#include <rte_common.h>
#include <rte_eal.h>
+#include <rte_byteorder.h>
#include "bpf_impl.h"
+struct bpf_reg_val {
+ struct rte_bpf_arg v;
+ uint64_t mask;
+ struct {
+ int64_t min;
+ int64_t max;
+ } s;
+ struct {
+ uint64_t min;
+ uint64_t max;
+ } u;
+};
+
+struct bpf_eval_state {
+ struct bpf_reg_val rv[EBPF_REG_NUM];
+ struct bpf_reg_val sv[MAX_BPF_STACK_SIZE / sizeof(uint64_t)];
+};
+
/* possible instruction node colour */
enum {
WHITE,
MAX_EDGE_TYPE
};
-struct bpf_reg_state {
- uint64_t val;
-};
-
-struct bpf_eval_state {
- struct bpf_reg_state rs[EBPF_REG_NUM];
-};
-
#define MAX_EDGES 2
struct inst_node {
struct bpf_verifier {
const struct rte_bpf_prm *prm;
struct inst_node *in;
- int32_t stack_sz;
+ uint64_t stack_sz;
uint32_t nb_nodes;
uint32_t nb_jcc_nodes;
uint32_t node_colour[MAX_NODE_COLOUR];
uint32_t edge_type[MAX_EDGE_TYPE];
struct bpf_eval_state *evst;
+ struct inst_node *evin;
struct {
uint32_t num;
uint32_t cur;
}
static const char *
-eval_stack(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
+eval_exit(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
+{
+ RTE_SET_USED(ins);
+ if (bvf->evst->rv[EBPF_REG_0].v.type == RTE_BPF_ARG_UNDEF)
+ return "undefined return value";
+ return NULL;
+}
+
+/* setup max possible with this mask bounds */
+static void
+eval_umax_bound(struct bpf_reg_val *rv, uint64_t mask)
+{
+ rv->u.max = mask;
+ rv->u.min = 0;
+}
+
+static void
+eval_smax_bound(struct bpf_reg_val *rv, uint64_t mask)
+{
+ rv->s.max = mask >> 1;
+ rv->s.min = rv->s.max ^ UINT64_MAX;
+}
+
+static void
+eval_max_bound(struct bpf_reg_val *rv, uint64_t mask)
+{
+ eval_umax_bound(rv, mask);
+ eval_smax_bound(rv, mask);
+}
+
+static void
+eval_fill_max_bound(struct bpf_reg_val *rv, uint64_t mask)
+{
+ eval_max_bound(rv, mask);
+ rv->v.type = RTE_BPF_ARG_RAW;
+ rv->mask = mask;
+}
+
+static void
+eval_fill_imm64(struct bpf_reg_val *rv, uint64_t mask, uint64_t val)
+{
+ rv->mask = mask;
+ rv->s.min = val;
+ rv->s.max = val;
+ rv->u.min = val;
+ rv->u.max = val;
+}
+
+static void
+eval_fill_imm(struct bpf_reg_val *rv, uint64_t mask, int32_t imm)
+{
+ uint64_t v;
+
+ v = (uint64_t)imm & mask;
+
+ rv->v.type = RTE_BPF_ARG_RAW;
+ eval_fill_imm64(rv, mask, v);
+}
+
+static const char *
+eval_ld_imm64(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
{
- int32_t ofs;
+ uint32_t i;
+ uint64_t val;
+ struct bpf_reg_val *rd;
+
+ val = (uint32_t)ins[0].imm | (uint64_t)(uint32_t)ins[1].imm << 32;
- ofs = ins->off;
+ rd = bvf->evst->rv + ins->dst_reg;
+ rd->v.type = RTE_BPF_ARG_RAW;
+ eval_fill_imm64(rd, UINT64_MAX, val);
- if (ofs >= 0 || ofs < -MAX_BPF_STACK_SIZE)
- return "stack boundary violation";
+ for (i = 0; i != bvf->prm->nb_xsym; i++) {
+
+ /* load of external variable */
+ if (bvf->prm->xsym[i].type == RTE_BPF_XTYPE_VAR &&
+ (uintptr_t)bvf->prm->xsym[i].var.val == val) {
+ rd->v = bvf->prm->xsym[i].var.desc;
+ eval_fill_imm64(rd, UINT64_MAX, 0);
+ break;
+ }
+ }
- ofs = -ofs;
- bvf->stack_sz = RTE_MAX(bvf->stack_sz, ofs);
return NULL;
}
+static void
+eval_apply_mask(struct bpf_reg_val *rv, uint64_t mask)
+{
+ struct bpf_reg_val rt;
+
+ rt.u.min = rv->u.min & mask;
+ rt.u.max = rv->u.max & mask;
+ if (rt.u.min != rv->u.min || rt.u.max != rv->u.max) {
+ rv->u.max = RTE_MAX(rt.u.max, mask);
+ rv->u.min = 0;
+ }
+
+ eval_smax_bound(&rt, mask);
+ rv->s.max = RTE_MIN(rt.s.max, rv->s.max);
+ rv->s.min = RTE_MAX(rt.s.min, rv->s.min);
+
+ rv->mask = mask;
+}
+
+static void
+eval_add(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, uint64_t msk)
+{
+ struct bpf_reg_val rv;
+
+ rv.u.min = (rd->u.min + rs->u.min) & msk;
+ rv.u.max = (rd->u.min + rs->u.max) & msk;
+ rv.s.min = (rd->s.min + rs->s.min) & msk;
+ rv.s.max = (rd->s.max + rs->s.max) & msk;
+
+ /*
+ * if at least one of the operands is not constant,
+ * then check for overflow
+ */
+ if ((rd->u.min != rd->u.max || rs->u.min != rs->u.max) &&
+ (rv.u.min < rd->u.min || rv.u.max < rd->u.max))
+ eval_umax_bound(&rv, msk);
+
+ if ((rd->s.min != rd->s.max || rs->s.min != rs->s.max) &&
+ (((rs->s.min < 0 && rv.s.min > rd->s.min) ||
+ rv.s.min < rd->s.min) ||
+ ((rs->s.max < 0 && rv.s.max > rd->s.max) ||
+ rv.s.max < rd->s.max)))
+ eval_smax_bound(&rv, msk);
+
+ rd->s = rv.s;
+ rd->u = rv.u;
+}
+
+static void
