acl: deduplicate some SSE and AVX2 code
authorKonstantin Ananyev <konstantin.ananyev@intel.com>
Tue, 20 Jan 2015 18:41:04 +0000 (18:41 +0000)
committerThomas Monjalon <thomas.monjalon@6wind.com>
Wed, 28 Jan 2015 16:11:25 +0000 (17:11 +0100)
Vector code reorganisation/deduplication:
To avoid maintaining two nearly identical implementations of calc_addr()
(one for SSE, another for AVX2), replace it with a new macro that suits
both SSE and AVX2 code-paths.
Also remove no needed any more MM_* macros.

Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
lib/librte_acl/acl_run_avx2.h
lib/librte_acl/acl_run_sse.h
lib/librte_acl/acl_vect.h
lib/librte_eal/common/include/rte_common_vect.h

index 1688c50..b01a46a 100644 (file)
@@ -73,51 +73,19 @@ static const rte_ymm_t ymm_ones_16 = {
        },
 };
 
-static inline __attribute__((always_inline)) ymm_t
-calc_addr_avx2(ymm_t index_mask, ymm_t next_input, ymm_t shuffle_input,
-       ymm_t ones_16, ymm_t tr_lo, ymm_t tr_hi)
-{
-       ymm_t in, node_type, r, t;
-       ymm_t dfa_msk, dfa_ofs, quad_ofs;
-       ymm_t addr;
-
-       const ymm_t range_base = _mm256_set_epi32(
-               0xffffff0c, 0xffffff08, 0xffffff04, 0xffffff00,
-               0xffffff0c, 0xffffff08, 0xffffff04, 0xffffff00);
-
-       t = _mm256_xor_si256(index_mask, index_mask);
-       in = _mm256_shuffle_epi8(next_input, shuffle_input);
-
-       /* Calc node type and node addr */
-       node_type = _mm256_andnot_si256(index_mask, tr_lo);
-       addr = _mm256_and_si256(index_mask, tr_lo);
-
-       /* DFA calculations. */
-
-       dfa_msk = _mm256_cmpeq_epi32(node_type, t);
-
-       r = _mm256_srli_epi32(in, 30);
-       r = _mm256_add_epi8(r, range_base);
-
-       t = _mm256_srli_epi32(in, 24);
-       r = _mm256_shuffle_epi8(tr_hi, r);
-
-       dfa_ofs = _mm256_sub_epi32(t, r);
-
-       /* QUAD/SINGLE caluclations. */
-
-       t = _mm256_cmpgt_epi8(in, tr_hi);
-       t = _mm256_sign_epi8(t, t);
-       t = _mm256_maddubs_epi16(t, t);
-       quad_ofs = _mm256_madd_epi16(t, ones_16);
-
-       /* blend DFA and QUAD/SINGLE. */
-       t = _mm256_blendv_epi8(quad_ofs, dfa_ofs, dfa_msk);
-
-       addr = _mm256_add_epi32(addr, t);
-       return addr;
-}
+static const rte_ymm_t ymm_range_base = {
+       .u32 = {
+               0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
+               0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
+       },
+};
 
+/*
+ * Process 8 transitions in parallel.
+ * tr_lo contains low 32 bits for 8 transition.
+ * tr_hi contains high 32 bits for 8 transition.
+ * next_input contains up to 4 input bytes for 8 flows.
+ */
 static inline __attribute__((always_inline)) ymm_t
 transition8(ymm_t next_input, const uint64_t *trans, ymm_t *tr_lo, ymm_t *tr_hi)
 {
@@ -126,8 +94,10 @@ transition8(ymm_t next_input, const uint64_t *trans, ymm_t *tr_lo, ymm_t *tr_hi)
 
        tr = (const int32_t *)(uintptr_t)trans;
 
-       addr = calc_addr_avx2(ymm_index_mask.y, next_input, ymm_shuffle_input.y,
-               ymm_ones_16.y, *tr_lo, *tr_hi);
+       /* Calculate the address (array index) for all 8 transitions. */
+       ACL_TR_CALC_ADDR(mm256, 256, addr, ymm_index_mask.y, next_input,
+               ymm_shuffle_input.y, ymm_ones_16.y, ymm_range_base.y,
+               *tr_lo, *tr_hi);
 
        /* load lower 32 bits of 8 transactions at once. */
        *tr_lo = _mm256_i32gather_epi32(tr, addr, sizeof(trans[0]));
@@ -140,6 +110,11 @@ transition8(ymm_t next_input, const uint64_t *trans, ymm_t *tr_lo, ymm_t *tr_hi)
        return next_input;
 }
 
