--- /dev/null
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2018 Cavium, Inc
+ */
+
+#ifndef _CPT_HW_TYPES_H_
+#define _CPT_HW_TYPES_H_
+
+#include <rte_byteorder.h>
+
+/*
+ * This file defines HRM specific structs.
+ *
+ */
+
+#define CPT_VF_INTR_MBOX_MASK (1<<0)
+#define CPT_VF_INTR_DOVF_MASK (1<<1)
+#define CPT_VF_INTR_IRDE_MASK (1<<2)
+#define CPT_VF_INTR_NWRP_MASK (1<<3)
+#define CPT_VF_INTR_SWERR_MASK (1<<4)
+#define CPT_VF_INTR_HWERR_MASK (1<<5)
+#define CPT_VF_INTR_FAULT_MASK (1<<6)
+
+/*
+ * CPT_INST_S software command definitions
+ * Words EI (0-3)
+ */
+typedef union {
+ uint64_t u64;
+ struct {
+ uint16_t opcode;
+ uint16_t param1;
+ uint16_t param2;
+ uint16_t dlen;
+ } s;
+} vq_cmd_word0_t;
+
+typedef union {
+ uint64_t u64;
+ struct {
+#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
+ uint64_t grp : 3;
+ uint64_t cptr : 61;
+#else
+ uint64_t cptr : 61;
+ uint64_t grp : 3;
+#endif
+ } s;
+} vq_cmd_word3_t;
+
+typedef struct cpt_vq_command {
+ vq_cmd_word0_t cmd;
+ uint64_t dptr;
+ uint64_t rptr;
+ vq_cmd_word3_t cptr;
+} cpt_vq_cmd_t;
+
+/**
+ * Structure cpt_inst_s
+ *
+ * CPT Instruction Structure
+ * This structure specifies the instruction layout.
+ * Instructions are stored in memory as little-endian unless
+ * CPT()_PF_Q()_CTL[INST_BE] is set.
+ */
+typedef union cpt_inst_s {
+ uint64_t u[8];
+ struct cpt_inst_s_8s {
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
+ uint64_t reserved_17_63 : 47;
+ /* [ 16: 16] Done interrupt.
+ * 0 = No interrupts related to this instruction.
+ * 1 = When the instruction completes,CPT()_VQ()_DONE[DONE]
+ * will be incremented, and based on the rules described
+ * there an interrupt may occur.
+ */
+ uint64_t doneint : 1;
+ uint64_t reserved_0_15 : 16;
+#else /* Word 0 - Little Endian */
+ uint64_t reserved_0_15 : 16;
+ uint64_t doneint : 1;
+ uint64_t reserved_17_63 : 47;
+#endif /* Word 0 - End */
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 1 - Big Endian */
+ /* [127: 64] Result IOVA.
+ * If nonzero, specifies where to write CPT_RES_S.
+ * If zero, no result structure will be written.
+ * Address must be 16-byte aligned.
+ *
+ * Bits <63:49> are ignored by hardware; software should
+ * use a sign-extended bit <48> for forward compatibility.
+ */
+ uint64_t res_addr : 64;
+#else /* Word 1 - Little Endian */
+ uint64_t res_addr : 64;
+#endif /* Word 1 - End */
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 2 - Big Endian */
+ uint64_t reserved_172_191 : 20;
+ /* [171:162] If [WQ_PTR] is nonzero, the SSO guest-group to
+ * use when CPT submits work to SSO.
+ * For the SSO to not discard the add-work request, FPA_PF_MAP()
+ * must map [GRP] and CPT()_PF_Q()_GMCTL[GMID] as valid.
+ */
+ uint64_t grp : 10;
+ /* [161:160] If [WQ_PTR] is nonzero, the SSO tag type to use
+ * when CPT submits work to SSO.
+ */
+ uint64_t tt : 2;
+ /* [159:128] If [WQ_PTR] is nonzero, the SSO tag to use when
+ * CPT submits work to SSO.