+eval_sub(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, uint64_t msk)
+{
+ struct bpf_reg_val rv;
+
+ rv.u.min = (rd->u.min - rs->u.min) & msk;
+ rv.u.max = (rd->u.min - rs->u.max) & msk;
+ rv.s.min = (rd->s.min - rs->s.min) & msk;
+ rv.s.max = (rd->s.max - rs->s.max) & msk;
+
+ /*
+ * if at least one of the operands is not constant,
+ * then check for overflow
+ */
+ if ((rd->u.min != rd->u.max || rs->u.min != rs->u.max) &&
+ (rv.u.min > rd->u.min || rv.u.max > rd->u.max))
+ eval_umax_bound(&rv, msk);
+
+ if ((rd->s.min != rd->s.max || rs->s.min != rs->s.max) &&
+ (((rs->s.min < 0 && rv.s.min < rd->s.min) ||
+ rv.s.min > rd->s.min) ||
+ ((rs->s.max < 0 && rv.s.max < rd->s.max) ||
+ rv.s.max > rd->s.max)))
+ eval_smax_bound(&rv, msk);
+
+ rd->s = rv.s;
+ rd->u = rv.u;
+}
+
+static void
+eval_lsh(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, size_t opsz,
+ uint64_t msk)
+{
+ /* check if shift value is less then max result bits */
+ if (rs->u.max >= opsz) {
+ eval_max_bound(rd, msk);
+ return;
+ }
+
+ /* check for overflow */
+ if (rd->u.max > RTE_LEN2MASK(opsz - rs->u.max, uint64_t))
+ eval_umax_bound(rd, msk);
+ else {
+ rd->u.max <<= rs->u.max;
+ rd->u.min <<= rs->u.min;
+ }
+
+ /* check that dreg values are and would remain always positive */
+ if ((uint64_t)rd->s.min >> (opsz - 1) != 0 || rd->s.max >=
+ RTE_LEN2MASK(opsz - rs->u.max - 1, int64_t))
+ eval_smax_bound(rd, msk);
+ else {
+ rd->s.max <<= rs->u.max;
+ rd->s.min <<= rs->u.min;
+ }
+}
+
+static void
+eval_rsh(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, size_t opsz,
+ uint64_t msk)
+{
+ /* check if shift value is less then max result bits */
+ if (rs->u.max >= opsz) {
+ eval_max_bound(rd, msk);
+ return;
+ }
+
+ rd->u.max >>= rs->u.min;
+ rd->u.min >>= rs->u.max;
+
+ /* check that dreg values are always positive */
+ if ((uint64_t)rd->s.min >> (opsz - 1) != 0)
+ eval_smax_bound(rd, msk);
+ else {
+ rd->s.max >>= rs->u.min;
+ rd->s.min >>= rs->u.max;
+ }
+}
+
+static void
+eval_arsh(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, size_t opsz,
+ uint64_t msk)
+{
+ uint32_t shv;
+
+ /* check if shift value is less then max result bits */
+ if (rs->u.max >= opsz) {
+ eval_max_bound(rd, msk);
+ return;
+ }
+
+ rd->u.max = (int64_t)rd->u.max >> rs->u.min;
+ rd->u.min = (int64_t)rd->u.min >> rs->u.max;
+
+ /* if we have 32-bit values - extend them to 64-bit */
+ if (opsz == sizeof(uint32_t) * CHAR_BIT) {
+ rd->s.min <<= opsz;
+ rd->s.max <<= opsz;
+ shv = opsz;
+ } else
+ shv = 0;
+
+ if (rd->s.min < 0)
+ rd->s.min = (rd->s.min >> (rs->u.min + shv)) & msk;
+ else
+ rd->s.min = (rd->s.min >> (rs->u.max + shv)) & msk;
+
+ if (rd->s.max < 0)
+ rd->s.max = (rd->s.max >> (rs->u.max + shv)) & msk;
+ else
+ rd->s.max = (rd->s.max >> (rs->u.min + shv)) & msk;
+}
+
+static uint64_t
+eval_umax_bits(uint64_t v, size_t opsz)
+{
+ if (v == 0)
+ return 0;
+
+ v = __builtin_clzll(v);
+ return RTE_LEN2MASK(opsz - v, uint64_t);
+}
+
+/* estimate max possible value for (v1 & v2) */
+static uint64_t
+eval_uand_max(uint64_t v1, uint64_t v2, size_t opsz)
+{
+ v1 = eval_umax_bits(v1, opsz);
+ v2 = eval_umax_bits(v2, opsz);
+ return (v1 & v2);
+}
+
+/* estimate max possible value for (v1 | v2) */
+static uint64_t
+eval_uor_max(uint64_t v1, uint64_t v2, size_t opsz)
+{
+ v1 = eval_umax_bits(v1, opsz);
+ v2 = eval_umax_bits(v2, opsz);
+ return (v1 | v2);
+}
+
+static void
+eval_and(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, size_t opsz,
+ uint64_t msk)
+{
+ /* both operands are constants */
+ if (rd->u.min == rd->u.max && rs->u.min == rs->u.max) {
+ rd->u.min &= rs->u.min;
+ rd->u.max &= rs->u.max;
+ } else {
+ rd->u.max = eval_uand_max(rd->u.max, rs->u.max, opsz);
+ rd->u.min &= rs->u.min;
+ }
+
+ /* both operands are constants */
+ if (rd->s.min == rd->s.max && rs->s.min == rs->s.max) {
+ rd->s.min &= rs->s.min;
+ rd->s.max &= rs->s.max;
+ /* at least one of operand is non-negative */
+ } else if (rd->s.min >= 0 || rs->s.min >= 0) {
+ rd->s.max = eval_uand_max(rd->s.max & (msk >> 1),
+ rs->s.max & (msk >> 1), opsz);
+ rd->s.min &= rs->s.min;
+ } else
+ eval_smax_bound(rd, msk);
+}
+
+static void
+eval_or(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, size_t opsz,
+ uint64_t msk)
+{
+ /* both operands are constants */
+ if (rd->u.min == rd->u.max && rs->u.min == rs->u.max) {
