count)
+{
+ uint64_t src = *src_ptr;
+ uint64_t dst = *dst_ptr;
+ uint64_t count_left = count;
+ uint64_t unaligned_size = 0;
+ int ret = 0;
+
+ IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" --> 0x%"PRIx64" (0x%"PRIx64")", src, dst,
+ count);
+
+ /* Aligns address to 8 byte using src masking method */
+ if (!IS_ALIGNED_DWORD(src) && !IS_ALIGNED_QWORD(src)) {
+ unaligned_size = QWORD_BYTES - (src % QWORD_BYTES);
+ if (unaligned_size > count_left)
+ unaligned_size = count_left;
+ ret = ase_read_unaligned(ctx, src, dst, unaligned_size);
+ if (ret)
+ return ret;
+ count_left -= unaligned_size;
+ dst += unaligned_size;
+ src += unaligned_size;
+ }
+
+ /* Handles 8/4 byte MMIO transfer */
+ ret = ase_read(ctx, &src, &dst, &count_left);
+ if (ret)
+ return ret;
+
+ /* Left over unaligned bytes transferred using src masking method */
+ unaligned_size = QWORD_BYTES - (src % QWORD_BYTES);
+ if (unaligned_size > count_left)
+ unaligned_size = count_left;
+
+ ret = ase_read_unaligned(ctx, src, dst, unaligned_size);
+ if (ret)
+ return ret;
+
+ count_left -= unaligned_size;
+ *dst_ptr = dst + unaligned_size;
+ *src_ptr = src + unaligned_size;
+
+ return 0;
+}
+
+static void clear_interrupt(struct dma_afu_ctx *ctx)
+{
+ /* clear interrupt by writing 1 to IRQ bit in status register */
+ msgdma_status status;
+
+ if (!ctx)
+ return;
+
+ status.csr = 0;
+ status.irq = 1;
+ rte_write32(status.csr, CSR_STATUS(ctx->csr_addr));
+}
+
+static int poll_interrupt(struct dma_afu_ctx *ctx)
+{
+ struct pollfd pfd = {0};
+ uint64_t count = 0;
+ ssize_t bytes_read = 0;
+ int poll_ret = 0;
+ int ret = 0;
+
+ if (!ctx || (ctx->event_fd < 0))
+ return -EINVAL;
+
+ pfd.fd = ctx->event_fd;
+ pfd.events = POLLIN;
+ poll_ret = poll(&pfd, 1, DMA_TIMEOUT_MSEC);
+ if (poll_ret < 0) {
+ IFPGA_RAWDEV_PMD_ERR("Error %s", strerror(errno));
+ ret = -EFAULT;
+ goto out;
+ } else if (poll_ret == 0) {
+ IFPGA_RAWDEV_PMD_ERR("Timeout");
+ ret = -ETIMEDOUT;
+ } else {
+ bytes_read = read(pfd.fd, &count, sizeof(count));
+ if (bytes_read > 0) {
+ if (ctx->verbose)
+ IFPGA_RAWDEV_PMD_DEBUG("Successful, ret %d, cnt %"PRIu64,
+ poll_ret, count);
+ ret = 0;
+ } else {
+ IFPGA_RAWDEV_PMD_ERR("Failed %s", bytes_read > 0 ?
+ strerror(errno) : "zero bytes read");
+ ret = -EIO;
+ }
+ }
+out:
+ clear_interrupt(ctx);
+ return ret;
+}
+
+static void send_descriptor(struct dma_afu_ctx *ctx, msgdma_ext_desc *desc)
+{
+ msgdma_status status;
+ uint64_t fpga_queue_full = 0;
+
+ if (!ctx)
+ return;
+
+ if (ctx->verbose) {
+ IFPGA_RAWDEV_PMD_DEBUG("descriptor.rd_address = 0x%x%08x",
+ desc->rd_address_ext, desc->rd_address);
+ IFPGA_RAWDEV_PMD_DEBUG("descriptor.wr_address = 0x%x%08x",
+ desc->wr_address_ext, desc->wr_address);
+ IFPGA_RAWDEV_PMD_DEBUG("descriptor.len = %u", desc->len);
+ IFPGA_RAWDEV_PMD_DEBUG("descriptor.wr_burst_count = %u",
+ desc->wr_burst_count);
+ IFPGA_RAWDEV_PMD_DEBUG("descriptor.rd_burst_count = %u",
+ desc->rd_burst_count);
+ IFPGA_RAWDEV_PMD_DEBUG("descriptor.wr_stride %u", desc->wr_stride);
+ IFPGA_RAWDEV_PMD_DEBUG("descriptor.rd_stride %u", desc->rd_stride);
+ }
+
+ do {
+ status.csr = rte_read32(CSR_STATUS(ctx->csr_addr));
+ if (fpga_queue_full++ > 100000000) {
+ IFPGA_RAWDEV_PMD_DEBUG("DMA queue full retry");
+ fpga_queue_full = 0;
+ }
+ } while (status.desc_buf_full);
+
+ blk_write64((uint64_t *)ctx->desc_addr, (uint64_t *)desc,
+ sizeof(*desc));
+}
+
+static int do_dma(struct dma_afu_ctx *ctx, uint64_t dst, uint64_t src,
+ int count, int is_last_desc, fpga_dma_type type, int intr_en)
+{
+ msgdma_ext_desc *desc = NULL;
+ int alignment_offset = 0;
+ int segment_size = 0;
+
+ if (!ctx)
+ return -EINVAL;
+
+ /* src, dst and count must be 64-byte aligned */
+ if (!IS_DMA_ALIGNED(src) || !IS_DMA_ALIGNED(dst) ||
+ !IS_DMA_ALIGNED(count))
+ return -EINVAL;
+ memset(ctx->desc_buf, 0, sizeof(msgdma_ext_desc));
+
+ /* these fields are fixed for all DMA transfers */
+ desc = ctx->desc_buf;
+ desc->seq_num = 0;
+ desc->wr_stride = 1;
+ desc->rd_stride = 1;
+ desc->control.go = 1;
+ if (intr_en)
+ desc->control.transfer_irq_en = 1;
+ else
+ desc->control.transfer_irq_en = 0;
+
+ if (!is_last_desc)
+ desc->control.early_done_en = 1;
+ else
+ desc->control.early_done_en = 0;
+
+ if (type == FPGA_TO_FPGA) {
+ desc->rd_address = src & DMA_MASK_32_BIT;
+ desc->wr_address = dst & DMA_MASK_32_BIT;
+ desc->len = count;
+ desc->wr_burst_count = 4;
+ desc->rd_burst_count = 4;
+ desc->rd_address_ext = (src >> 32) & DMA_MASK_32_BIT;