+/*
+ * Process matches for  8 flows.
+ * tr_lo contains low 32 bits for 8 transition.
+ * tr_hi contains high 32 bits for 8 transition.
+ */
 static inline void
 acl_process_matches_avx2x8(const struct rte_acl_ctx *ctx,
        struct parms *parms, struct acl_flow_data *flows, uint32_t slot,
@@ -155,6 +130,11 @@ acl_process_matches_avx2x8(const struct rte_acl_ctx *ctx,
        l0 = _mm256_castsi256_si128(*tr_lo);
 
        for (i = 0; i != RTE_DIM(tr) / 2; i++) {
+
+               /*
+                * Extract low 32bits of each transition.
+                * That's enough to process the match.
+                */
                tr[i] = (uint32_t)_mm_cvtsi128_si32(l0);
                tr[i + 4] = (uint32_t)_mm_cvtsi128_si32(l1);
 
@@ -167,12 +147,14 @@ acl_process_matches_avx2x8(const struct rte_acl_ctx *ctx,
                        ctx, parms, flows, resolve_priority_sse);
        }
 
+       /* Collect new transitions into 2 YMM registers. */
        t0 = _mm256_set_epi64x(tr[5], tr[4], tr[1], tr[0]);
        t1 = _mm256_set_epi64x(tr[7], tr[6], tr[3], tr[2]);
 
-       lo = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0x88);
-       hi = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0xdd);
+       /* For each transition: put low 32 into tr_lo and high 32 into tr_hi */
+       ACL_TR_HILO(mm256, __m256, t0, t1, lo, hi);
 
+       /* Keep transitions wth NOMATCH intact. */
        *tr_lo = _mm256_blendv_epi8(*tr_lo, lo, matches);
        *tr_hi = _mm256_blendv_epi8(*tr_hi, hi, matches);
 }
@@ -200,6 +182,9 @@ acl_match_check_avx2x8(const struct rte_acl_ctx *ctx, struct parms *parms,
        }
 }
 
+/*
+ * Execute trie traversal for up to 16 flows in parallel.
+ */
 static inline int
 search_avx2x16(const struct rte_acl_ctx *ctx, const uint8_t **data,
        uint32_t *results, uint32_t total_packets, uint32_t categories)
@@ -225,16 +210,14 @@ search_avx2x16(const struct rte_acl_ctx *ctx, const uint8_t **data,
        t1 = _mm256_set_epi64x(index_array[7], index_array[6],
                index_array[3], index_array[2]);
 
-       tr_lo[0] = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0x88);
-       tr_hi[0] = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0xdd);
+       ACL_TR_HILO(mm256, __m256, t0, t1, tr_lo[0], tr_hi[0]);
 
        t0 = _mm256_set_epi64x(index_array[13], index_array[12],
                index_array[9], index_array[8]);
        t1 = _mm256_set_epi64x(index_array[15], index_array[14],
                index_array[11], index_array[10]);
 
-       tr_lo[1] = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0x88);
-       tr_hi[1] = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0xdd);
+       ACL_TR_HILO(mm256, __m256, t0, t1, tr_lo[1], tr_hi[1]);
 
         /* Check for any matches. */
        acl_match_check_avx2x8(ctx, parms, &flows, 0, &tr_lo[0], &tr_hi[0],
index 4a174e9..ad40a67 100644 (file)
@@ -67,6 +67,12 @@ static const rte_xmm_t xmm_index_mask = {
        },
 };
 
+static const rte_xmm_t xmm_range_base = {
+       .u32 = {
+               0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
+       },
+};
+
 /*
  * Resolve priority for multiple results (sse version).
  * This consists comparing the priority of the current traversal with the
@@ -90,25 +96,28 @@ resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
                        (xmm_t *)(&parms[n].cmplt->priority[x]);
 
                /* get results and priorities for completed trie */
-               results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
-               priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
+               results = _mm_loadu_si128(
+                       (const xmm_t *)&p[transition].results[x]);
+               priority = _mm_loadu_si128(
+                       (const xmm_t *)&p[transition].priority[x]);
 
                /* if this is not the first completed trie */
                if (parms[n].cmplt->count != ctx->num_tries) {
 
                        /* get running best results and their priorities */
-                       results1 = MM_LOADU(saved_results);
-                       priority1 = MM_LOADU(saved_priority);
+                       results1 = _mm_loadu_si128(saved_results);
+                       priority1 = _mm_loadu_si128(saved_priority);
 