+ rd->u.min |= rs->u.min;
+ rd->u.max |= rs->u.max;
+ } else {
+ rd->u.max = eval_uor_max(rd->u.max, rs->u.max, opsz);
+ rd->u.min |= rs->u.min;
+ }
+
+ /* both operands are constants */
+ if (rd->s.min == rd->s.max && rs->s.min == rs->s.max) {
+ rd->s.min |= rs->s.min;
+ rd->s.max |= rs->s.max;
+
+ /* both operands are non-negative */
+ } else if (rd->s.min >= 0 || rs->s.min >= 0) {
+ rd->s.max = eval_uor_max(rd->s.max, rs->s.max, opsz);
+ rd->s.min |= rs->s.min;
+ } else
+ eval_smax_bound(rd, msk);
+}
+
+static void
+eval_xor(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, size_t opsz,
+ uint64_t msk)
+{
+ /* both operands are constants */
+ if (rd->u.min == rd->u.max && rs->u.min == rs->u.max) {
+ rd->u.min ^= rs->u.min;
+ rd->u.max ^= rs->u.max;
+ } else {
+ rd->u.max = eval_uor_max(rd->u.max, rs->u.max, opsz);
+ rd->u.min = 0;
+ }
+
+ /* both operands are constants */
+ if (rd->s.min == rd->s.max && rs->s.min == rs->s.max) {
+ rd->s.min ^= rs->s.min;
+ rd->s.max ^= rs->s.max;
+
+ /* both operands are non-negative */
+ } else if (rd->s.min >= 0 || rs->s.min >= 0) {
+ rd->s.max = eval_uor_max(rd->s.max, rs->s.max, opsz);
+ rd->s.min = 0;
+ } else
+ eval_smax_bound(rd, msk);
+}
+
+static void
+eval_mul(struct bpf_reg_val *rd, const struct bpf_reg_val *rs, size_t opsz,
+ uint64_t msk)
+{
+ /* both operands are constants */
+ if (rd->u.min == rd->u.max && rs->u.min == rs->u.max) {
+ rd->u.min = (rd->u.min * rs->u.min) & msk;
+ rd->u.max = (rd->u.max * rs->u.max) & msk;
+ /* check for overflow */
+ } else if (rd->u.max <= msk >> opsz / 2 && rs->u.max <= msk >> opsz) {
+ rd->u.max *= rs->u.max;
+ rd->u.min *= rd->u.min;
+ } else
+ eval_umax_bound(rd, msk);
+
+ /* both operands are constants */
+ if (rd->s.min == rd->s.max && rs->s.min == rs->s.max) {
+ rd->s.min = (rd->s.min * rs->s.min) & msk;
+ rd->s.max = (rd->s.max * rs->s.max) & msk;
+ /* check that both operands are positive and no overflow */
+ } else if (rd->s.min >= 0 && rs->s.min >= 0) {
+ rd->s.max *= rs->s.max;
+ rd->s.min *= rd->s.min;
+ } else
+ eval_smax_bound(rd, msk);
+}
+
static const char *
-eval_store(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
+eval_divmod(uint32_t op, struct bpf_reg_val *rd, struct bpf_reg_val *rs,
+ size_t opsz, uint64_t msk)
{
- if (ins->dst_reg == EBPF_REG_10)
- return eval_stack(bvf, ins);
+ /* both operands are constants */
+ if (rd->u.min == rd->u.max && rs->u.min == rs->u.max) {
+ if (rs->u.max == 0)
+ return "division by 0";
+ if (op == BPF_DIV) {
+ rd->u.min /= rs->u.min;
+ rd->u.max /= rs->u.max;
+ } else {
+ rd->u.min %= rs->u.min;
+ rd->u.max %= rs->u.max;
+ }
+ } else {
+ if (op == BPF_MOD)
+ rd->u.max = RTE_MIN(rd->u.max, rs->u.max - 1);
+ else
+ rd->u.max = rd->u.max;
+ rd->u.min = 0;
+ }
+
+ /* if we have 32-bit values - extend them to 64-bit */
+ if (opsz == sizeof(uint32_t) * CHAR_BIT) {
+ rd->s.min = (int32_t)rd->s.min;
+ rd->s.max = (int32_t)rd->s.max;
+ rs->s.min = (int32_t)rs->s.min;
+ rs->s.max = (int32_t)rs->s.max;
+ }
+
+ /* both operands are constants */
+ if (rd->s.min == rd->s.max && rs->s.min == rs->s.max) {
+ if (rs->s.max == 0)
+ return "division by 0";
+ if (op == BPF_DIV) {
+ rd->s.min /= rs->s.min;
+ rd->s.max /= rs->s.max;
+ } else {
+ rd->s.min %= rs->s.min;
+ rd->s.max %= rs->s.max;
+ }
+ } else if (op == BPF_MOD) {
+ rd->s.min = RTE_MAX(rd->s.max, 0);
+ rd->s.min = RTE_MIN(rd->s.min, 0);
+ } else
+ eval_smax_bound(rd, msk);
+
+ rd->s.max &= msk;
+ rd->s.min &= msk;
+
return NULL;
}
+static void
+eval_neg(struct bpf_reg_val *rd, size_t opsz, uint64_t msk)
+{
+ uint64_t ux, uy;
+ int64_t sx, sy;
+
+ /* if we have 32-bit values - extend them to 64-bit */
+ if (opsz == sizeof(uint32_t) * CHAR_BIT) {
+ rd->u.min = (int32_t)rd->u.min;
+ rd->u.max = (int32_t)rd->u.max;
+ }
+
+ ux = -(int64_t)rd->u.min & msk;
+ uy = -(int64_t)rd->u.max & msk;
+
+ rd->u.max = RTE_MAX(ux, uy);
+ rd->u.min = RTE_MIN(ux, uy);
+
+ /* if we have 32-bit values - extend them to 64-bit */
+ if (opsz == sizeof(uint32_t) * CHAR_BIT) {
+ rd->s.min = (int32_t)rd->s.min;
+ rd->s.max = (int32_t)rd->s.max;
+ }
+
+ sx = -rd->s.min & msk;
+ sy = -rd->s.max & msk;
+
+ rd->s.max = RTE_MAX(sx, sy);
+ rd->s.min = RTE_MIN(sx, sy);
+}
+
+/*
+ * check that destination and source operand are in defined state.