+ desc->wr_address_ext = (dst >> 32) & DMA_MASK_32_BIT;
+ send_descriptor(ctx, desc);
+ } else {
+ /* check CCIP (host) address is aligned to 4CL (256B) */
+ alignment_offset = (type == HOST_TO_FPGA)
+ ? (src % CCIP_ALIGN_BYTES) : (dst % CCIP_ALIGN_BYTES);
+ /* performing a short transfer to get aligned */
+ if (alignment_offset != 0) {
+ desc->rd_address = src & DMA_MASK_32_BIT;
+ desc->wr_address = dst & DMA_MASK_32_BIT;
+ desc->wr_burst_count = 1;
+ desc->rd_burst_count = 1;
+ desc->rd_address_ext = (src >> 32) & DMA_MASK_32_BIT;
+ desc->wr_address_ext = (dst >> 32) & DMA_MASK_32_BIT;
+ /* count isn't large enough to hit next 4CL boundary */
+ if ((CCIP_ALIGN_BYTES - alignment_offset) >= count) {
+ segment_size = count;
+ count = 0;
+ } else {
+ segment_size = CCIP_ALIGN_BYTES
+ - alignment_offset;
+ src += segment_size;
+ dst += segment_size;
+ count -= segment_size;
+ desc->control.transfer_irq_en = 0;
+ }
+ /* post short transfer to align to a 4CL (256 byte) */
+ desc->len = segment_size;
+ send_descriptor(ctx, desc);
+ }
+ /* at this point we are 4CL (256 byte) aligned */
+ if (count >= CCIP_ALIGN_BYTES) {
+ desc->rd_address = src & DMA_MASK_32_BIT;
+ desc->wr_address = dst & DMA_MASK_32_BIT;
+ desc->wr_burst_count = 4;
+ desc->rd_burst_count = 4;
+ desc->rd_address_ext = (src >> 32) & DMA_MASK_32_BIT;
+ desc->wr_address_ext = (dst >> 32) & DMA_MASK_32_BIT;
+ /* buffer ends on 4CL boundary */
+ if ((count % CCIP_ALIGN_BYTES) == 0) {
+ segment_size = count;
+ count = 0;
+ } else {
+ segment_size = count
+ - (count % CCIP_ALIGN_BYTES);
+ src += segment_size;
+ dst += segment_size;
+ count -= segment_size;
+ desc->control.transfer_irq_en = 0;
+ }
+ desc->len = segment_size;
+ send_descriptor(ctx, desc);
+ }
+ /* post short transfer to handle the remainder */
+ if (count > 0) {
+ desc->rd_address = src & DMA_MASK_32_BIT;
+ desc->wr_address = dst & DMA_MASK_32_BIT;
+ desc->len = count;
+ desc->wr_burst_count = 1;
+ desc->rd_burst_count = 1;
+ desc->rd_address_ext = (src >> 32) & DMA_MASK_32_BIT;
+ desc->wr_address_ext = (dst >> 32) & DMA_MASK_32_BIT;
+ if (intr_en)
+ desc->control.transfer_irq_en = 1;
+ send_descriptor(ctx, desc);
+ }
+ }
+
+ return 0;
+}
+
+static int issue_magic(struct dma_afu_ctx *ctx)
+{
+ *(ctx->magic_buf) = 0ULL;
+ return do_dma(ctx, DMA_WF_HOST_ADDR(ctx->magic_iova),
+ DMA_WF_MAGIC_ROM, 64, 1, FPGA_TO_HOST, 1);
+}
+
+static void wait_magic(struct dma_afu_ctx *ctx)
+{
+ int magic_timeout = 0;
+
+ if (!ctx)
+ return;
+
+ poll_interrupt(ctx);
+ while (*(ctx->magic_buf) != DMA_WF_MAGIC) {
+ if (magic_timeout++ > 1000) {
+ IFPGA_RAWDEV_PMD_ERR("DMA magic operation timeout");
+ magic_timeout = 0;
+ break;
+ }
+ }
+ *(ctx->magic_buf) = 0ULL;
+}
+
+static int dma_tx_buf(struct dma_afu_ctx *ctx, uint64_t dst, uint64_t src,
+ uint64_t chunk, int is_last_chunk, int *intr_issued)
+{
+ int intr_en = 0;
+ int ret = 0;
+
+ if (!ctx || !intr_issued)
+ return -EINVAL;
+
+ src += chunk * ctx->dma_buf_size;
+ dst += chunk * ctx->dma_buf_size;
+
+ if (((chunk % HALF_DMA_BUF) == (HALF_DMA_BUF - 1)) || is_last_chunk) {
+ if (*intr_issued) {
+ ret = poll_interrupt(ctx);
+ if (ret)
+ return ret;
+ }
+ intr_en = 1;
+ }
+
+ chunk %= NUM_DMA_BUF;
+ rte_memcpy(ctx->dma_buf[chunk], (void *)(uintptr_t)src,
+ ctx->dma_buf_size);
+ ret = do_dma(ctx, dst, DMA_HOST_ADDR(ctx->dma_iova[chunk]),
+ ctx->dma_buf_size, 0, HOST_TO_FPGA, intr_en);
+ if (intr_en)
+ *intr_issued = 1;
+
+ return ret;
+}
+
+static int dma_host_to_fpga(struct dma_afu_ctx *ctx, uint64_t dst, uint64_t src,
+ size_t count)
+{
+ uint64_t i = 0;
+ uint64_t count_left = count;
+ uint64_t aligned_addr = 0;
+ uint64_t align_bytes = 0;
+ uint64_t dma_chunks = 0;
+ uint64_t dma_tx_bytes = 0;
+ uint64_t offset = 0;
+ int issued_intr = 0;
+ int ret = 0;
+
+ IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" ---> 0x%"PRIx64" (%zu)", src, dst,
+ count);
+
+ if (!ctx)
+ return -EINVAL;
+
+ if (!IS_DMA_ALIGNED(dst)) {
+ if (count_left < DMA_ALIGN_BYTES)
+ return ase_host_to_fpga(ctx, &dst, &src, count_left);
+
+ aligned_addr = ((dst / DMA_ALIGN_BYTES) + 1)
+ * DMA_ALIGN_BYTES;
+ align_bytes = aligned_addr - dst;
+ ret = ase_host_to_fpga(ctx, &dst, &src, align_bytes);
+ if (ret)
+ return ret;
+ count_left = count_left - align_bytes;
+ }
+
+ if (count_left) {
+ dma_chunks = count_left / ctx->dma_buf_size;
+ offset = dma_chunks * ctx->dma_buf_size;
+ count_left -= offset;
+ IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" ---> 0x%"PRIx64
