},
};
-static inline __attribute__((always_inline)) ymm_t
-calc_addr_avx2(ymm_t index_mask, ymm_t next_input, ymm_t shuffle_input,
- ymm_t ones_16, ymm_t tr_lo, ymm_t tr_hi)
-{
- ymm_t in, node_type, r, t;
- ymm_t dfa_msk, dfa_ofs, quad_ofs;
- ymm_t addr;
-
- const ymm_t range_base = _mm256_set_epi32(
- 0xffffff0c, 0xffffff08, 0xffffff04, 0xffffff00,
- 0xffffff0c, 0xffffff08, 0xffffff04, 0xffffff00);
-
- t = _mm256_xor_si256(index_mask, index_mask);
- in = _mm256_shuffle_epi8(next_input, shuffle_input);
-
- /* Calc node type and node addr */
- node_type = _mm256_andnot_si256(index_mask, tr_lo);
- addr = _mm256_and_si256(index_mask, tr_lo);
-
- /* DFA calculations. */
-
- dfa_msk = _mm256_cmpeq_epi32(node_type, t);
-
- r = _mm256_srli_epi32(in, 30);
- r = _mm256_add_epi8(r, range_base);
-
- t = _mm256_srli_epi32(in, 24);
- r = _mm256_shuffle_epi8(tr_hi, r);
-
- dfa_ofs = _mm256_sub_epi32(t, r);
-
- /* QUAD/SINGLE caluclations. */
-
- t = _mm256_cmpgt_epi8(in, tr_hi);
- t = _mm256_sign_epi8(t, t);
- t = _mm256_maddubs_epi16(t, t);
- quad_ofs = _mm256_madd_epi16(t, ones_16);
-
- /* blend DFA and QUAD/SINGLE. */
- t = _mm256_blendv_epi8(quad_ofs, dfa_ofs, dfa_msk);
-
- addr = _mm256_add_epi32(addr, t);
- return addr;
-}
+static const rte_ymm_t ymm_range_base = {
+ .u32 = {
+ 0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
+ 0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
+ },
+};
+/*
+ * Process 8 transitions in parallel.
+ * tr_lo contains low 32 bits for 8 transition.
+ * tr_hi contains high 32 bits for 8 transition.
+ * next_input contains up to 4 input bytes for 8 flows.
+ */
static inline __attribute__((always_inline)) ymm_t
transition8(ymm_t next_input, const uint64_t *trans, ymm_t *tr_lo, ymm_t *tr_hi)
{
tr = (const int32_t *)(uintptr_t)trans;
- addr = calc_addr_avx2(ymm_index_mask.y, next_input, ymm_shuffle_input.y,
- ymm_ones_16.y, *tr_lo, *tr_hi);
+ /* Calculate the address (array index) for all 8 transitions. */
+ ACL_TR_CALC_ADDR(mm256, 256, addr, ymm_index_mask.y, next_input,
+ ymm_shuffle_input.y, ymm_ones_16.y, ymm_range_base.y,
+ *tr_lo, *tr_hi);
/* load lower 32 bits of 8 transactions at once. */
*tr_lo = _mm256_i32gather_epi32(tr, addr, sizeof(trans[0]));
return next_input;
}
+/*
+ * Process matches for 8 flows.
+ * tr_lo contains low 32 bits for 8 transition.
+ * tr_hi contains high 32 bits for 8 transition.
+ */
static inline void
acl_process_matches_avx2x8(const struct rte_acl_ctx *ctx,
struct parms *parms, struct acl_flow_data *flows, uint32_t slot,
l0 = _mm256_castsi256_si128(*tr_lo);
for (i = 0; i != RTE_DIM(tr) / 2; i++) {
+
+ /*
+ * Extract low 32bits of each transition.
+ * That's enough to process the match.
+ */
tr[i] = (uint32_t)_mm_cvtsi128_si32(l0);
tr[i + 4] = (uint32_t)_mm_cvtsi128_si32(l1);
ctx, parms, flows, resolve_priority_sse);
}
+ /* Collect new transitions into 2 YMM registers. */
t0 = _mm256_set_epi64x(tr[5], tr[4], tr[1], tr[0]);
t1 = _mm256_set_epi64x(tr[7], tr[6], tr[3], tr[2]);
- lo = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0x88);
- hi = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0xdd);
+ /* For each transition: put low 32 into tr_lo and high 32 into tr_hi */
+ ACL_TR_HILO(mm256, __m256, t0, t1, lo, hi);
+ /* Keep transitions wth NOMATCH intact. */
*tr_lo = _mm256_blendv_epi8(*tr_lo, lo, matches);
*tr_hi = _mm256_blendv_epi8(*tr_hi, hi, matches);
}
}
}
+/*
+ * Execute trie traversal for up to 16 flows in parallel.