+ */
+static const char *
+eval_defined(const struct bpf_reg_val *dst, const struct bpf_reg_val *src)
+{
+ if (dst != NULL && dst->v.type == RTE_BPF_ARG_UNDEF)
+ return "dest reg value is undefined";
+ if (src != NULL && src->v.type == RTE_BPF_ARG_UNDEF)
+ return "src reg value is undefined";
+ return NULL;
+}
+
+static const char *
+eval_alu(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
+{
+ uint64_t msk;
+ uint32_t op;
+ size_t opsz;
+ const char *err;
+ struct bpf_eval_state *st;
+ struct bpf_reg_val *rd, rs;
+
+ opsz = (BPF_CLASS(ins->code) == BPF_ALU) ?
+ sizeof(uint32_t) : sizeof(uint64_t);
+ opsz = opsz * CHAR_BIT;
+ msk = RTE_LEN2MASK(opsz, uint64_t);
+
+ st = bvf->evst;
+ rd = st->rv + ins->dst_reg;
+
+ if (BPF_SRC(ins->code) == BPF_X) {
+ rs = st->rv[ins->src_reg];
+ eval_apply_mask(&rs, msk);
+ } else
+ eval_fill_imm(&rs, msk, ins->imm);
+
+ eval_apply_mask(rd, msk);
+
+ op = BPF_OP(ins->code);
+
+ err = eval_defined((op != EBPF_MOV) ? rd : NULL,
+ (op != BPF_NEG) ? &rs : NULL);
+ if (err != NULL)
+ return err;
+
+ if (op == BPF_ADD)
+ eval_add(rd, &rs, msk);
+ else if (op == BPF_SUB)
+ eval_sub(rd, &rs, msk);
+ else if (op == BPF_LSH)
+ eval_lsh(rd, &rs, opsz, msk);
+ else if (op == BPF_RSH)
+ eval_rsh(rd, &rs, opsz, msk);
+ else if (op == EBPF_ARSH)
+ eval_arsh(rd, &rs, opsz, msk);
+ else if (op == BPF_AND)
+ eval_and(rd, &rs, opsz, msk);
+ else if (op == BPF_OR)
+ eval_or(rd, &rs, opsz, msk);
+ else if (op == BPF_XOR)
+ eval_xor(rd, &rs, opsz, msk);
+ else if (op == BPF_MUL)
+ eval_mul(rd, &rs, opsz, msk);
+ else if (op == BPF_DIV || op == BPF_MOD)
+ err = eval_divmod(op, rd, &rs, opsz, msk);
+ else if (op == BPF_NEG)
+ eval_neg(rd, opsz, msk);
+ else if (op == EBPF_MOV)
+ *rd = rs;
+ else
+ eval_max_bound(rd, msk);
+
+ return err;
+}
+
+static const char *
+eval_bele(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
+{
+ uint64_t msk;
+ struct bpf_eval_state *st;
+ struct bpf_reg_val *rd;
+ const char *err;
+
+ msk = RTE_LEN2MASK(ins->imm, uint64_t);
+
+ st = bvf->evst;
+ rd = st->rv + ins->dst_reg;
+
+ err = eval_defined(rd, NULL);
+ if (err != NULL)
+ return err;
+
+#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
+ if (ins->code == (BPF_ALU | EBPF_END | EBPF_TO_BE))
+ eval_max_bound(rd, msk);
+ else
+ eval_apply_mask(rd, msk);
+#else
+ if (ins->code == (BPF_ALU | EBPF_END | EBPF_TO_LE))
+ eval_max_bound(rd, msk);
+ else
+ eval_apply_mask(rd, msk);
+#endif
+
+ return NULL;
+}
+
+static const char *
+eval_ptr(struct bpf_verifier *bvf, struct bpf_reg_val *rm, uint32_t opsz,
+ uint32_t align, int16_t off)
+{
+ struct bpf_reg_val rv;
+
+ /* calculate reg + offset */
+ eval_fill_imm(&rv, rm->mask, off);
+ eval_add(rm, &rv, rm->mask);
+
+ if (RTE_BPF_ARG_PTR_TYPE(rm->v.type) == 0)
+ return "destination is not a pointer";
+
+ if (rm->mask != UINT64_MAX)
+ return "pointer truncation";
+
+ if (rm->u.max + opsz > rm->v.size ||
+ (uint64_t)rm->s.max + opsz > rm->v.size ||
+ rm->s.min < 0)
+ return "memory boundary violation";
+
+ if (rm->u.max % align != 0)
+ return "unaligned memory access";
+
+ if (rm->v.type == RTE_BPF_ARG_PTR_STACK) {
+
+ if (rm->u.max != rm->u.min || rm->s.max != rm->s.min ||
+ rm->u.max != (uint64_t)rm->s.max)
+ return "stack access with variable offset";
+
+ bvf->stack_sz = RTE_MAX(bvf->stack_sz, rm->v.size - rm->u.max);
+
+ /* pointer to mbuf */
+ } else if (rm->v.type == RTE_BPF_ARG_PTR_MBUF) {
+
+ if (rm->u.max != rm->u.min || rm->s.max != rm->s.min ||
+ rm->u.max != (uint64_t)rm->s.max)
+ return "mbuf access with variable offset";
+ }
+
+ return NULL;
+}
+
+static void
+eval_max_load(struct bpf_reg_val *rv, uint64_t mask)
+{
+ eval_umax_bound(rv, mask);
+
+ /* full 64-bit load */
+ if (mask == UINT64_MAX)
+ eval_smax_bound(rv, mask);
+
+ /* zero-extend load */
+ rv->s.min = rv->u.min;
+ rv->s.max = rv->u.max;
+}
+
+
static const char *
eval_load(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
{
- if (ins->src_reg == EBPF_REG_10)
- return eval_stack(bvf, ins);
+ uint32_t opsz;
+ uint64_t msk;
+ const char *err;
+ struct bpf_eval_state *st;
+ struct bpf_reg_val *rd, rs;
+ const struct bpf_reg_val *sv;
+
+ st = bvf->evst;
+ rd = st->rv + ins->dst_reg;
+ rs = st->rv[ins->src_reg];
+ opsz = bpf_size(BPF_SIZE(ins->code));