+ " (%"PRIu64"...0x%"PRIx64")",
+ src, dst, dma_chunks, count_left);
+ for (i = 0; i < dma_chunks; i++) {
+ ret = dma_tx_buf(ctx, dst, src, i,
+ i == (dma_chunks - 1), &issued_intr);
+ if (ret)
+ return ret;
+ }
+
+ if (issued_intr) {
+ ret = poll_interrupt(ctx);
+ if (ret)
+ return ret;
+ }
+
+ if (count_left) {
+ i = count_left / DMA_ALIGN_BYTES;
+ if (i > 0) {
+ dma_tx_bytes = i * DMA_ALIGN_BYTES;
+ IFPGA_RAWDEV_PMD_DEBUG("left over 0x%"PRIx64" to DMA",
+ dma_tx_bytes);
+ rte_memcpy(ctx->dma_buf[0],
+ (void *)(uintptr_t)(src + offset),
+ dma_tx_bytes);
+ ret = do_dma(ctx, dst + offset,
+ DMA_HOST_ADDR(ctx->dma_iova[0]),
+ dma_tx_bytes, 1, HOST_TO_FPGA, 1);
+ if (ret)
+ return ret;
+ ret = poll_interrupt(ctx);
+ if (ret)
+ return ret;
+ }
+
+ count_left -= dma_tx_bytes;
+ if (count_left) {
+ IFPGA_RAWDEV_PMD_DEBUG("left over 0x%"PRIx64" to ASE",
+ count_left);
+ dst += offset + dma_tx_bytes;
+ src += offset + dma_tx_bytes;
+ ret = ase_host_to_fpga(ctx, &dst, &src,
+ count_left);
+ }
+ }
+ }
+
+ return ret;
+}
+
+static int dma_rx_buf(struct dma_afu_ctx *ctx, uint64_t dst, uint64_t src,
+ uint64_t chunk, int is_last_chunk, uint64_t *rx_count, int *wf_issued)
+{
+ uint64_t i = chunk % NUM_DMA_BUF;
+ uint64_t n = *rx_count;
+ uint64_t num_pending = 0;
+ int ret = 0;
+
+ if (!ctx || !wf_issued)
+ return -EINVAL;
+
+ ret = do_dma(ctx, DMA_HOST_ADDR(ctx->dma_iova[i]),
+ src + chunk * ctx->dma_buf_size,
+ ctx->dma_buf_size, 1, FPGA_TO_HOST, 0);
+ if (ret)
+ return ret;
+
+ num_pending = chunk - n + 1;
+ if (num_pending == HALF_DMA_BUF) {
+ ret = issue_magic(ctx);
+ if (ret) {
+ IFPGA_RAWDEV_PMD_DEBUG("Magic issue failed");
+ return ret;
+ }
+ *wf_issued = 1;
+ }
+
+ if ((num_pending > (NUM_DMA_BUF - 1)) || is_last_chunk) {
+ if (*wf_issued) {
+ wait_magic(ctx);
+ for (i = 0; i < HALF_DMA_BUF; i++) {
+ rte_memcpy((void *)(uintptr_t)(dst +
+ n * ctx->dma_buf_size),
+ ctx->dma_buf[n % NUM_DMA_BUF],
+ ctx->dma_buf_size);
+ n++;
+ }
+ *wf_issued = 0;
+ *rx_count = n;
+ }
+ ret = issue_magic(ctx);
+ if (ret) {
+ IFPGA_RAWDEV_PMD_DEBUG("Magic issue failed");
+ return ret;
+ }
+ *wf_issued = 1;
+ }
+
+ return ret;
+}
+
+static int dma_fpga_to_host(struct dma_afu_ctx *ctx, uint64_t dst, uint64_t src,
+ size_t count)
+{
+ uint64_t i = 0;
+ uint64_t count_left = count;
+ uint64_t aligned_addr = 0;
+ uint64_t align_bytes = 0;
+ uint64_t dma_chunks = 0;
+ uint64_t pending_buf = 0;
+ uint64_t dma_rx_bytes = 0;
+ uint64_t offset = 0;
+ int wf_issued = 0;
+ int ret = 0;
+
+ IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" ---> 0x%"PRIx64" (%zu)", src, dst,
+ count);
+
+ if (!ctx)
+ return -EINVAL;
+
+ if (!IS_DMA_ALIGNED(src)) {
+ if (count_left < DMA_ALIGN_BYTES)
+ return ase_fpga_to_host(ctx, &src, &dst, count_left);
+
+ aligned_addr = ((src / DMA_ALIGN_BYTES) + 1)
+ * DMA_ALIGN_BYTES;
+ align_bytes = aligned_addr - src;
+ ret = ase_fpga_to_host(ctx, &src, &dst, align_bytes);
+ if (ret)
+ return ret;
+ count_left = count_left - align_bytes;
+ }
+
+ if (count_left) {
+ dma_chunks = count_left / ctx->dma_buf_size;
+ offset = dma_chunks * ctx->dma_buf_size;
+ count_left -= offset;
+ IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" ---> 0x%"PRIx64
+ " (%"PRIu64"...0x%"PRIx64")",
+ src, dst, dma_chunks, count_left);
+ for (i = 0; i < dma_chunks; i++) {
+ ret = dma_rx_buf(ctx, dst, src, i,
+ i == (dma_chunks - 1),
+ &pending_buf, &wf_issued);
+ if (ret)
+ return ret;
+ }
+
+ if (wf_issued)
+ wait_magic(ctx);
+
+ /* clear out final dma memcpy operations */
+ while (pending_buf < dma_chunks) {
+ /* constant size transfer; no length check required */
+ rte_memcpy((void *)(uintptr_t)(dst +
+ pending_buf * ctx->dma_buf_size),
+ ctx->dma_buf[pending_buf % NUM_DMA_BUF],
+ ctx->dma_buf_size);
+ pending_buf++;
+ }
+
+ if (count_left > 0) {
+ i = count_left / DMA_ALIGN_BYTES;
+ if (i > 0) {
+ dma_rx_bytes = i * DMA_ALIGN_BYTES;
+ IFPGA_RAWDEV_PMD_DEBUG("left over 0x%"PRIx64" to DMA",
+ dma_rx_bytes);
+ ret = do_dma(ctx,
+ DMA_HOST_ADDR(ctx->dma_iova[0]),
+ src + offset,
+ dma_rx_bytes, 1, FPGA_TO_HOST, 0);
+ if (ret)
+ return ret;
+ ret = issue_magic(ctx);
+ if (ret)
+ return ret;
+ wait_magic(ctx);
+ rte_memcpy((void *)(uintptr_t)(dst + offset),
+ ctx->dma_buf[0], dma_rx_bytes);
+ }
+
+ count_left -= dma_rx_bytes;
+ if (count_left) {
+ IFPGA_RAWDEV_PMD_DEBUG("left over 0x%"PRIx64" to ASE",
+ count_left);
+ dst += offset + dma_rx_bytes;
+ src += offset + dma_rx_bytes;