+ */
+ uint64_t tag : 32;
+#else /* Word 2 - Little Endian */
+ uint64_t tag : 32;
+ uint64_t tt : 2;
+ uint64_t grp : 10;
+ uint64_t reserved_172_191 : 20;
+#endif /* Word 2 - End */
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 3 - Big Endian */
+ /** [255:192] If [WQ_PTR] is nonzero, it is a pointer to a
+ * work-queue entry that CPT submits work to SSO after all
+ * context, output data, and result write operations are
+ * visible to other CNXXXX units and the cores.
+ * Bits <2:0> must be zero.
+ * Bits <63:49> are ignored by hardware; software should use a
+ * sign-extended bit <48> for forward compatibility.
+ * Internal:Bits <63:49>, <2:0> are ignored by hardware,
+ * treated as always 0x0.
+ **/
+ uint64_t wq_ptr : 64;
+#else /* Word 3 - Little Endian */
+ uint64_t wq_ptr : 64;
+#endif /* Word 3 - End */
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 4 - Big Endian */
+ union {
+ /** [319:256] Engine instruction word 0. Passed to the
+ * AE/SE.
+ **/
+ uint64_t ei0 : 64;
+ vq_cmd_word0_t vq_cmd_w0;
+ };
+#else /* Word 4 - Little Endian */
+ union {
+ uint64_t ei0 : 64;
+ vq_cmd_word0_t vq_cmd_w0;
+ };
+#endif /* Word 4 - End */
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 5 - Big Endian */
+ union {
+ /** [383:320] Engine instruction word 1. Passed to the
+ * AE/SE.
+ **/
+ uint64_t ei1 : 64;
+ uint64_t dptr;
+ };
+#else /* Word 5 - Little Endian */
+ union {
+ uint64_t ei1 : 64;
+ uint64_t dptr;
+ };
+#endif /* Word 5 - End */
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 6 - Big Endian */
+ union {
+ /** [447:384] Engine instruction word 2. Passed to the
+ * AE/SE.
+ **/
+ uint64_t ei2 : 64;
+ uint64_t rptr;
+ };
+#else /* Word 6 - Little Endian */
+ union {
+ uint64_t ei2 : 64;
+ uint64_t rptr;
+ };
+#endif /* Word 6 - End */
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 7 - Big Endian */
+ union {
+ /** [511:448] Engine instruction word 3. Passed to the
+ * AE/SE.
+ **/
+ uint64_t ei3 : 64;
+ vq_cmd_word3_t vq_cmd_w3;
+ };
+#else /* Word 7 - Little Endian */
+ union {
+ uint64_t ei3 : 64;
+ vq_cmd_word3_t vq_cmd_w3;
+ };
+#endif /* Word 7 - End */
+ } s8x;
+} cpt_inst_s_t;
+
+/**
+ * Structure cpt_res_s
+ *
+ * CPT Result Structure
+ * The CPT coprocessor writes the result structure after it completes a
+ * CPT_INST_S instruction. The result structure is exactly 16 bytes, and each
+ * instruction completion produces exactly one result structure.
+ *
+ * This structure is stored in memory as little-endian unless
+ * CPT()_PF_Q()_CTL[INST_BE] is set.
+ */
+typedef union cpt_res_s {
+ uint64_t u[2];
+ struct cpt_res_s_8s {
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
+ uint64_t reserved_17_63 : 47;
+ /** [ 16: 16] Done interrupt. This bit is copied from the
+ * corresponding instruction's CPT_INST_S[DONEINT].
+ **/
+ uint64_t doneint : 1;
+ uint64_t reserved_8_15 : 8;
+ /** [ 7: 0] Indicates completion/error status of the CPT
+ * coprocessor for the associated instruction, as enumerated by
+ * CPT_COMP_E. Core software may write the memory location
+ * containing [COMPCODE] to 0x0 before ringing the doorbell, and
+ * then poll for completion by checking for a nonzero value.
+ *
+ * Once the core observes a nonzero [COMPCODE] value in this
+ * case, the CPT coprocessor will have also completed L2/DRAM
+ * write operations.