+ msk = RTE_LEN2MASK(opsz * CHAR_BIT, uint64_t);
+
+ err = eval_ptr(bvf, &rs, opsz, 1, ins->off);
+ if (err != NULL)
+ return err;
+
+ if (rs.v.type == RTE_BPF_ARG_PTR_STACK) {
+
+ sv = st->sv + rs.u.max / sizeof(uint64_t);
+ if (sv->v.type == RTE_BPF_ARG_UNDEF || sv->mask < msk)
+ return "undefined value on the stack";
+
+ *rd = *sv;
+
+ /* pointer to mbuf */
+ } else if (rs.v.type == RTE_BPF_ARG_PTR_MBUF) {
+
+ if (rs.u.max == offsetof(struct rte_mbuf, next)) {
+ eval_fill_imm(rd, msk, 0);
+ rd->v = rs.v;
+ } else if (rs.u.max == offsetof(struct rte_mbuf, buf_addr)) {
+ eval_fill_imm(rd, msk, 0);
+ rd->v.type = RTE_BPF_ARG_PTR;
+ rd->v.size = rs.v.buf_size;
+ } else if (rs.u.max == offsetof(struct rte_mbuf, data_off)) {
+ eval_fill_imm(rd, msk, RTE_PKTMBUF_HEADROOM);
+ rd->v.type = RTE_BPF_ARG_RAW;
+ } else {
+ eval_max_load(rd, msk);
+ rd->v.type = RTE_BPF_ARG_RAW;
+ }
+
+ /* pointer to raw data */
+ } else {
+ eval_max_load(rd, msk);
+ rd->v.type = RTE_BPF_ARG_RAW;
+ }
+
return NULL;
}
+static const char *
+eval_mbuf_store(const struct bpf_reg_val *rv, uint32_t opsz)
+{
+ uint32_t i;
+
+ static const struct {
+ size_t off;
+ size_t sz;
+ } mbuf_ro_fileds[] = {
+ { .off = offsetof(struct rte_mbuf, buf_addr), },
+ { .off = offsetof(struct rte_mbuf, refcnt), },
+ { .off = offsetof(struct rte_mbuf, nb_segs), },
+ { .off = offsetof(struct rte_mbuf, buf_len), },
+ { .off = offsetof(struct rte_mbuf, pool), },
+ { .off = offsetof(struct rte_mbuf, next), },
+ { .off = offsetof(struct rte_mbuf, priv_size), },
+ };
+
+ for (i = 0; i != RTE_DIM(mbuf_ro_fileds) &&
+ (mbuf_ro_fileds[i].off + mbuf_ro_fileds[i].sz <=
+ rv->u.max || rv->u.max + opsz <= mbuf_ro_fileds[i].off);
+ i++)
+ ;
+
+ if (i != RTE_DIM(mbuf_ro_fileds))
+ return "store to the read-only mbuf field";
+
+ return NULL;
+
+}
+
+static const char *
+eval_store(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
+{
+ uint32_t opsz;
+ uint64_t msk;
+ const char *err;
+ struct bpf_eval_state *st;
+ struct bpf_reg_val rd, rs, *sv;
+
+ opsz = bpf_size(BPF_SIZE(ins->code));
+ msk = RTE_LEN2MASK(opsz * CHAR_BIT, uint64_t);
+
+ st = bvf->evst;
+ rd = st->rv[ins->dst_reg];
+
+ if (BPF_CLASS(ins->code) == BPF_STX) {
+ rs = st->rv[ins->src_reg];
+ eval_apply_mask(&rs, msk);
+ } else
+ eval_fill_imm(&rs, msk, ins->imm);
+
+ err = eval_defined(NULL, &rs);
+ if (err != NULL)
+ return err;
+
+ err = eval_ptr(bvf, &rd, opsz, 1, ins->off);
+ if (err != NULL)
+ return err;
+
+ if (rd.v.type == RTE_BPF_ARG_PTR_STACK) {
+
+ sv = st->sv + rd.u.max / sizeof(uint64_t);
+ if (BPF_CLASS(ins->code) == BPF_STX &&
+ BPF_MODE(ins->code) == EBPF_XADD)
+ eval_max_bound(sv, msk);
+ else
+ *sv = rs;
+
+ /* pointer to mbuf */
+ } else if (rd.v.type == RTE_BPF_ARG_PTR_MBUF) {
+ err = eval_mbuf_store(&rd, opsz);
+ if (err != NULL)
+ return err;
+ }
+
+ return NULL;
+}
+
+static const char *
+eval_func_arg(struct bpf_verifier *bvf, const struct rte_bpf_arg *arg,
+ struct bpf_reg_val *rv)
+{
+ uint32_t i, n;
+ struct bpf_eval_state *st;
+ const char *err;
+
+ st = bvf->evst;
+
+ if (rv->v.type == RTE_BPF_ARG_UNDEF)
+ return "Undefined argument type";
+
+ if (arg->type != rv->v.type &&
+ arg->type != RTE_BPF_ARG_RAW &&
+ (arg->type != RTE_BPF_ARG_PTR ||
+ RTE_BPF_ARG_PTR_TYPE(rv->v.type) == 0))
+ return "Invalid argument type";
+
+ err = NULL;
+
+ /* argument is a pointer */
+ if (RTE_BPF_ARG_PTR_TYPE(arg->type) != 0) {
+
+ err = eval_ptr(bvf, rv, arg->size, 1, 0);
+
+ /*
+ * pointer to the variable on the stack is passed
+ * as an argument, mark stack space it occupies as initialized.
+ */
+ if (err == NULL && rv->v.type == RTE_BPF_ARG_PTR_STACK) {
+
+ i = rv->u.max / sizeof(uint64_t);
+ n = i + arg->size / sizeof(uint64_t);
+ while (i != n) {
+ eval_fill_max_bound(st->sv + i, UINT64_MAX);
+ i++;
+ };
+ }
+ }
+
+ return err;
+}
+
static const char *
eval_call(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
{
- uint32_t idx;
+ uint64_t msk;
+ uint32_t i, idx;
+ struct bpf_reg_val *rv;
+ const struct rte_bpf_xsym *xsym;
+ const char *err;
idx = ins->imm;
/* for now don't support function calls on 32 bit platform */
if (sizeof(uint64_t) != sizeof(uintptr_t))
return "function calls are supported only for 64 bit apps";
+