+ ret = ase_fpga_to_host(ctx, &src, &dst,
+ count_left);
+ }
+ }
+ }
+
+ return ret;
+}
+
+static int dma_fpga_to_fpga(struct dma_afu_ctx *ctx, uint64_t dst, uint64_t src,
+ size_t count)
+{
+ uint64_t i = 0;
+ uint64_t count_left = count;
+ uint64_t dma_chunks = 0;
+ uint64_t offset = 0;
+ uint32_t tx_chunks = 0;
+ uint64_t *tmp_buf = NULL;
+ int ret = 0;
+
+ IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" ---> 0x%"PRIx64" (%zu)", src, dst,
+ count);
+
+ if (!ctx)
+ return -EINVAL;
+
+ if (IS_DMA_ALIGNED(dst) && IS_DMA_ALIGNED(src)
+ && IS_DMA_ALIGNED(count_left)) {
+ dma_chunks = count_left / ctx->dma_buf_size;
+ offset = dma_chunks * ctx->dma_buf_size;
+ count_left -= offset;
+ IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" ---> 0x%"PRIx64
+ " (%"PRIu64"...0x%"PRIx64")",
+ src, dst, dma_chunks, count_left);
+ for (i = 0; i < dma_chunks; i++) {
+ ret = do_dma(ctx, dst + i * ctx->dma_buf_size,
+ src + i * ctx->dma_buf_size,
+ ctx->dma_buf_size, 0, FPGA_TO_FPGA, 0);
+ if (ret)
+ return ret;
+ if ((((i + 1) % NUM_DMA_BUF) == 0) ||
+ (i == (dma_chunks - 1))) {
+ ret = issue_magic(ctx);
+ if (ret)
+ return ret;
+ wait_magic(ctx);
+ }
+ }
+
+ if (count_left > 0) {
+ IFPGA_RAWDEV_PMD_DEBUG("left over 0x%"PRIx64" to DMA", count_left);
+ ret = do_dma(ctx, dst + offset, src + offset,
+ count_left, 1, FPGA_TO_FPGA, 0);
+ if (ret)
+ return ret;
+ ret = issue_magic(ctx);
+ if (ret)
+ return ret;
+ wait_magic(ctx);
+ }
+ } else {
+ if ((src < dst) && (src + count_left > dst)) {
+ IFPGA_RAWDEV_PMD_ERR("Overlapping: 0x%"PRIx64
+ " -> 0x%"PRIx64" (0x%"PRIx64")",
+ src, dst, count_left);
+ return -EINVAL;
+ }
+ tx_chunks = count_left / ctx->dma_buf_size;
+ offset = tx_chunks * ctx->dma_buf_size;
+ count_left -= offset;
+ IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" --> 0x%"PRIx64
+ " (%u...0x%"PRIx64")",
+ src, dst, tx_chunks, count_left);
+ tmp_buf = (uint64_t *)rte_malloc(NULL, ctx->dma_buf_size,
+ DMA_ALIGN_BYTES);
+ for (i = 0; i < tx_chunks; i++) {
+ ret = dma_fpga_to_host(ctx, (uint64_t)tmp_buf,
+ src + i * ctx->dma_buf_size,
+ ctx->dma_buf_size);
+ if (ret)
+ goto free_buf;
+ ret = dma_host_to_fpga(ctx,
+ dst + i * ctx->dma_buf_size,
+ (uint64_t)tmp_buf, ctx->dma_buf_size);
+ if (ret)
+ goto free_buf;
+ }
+
+ if (count_left > 0) {
+ ret = dma_fpga_to_host(ctx, (uint64_t)tmp_buf,
+ src + offset, count_left);
+ if (ret)
+ goto free_buf;
+ ret = dma_host_to_fpga(ctx, dst + offset,
+ (uint64_t)tmp_buf, count_left);
+ if (ret)
+ goto free_buf;
+ }
+free_buf:
+ rte_free(tmp_buf);
+ }
+
+ return ret;
+}
+
+static int dma_transfer_sync(struct dma_afu_ctx *ctx, uint64_t dst,
+ uint64_t src, size_t count, fpga_dma_type type)
+{
+ int ret = 0;
+
+ if (!ctx)
+ return -EINVAL;
+
+ if (type == HOST_TO_FPGA)
+ ret = dma_host_to_fpga(ctx, dst, src, count);
+ else if (type == FPGA_TO_HOST)
+ ret = dma_fpga_to_host(ctx, dst, src, count);
+ else if (type == FPGA_TO_FPGA)
+ ret = dma_fpga_to_fpga(ctx, dst, src, count);
+ else
+ return -EINVAL;
+
+ return ret;
+}
+
+static double get_duration(struct timespec start, struct timespec end)
+{
+ uint64_t diff = 1000000000L * (end.tv_sec - start.tv_sec)
+ + end.tv_nsec - start.tv_nsec;
+ return (double)diff / (double)1000000000L;
+}
+
+#define SWEEP_ITERS 1
+static int sweep_test(struct dma_afu_ctx *ctx, uint32_t length,
+ uint64_t ddr_offset, uint64_t buf_offset, uint64_t size_decrement)
+{
+ struct timespec start, end;
+ uint64_t test_size = 0;
+ uint64_t *dma_buf_ptr = NULL;
+ double throughput, total_time = 0.0;
+ int i = 0;
+ int ret = 0;
+
+ if (!ctx || !ctx->data_buf || !ctx->ref_buf) {
+ IFPGA_RAWDEV_PMD_ERR("Buffer for DMA test is not allocated");
+ return -EINVAL;
+ }
+
+ if (length < (buf_offset + size_decrement)) {
+ IFPGA_RAWDEV_PMD_ERR("Test length does not match unaligned parameter");
+ return -EINVAL;
+ }
+ test_size = length - (buf_offset + size_decrement);
+ if ((ddr_offset + test_size) > ctx->mem_size) {
+ IFPGA_RAWDEV_PMD_ERR("Test is out of DDR memory space");
+ return -EINVAL;
+ }
+
+ dma_buf_ptr = (uint64_t *)((uint8_t *)ctx->data_buf + buf_offset);
+ printf("Sweep Host %p to FPGA 0x%"PRIx64
+ " with 0x%"PRIx64" bytes ...\n",
+ (void *)dma_buf_ptr, ddr_offset, test_size);
+
+ for (i = 0; i < SWEEP_ITERS; i++) {
+ clock_gettime(CLOCK_MONOTONIC, &start);
+ ret = dma_transfer_sync(ctx, ddr_offset, (uint64_t)dma_buf_ptr,
+ test_size, HOST_TO_FPGA);
+ clock_gettime(CLOCK_MONOTONIC, &end);
+ if (ret) {
+ IFPGA_RAWDEV_PMD_ERR("Failed");