+ **/
+ uint64_t compcode : 8;
+#else /* Word 0 - Little Endian */
+ uint64_t compcode : 8;
+ uint64_t reserved_8_15 : 8;
+ uint64_t doneint : 1;
+ uint64_t reserved_17_63 : 47;
+#endif /* Word 0 - End */
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 1 - Big Endian */
+ uint64_t reserved_64_127 : 64;
+#else /* Word 1 - Little Endian */
+ uint64_t reserved_64_127 : 64;
+#endif /* Word 1 - End */
+ } s8x;
+} cpt_res_s_t;
+
+/**
+ * Register (NCB) cpt#_vq#_ctl
+ *
+ * CPT VF Queue Control Registers
+ * This register configures queues. This register should be changed (other than
+ * clearing [ENA]) only when quiescent (see CPT()_VQ()_INPROG[INFLIGHT]).
+ */
+typedef union {
+ uint64_t u;
+ struct cptx_vqx_ctl_s {
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
+ uint64_t reserved_1_63 : 63;
+ /** [ 0: 0](R/W/H) Enables the logical instruction queue.
+ * See also CPT()_PF_Q()_CTL[CONT_ERR] and
+ * CPT()_VQ()_INPROG[INFLIGHT].
+ * 1 = Queue is enabled.
+ * 0 = Queue is disabled.
+ **/
+ uint64_t ena : 1;
+#else /* Word 0 - Little Endian */
+ uint64_t ena : 1;
+ uint64_t reserved_1_63 : 63;
+#endif /* Word 0 - End */
+ } s;
+} cptx_vqx_ctl_t;
+
+/**
+ * Register (NCB) cpt#_vq#_done
+ *
+ * CPT Queue Done Count Registers
+ * These registers contain the per-queue instruction done count.
+ */
+typedef union {
+ uint64_t u;
+ struct cptx_vqx_done_s {
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
+ uint64_t reserved_20_63 : 44;
+ /** [ 19: 0](R/W/H) Done count. When CPT_INST_S[DONEINT] set
+ * and that instruction completes,CPT()_VQ()_DONE[DONE] is
+ * incremented when the instruction finishes. Write to this
+ * field are for diagnostic use only; instead software writes
+ * CPT()_VQ()_DONE_ACK with the number of decrements for this
+ * field.
+ *
+ * Interrupts are sent as follows:
+ *
+ * When CPT()_VQ()_DONE[DONE] = 0, then no results are pending,
+ * the interrupt coalescing timer is held to zero, and an
+ * interrupt is not sent.
+ *
+ * When CPT()_VQ()_DONE[DONE] != 0, then the interrupt
+ * coalescing timer counts. If the counter is >= CPT()_VQ()_DONE
+ * _WAIT[TIME_WAIT]*1024, or CPT()_VQ()_DONE[DONE] >= CPT()_VQ()
+ * _DONE_WAIT[NUM_WAIT], i.e. enough time has passed or enough
+ * results have arrived, then the interrupt is sent. Otherwise,
+ * it is not sent due to coalescing.
+ *
+ * When CPT()_VQ()_DONE_ACK is written (or CPT()_VQ()_DONE is
+ * written but this is not typical), the interrupt coalescing
+ * timer restarts. Note after decrementing this interrupt
+ * equation is recomputed, for example if CPT()_VQ()_DONE[DONE]
+ * >= CPT()_VQ()_DONE_WAIT[NUM_WAIT] and because the timer is
+ * zero, the interrupt will be resent immediately. (This covers
+ * the race case between software acknowledging an interrupt and
+ * a result returning.)
+ *
+ * When CPT()_VQ()_DONE_ENA_W1S[DONE] = 0, interrupts are not
+ * sent, but the counting described above still occurs.
+ *
+ * Since CPT instructions complete out-of-order, if software is
+ * using completion interrupts the suggested scheme is to
+ * request a DONEINT on each request, and when an interrupt
+ * arrives perform a "greedy" scan for completions; even if a
+ * later command is acknowledged first this will not result in
+ * missing a completion.