+ xsym = bvf->prm->xsym + idx;
+
+ /* evaluate function arguments */
+ err = NULL;
+ for (i = 0; i != xsym->func.nb_args && err == NULL; i++) {
+ err = eval_func_arg(bvf, xsym->func.args + i,
+ bvf->evst->rv + EBPF_REG_1 + i);
+ }
+
+ /* R1-R5 argument/scratch registers */
+ for (i = EBPF_REG_1; i != EBPF_REG_6; i++)
+ bvf->evst->rv[i].v.type = RTE_BPF_ARG_UNDEF;
+
+ /* update return value */
+
+ rv = bvf->evst->rv + EBPF_REG_0;
+ rv->v = xsym->func.ret;
+ msk = (rv->v.type == RTE_BPF_ARG_RAW) ?
+ RTE_LEN2MASK(rv->v.size * CHAR_BIT, uint64_t) : UINTPTR_MAX;
+ eval_max_bound(rv, msk);
+ rv->mask = msk;
+
+ return err;
+}
+
+static void
+eval_jeq_jne(struct bpf_reg_val *trd, struct bpf_reg_val *trs)
+{
+ /* sreg is constant */
+ if (trs->u.min == trs->u.max) {
+ trd->u = trs->u;
+ /* dreg is constant */
+ } else if (trd->u.min == trd->u.max) {
+ trs->u = trd->u;
+ } else {
+ trd->u.max = RTE_MIN(trd->u.max, trs->u.max);
+ trd->u.min = RTE_MAX(trd->u.min, trs->u.min);
+ trs->u = trd->u;
+ }
+
+ /* sreg is constant */
+ if (trs->s.min == trs->s.max) {
+ trd->s = trs->s;
+ /* dreg is constant */
+ } else if (trd->s.min == trd->s.max) {
+ trs->s = trd->s;
+ } else {
+ trd->s.max = RTE_MIN(trd->s.max, trs->s.max);
+ trd->s.min = RTE_MAX(trd->s.min, trs->s.min);
+ trs->s = trd->s;
+ }
+}
+
+static void
+eval_jgt_jle(struct bpf_reg_val *trd, struct bpf_reg_val *trs,
+ struct bpf_reg_val *frd, struct bpf_reg_val *frs)
+{
+ frd->u.max = RTE_MIN(frd->u.max, frs->u.min);
+ trd->u.min = RTE_MAX(trd->u.min, trs->u.min + 1);
+}
+
+static void
+eval_jlt_jge(struct bpf_reg_val *trd, struct bpf_reg_val *trs,
+ struct bpf_reg_val *frd, struct bpf_reg_val *frs)
+{
+ frd->u.min = RTE_MAX(frd->u.min, frs->u.min);
+ trd->u.max = RTE_MIN(trd->u.max, trs->u.max - 1);
+}
+
+static void
+eval_jsgt_jsle(struct bpf_reg_val *trd, struct bpf_reg_val *trs,
+ struct bpf_reg_val *frd, struct bpf_reg_val *frs)
+{
+ frd->s.max = RTE_MIN(frd->s.max, frs->s.min);
+ trd->s.min = RTE_MAX(trd->s.min, trs->s.min + 1);
+}
+
+static void
+eval_jslt_jsge(struct bpf_reg_val *trd, struct bpf_reg_val *trs,
+ struct bpf_reg_val *frd, struct bpf_reg_val *frs)
+{
+ frd->s.min = RTE_MAX(frd->s.min, frs->s.min);
+ trd->s.max = RTE_MIN(trd->s.max, trs->s.max - 1);
+}
+
+static const char *
+eval_jcc(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
+{
+ uint32_t op;
+ const char *err;
+ struct bpf_eval_state *fst, *tst;
+ struct bpf_reg_val *frd, *frs, *trd, *trs;
+ struct bpf_reg_val rvf, rvt;
+
+ tst = bvf->evst;
+ fst = bvf->evin->evst;
+
+ frd = fst->rv + ins->dst_reg;
+ trd = tst->rv + ins->dst_reg;
+
+ if (BPF_SRC(ins->code) == BPF_X) {
+ frs = fst->rv + ins->src_reg;
+ trs = tst->rv + ins->src_reg;
+ } else {
+ frs = &rvf;
+ trs = &rvt;
+ eval_fill_imm(frs, UINT64_MAX, ins->imm);
+ eval_fill_imm(trs, UINT64_MAX, ins->imm);
+ }
+
+ err = eval_defined(trd, trs);
+ if (err != NULL)
+ return err;
+
+ op = BPF_OP(ins->code);
+
+ if (op == BPF_JEQ)
+ eval_jeq_jne(trd, trs);
+ else if (op == EBPF_JNE)
+ eval_jeq_jne(frd, frs);
+ else if (op == BPF_JGT)
+ eval_jgt_jle(trd, trs, frd, frs);
+ else if (op == EBPF_JLE)
+ eval_jgt_jle(frd, frs, trd, trs);
+ else if (op == EBPF_JLT)
+ eval_jlt_jge(trd, trs, frd, frs);
+ else if (op == BPF_JGE)
+ eval_jlt_jge(frd, frs, trd, trs);
+ else if (op == EBPF_JSGT)
+ eval_jsgt_jsle(trd, trs, frd, frs);
+ else if (op == EBPF_JSLE)
+ eval_jsgt_jsle(frd, frs, trd, trs);
+ else if (op == EBPF_JLT)
+ eval_jslt_jsge(trd, trs, frd, frs);
+ else if (op == EBPF_JSGE)
+ eval_jslt_jsge(frd, frs, trd, trs);
+
return NULL;
}
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_SUB | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_AND | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_OR | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_LSH | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_RSH | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_XOR | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_MUL | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(BPF_ALU | EBPF_MOV | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_DIV | BPF_K)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 1, .max = UINT32_MAX},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_MOD | BPF_K)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 1, .max = UINT32_MAX},