+ return ret;
+ }
+ total_time += get_duration(start, end);
+ }
+ throughput = (test_size * SWEEP_ITERS) / (total_time * 1000000);
+ printf("Measured bandwidth = %lf MB/s\n", throughput);
+
+ printf("Sweep FPGA 0x%"PRIx64" to Host %p with 0x%"PRIx64" bytes ...\n",
+ ddr_offset, (void *)dma_buf_ptr, test_size);
+
+ total_time = 0.0;
+ memset((char *)dma_buf_ptr, 0, test_size);
+ for (i = 0; i < SWEEP_ITERS; i++) {
+ clock_gettime(CLOCK_MONOTONIC, &start);
+ ret = dma_transfer_sync(ctx, (uint64_t)dma_buf_ptr, ddr_offset,
+ test_size, FPGA_TO_HOST);
+ clock_gettime(CLOCK_MONOTONIC, &end);
+ if (ret) {
+ IFPGA_RAWDEV_PMD_ERR("Failed");
+ return ret;
+ }
+ total_time += get_duration(start, end);
+ }
+ throughput = (test_size * SWEEP_ITERS) / (total_time * 1000000);
+ printf("Measured bandwidth = %lf MB/s\n", throughput);
+
+ printf("Verifying buffer ...\n");
+ return dma_afu_buf_verify(ctx, test_size);
+}
+
+static int dma_afu_test(struct afu_rawdev *dev)
+{
+ struct n3000_afu_priv *priv = NULL;
+ struct dma_afu_ctx *ctx = NULL;
+ struct rte_pmd_afu_dma_cfg *cfg = NULL;
+ msgdma_ctrl ctrl;
+ uint64_t offset = 0;
+ uint32_t i = 0;
+ int ret = 0;
+
+ if (!dev)
+ return -EINVAL;
+
+ if (!dev->priv)
+ return -ENOENT;
+
+ priv = (struct n3000_afu_priv *)dev->priv;
+ cfg = &priv->dma_cfg;
+ if (cfg->index >= NUM_N3000_DMA)
+ return -EINVAL;
+ ctx = &priv->dma_ctx[cfg->index];
+
+ ctx->pattern = (int)cfg->pattern;
+ ctx->verbose = (int)cfg->verbose;
+ ctx->dma_buf_size = cfg->size;
+
+ ret = dma_afu_buf_alloc(ctx, cfg);
+ if (ret)
+ goto free;
+
+ printf("Initialize test buffer\n");
+ dma_afu_buf_init(ctx, cfg->length);
+
+ /* enable interrupt */
+ ctrl.csr = 0;
+ ctrl.global_intr_en_mask = 1;
+ rte_write32(ctrl.csr, CSR_CONTROL(ctx->csr_addr));
+
+ printf("Host %p to FPGA 0x%x with 0x%x bytes\n", ctx->data_buf,
+ cfg->offset, cfg->length);
+ ret = dma_transfer_sync(ctx, cfg->offset, (uint64_t)ctx->data_buf,
+ cfg->length, HOST_TO_FPGA);
+ if (ret) {
+ IFPGA_RAWDEV_PMD_ERR("Failed to transfer data from host to FPGA");
+ goto end;
+ }
+ memset(ctx->data_buf, 0, cfg->length);
+
+ printf("FPGA 0x%x to Host %p with 0x%x bytes\n", cfg->offset,
+ ctx->data_buf, cfg->length);
+ ret = dma_transfer_sync(ctx, (uint64_t)ctx->data_buf, cfg->offset,
+ cfg->length, FPGA_TO_HOST);
+ if (ret) {
+ IFPGA_RAWDEV_PMD_ERR("Failed to transfer data from FPGA to host");
+ goto end;
+ }
+ ret = dma_afu_buf_verify(ctx, cfg->length);
+ if (ret)
+ goto end;
+
+ if ((cfg->offset + cfg->length * 2) <= ctx->mem_size)
+ offset = cfg->offset + cfg->length;
+ else if (cfg->offset > cfg->length)
+ offset = 0;
+ else
+ goto end;
+
+ printf("FPGA 0x%x to FPGA 0x%"PRIx64" with 0x%x bytes\n",
+ cfg->offset, offset, cfg->length);
+ ret = dma_transfer_sync(ctx, offset, cfg->offset, cfg->length,
+ FPGA_TO_FPGA);
+ if (ret) {
+ IFPGA_RAWDEV_PMD_ERR("Failed to transfer data from FPGA to FPGA");
+ goto end;
+ }
+
+ printf("FPGA 0x%"PRIx64" to Host %p with 0x%x bytes\n", offset,
+ ctx->data_buf, cfg->length);
+ ret = dma_transfer_sync(ctx, (uint64_t)ctx->data_buf, offset,
+ cfg->length, FPGA_TO_HOST);
+ if (ret) {
+ IFPGA_RAWDEV_PMD_ERR("Failed to transfer data from FPGA to host");
+ goto end;
+ }
+ ret = dma_afu_buf_verify(ctx, cfg->length);
+ if (ret)
+ goto end;
+
+ printf("Sweep with aligned address and size\n");
+ ret = sweep_test(ctx, cfg->length, cfg->offset, 0, 0);
+ if (ret)
+ goto end;
+
+ if (cfg->unaligned) {
+ printf("Sweep with unaligned address and size\n");
+ struct unaligned_set {
+ uint64_t addr_offset;
+ uint64_t size_dec;
+ } param[] = {{61, 5}, {3, 0}, {7, 3}, {0, 3}, {0, 61}, {0, 7}};
+ for (i = 0; i < ARRAY_SIZE(param); i++) {
+ ret = sweep_test(ctx, cfg->length, cfg->offset,
+ param[i].addr_offset, param[i].size_dec);
+ if (ret)
+ break;
+ }
+ }
+
+end:
+ /* disable interrupt */
+ ctrl.global_intr_en_mask = 0;
+ rte_write32(ctrl.csr, CSR_CONTROL(ctx->csr_addr));
+
+free:
+ dma_afu_buf_free(ctx);
+ return ret;
+}
+
+static struct rte_pci_device *n3000_afu_get_pci_dev(struct afu_rawdev *dev)
+{
+ struct rte_afu_device *afudev = NULL;
+
+ if (!dev || !dev->rawdev || !dev->rawdev->device)
+ return NULL;
+
+ afudev = RTE_DEV_TO_AFU(dev->rawdev->device);
+ if (!afudev->rawdev || !afudev->rawdev->device)
+ return NULL;
+
+ return RTE_DEV_TO_PCI(afudev->rawdev->device);
+}
+
+#ifdef VFIO_PRESENT
+static int dma_afu_set_irqs(struct afu_rawdev *dev, uint32_t vec_start,
+ uint32_t count, int *efds)
+{