+ */
static inline int
search_avx2x16(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t total_packets, uint32_t categories)
t1 = _mm256_set_epi64x(index_array[7], index_array[6],
index_array[3], index_array[2]);
- tr_lo[0] = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0x88);
- tr_hi[0] = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0xdd);
+ ACL_TR_HILO(mm256, __m256, t0, t1, tr_lo[0], tr_hi[0]);
t0 = _mm256_set_epi64x(index_array[13], index_array[12],
index_array[9], index_array[8]);
t1 = _mm256_set_epi64x(index_array[15], index_array[14],
index_array[11], index_array[10]);
- tr_lo[1] = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0x88);
- tr_hi[1] = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0xdd);
+ ACL_TR_HILO(mm256, __m256, t0, t1, tr_lo[1], tr_hi[1]);
/* Check for any matches. */
acl_match_check_avx2x8(ctx, parms, &flows, 0, &tr_lo[0], &tr_hi[0],
},
};
+static const rte_xmm_t xmm_range_base = {
+ .u32 = {
+ 0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
+ },
+};
+
/*
* Resolve priority for multiple results (sse version).
* This consists comparing the priority of the current traversal with the
(xmm_t *)(&parms[n].cmplt->priority[x]);
/* get results and priorities for completed trie */
- results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
- priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
+ results = _mm_loadu_si128(
+ (const xmm_t *)&p[transition].results[x]);
+ priority = _mm_loadu_si128(
+ (const xmm_t *)&p[transition].priority[x]);
/* if this is not the first completed trie */
if (parms[n].cmplt->count != ctx->num_tries) {
/* get running best results and their priorities */
- results1 = MM_LOADU(saved_results);
- priority1 = MM_LOADU(saved_priority);
+ results1 = _mm_loadu_si128(saved_results);
+ priority1 = _mm_loadu_si128(saved_priority);
/* select results that are highest priority */
- selector = MM_CMPGT32(priority1, priority);
- results = MM_BLENDV8(results, results1, selector);
- priority = MM_BLENDV8(priority, priority1, selector);
+ selector = _mm_cmpgt_epi32(priority1, priority);
+ results = _mm_blendv_epi8(results, results1, selector);
+ priority = _mm_blendv_epi8(priority, priority1,
+ selector);
}
/* save running best results and their priorities */
- MM_STOREU(saved_results, results);
- MM_STOREU(saved_priority, priority);
+ _mm_storeu_si128(saved_results, results);
+ _mm_storeu_si128(saved_priority, priority);
}
}
uint64_t transition1, transition2;
/* extract transition from low 64 bits. */
- transition1 = MM_CVT64(*indices);
+ transition1 = _mm_cvtsi128_si64(*indices);
/* extract transition from high 64 bits. */
- *indices = MM_SHUFFLE32(*indices, SHUFFLE32_SWAP64);
- transition2 = MM_CVT64(*indices);
+ *indices = _mm_shuffle_epi32(*indices, SHUFFLE32_SWAP64);
+ transition2 = _mm_cvtsi128_si64(*indices);
transition1 = acl_match_check(transition1, slot, ctx,
parms, flows, resolve_priority_sse);
parms, flows, resolve_priority_sse);
/* update indices with new transitions. */
- *indices = MM_SET64(transition2, transition1);
+ *indices = _mm_set_epi64x(transition2, transition1);
}
/*
xmm_t temp;
/* put low 32 bits of each transition into one register */
- temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, (__m128)*indices2,
+ temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2,
0x88);
/* test for match node */
- temp = MM_AND(match_mask, temp);
+ temp = _mm_and_si128(match_mask, temp);
- while (!MM_TESTZ(temp, temp)) {
+ while (!_mm_testz_si128(temp, temp)) {
acl_process_matches(indices1, slot, ctx, parms, flows);
acl_process_matches(indices2, slot + 2, ctx, parms, flows);
- temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1,
+ temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1,
(__m128)*indices2,
0x88);
- temp = MM_AND(match_mask, temp);
+ temp = _mm_and_si128(match_mask, temp);
}
}
/*
- * Calculate the address of the next transition for
- * all types of nodes. Note that only DFA nodes and range
- * nodes actually transition to another node. Match
- * nodes don't move.