                        /* select results that are highest priority */
-                       selector = MM_CMPGT32(priority1, priority);
-                       results = MM_BLENDV8(results, results1, selector);
-                       priority = MM_BLENDV8(priority, priority1, selector);
+                       selector = _mm_cmpgt_epi32(priority1, priority);
+                       results = _mm_blendv_epi8(results, results1, selector);
+                       priority = _mm_blendv_epi8(priority, priority1,
+                               selector);
                }
 
                /* save running best results and their priorities */
-               MM_STOREU(saved_results, results);
-               MM_STOREU(saved_priority, priority);
+               _mm_storeu_si128(saved_results, results);
+               _mm_storeu_si128(saved_priority, priority);
        }
 }
 
@@ -122,11 +131,11 @@ acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx,
        uint64_t transition1, transition2;
 
        /* extract transition from low 64 bits. */
-       transition1 = MM_CVT64(*indices);
+       transition1 = _mm_cvtsi128_si64(*indices);
 
        /* extract transition from high 64 bits. */
-       *indices = MM_SHUFFLE32(*indices, SHUFFLE32_SWAP64);
-       transition2 = MM_CVT64(*indices);
+       *indices = _mm_shuffle_epi32(*indices, SHUFFLE32_SWAP64);
+       transition2 = _mm_cvtsi128_si64(*indices);
 
        transition1 = acl_match_check(transition1, slot, ctx,
                parms, flows, resolve_priority_sse);
@@ -134,7 +143,7 @@ acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx,
                parms, flows, resolve_priority_sse);
 
        /* update indices with new transitions. */
-       *indices = MM_SET64(transition2, transition1);
+       *indices = _mm_set_epi64x(transition2, transition1);
 }
 
 /*
@@ -148,98 +157,24 @@ acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
        xmm_t temp;
 
        /* put low 32 bits of each transition into one register */
-       temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, (__m128)*indices2,
+       temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2,
                0x88);
        /* test for match node */
-       temp = MM_AND(match_mask, temp);
+       temp = _mm_and_si128(match_mask, temp);
 
-       while (!MM_TESTZ(temp, temp)) {
+       while (!_mm_testz_si128(temp, temp)) {
                acl_process_matches(indices1, slot, ctx, parms, flows);
                acl_process_matches(indices2, slot + 2, ctx, parms, flows);
 
-               temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1,
+               temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1,
                                        (__m128)*indices2,
                                        0x88);
-               temp = MM_AND(match_mask, temp);
+               temp = _mm_and_si128(match_mask, temp);
        }
 }
 
 /*
- * Calculate the address of the next transition for
- * all types of nodes. Note that only DFA nodes and range
- * nodes actually transition to another node. Match
- * nodes don't move.
- */
-static inline __attribute__((always_inline)) xmm_t
-calc_addr_sse(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
-       xmm_t ones_16, xmm_t tr_lo, xmm_t tr_hi)
-{
-       xmm_t addr, node_types;
-       xmm_t dfa_msk, dfa_ofs, quad_ofs;
-       xmm_t in, r, t;
-
-       const xmm_t range_base = _mm_set_epi32(0xffffff0c, 0xffffff08,
-               0xffffff04, 0xffffff00);
-
-       /*
-        * Note that no transition is done for a match
-        * node and therefore a stream freezes when
-        * it reaches a match.
-        */
-
-       t = MM_XOR(index_mask, index_mask);
-
-       /* shuffle input byte to all 4 positions of 32 bit value */
-       in = MM_SHUFFLE8(next_input, shuffle_input);
-
-       /* Calc node type and node addr */
-       node_types = MM_ANDNOT(index_mask, tr_lo);
-       addr = MM_AND(index_mask, tr_lo);
-
-       /*
-        * Calc addr for DFAs - addr = dfa_index + input_byte
-        */
-
-       /* mask for DFA type (0) nodes */
-       dfa_msk = MM_CMPEQ32(node_types, t);
-
-       r = _mm_srli_epi32(in, 30);
-       r = _mm_add_epi8(r, range_base);
-
-       t = _mm_srli_epi32(in, 24);
-       r = _mm_shuffle_epi8(tr_hi, r);
-
-       dfa_ofs = _mm_sub_epi32(t, r);
-
-       /*
-        * Calculate number of range boundaries that are less than the
-        * input value. Range boundaries for each node are in signed 8 bit,
-        * ordered from -128 to 127 in the indices2 register.
-        * This is effectively a popcnt of bytes that are greater than the
-        * input byte.
-        */
-
-       /* check ranges */
-       t = MM_CMPGT8(in, tr_hi);
-
-       /* convert -1 to 1 (bytes greater than input byte */
-       t = MM_SIGN8(t, t);
-
-       /* horizontal add pairs of bytes into words */
-       t = MM_MADD8(t, t);
-
-       /* horizontal add pairs of words into dwords */
-       quad_ofs = MM_MADD16(t, ones_16);
-
-       /* blend DFA and QUAD/SINGLE. */
-       t = _mm_blendv_epi8(quad_ofs, dfa_ofs, dfa_msk);
-
-       /* add index into node position */
-       return MM_ADD32(addr, t);
-}
-
-/*
- * Process 4 transitions (in 2 SIMD registers) in parallel
+ * Process 4 transitions (in 2 XMM registers) in parallel
  */
 static inline __attribute__((always_inline)) xmm_t
 transition4(xmm_t next_input, const uint64_t *trans,
@@ -249,39 +184,36 @@ transition4(xmm_t next_input, const uint64_t *trans,
        uint64_t trans0, trans2;
 