+ struct rte_pci_device *pci_dev = NULL;
+ struct vfio_irq_set *irq_set = NULL;
+ int vfio_dev_fd = 0;
+ size_t sz = 0;
+ int ret = 0;
+
+ if (!dev || !efds || (count == 0) || (count > MAX_MSIX_VEC))
+ return -EINVAL;
+
+ pci_dev = n3000_afu_get_pci_dev(dev);
+ if (!pci_dev)
+ return -ENODEV;
+ vfio_dev_fd = rte_intr_dev_fd_get(pci_dev->intr_handle);
+
+ sz = sizeof(*irq_set) + sizeof(*efds) * count;
+ irq_set = rte_zmalloc(NULL, sz, 0);
+ if (!irq_set)
+ return -ENOMEM;
+
+ irq_set->argsz = (uint32_t)sz;
+ irq_set->count = count;
+ irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
+ VFIO_IRQ_SET_ACTION_TRIGGER;
+ irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
+ irq_set->start = vec_start;
+
+ rte_memcpy(&irq_set->data, efds, sizeof(*efds) * count);
+ ret = ioctl(vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set);
+ if (ret)
+ IFPGA_RAWDEV_PMD_ERR("Error enabling MSI-X interrupts\n");
+
+ rte_free(irq_set);
+ return ret;
+}
+#endif
+
+static void *n3000_afu_get_port_addr(struct afu_rawdev *dev)
+{
+ struct rte_pci_device *pci_dev = NULL;
+ uint8_t *addr = NULL;
+ uint64_t val = 0;
+ uint32_t bar = 0;
+
+ pci_dev = n3000_afu_get_pci_dev(dev);
+ if (!pci_dev)
+ return NULL;
+
+ addr = (uint8_t *)pci_dev->mem_resource[0].addr;
+ val = rte_read64(addr + PORT_ATTR_REG(dev->port));
+ if (!PORT_IMPLEMENTED(val)) {
+ IFPGA_RAWDEV_PMD_INFO("FIU port %d is not implemented", dev->port);
+ return NULL;
+ }
+
+ bar = PORT_BAR(val);
+ if (bar >= PCI_MAX_RESOURCE) {
+ IFPGA_RAWDEV_PMD_ERR("BAR index %u is out of limit", bar);
+ return NULL;
+ }
+
+ addr = (uint8_t *)pci_dev->mem_resource[bar].addr + PORT_OFFSET(val);
+ return addr;
+}
+
+static int n3000_afu_get_irq_capability(struct afu_rawdev *dev,
+ uint32_t *vec_start, uint32_t *vec_count)
+{
+ uint8_t *addr = NULL;
+ uint64_t val = 0;
+ uint64_t header = 0;
+ uint64_t next_offset = 0;
+
+ addr = (uint8_t *)n3000_afu_get_port_addr(dev);
+ if (!addr)
+ return -ENOENT;
+
+ do {
+ addr += next_offset;
+ header = rte_read64(addr);
+ if ((DFH_TYPE(header) == DFH_TYPE_PRIVATE) &&
+ (DFH_FEATURE_ID(header) == PORT_FEATURE_UINT_ID)) {
+ val = rte_read64(addr + PORT_UINT_CAP_REG);
+ if (vec_start)
+ *vec_start = PORT_VEC_START(val);
+ if (vec_count)
+ *vec_count = PORT_VEC_COUNT(val);
+ return 0;
+ }
+ next_offset = DFH_NEXT_OFFSET(header);
+ if (((next_offset & 0xffff) == 0xffff) || (next_offset == 0))
+ break;
+ } while (!DFH_EOL(header));
+
+ return -ENOENT;
+}
+
+static int nlb_afu_ctx_release(struct afu_rawdev *dev)
+{
+ struct n3000_afu_priv *priv = NULL;
+ struct nlb_afu_ctx *ctx = NULL;
+
+ if (!dev)
+ return -EINVAL;
+
+ priv = (struct n3000_afu_priv *)dev->priv;
+ if (!priv)
+ return -ENOENT;
+
+ ctx = &priv->nlb_ctx;
+
+ rte_free(ctx->dsm_ptr);
+ ctx->dsm_ptr = NULL;
+ ctx->status_ptr = NULL;
+
+ rte_free(ctx->src_ptr);
+ ctx->src_ptr = NULL;
+
+ rte_free(ctx->dest_ptr);
+ ctx->dest_ptr = NULL;
+
+ return 0;
+}
+
+static int nlb_afu_ctx_init(struct afu_rawdev *dev, uint8_t *addr)
+{
+ struct n3000_afu_priv *priv = NULL;
+ struct nlb_afu_ctx *ctx = NULL;
+ int ret = 0;
+
+ if (!dev || !addr)
+ return -EINVAL;
+
+ priv = (struct n3000_afu_priv *)dev->priv;
+ if (!priv)
+ return -ENOENT;
+
+ ctx = &priv->nlb_ctx;
+ ctx->addr = addr;
+
+ ctx->dsm_ptr = (uint8_t *)rte_zmalloc(NULL, DSM_SIZE, TEST_MEM_ALIGN);
+ if (!ctx->dsm_ptr)
+ return -ENOMEM;
+
+ ctx->dsm_iova = rte_malloc_virt2iova(ctx->dsm_ptr);
+ if (ctx->dsm_iova == RTE_BAD_IOVA) {
+ ret = -ENOMEM;
+ goto release_dsm;
+ }
+
+ ctx->src_ptr = (uint8_t *)rte_zmalloc(NULL, NLB_BUF_SIZE,
+ TEST_MEM_ALIGN);
+ if (!ctx->src_ptr) {
+ ret = -ENOMEM;
+ goto release_dsm;
+ }
+ ctx->src_iova = rte_malloc_virt2iova(ctx->src_ptr);
+ if (ctx->src_iova == RTE_BAD_IOVA) {
+ ret = -ENOMEM;
+ goto release_src;
+ }
+
+ ctx->dest_ptr = (uint8_t *)rte_zmalloc(NULL, NLB_BUF_SIZE,
+ TEST_MEM_ALIGN);
+ if (!ctx->dest_ptr) {
+ ret = -ENOMEM;
+ goto release_src;
+ }
+ ctx->dest_iova = rte_malloc_virt2iova(ctx->dest_ptr);
+ if (ctx->dest_iova == RTE_BAD_IOVA) {
+ ret = -ENOMEM;
+ goto release_dest;
+ }
+
+ ctx->status_ptr = (struct nlb_dsm_status *)(ctx->dsm_ptr + DSM_STATUS);
+ return 0;
+
+release_dest:
+ rte_free(ctx->dest_ptr);
+ ctx->dest_ptr = NULL;
+release_src:
+ rte_free(ctx->src_ptr);
+ ctx->src_ptr = NULL;
+release_dsm:
+ rte_free(ctx->dsm_ptr);
+ ctx->dsm_ptr = NULL;
+ return ret;
+}
+
+static int dma_afu_ctx_release(struct afu_rawdev *dev)
+{
+ struct n3000_afu_priv *priv = NULL;