+ .eval = eval_alu,
},
/* ALU IMM 64-bit instructions */
[(EBPF_ALU64 | BPF_ADD | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_SUB | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_AND | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_OR | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_LSH | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_RSH | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | EBPF_ARSH | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_XOR | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_MUL | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | EBPF_MOV | BPF_K)] = {
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX,},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_DIV | BPF_K)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 1, .max = UINT32_MAX},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_MOD | BPF_K)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 1, .max = UINT32_MAX},
+ .eval = eval_alu,
},
/* ALU REG 32-bit instructions */
[(BPF_ALU | BPF_ADD | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_SUB | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_AND | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_OR | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_LSH | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_RSH | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_XOR | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_MUL | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_DIV | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_MOD | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(BPF_ALU | EBPF_MOV | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(BPF_ALU | BPF_NEG)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(BPF_ALU | EBPF_END | EBPF_TO_BE)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 16, .max = 64},
.check = check_alu_bele,
+ .eval = eval_bele,
},
[(BPF_ALU | EBPF_END | EBPF_TO_LE)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 16, .max = 64},
.check = check_alu_bele,
+ .eval = eval_bele,
},
/* ALU REG 64-bit instructions */
[(EBPF_ALU64 | BPF_ADD | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_SUB | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_AND | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_OR | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_LSH | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_RSH | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | EBPF_ARSH | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_XOR | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_MUL | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_DIV | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_MOD | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | EBPF_MOV | BPF_X)] = {
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
[(EBPF_ALU64 | BPF_NEG)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_alu,
},
/* load instructions */
[(BPF_LDX | BPF_MEM | BPF_B)] = {
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = UINT32_MAX},
+ .eval = eval_ld_imm64,
},
/* store REG instructions */
[(BPF_STX | BPF_MEM | BPF_B)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
+ .eval = eval_jcc,
},
[(BPF_JMP | EBPF_JNE | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
+ .eval = eval_jcc,
},
[(BPF_JMP | BPF_JGT | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
+ .eval = eval_jcc,
},
[(BPF_JMP | EBPF_JLT | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
+ .eval = eval_jcc,
},
[(BPF_JMP | BPF_JGE | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
+ .eval = eval_jcc,
},
[(BPF_JMP | EBPF_JLE | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
+ .eval = eval_jcc,
},
[(BPF_JMP | EBPF_JSGT | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
+ .eval = eval_jcc,
},
[(BPF_JMP | EBPF_JSLT | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
+ .eval = eval_jcc,
},
[(BPF_JMP | EBPF_JSGE | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
+ .eval = eval_jcc,
},
[(BPF_JMP | EBPF_JSLE | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
+ .eval = eval_jcc,
},
[(BPF_JMP | BPF_JSET | BPF_K)] = {