        /* Shuffle low 32 into tr_lo and high 32 into tr_hi */
-       tr_lo = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2,
-               0x88);
-       tr_hi = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2,
-               0xdd);
+       ACL_TR_HILO(mm, __m128, *indices1, *indices2, tr_lo, tr_hi);
 
         /* Calculate the address (array index) for all 4 transitions. */
-
-       addr = calc_addr_sse(xmm_index_mask.x, next_input, xmm_shuffle_input.x,
-               xmm_ones_16.x, tr_lo, tr_hi);
+       ACL_TR_CALC_ADDR(mm, 128, addr, xmm_index_mask.x, next_input,
+               xmm_shuffle_input.x, xmm_ones_16.x, xmm_range_base.x,
+               tr_lo, tr_hi);
 
         /* Gather 64 bit transitions and pack back into 2 registers. */
 
-       trans0 = trans[MM_CVT32(addr)];
+       trans0 = trans[_mm_cvtsi128_si32(addr)];
 
        /* get slot 2 */
 
        /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
-       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
-       trans2 = trans[MM_CVT32(addr)];
+       addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT2);
+       trans2 = trans[_mm_cvtsi128_si32(addr)];
 
        /* get slot 1 */
 
        /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
-       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
-       *indices1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
+       addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT1);
+       *indices1 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans0);
 
        /* get slot 3 */
 
        /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
-       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
-       *indices2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
+       addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT3);
+       *indices2 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans2);
 
-       return MM_SRL32(next_input, CHAR_BIT);
+       return _mm_srli_epi32(next_input, CHAR_BIT);
 }
 
 /*
@@ -314,11 +246,11 @@ search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
         * indices4 contains index_array[6,7]
         */
 
-       indices1 = MM_LOADU((xmm_t *) &index_array[0]);
-       indices2 = MM_LOADU((xmm_t *) &index_array[2]);
+       indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]);
+       indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]);
 
-       indices3 = MM_LOADU((xmm_t *) &index_array[4]);
-       indices4 = MM_LOADU((xmm_t *) &index_array[6]);
+       indices3 = _mm_loadu_si128((xmm_t *) &index_array[4]);
+       indices4 = _mm_loadu_si128((xmm_t *) &index_array[6]);
 
         /* Check for any matches. */
        acl_match_check_x4(0, ctx, parms, &flows,
@@ -332,14 +264,14 @@ search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
                input0 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
                input1 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 4));
 
-               input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
-               input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
+               input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 1), 1);
+               input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 5), 1);
 
-               input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
-               input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
+               input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 2), 2);
+               input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 6), 2);
 
-               input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
-               input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
+               input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 3), 3);
+               input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 7), 3);
 
                 /* Process the 4 bytes of input on each stream. */
 
@@ -395,8 +327,8 @@ search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
                index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
        }
 
-       indices1 = MM_LOADU((xmm_t *) &index_array[0]);
-       indices2 = MM_LOADU((xmm_t *) &index_array[2]);
+       indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]);
+       indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]);
 
        /* Check for any matches. */
        acl_match_check_x4(0, ctx, parms, &flows,
@@ -406,9 +338,9 @@ search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
 
                /* Gather 4 bytes of input data for each stream. */
                input = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
-               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
-               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
-               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
+               input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 1), 1);
+               input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 2), 2);
+               input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 3), 3);
 