+ *
+ * Software is responsible for making sure [DONE] does not
+ * overflow; for example by insuring there are not more than
+ * 2^20-1 instructions in flight that may request interrupts.
+ **/
+ uint64_t done : 20;
+#else /* Word 0 - Little Endian */
+ uint64_t done : 20;
+ uint64_t reserved_20_63 : 44;
+#endif /* Word 0 - End */
+ } s;
+} cptx_vqx_done_t;
+
+/**
+ * Register (NCB) cpt#_vq#_done_ack
+ *
+ * CPT Queue Done Count Ack Registers
+ * This register is written by software to acknowledge interrupts.
+ */
+typedef union {
+ uint64_t u;
+ struct cptx_vqx_done_ack_s {
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
+ uint64_t reserved_20_63 : 44;
+ /** [ 19: 0](R/W/H) Number of decrements to CPT()_VQ()_DONE
+ * [DONE]. Reads CPT()_VQ()_DONE[DONE].
+ *
+ * Written by software to acknowledge interrupts. If CPT()_VQ()_
+ * DONE[DONE] is still nonzero the interrupt will be re-sent if
+ * the conditions described in CPT()_VQ()_DONE[DONE] are
+ * satisfied.
+ **/
+ uint64_t done_ack : 20;
+#else /* Word 0 - Little Endian */
+ uint64_t done_ack : 20;
+ uint64_t reserved_20_63 : 44;
+#endif /* Word 0 - End */
+ } s;
+} cptx_vqx_done_ack_t;
+
+/**
+ * Register (NCB) cpt#_vq#_done_wait
+ *
+ * CPT Queue Done Interrupt Coalescing Wait Registers
+ * Specifies the per queue interrupt coalescing settings.
+ */
+typedef union {
+ uint64_t u;
+ struct cptx_vqx_done_wait_s {
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
+ uint64_t reserved_48_63 : 16;
+ /** [ 47: 32](R/W) Time hold-off. When CPT()_VQ()_DONE[DONE] =
+ * 0, or CPT()_VQ()_DONE_ACK is written a timer is cleared. When
+ * the timer reaches [TIME_WAIT]*1024 then interrupt coalescing
+ * ends; see CPT()_VQ()_DONE[DONE]. If 0x0, time coalescing is
+ * disabled.
+ **/
+ uint64_t time_wait : 16;
+ uint64_t reserved_20_31 : 12;
+ /** [ 19: 0](R/W) Number of messages hold-off. When
+ * CPT()_VQ()_DONE[DONE] >= [NUM_WAIT] then interrupt coalescing
+ * ends; see CPT()_VQ()_DONE[DONE]. If 0x0, same behavior as
+ * 0x1.
+ **/
+ uint64_t num_wait : 20;
+#else /* Word 0 - Little Endian */
+ uint64_t num_wait : 20;
+ uint64_t reserved_20_31 : 12;
+ uint64_t time_wait : 16;
+ uint64_t reserved_48_63 : 16;
+#endif /* Word 0 - End */
+ } s;
+} cptx_vqx_done_wait_t;
+
+/**
+ * Register (NCB) cpt#_vq#_doorbell
+ *
+ * CPT Queue Doorbell Registers
+ * Doorbells for the CPT instruction queues.
+ */
+typedef union {
+ uint64_t u;
+ struct cptx_vqx_doorbell_s {
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
+ uint64_t reserved_20_63 : 44;
+ uint64_t dbell_cnt : 20;
+ /** [ 19: 0](R/W/H) Number of instruction queue 64-bit words
+ * to add to the CPT instruction doorbell count. Readback value
+ * is the the current number of pending doorbell requests.
+ *
+ * If counter overflows CPT()_VQ()_MISC_INT[DBELL_DOVF] is set.