+ struct dma_afu_ctx *ctx = NULL;
+
+ if (!dev)
+ return -EINVAL;
+
+ priv = (struct n3000_afu_priv *)dev->priv;
+ if (!priv)
+ return -ENOENT;
+
+ ctx = &priv->dma_ctx[0];
+
+ rte_free(ctx->desc_buf);
+ ctx->desc_buf = NULL;
+
+ rte_free(ctx->magic_buf);
+ ctx->magic_buf = NULL;
+
+ close(ctx->event_fd);
+ return 0;
+}
+
+static int dma_afu_ctx_init(struct afu_rawdev *dev, int index, uint8_t *addr)
+{
+ struct n3000_afu_priv *priv = NULL;
+ struct dma_afu_ctx *ctx = NULL;
+ uint64_t mem_sz[] = {0x100000000, 0x100000000, 0x40000000, 0x1000000};
+ static int efds[1] = {0};
+ uint32_t vec_start = 0;
+ int ret = 0;
+
+ if (!dev || (index < 0) || (index >= NUM_N3000_DMA) || !addr)
+ return -EINVAL;
+
+ priv = (struct n3000_afu_priv *)dev->priv;
+ if (!priv)
+ return -ENOENT;
+
+ ctx = &priv->dma_ctx[index];
+ ctx->index = index;
+ ctx->addr = addr;
+ ctx->csr_addr = addr + DMA_CSR;
+ ctx->desc_addr = addr + DMA_DESC;
+ ctx->ase_ctrl_addr = addr + DMA_ASE_CTRL;
+ ctx->ase_data_addr = addr + DMA_ASE_DATA;
+ ctx->mem_size = mem_sz[ctx->index];
+ ctx->cur_ase_page = INVALID_ASE_PAGE;
+ if (ctx->index == 0) {
+ ret = n3000_afu_get_irq_capability(dev, &vec_start, NULL);
+ if (ret)
+ return ret;
+
+ efds[0] = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
+ if (efds[0] < 0) {
+ IFPGA_RAWDEV_PMD_ERR("eventfd create failed");
+ return -EBADF;
+ }
+#ifdef VFIO_PRESENT
+ if (dma_afu_set_irqs(dev, vec_start, 1, efds))
+ IFPGA_RAWDEV_PMD_ERR("DMA interrupt setup failed");
+#endif
+ }
+ ctx->event_fd = efds[0];
+
+ ctx->desc_buf = (msgdma_ext_desc *)rte_zmalloc(NULL,
+ sizeof(msgdma_ext_desc), DMA_ALIGN_BYTES);
+ if (!ctx->desc_buf) {
+ ret = -ENOMEM;
+ goto release;
+ }
+
+ ctx->magic_buf = (uint64_t *)rte_zmalloc(NULL, MAGIC_BUF_SIZE,
+ TEST_MEM_ALIGN);
+ if (!ctx->magic_buf) {
+ ret = -ENOMEM;
+ goto release;
+ }
+ ctx->magic_iova = rte_malloc_virt2iova(ctx->magic_buf);
+ if (ctx->magic_iova == RTE_BAD_IOVA) {
+ ret = -ENOMEM;
+ goto release;
+ }
+
+ return 0;
+
+release:
+ dma_afu_ctx_release(dev);
+ return ret;
+}
+
+static int n3000_afu_ctx_init(struct afu_rawdev *dev)
+{
+ struct n3000_afu_priv *priv = NULL;
+ uint8_t *addr = NULL;
+ uint64_t header = 0;
+ uint64_t uuid_hi = 0;
+ uint64_t uuid_lo = 0;
+ uint64_t next_offset = 0;
+ int ret = 0;
+
+ if (!dev)
+ return -EINVAL;
+
+ priv = (struct n3000_afu_priv *)dev->priv;
+ if (!priv)
+ return -ENOENT;
+
+ addr = (uint8_t *)dev->addr;
+ do {
+ addr += next_offset;
+ header = rte_read64(addr);
+ uuid_lo = rte_read64(addr + DFH_UUID_L_OFFSET);
+ uuid_hi = rte_read64(addr + DFH_UUID_H_OFFSET);
+
+ if ((DFH_TYPE(header) == DFH_TYPE_AFU) &&
+ (uuid_lo == N3000_NLB0_UUID_L) &&
+ (uuid_hi == N3000_NLB0_UUID_H)) {
+ IFPGA_RAWDEV_PMD_INFO("AFU NLB0 found @ %p", (void *)addr);
+ ret = nlb_afu_ctx_init(dev, addr);
+ if (ret)
+ return ret;
+ } else if ((DFH_TYPE(header) == DFH_TYPE_BBB) &&
+ (uuid_lo == N3000_DMA_UUID_L) &&
+ (uuid_hi == N3000_DMA_UUID_H) &&
+ (priv->num_dma < NUM_N3000_DMA)) {
+ IFPGA_RAWDEV_PMD_INFO("AFU DMA%d found @ %p",
+ priv->num_dma, (void *)addr);
+ ret = dma_afu_ctx_init(dev, priv->num_dma, addr);
+ if (ret)
+ return ret;
+ priv->num_dma++;
+ } else {
+ IFPGA_RAWDEV_PMD_DEBUG("DFH: type %"PRIu64
+ ", uuid %016"PRIx64"%016"PRIx64,
+ DFH_TYPE(header), uuid_hi, uuid_lo);
+ }
+
+ next_offset = DFH_NEXT_OFFSET(header);
+ if (((next_offset & 0xffff) == 0xffff) || (next_offset == 0))
+ break;
+ } while (!DFH_EOL(header));
+
+ return 0;
+}
+
+static int n3000_afu_init(struct afu_rawdev *dev)
+{
+ if (!dev)
+ return -EINVAL;
+
+ if (!dev->priv) {
+ dev->priv = rte_zmalloc(NULL, sizeof(struct n3000_afu_priv), 0);
+ if (!dev->priv)
+ return -ENOMEM;
+ }
+
+ return n3000_afu_ctx_init(dev);
+}
+
+static int n3000_afu_config(struct afu_rawdev *dev, void *config,
+ size_t config_size)
+{
+ struct n3000_afu_priv *priv = NULL;
+ struct rte_pmd_afu_n3000_cfg *cfg = NULL;
+ int i = 0;
+ uint64_t top = 0;
+
+ if (!dev || !config || !config_size)
+ return -EINVAL;
+
+ priv = (struct n3000_afu_priv *)dev->priv;
+ if (!priv)
+ return -ENOENT;
+
+ if (config_size != sizeof(struct rte_pmd_afu_n3000_cfg))
+ return -EINVAL;
+
+ cfg = (struct rte_pmd_afu_n3000_cfg *)config;
+ if (cfg->type == RTE_PMD_AFU_N3000_NLB) {
+ if (cfg->nlb_cfg.mode != NLB_MODE_LPBK)
+ return -EINVAL;
+ if ((cfg->nlb_cfg.read_vc > NLB_VC_RANDOM) ||
+ (cfg->nlb_cfg.write_vc > NLB_VC_RANDOM))
+ return -EINVAL;
+ if (cfg->nlb_cfg.wrfence_vc > NLB_VC_VH1)
+ return -EINVAL;