                /* Process the 4 bytes of input on each stream. */
                input = transition4(input, flows.trans, &indices1, &indices2);
index d813600..6cc1999 100644 (file)
 extern "C" {
 #endif
 
-#define        MM_ADD16(a, b)          _mm_add_epi16(a, b)
-#define        MM_ADD32(a, b)          _mm_add_epi32(a, b)
-#define        MM_ALIGNR8(a, b, c)     _mm_alignr_epi8(a, b, c)
-#define        MM_AND(a, b)            _mm_and_si128(a, b)
-#define MM_ANDNOT(a, b)                _mm_andnot_si128(a, b)
-#define MM_BLENDV8(a, b, c)    _mm_blendv_epi8(a, b, c)
-#define MM_CMPEQ16(a, b)       _mm_cmpeq_epi16(a, b)
-#define MM_CMPEQ32(a, b)       _mm_cmpeq_epi32(a, b)
-#define        MM_CMPEQ8(a, b)         _mm_cmpeq_epi8(a, b)
-#define MM_CMPGT32(a, b)       _mm_cmpgt_epi32(a, b)
-#define MM_CMPGT8(a, b)                _mm_cmpgt_epi8(a, b)
-#define MM_CVT(a)              _mm_cvtsi32_si128(a)
-#define        MM_CVT32(a)             _mm_cvtsi128_si32(a)
-#define MM_CVTU32(a)           _mm_cvtsi32_si128(a)
-#define        MM_INSERT16(a, c, b)    _mm_insert_epi16(a, c, b)
-#define        MM_INSERT32(a, c, b)    _mm_insert_epi32(a, c, b)
-#define        MM_LOAD(a)              _mm_load_si128(a)
-#define        MM_LOADH_PI(a, b)       _mm_loadh_pi(a, b)
-#define        MM_LOADU(a)             _mm_loadu_si128(a)
-#define        MM_MADD16(a, b)         _mm_madd_epi16(a, b)
-#define        MM_MADD8(a, b)          _mm_maddubs_epi16(a, b)
-#define        MM_MOVEMASK8(a)         _mm_movemask_epi8(a)
-#define MM_OR(a, b)            _mm_or_si128(a, b)
-#define        MM_SET1_16(a)           _mm_set1_epi16(a)
-#define        MM_SET1_32(a)           _mm_set1_epi32(a)
-#define        MM_SET1_64(a)           _mm_set1_epi64(a)
-#define        MM_SET1_8(a)            _mm_set1_epi8(a)
-#define        MM_SET32(a, b, c, d)    _mm_set_epi32(a, b, c, d)
-#define        MM_SHUFFLE32(a, b)      _mm_shuffle_epi32(a, b)
-#define        MM_SHUFFLE8(a, b)       _mm_shuffle_epi8(a, b)
-#define        MM_SHUFFLEPS(a, b, c)   _mm_shuffle_ps(a, b, c)
-#define        MM_SIGN8(a, b)          _mm_sign_epi8(a, b)
-#define        MM_SLL64(a, b)          _mm_sll_epi64(a, b)
-#define        MM_SRL128(a, b)         _mm_srli_si128(a, b)
-#define MM_SRL16(a, b)         _mm_srli_epi16(a, b)
-#define        MM_SRL32(a, b)          _mm_srli_epi32(a, b)
-#define        MM_STORE(a, b)          _mm_store_si128(a, b)
-#define        MM_STOREU(a, b)         _mm_storeu_si128(a, b)
-#define        MM_TESTZ(a, b)          _mm_testz_si128(a, b)
-#define        MM_XOR(a, b)            _mm_xor_si128(a, b)
-
-#define        MM_SET16(a, b, c, d, e, f, g, h)        \
-       _mm_set_epi16(a, b, c, d, e, f, g, h)
-
-#define        MM_SET8(c0, c1, c2, c3, c4, c5, c6, c7, \
-               c8, c9, cA, cB, cC, cD, cE, cF) \
-       _mm_set_epi8(c0, c1, c2, c3, c4, c5, c6, c7,    \
-               c8, c9, cA, cB, cC, cD, cE, cF)
-
-#ifdef RTE_ARCH_X86_64
-
-#define        MM_CVT64(a)             _mm_cvtsi128_si64(a)
-
-#else
-
-#define        MM_CVT64(a)     ({ \
-       rte_xmm_t m;       \
-       m.m = (a);         \
-       (m.u64[0]);        \
-})
-
-#endif /*RTE_ARCH_X86_64 */
 