+ *
+ * To reset the count back to zero, write one to clear
+ * CPT()_VQ()_MISC_INT_ENA_W1C[DBELL_DOVF], then write a value
+ * of 2^20 minus the read [DBELL_CNT], then write one to
+ * CPT()_VQ()_MISC_INT_W1C[DBELL_DOVF] and
+ * CPT()_VQ()_MISC_INT_ENA_W1S[DBELL_DOVF].
+ *
+ * Must be a multiple of 8. All CPT instructions are 8 words
+ * and require a doorbell count of multiple of 8.
+ **/
+#else /* Word 0 - Little Endian */
+ uint64_t dbell_cnt : 20;
+ uint64_t reserved_20_63 : 44;
+#endif /* Word 0 - End */
+ } s;
+} cptx_vqx_doorbell_t;
+
+/**
+ * Register (NCB) cpt#_vq#_inprog
+ *
+ * CPT Queue In Progress Count Registers
+ * These registers contain the per-queue instruction in flight registers.
+ */
+typedef union {
+ uint64_t u;
+ struct cptx_vqx_inprog_s {
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
+ uint64_t reserved_8_63 : 56;
+ /** [ 7: 0](RO/H) Inflight count. Counts the number of
+ * instructions for the VF for which CPT is fetching, executing
+ * or responding to instructions. However this does not include
+ * any interrupts that are awaiting software handling
+ * (CPT()_VQ()_DONE[DONE] != 0x0).
+ *
+ * A queue may not be reconfigured until:
+ * 1. CPT()_VQ()_CTL[ENA] is cleared by software.
+ * 2. [INFLIGHT] is polled until equals to zero.
+ **/
+ uint64_t inflight : 8;
+#else /* Word 0 - Little Endian */
+ uint64_t inflight : 8;
+ uint64_t reserved_8_63 : 56;
+#endif /* Word 0 - End */
+ } s;
+} cptx_vqx_inprog_t;
+
+/**
+ * Register (NCB) cpt#_vq#_misc_int
+ *
+ * CPT Queue Misc Interrupt Register
+ * These registers contain the per-queue miscellaneous interrupts.
+ */
+typedef union {
+ uint64_t u;
+ struct cptx_vqx_misc_int_s {
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
+ uint64_t reserved_7_63 : 57;
+ /** [ 6: 6](R/W1C/H) Translation fault detected. */
+ uint64_t fault : 1;
+ /** [ 5: 5](R/W1C/H) Hardware error from engines. */
+ uint64_t hwerr : 1;
+ /** [ 4: 4](R/W1C/H) Software error from engines. */
+ uint64_t swerr : 1;
+ /** [ 3: 3](R/W1C/H) NCB result write response error. */
+ uint64_t nwrp : 1;
+ /** [ 2: 2](R/W1C/H) Instruction NCB read response error. */
+ uint64_t irde : 1;
+ /** [ 1: 1](R/W1C/H) Doorbell overflow. */
+ uint64_t dovf : 1;
+ /** [ 0: 0](R/W1C/H) PF to VF mailbox interrupt. Set when
+ * CPT()_VF()_PF_MBOX(0) is written.
+ **/
+ uint64_t mbox : 1;
+#else /* Word 0 - Little Endian */
+ uint64_t mbox : 1;
+ uint64_t dovf : 1;
+ uint64_t irde : 1;
+ uint64_t nwrp : 1;
+ uint64_t swerr : 1;
+ uint64_t hwerr : 1;
+ uint64_t fault : 1;
+ uint64_t reserved_5_63 : 59;
+#endif /* Word 0 - End */
+ } s;
+} cptx_vqx_misc_int_t;
+
+/**
+ * Register (NCB) cpt#_vq#_saddr
+ *
+ * CPT Queue Starting Buffer Address Registers
+ * These registers set the instruction buffer starting address.
+ */
+typedef union {
+ uint64_t u;
+ struct cptx_vqx_saddr_s {
+#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
+ uint64_t reserved_49_63 : 15;
+ /** [ 48: 6](R/W/H) Instruction buffer IOVA <48:6>
+ * (64-byte aligned). When written, it is the initial buffer
+ * starting address; when read, it is the next read pointer to
+ * be requested from L2C. The PTR field is overwritten with the
+ * next pointer each time that the command buffer segment is
+ * exhausted. New commands will then be read from the newly
+ * specified command buffer pointer.