- */
-static inline __attribute__((always_inline)) xmm_t
-calc_addr_sse(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
- xmm_t ones_16, xmm_t tr_lo, xmm_t tr_hi)
-{
- xmm_t addr, node_types;
- xmm_t dfa_msk, dfa_ofs, quad_ofs;
- xmm_t in, r, t;
-
- const xmm_t range_base = _mm_set_epi32(0xffffff0c, 0xffffff08,
- 0xffffff04, 0xffffff00);
-
- /*
- * Note that no transition is done for a match
- * node and therefore a stream freezes when
- * it reaches a match.
- */
-
- t = MM_XOR(index_mask, index_mask);
-
- /* shuffle input byte to all 4 positions of 32 bit value */
- in = MM_SHUFFLE8(next_input, shuffle_input);
-
- /* Calc node type and node addr */
- node_types = MM_ANDNOT(index_mask, tr_lo);
- addr = MM_AND(index_mask, tr_lo);
-
- /*
- * Calc addr for DFAs - addr = dfa_index + input_byte
- */
-
- /* mask for DFA type (0) nodes */
- dfa_msk = MM_CMPEQ32(node_types, t);
-
- r = _mm_srli_epi32(in, 30);
- r = _mm_add_epi8(r, range_base);
-
- t = _mm_srli_epi32(in, 24);
- r = _mm_shuffle_epi8(tr_hi, r);
-
- dfa_ofs = _mm_sub_epi32(t, r);
-
- /*
- * Calculate number of range boundaries that are less than the
- * input value. Range boundaries for each node are in signed 8 bit,
- * ordered from -128 to 127 in the indices2 register.
- * This is effectively a popcnt of bytes that are greater than the
- * input byte.
- */
-
- /* check ranges */
- t = MM_CMPGT8(in, tr_hi);
-
- /* convert -1 to 1 (bytes greater than input byte */
- t = MM_SIGN8(t, t);
-
- /* horizontal add pairs of bytes into words */
- t = MM_MADD8(t, t);
-
- /* horizontal add pairs of words into dwords */
- quad_ofs = MM_MADD16(t, ones_16);
-
- /* blend DFA and QUAD/SINGLE. */
- t = _mm_blendv_epi8(quad_ofs, dfa_ofs, dfa_msk);
-
- /* add index into node position */
- return MM_ADD32(addr, t);
-}
-
-/*
- * Process 4 transitions (in 2 SIMD registers) in parallel
+ * Process 4 transitions (in 2 XMM registers) in parallel
*/
static inline __attribute__((always_inline)) xmm_t
transition4(xmm_t next_input, const uint64_t *trans,
uint64_t trans0, trans2;
/* Shuffle low 32 into tr_lo and high 32 into tr_hi */
- tr_lo = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2,
- 0x88);
- tr_hi = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2,
- 0xdd);
+ ACL_TR_HILO(mm, __m128, *indices1, *indices2, tr_lo, tr_hi);
/* Calculate the address (array index) for all 4 transitions. */
-
- addr = calc_addr_sse(xmm_index_mask.x, next_input, xmm_shuffle_input.x,
- xmm_ones_16.x, tr_lo, tr_hi);
+ ACL_TR_CALC_ADDR(mm, 128, addr, xmm_index_mask.x, next_input,
+ xmm_shuffle_input.x, xmm_ones_16.x, xmm_range_base.x,
+ tr_lo, tr_hi);
/* Gather 64 bit transitions and pack back into 2 registers. */
- trans0 = trans[MM_CVT32(addr)];
+ trans0 = trans[_mm_cvtsi128_si32(addr)];
/* get slot 2 */
/* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
- addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
- trans2 = trans[MM_CVT32(addr)];
+ addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT2);
+ trans2 = trans[_mm_cvtsi128_si32(addr)];
/* get slot 1 */
/* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
- addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
- *indices1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
+ addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT1);
+ *indices1 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans0);
/* get slot 3 */
/* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
- addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
- *indices2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
+ addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT3);
+ *indices2 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans2);
- return MM_SRL32(next_input, CHAR_BIT);
+ return _mm_srli_epi32(next_input, CHAR_BIT);
}
/*
* indices4 contains index_array[6,7]
*/
- indices1 = MM_LOADU((xmm_t *) &index_array[0]);
- indices2 = MM_LOADU((xmm_t *) &index_array[2]);
+ indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]);
+ indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]);
- indices3 = MM_LOADU((xmm_t *) &index_array[4]);
- indices4 = MM_LOADU((xmm_t *) &index_array[6]);
+ indices3 = _mm_loadu_si128((xmm_t *) &index_array[4]);
+ indices4 = _mm_loadu_si128((xmm_t *) &index_array[6]);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows,