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = UINT32_MAX},
+ .eval = eval_jcc,
},
/* jcc REG instructions */
[(BPF_JMP | BPF_JEQ | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
+ .eval = eval_jcc,
},
[(BPF_JMP | EBPF_JNE | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
+ .eval = eval_jcc,
},
[(BPF_JMP | BPF_JGT | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
+ .eval = eval_jcc,
},
[(BPF_JMP | EBPF_JLT | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
+ .eval = eval_jcc,
},
[(BPF_JMP | BPF_JGE | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
+ .eval = eval_jcc,
},
[(BPF_JMP | EBPF_JLE | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
+ .eval = eval_jcc,
},
[(BPF_JMP | EBPF_JSGT | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
+ .eval = eval_jcc,
},
[(BPF_JMP | EBPF_JSLT | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
+ .eval = eval_jcc,
},
[(BPF_JMP | EBPF_JSLE | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
+ .eval = eval_jcc,
},
[(BPF_JMP | BPF_JSET | BPF_X)] = {
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
.off = { .min = 0, .max = UINT16_MAX},
.imm = { .min = 0, .max = 0},
+ .eval = eval_jcc,
},
/* call instruction */
[(BPF_JMP | EBPF_CALL)] = {
.mask = { .dreg = ZERO_REG, .sreg = ZERO_REG},
.off = { .min = 0, .max = 0},
.imm = { .min = 0, .max = 0},
+ .eval = eval_exit,
},
};
st = pull_eval_state(bvf);
if (st == NULL) {
RTE_BPF_LOG(ERR,
- "%s: internal error (out of space) at pc: %u",
+ "%s: internal error (out of space) at pc: %u\n",
__func__, get_node_idx(bvf, node));
return -ENOMEM;
}
push_eval_state(bvf);
}
+static void
+log_eval_state(const struct bpf_verifier *bvf, const struct ebpf_insn *ins,
+ uint32_t pc, int32_t loglvl)
+{
+ const struct bpf_eval_state *st;
+ const struct bpf_reg_val *rv;
+
+ rte_log(loglvl, rte_bpf_logtype, "%s(pc=%u):\n", __func__, pc);
+
+ st = bvf->evst;
+ rv = st->rv + ins->dst_reg;
+
+ rte_log(loglvl, rte_bpf_logtype,
+ "r%u={\n"
+ "\tv={type=%u, size=%zu},\n"
+ "\tmask=0x%" PRIx64 ",\n"
+ "\tu={min=0x%" PRIx64 ", max=0x%" PRIx64 "},\n"
+ "\ts={min=%" PRId64 ", max=%" PRId64 "},\n"
+ "};\n",
+ ins->dst_reg,
+ rv->v.type, rv->v.size,
+ rv->mask,
+ rv->u.min, rv->u.max,
+ rv->s.min, rv->s.max);
+}
+
/*
* Do second pass through CFG and try to evaluate instructions
* via each possible path.
const struct ebpf_insn *ins;
struct inst_node *next, *node;
- node = bvf->in;
+ /* initial state of frame pointer */
+ static const struct bpf_reg_val rvfp = {
+ .v = {
+ .type = RTE_BPF_ARG_PTR_STACK,
+ .size = MAX_BPF_STACK_SIZE,
+ },
+ .mask = UINT64_MAX,
+ .u = {.min = MAX_BPF_STACK_SIZE, .max = MAX_BPF_STACK_SIZE},
+ .s = {.min = MAX_BPF_STACK_SIZE, .max = MAX_BPF_STACK_SIZE},
+ };
+
+ bvf->evst->rv[EBPF_REG_1].v = bvf->prm->prog_arg;
+ bvf->evst->rv[EBPF_REG_1].mask = UINT64_MAX;
+ if (bvf->prm->prog_arg.type == RTE_BPF_ARG_RAW)
+ eval_max_bound(bvf->evst->rv + EBPF_REG_1, UINT64_MAX);
+
+ bvf->evst->rv[EBPF_REG_10] = rvfp;
+
ins = bvf->prm->ins;
+ node = bvf->in;
+ next = node;
rc = 0;
while (node != NULL && rc == 0) {
- /* current node evaluation */
- idx = get_node_idx(bvf, node);
- op = ins[idx].code;
+ /*
+ * current node evaluation, make sure we evaluate
+ * each node only once.
+ */
+ if (next != NULL) {
+
+ bvf->evin = node;
+ idx = get_node_idx(bvf, node);
+ op = ins[idx].code;
- if (ins_chk[op].eval != NULL) {
- err = ins_chk[op].eval(bvf, ins + idx);
- if (err != NULL) {
- RTE_BPF_LOG(ERR, "%s: %s at pc: %u\n",
- __func__, err, idx);
- rc = -EINVAL;
+ /* for jcc node make a copy of evaluatoion state */
+ if (node->nb_edge > 1)
+ rc |= save_eval_state(bvf, node);
+
+ if (ins_chk[op].eval != NULL && rc == 0) {
+ err = ins_chk[op].eval(bvf, ins + idx);
+ if (err != NULL) {
+ RTE_BPF_LOG(ERR, "%s: %s at pc: %u\n",
+ __func__, err, idx);
+ rc = -EINVAL;
+ }
}
+
+ log_eval_state(bvf, ins + idx, idx, RTE_LOG_DEBUG);
+ bvf->evin = NULL;
}
/* proceed through CFG */
if (next != NULL) {
/* proceed with next child */
- if (node->cur_edge != node->nb_edge)
- rc |= save_eval_state(bvf, node);
- else if (node->evst != NULL)
+ if (node->cur_edge == node->nb_edge &&
+ node->evst != NULL)
restore_eval_state(bvf, node);
next->prev_node = get_node_idx(bvf, node);