+ **/
+ uint64_t ptr : 43;
+ uint64_t reserved_0_5 : 6;
+#else /* Word 0 - Little Endian */
+ uint64_t reserved_0_5 : 6;
+ uint64_t ptr : 43;
+ uint64_t reserved_49_63 : 15;
+#endif /* Word 0 - End */
+ } s;
+} cptx_vqx_saddr_t;
+
+#endif /*_CPT_HW_TYPES_H_ */
*/
#include <string.h>
+#include <rte_branch_prediction.h>
#include <rte_common.h>
#include "otx_cryptodev_hw_access.h"
#include "cpt_pmd_logs.h"
+#include "cpt_hw_types.h"
+
+/*
+ * VF HAL functions
+ * Access its own BAR0/4 registers by passing VF number as 0.
+ * OS/PCI maps them accordingly.
+ */
static int
otx_cpt_vf_init(struct cpt_vf *cptvf)
return ret;
}
+/*
+ * Read Interrupt status of the VF
+ *
+ * @param cptvf cptvf structure
+ */
+static uint64_t
+otx_cpt_read_vf_misc_intr_status(struct cpt_vf *cptvf)
+{
+ return CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0));
+}
+
+/*
+ * Clear mailbox interrupt of the VF
+ *
+ * @param cptvf cptvf structure
+ */
+static void
+otx_cpt_clear_mbox_intr(struct cpt_vf *cptvf)
+{
+ cptx_vqx_misc_int_t vqx_misc_int;
+
+ vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
+ CPTX_VQX_MISC_INT(0, 0));
+ /* W1C for the VF */
+ vqx_misc_int.s.mbox = 1;
+ CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
+ CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
+}
+
+/*
+ * Clear instruction NCB read error interrupt of the VF
+ *
+ * @param cptvf cptvf structure
+ */
+static void
+otx_cpt_clear_irde_intr(struct cpt_vf *cptvf)
+{
+ cptx_vqx_misc_int_t vqx_misc_int;
+
+ vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
+ CPTX_VQX_MISC_INT(0, 0));
+ /* W1C for the VF */
+ vqx_misc_int.s.irde = 1;
+ CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
+ CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
+}
+
+/*
+ * Clear NCB result write response error interrupt of the VF
+ *
+ * @param cptvf cptvf structure
+ */
+static void
+otx_cpt_clear_nwrp_intr(struct cpt_vf *cptvf)
+{
+ cptx_vqx_misc_int_t vqx_misc_int;
+
+ vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
+ CPTX_VQX_MISC_INT(0, 0));
+ /* W1C for the VF */
+ vqx_misc_int.s.nwrp = 1;
+ CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
+ CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
+}
+
+/*
+ * Clear swerr interrupt of the VF
+ *
+ * @param cptvf cptvf structure
+ */
+static void
+otx_cpt_clear_swerr_intr(struct cpt_vf *cptvf)
+{
+ cptx_vqx_misc_int_t vqx_misc_int;
+
+ vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
+ CPTX_VQX_MISC_INT(0, 0));
+ /* W1C for the VF */
+ vqx_misc_int.s.swerr = 1;
+ CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
+ CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
+}
+
+/*
+ * Clear hwerr interrupt of the VF
+ *
+ * @param cptvf cptvf structure
+ */
+static void
+otx_cpt_clear_hwerr_intr(struct cpt_vf *cptvf)
+{
+ cptx_vqx_misc_int_t vqx_misc_int;
+
+ vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
+ CPTX_VQX_MISC_INT(0, 0));
+ /* W1C for the VF */