input0 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
input1 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 4));
- input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
- input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
+ input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 1), 1);
+ input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 5), 1);
- input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
- input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
+ input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 2), 2);
+ input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 6), 2);
- input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
- input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
+ input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 3), 3);
+ input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 7), 3);
/* Process the 4 bytes of input on each stream. */
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
}
- indices1 = MM_LOADU((xmm_t *) &index_array[0]);
- indices2 = MM_LOADU((xmm_t *) &index_array[2]);
+ indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]);
+ indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows,
/* Gather 4 bytes of input data for each stream. */
input = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
- input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
- input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
- input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
+ input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 1), 1);
+ input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 2), 2);
+ input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 3), 3);
/* Process the 4 bytes of input on each stream. */
input = transition4(input, flows.trans, &indices1, &indices2);
extern "C" {
#endif
-#define MM_ADD16(a, b) _mm_add_epi16(a, b)
-#define MM_ADD32(a, b) _mm_add_epi32(a, b)
-#define MM_ALIGNR8(a, b, c) _mm_alignr_epi8(a, b, c)
-#define MM_AND(a, b) _mm_and_si128(a, b)
-#define MM_ANDNOT(a, b) _mm_andnot_si128(a, b)
-#define MM_BLENDV8(a, b, c) _mm_blendv_epi8(a, b, c)
-#define MM_CMPEQ16(a, b) _mm_cmpeq_epi16(a, b)
-#define MM_CMPEQ32(a, b) _mm_cmpeq_epi32(a, b)
-#define MM_CMPEQ8(a, b) _mm_cmpeq_epi8(a, b)
-#define MM_CMPGT32(a, b) _mm_cmpgt_epi32(a, b)
-#define MM_CMPGT8(a, b) _mm_cmpgt_epi8(a, b)
-#define MM_CVT(a) _mm_cvtsi32_si128(a)
-#define MM_CVT32(a) _mm_cvtsi128_si32(a)
-#define MM_CVTU32(a) _mm_cvtsi32_si128(a)
-#define MM_INSERT16(a, c, b) _mm_insert_epi16(a, c, b)
-#define MM_INSERT32(a, c, b) _mm_insert_epi32(a, c, b)
-#define MM_LOAD(a) _mm_load_si128(a)
-#define MM_LOADH_PI(a, b) _mm_loadh_pi(a, b)
-#define MM_LOADU(a) _mm_loadu_si128(a)
-#define MM_MADD16(a, b) _mm_madd_epi16(a, b)
-#define MM_MADD8(a, b) _mm_maddubs_epi16(a, b)
-#define MM_MOVEMASK8(a) _mm_movemask_epi8(a)
-#define MM_OR(a, b) _mm_or_si128(a, b)
-#define MM_SET1_16(a) _mm_set1_epi16(a)
-#define MM_SET1_32(a) _mm_set1_epi32(a)
-#define MM_SET1_64(a) _mm_set1_epi64(a)
-#define MM_SET1_8(a) _mm_set1_epi8(a)
-#define MM_SET32(a, b, c, d) _mm_set_epi32(a, b, c, d)
-#define MM_SHUFFLE32(a, b) _mm_shuffle_epi32(a, b)
-#define MM_SHUFFLE8(a, b) _mm_shuffle_epi8(a, b)
-#define MM_SHUFFLEPS(a, b, c) _mm_shuffle_ps(a, b, c)
-#define MM_SIGN8(a, b) _mm_sign_epi8(a, b)
-#define MM_SLL64(a, b) _mm_sll_epi64(a, b)
-#define MM_SRL128(a, b) _mm_srli_si128(a, b)
-#define MM_SRL16(a, b) _mm_srli_epi16(a, b)
-#define MM_SRL32(a, b) _mm_srli_epi32(a, b)
-#define MM_STORE(a, b) _mm_store_si128(a, b)
-#define MM_STOREU(a, b) _mm_storeu_si128(a, b)
-#define MM_TESTZ(a, b) _mm_testz_si128(a, b)
-#define MM_XOR(a, b) _mm_xor_si128(a, b)
-
-#define MM_SET16(a, b, c, d, e, f, g, h) \
- _mm_set_epi16(a, b, c, d, e, f, g, h)
-
-#define MM_SET8(c0, c1, c2, c3, c4, c5, c6, c7, \
- c8, c9, cA, cB, cC, cD, cE, cF) \
- _mm_set_epi8(c0, c1, c2, c3, c4, c5, c6, c7, \
- c8, c9, cA, cB, cC, cD, cE, cF)
-
-#ifdef RTE_ARCH_X86_64
-
-#define MM_CVT64(a) _mm_cvtsi128_si64(a)
-
-#else
-
-#define MM_CVT64(a) ({ \
- rte_xmm_t m; \
- m.m = (a); \
- (m.u64[0]); \
-})
-
-#endif /*RTE_ARCH_X86_64 */
/*
- * Prior to version 12.1 icc doesn't support _mm_set_epi64x.