+ if (cfg->nlb_cfg.cache_hint > NLB_RDLINE_MIXED)
+ return -EINVAL;
+ if (cfg->nlb_cfg.cache_policy > NLB_WRPUSH_I)
+ return -EINVAL;
+ if ((cfg->nlb_cfg.multi_cl != 1) &&
+ (cfg->nlb_cfg.multi_cl != 2) &&
+ (cfg->nlb_cfg.multi_cl != 4))
+ return -EINVAL;
+ if ((cfg->nlb_cfg.begin < MIN_CACHE_LINES) ||
+ (cfg->nlb_cfg.begin > MAX_CACHE_LINES))
+ return -EINVAL;
+ if ((cfg->nlb_cfg.end < cfg->nlb_cfg.begin) ||
+ (cfg->nlb_cfg.end > MAX_CACHE_LINES))
+ return -EINVAL;
+ rte_memcpy(&priv->nlb_cfg, &cfg->nlb_cfg,
+ sizeof(struct rte_pmd_afu_nlb_cfg));
+ } else if (cfg->type == RTE_PMD_AFU_N3000_DMA) {
+ if (cfg->dma_cfg.index >= NUM_N3000_DMA)
+ return -EINVAL;
+ i = cfg->dma_cfg.index;
+ if (cfg->dma_cfg.length > priv->dma_ctx[i].mem_size)
+ return -EINVAL;
+ if (cfg->dma_cfg.offset >= priv->dma_ctx[i].mem_size)
+ return -EINVAL;
+ top = cfg->dma_cfg.length + cfg->dma_cfg.offset;
+ if ((top == 0) || (top > priv->dma_ctx[i].mem_size))
+ return -EINVAL;
+ if (i == 3) { /* QDR connected to DMA3 */
+ if (cfg->dma_cfg.length & 0x3f) {
+ cfg->dma_cfg.length &= ~0x3f;
+ IFPGA_RAWDEV_PMD_INFO("Round size to %x for QDR",
+ cfg->dma_cfg.length);
+ }
+ }
+ rte_memcpy(&priv->dma_cfg, &cfg->dma_cfg,
+ sizeof(struct rte_pmd_afu_dma_cfg));
+ } else {
+ IFPGA_RAWDEV_PMD_ERR("Invalid type of N3000 AFU");
+ return -EINVAL;
+ }
+
+ priv->cfg_type = cfg->type;
+ return 0;
+}
+
+static int n3000_afu_test(struct afu_rawdev *dev)
+{
+ struct n3000_afu_priv *priv = NULL;
+ int ret = 0;
+
+ if (!dev)
+ return -EINVAL;
+
+ if (!dev->priv)
+ return -ENOENT;
+
+ priv = (struct n3000_afu_priv *)dev->priv;
+
+ if (priv->cfg_type == RTE_PMD_AFU_N3000_NLB) {
+ IFPGA_RAWDEV_PMD_INFO("Test NLB");
+ ret = nlb_afu_test(dev);
+ } else if (priv->cfg_type == RTE_PMD_AFU_N3000_DMA) {
+ IFPGA_RAWDEV_PMD_INFO("Test DMA%u", priv->dma_cfg.index);
+ ret = dma_afu_test(dev);
+ } else {
+ IFPGA_RAWDEV_PMD_ERR("Please configure AFU before test");
+ ret = -EINVAL;
+ }
+
+ return ret;
+}
+
+static int n3000_afu_close(struct afu_rawdev *dev)
+{
+ if (!dev)
+ return -EINVAL;
+
+ nlb_afu_ctx_release(dev);
+ dma_afu_ctx_release(dev);
+
+ rte_free(dev->priv);
+ dev->priv = NULL;
+
+ return 0;
+}
+
+static int n3000_afu_dump(struct afu_rawdev *dev, FILE *f)
+{
+ struct n3000_afu_priv *priv = NULL;
+
+ if (!dev)
+ return -EINVAL;
+
+ priv = (struct n3000_afu_priv *)dev->priv;
+ if (!priv)
+ return -ENOENT;
+
+ if (!f)
+ f = stdout;
+
+ if (priv->cfg_type == RTE_PMD_AFU_N3000_NLB) {
+ struct nlb_afu_ctx *ctx = &priv->nlb_ctx;
+ fprintf(f, "addr:\t\t%p\n", (void *)ctx->addr);
+ fprintf(f, "dsm_ptr:\t%p\n", (void *)ctx->dsm_ptr);
+ fprintf(f, "dsm_iova:\t0x%"PRIx64"\n", ctx->dsm_iova);
+ fprintf(f, "src_ptr:\t%p\n", (void *)ctx->src_ptr);
+ fprintf(f, "src_iova:\t0x%"PRIx64"\n", ctx->src_iova);
+ fprintf(f, "dest_ptr:\t%p\n", (void *)ctx->dest_ptr);
+ fprintf(f, "dest_iova:\t0x%"PRIx64"\n", ctx->dest_iova);
+ fprintf(f, "status_ptr:\t%p\n", (void *)ctx->status_ptr);
+ } else if (priv->cfg_type == RTE_PMD_AFU_N3000_DMA) {
+ struct dma_afu_ctx *ctx = &priv->dma_ctx[priv->dma_cfg.index];
+ fprintf(f, "index:\t\t%d\n", ctx->index);
+ fprintf(f, "addr:\t\t%p\n", (void *)ctx->addr);
+ fprintf(f, "csr_addr:\t%p\n", (void *)ctx->csr_addr);
+ fprintf(f, "desc_addr:\t%p\n", (void *)ctx->desc_addr);
+ fprintf(f, "ase_ctrl_addr:\t%p\n", (void *)ctx->ase_ctrl_addr);
+ fprintf(f, "ase_data_addr:\t%p\n", (void *)ctx->ase_data_addr);
+ fprintf(f, "desc_buf:\t%p\n", (void *)ctx->desc_buf);
+ fprintf(f, "magic_buf:\t%p\n", (void *)ctx->magic_buf);
+ fprintf(f, "magic_iova:\t0x%"PRIx64"\n", ctx->magic_iova);
+ } else {
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int n3000_afu_reset(struct afu_rawdev *dev)
+{
+ uint8_t *addr = NULL;
+ uint64_t val = 0;
+
+ addr = (uint8_t *)n3000_afu_get_port_addr(dev);
+ if (!addr)
+ return -ENOENT;
+
+ val = rte_read64(addr + PORT_CTRL_REG);
+ val |= PORT_SOFT_RESET;
+ rte_write64(val, addr + PORT_CTRL_REG);
+ rte_delay_us(100);
+ val &= ~PORT_SOFT_RESET;
+ rte_write64(val, addr + PORT_CTRL_REG);
+
+ return 0;
+}
+
+static struct afu_ops n3000_afu_ops = {
+ .init = n3000_afu_init,
+ .config = n3000_afu_config,
+ .start = NULL,
+ .stop = NULL,
+ .test = n3000_afu_test,
+ .close = n3000_afu_close,
+ .dump = n3000_afu_dump,
+ .reset = n3000_afu_reset
+};
+
+static struct afu_rawdev_drv n3000_afu_drv = {
+ .uuid = { N3000_AFU_UUID_L, N3000_AFU_UUID_H },
+ .ops = &n3000_afu_ops
+};
+
+AFU_PMD_REGISTER(n3000_afu_drv);