+ vqx_misc_int.s.hwerr = 1;
+ CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
+ CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
+}
+
+/*
+ * Clear translation fault interrupt of the VF
+ *
+ * @param cptvf cptvf structure
+ */
+static void
+otx_cpt_clear_fault_intr(struct cpt_vf *cptvf)
+{
+ cptx_vqx_misc_int_t vqx_misc_int;
+
+ vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
+ CPTX_VQX_MISC_INT(0, 0));
+ /* W1C for the VF */
+ vqx_misc_int.s.fault = 1;
+ CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
+ CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
+}
+
+/*
+ * Clear doorbell overflow interrupt of the VF
+ *
+ * @param cptvf cptvf structure
+ */
+static void
+otx_cpt_clear_dovf_intr(struct cpt_vf *cptvf)
+{
+ cptx_vqx_misc_int_t vqx_misc_int;
+
+ vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
+ CPTX_VQX_MISC_INT(0, 0));
+ /* W1C for the VF */
+ vqx_misc_int.s.dovf = 1;
+ CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
+ CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
+}
+
void
otx_cpt_poll_misc(struct cpt_vf *cptvf)
{
- RTE_SET_USED(cptvf);
+ uint64_t intr;
+
+ intr = otx_cpt_read_vf_misc_intr_status(cptvf);
+
+ if (!intr)
+ return;
+
+ /* Check for MISC interrupt types */
+ if (likely(intr & CPT_VF_INTR_MBOX_MASK)) {
+ CPT_LOG_DP_DEBUG("%s: Mailbox interrupt 0x%lx on CPT VF %d",
+ cptvf->dev_name, (unsigned int long)intr, cptvf->vfid);
+ otx_cpt_clear_mbox_intr(cptvf);
+ } else if (unlikely(intr & CPT_VF_INTR_IRDE_MASK)) {
+ otx_cpt_clear_irde_intr(cptvf);
+ CPT_LOG_DP_DEBUG("%s: Instruction NCB read error interrupt "
+ "0x%lx on CPT VF %d", cptvf->dev_name,
+ (unsigned int long)intr, cptvf->vfid);
+ } else if (unlikely(intr & CPT_VF_INTR_NWRP_MASK)) {
+ otx_cpt_clear_nwrp_intr(cptvf);
+ CPT_LOG_DP_DEBUG("%s: NCB response write error interrupt 0x%lx"
+ " on CPT VF %d", cptvf->dev_name,
+ (unsigned int long)intr, cptvf->vfid);
+ } else if (unlikely(intr & CPT_VF_INTR_SWERR_MASK)) {
+ otx_cpt_clear_swerr_intr(cptvf);
+ CPT_LOG_DP_DEBUG("%s: Software error interrupt 0x%lx on CPT VF "
+ "%d", cptvf->dev_name, (unsigned int long)intr,
+ cptvf->vfid);
+ } else if (unlikely(intr & CPT_VF_INTR_HWERR_MASK)) {
+ otx_cpt_clear_hwerr_intr(cptvf);
+ CPT_LOG_DP_DEBUG("%s: Hardware error interrupt 0x%lx on CPT VF "
+ "%d", cptvf->dev_name, (unsigned int long)intr,
+ cptvf->vfid);
+ } else if (unlikely(intr & CPT_VF_INTR_FAULT_MASK)) {
+ otx_cpt_clear_fault_intr(cptvf);
+ CPT_LOG_DP_DEBUG("%s: Translation fault interrupt 0x%lx on CPT VF "
+ "%d", cptvf->dev_name, (unsigned int long)intr,
+ cptvf->vfid);
+ } else if (unlikely(intr & CPT_VF_INTR_DOVF_MASK)) {
+ otx_cpt_clear_dovf_intr(cptvf);
+ CPT_LOG_DP_DEBUG("%s: Doorbell overflow interrupt 0x%lx on CPT VF "
+ "%d", cptvf->dev_name, (unsigned int long)intr,
+ cptvf->vfid);
+ } else
+ CPT_LOG_DP_ERR("%s: Unhandled interrupt 0x%lx in CPT VF %d",
+ cptvf->dev_name, (unsigned int long)intr,
+ cptvf->vfid);
}
int