+ * Takes 2 SIMD registers containing N transitions eachi (tr0, tr1).
+ * Shuffles it into different representation:
+ * lo - contains low 32 bits of given N transitions.
+ * hi - contains high 32 bits of given N transitions.
*/
-#if (defined(__ICC) && __ICC < 1210)
+#define ACL_TR_HILO(P, TC, tr0, tr1, lo, hi) do { \
+ lo = (typeof(lo))_##P##_shuffle_ps((TC)(tr0), (TC)(tr1), 0x88); \
+ hi = (typeof(hi))_##P##_shuffle_ps((TC)(tr0), (TC)(tr1), 0xdd); \
+} while (0)
-#define MM_SET64(a, b) ({ \
- rte_xmm_t m; \
- m.u64[0] = b; \
- m.u64[1] = a; \
- (m.m); \
-})
-#else
-
-#define MM_SET64(a, b) _mm_set_epi64x(a, b)
+/*
+ * Calculate the address of the next transition for
+ * all types of nodes. Note that only DFA nodes and range
+ * nodes actually transition to another node. Match
+ * nodes not supposed to be encountered here.
+ * For quad range nodes:
+ * Calculate number of range boundaries that are less than the
+ * input value. Range boundaries for each node are in signed 8 bit,
+ * ordered from -128 to 127.
+ * This is effectively a popcnt of bytes that are greater than the
+ * input byte.
+ * Single nodes are processed in the same ways as quad range nodes.
+*/
+#define ACL_TR_CALC_ADDR(P, S, \
+ addr, index_mask, next_input, shuffle_input, \
+ ones_16, range_base, tr_lo, tr_hi) do { \
+ \
+ typeof(addr) in, node_type, r, t; \
+ typeof(addr) dfa_msk, dfa_ofs, quad_ofs; \
+ \
+ t = _##P##_xor_si##S(index_mask, index_mask); \
+ in = _##P##_shuffle_epi8(next_input, shuffle_input); \
+ \
+ /* Calc node type and node addr */ \
+ node_type = _##P##_andnot_si##S(index_mask, tr_lo); \
+ addr = _##P##_and_si##S(index_mask, tr_lo); \
+ \
+ /* mask for DFA type(0) nodes */ \
+ dfa_msk = _##P##_cmpeq_epi32(node_type, t); \
+ \
+ /* DFA calculations. */ \
+ r = _##P##_srli_epi32(in, 30); \
+ r = _##P##_add_epi8(r, range_base); \
+ t = _##P##_srli_epi32(in, 24); \
+ r = _##P##_shuffle_epi8(tr_hi, r); \
+ \
+ dfa_ofs = _##P##_sub_epi32(t, r); \
+ \
+ /* QUAD/SINGLE caluclations. */ \
+ t = _##P##_cmpgt_epi8(in, tr_hi); \
+ t = _##P##_sign_epi8(t, t); \
+ t = _##P##_maddubs_epi16(t, t); \
+ quad_ofs = _##P##_madd_epi16(t, ones_16); \
+ \
+ /* blend DFA and QUAD/SINGLE. */ \
+ t = _##P##_blendv_epi8(quad_ofs, dfa_ofs, dfa_msk); \
+ \
+ /* calculate address for next transitions. */ \
+ addr = _##P##_add_epi32(addr, t); \
+} while (0)
-#endif /* (defined(__ICC) && __ICC < 1210) */
#ifdef __cplusplus
}
})
#endif
+/*
+ * Prior to version 12.1 icc doesn't support _mm_set_epi64x.
+ */
+#if (defined(__ICC) && __ICC < 1210)
+#define _mm_set_epi64x(a, b) ({ \
+ rte_xmm_t m; \
+ m.u64[0] = b; \
+ m.u64[1] = a; \
+ (m.x); \
+})
+#endif /* (defined(__ICC) && __ICC < 1210) */
+
#ifdef __cplusplus
}
#endif