 /*
- * Prior to version 12.1 icc doesn't support _mm_set_epi64x.
+ * Takes 2 SIMD registers containing N transitions eachi (tr0, tr1).
+ * Shuffles it into different representation:
+ * lo - contains low 32 bits of given N transitions.
+ * hi - contains high 32 bits of given N transitions.
  */
-#if (defined(__ICC) && __ICC < 1210)
+#define        ACL_TR_HILO(P, TC, tr0, tr1, lo, hi)                        do { \
+       lo = (typeof(lo))_##P##_shuffle_ps((TC)(tr0), (TC)(tr1), 0x88);  \
+       hi = (typeof(hi))_##P##_shuffle_ps((TC)(tr0), (TC)(tr1), 0xdd);  \
+} while (0)
 
-#define        MM_SET64(a, b)  ({ \
-       rte_xmm_t m;       \
-       m.u64[0] = b;      \
-       m.u64[1] = a;      \
-       (m.m);             \
-})
 
-#else
-
-#define        MM_SET64(a, b)          _mm_set_epi64x(a, b)
+/*
+ * Calculate the address of the next transition for
+ * all types of nodes. Note that only DFA nodes and range
+ * nodes actually transition to another node. Match
+ * nodes not supposed to be encountered here.
+ * For quad range nodes:
+ * Calculate number of range boundaries that are less than the
+ * input value. Range boundaries for each node are in signed 8 bit,
+ * ordered from -128 to 127.
+ * This is effectively a popcnt of bytes that are greater than the
+ * input byte.
+ * Single nodes are processed in the same ways as quad range nodes.
+*/
+#define ACL_TR_CALC_ADDR(P, S,                                 \
+       addr, index_mask, next_input, shuffle_input,            \
+       ones_16, range_base, tr_lo, tr_hi)               do {   \
+                                                               \
+       typeof(addr) in, node_type, r, t;                       \
+       typeof(addr) dfa_msk, dfa_ofs, quad_ofs;                \
+                                                               \
+       t = _##P##_xor_si##S(index_mask, index_mask);           \
+       in = _##P##_shuffle_epi8(next_input, shuffle_input);    \
+                                                               \
+       /* Calc node type and node addr */                      \
+       node_type = _##P##_andnot_si##S(index_mask, tr_lo);     \
+       addr = _##P##_and_si##S(index_mask, tr_lo);             \
+                                                               \
+       /* mask for DFA type(0) nodes */                        \
+       dfa_msk = _##P##_cmpeq_epi32(node_type, t);             \
+                                                               \
+       /* DFA calculations. */                                 \
+       r = _##P##_srli_epi32(in, 30);                          \
+       r = _##P##_add_epi8(r, range_base);                     \
+       t = _##P##_srli_epi32(in, 24);                          \
+       r = _##P##_shuffle_epi8(tr_hi, r);                      \
+                                                               \
+       dfa_ofs = _##P##_sub_epi32(t, r);                       \
+                                                               \
+       /* QUAD/SINGLE caluclations. */                         \
+       t = _##P##_cmpgt_epi8(in, tr_hi);                       \
+       t = _##P##_sign_epi8(t, t);                             \
+       t = _##P##_maddubs_epi16(t, t);                         \
+       quad_ofs = _##P##_madd_epi16(t, ones_16);               \
+                                                               \
+       /* blend DFA and QUAD/SINGLE. */                        \
+       t = _##P##_blendv_epi8(quad_ofs, dfa_ofs, dfa_msk);     \
+                                                               \
+       /* calculate address for next transitions. */           \
+       addr = _##P##_add_epi32(addr, t);                       \
+} while (0)
 
-#endif /* (defined(__ICC) && __ICC < 1210) */
 
 #ifdef __cplusplus
 }
index 617470b..54ec70f 100644 (file)
@@ -109,6 +109,18 @@ typedef union rte_ymm {
 })
 #endif
 
+/*
+ * Prior to version 12.1 icc doesn't support _mm_set_epi64x.
+ */
+#if (defined(__ICC) && __ICC < 1210)
+#define _mm_set_epi64x(a, b)  ({ \
+       rte_xmm_t m;             \
+       m.u64[0] = b;            \
+       m.u64[1] = a;            \
+       (m.x);                   \
+})
+#endif /* (defined(__ICC) && __ICC < 1210) */
+
 #ifdef __cplusplus
 }
 #endif